ARM.cpp revision 360784
1//===- ARM.cpp ------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "InputFiles.h"
10#include "Symbols.h"
11#include "SyntheticSections.h"
12#include "Target.h"
13#include "Thunks.h"
14#include "lld/Common/ErrorHandler.h"
15#include "llvm/Object/ELF.h"
16#include "llvm/Support/Endian.h"
17
18using namespace llvm;
19using namespace llvm::support::endian;
20using namespace llvm::ELF;
21
22namespace lld {
23namespace elf {
24
25namespace {
26class ARM final : public TargetInfo {
27public:
28  ARM();
29  uint32_t calcEFlags() const override;
30  RelExpr getRelExpr(RelType type, const Symbol &s,
31                     const uint8_t *loc) const override;
32  RelType getDynRel(RelType type) const override;
33  int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
34  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
35  void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
36  void writePltHeader(uint8_t *buf) const override;
37  void writePlt(uint8_t *buf, const Symbol &sym,
38                uint64_t pltEntryAddr) const override;
39  void addPltSymbols(InputSection &isec, uint64_t off) const override;
40  void addPltHeaderSymbols(InputSection &isd) const override;
41  bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
42                  uint64_t branchAddr, const Symbol &s,
43                  int64_t a) const override;
44  uint32_t getThunkSectionSpacing() const override;
45  bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
46  void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
47};
48} // namespace
49
50ARM::ARM() {
51  copyRel = R_ARM_COPY;
52  relativeRel = R_ARM_RELATIVE;
53  iRelativeRel = R_ARM_IRELATIVE;
54  gotRel = R_ARM_GLOB_DAT;
55  noneRel = R_ARM_NONE;
56  pltRel = R_ARM_JUMP_SLOT;
57  symbolicRel = R_ARM_ABS32;
58  tlsGotRel = R_ARM_TLS_TPOFF32;
59  tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
60  tlsOffsetRel = R_ARM_TLS_DTPOFF32;
61  gotBaseSymInGotPlt = false;
62  pltHeaderSize = 32;
63  pltEntrySize = 16;
64  ipltEntrySize = 16;
65  trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
66  needsThunks = true;
67}
68
69uint32_t ARM::calcEFlags() const {
70  // The ABIFloatType is used by loaders to detect the floating point calling
71  // convention.
72  uint32_t abiFloatType = 0;
73  if (config->armVFPArgs == ARMVFPArgKind::Base ||
74      config->armVFPArgs == ARMVFPArgKind::Default)
75    abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
76  else if (config->armVFPArgs == ARMVFPArgKind::VFP)
77    abiFloatType = EF_ARM_ABI_FLOAT_HARD;
78
79  // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
80  // but we don't have any firm guarantees of conformance. Linux AArch64
81  // kernels (as of 2016) require an EABI version to be set.
82  return EF_ARM_EABI_VER5 | abiFloatType;
83}
84
85RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
86                        const uint8_t *loc) const {
87  switch (type) {
88  case R_ARM_THM_JUMP11:
89    return R_PC;
90  case R_ARM_CALL:
91  case R_ARM_JUMP24:
92  case R_ARM_PC24:
93  case R_ARM_PLT32:
94  case R_ARM_PREL31:
95  case R_ARM_THM_JUMP19:
96  case R_ARM_THM_JUMP24:
97  case R_ARM_THM_CALL:
98    return R_PLT_PC;
99  case R_ARM_GOTOFF32:
100    // (S + A) - GOT_ORG
101    return R_GOTREL;
102  case R_ARM_GOT_BREL:
103    // GOT(S) + A - GOT_ORG
104    return R_GOT_OFF;
105  case R_ARM_GOT_PREL:
106  case R_ARM_TLS_IE32:
107    // GOT(S) + A - P
108    return R_GOT_PC;
109  case R_ARM_SBREL32:
110    return R_ARM_SBREL;
111  case R_ARM_TARGET1:
112    return config->target1Rel ? R_PC : R_ABS;
113  case R_ARM_TARGET2:
114    if (config->target2 == Target2Policy::Rel)
115      return R_PC;
116    if (config->target2 == Target2Policy::Abs)
117      return R_ABS;
118    return R_GOT_PC;
119  case R_ARM_TLS_GD32:
120    return R_TLSGD_PC;
121  case R_ARM_TLS_LDM32:
122    return R_TLSLD_PC;
123  case R_ARM_BASE_PREL:
124    // B(S) + A - P
125    // FIXME: currently B(S) assumed to be .got, this may not hold for all
126    // platforms.
127    return R_GOTONLY_PC;
128  case R_ARM_MOVW_PREL_NC:
129  case R_ARM_MOVT_PREL:
130  case R_ARM_REL32:
131  case R_ARM_THM_MOVW_PREL_NC:
132  case R_ARM_THM_MOVT_PREL:
133    return R_PC;
134  case R_ARM_NONE:
135    return R_NONE;
136  case R_ARM_TLS_LE32:
137    return R_TLS;
138  case R_ARM_V4BX:
139    // V4BX is just a marker to indicate there's a "bx rN" instruction at the
140    // given address. It can be used to implement a special linker mode which
141    // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
142    // not ARMv4 output, we can just ignore it.
143    return R_NONE;
144  default:
145    return R_ABS;
146  }
147}
148
149RelType ARM::getDynRel(RelType type) const {
150  if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
151    return R_ARM_ABS32;
152  return R_ARM_NONE;
153}
154
155void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
156  write32le(buf, in.plt->getVA());
157}
158
159void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
160  // An ARM entry is the address of the ifunc resolver function.
161  write32le(buf, s.getVA());
162}
163
164// Long form PLT Header that does not have any restrictions on the displacement
165// of the .plt from the .plt.got.
166static void writePltHeaderLong(uint8_t *buf) {
167  const uint8_t pltData[] = {
168      0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
169      0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
170      0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
171      0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
172      0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
173      0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
174      0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
175      0xd4, 0xd4, 0xd4, 0xd4};
176  memcpy(buf, pltData, sizeof(pltData));
177  uint64_t gotPlt = in.gotPlt->getVA();
178  uint64_t l1 = in.plt->getVA() + 8;
179  write32le(buf + 16, gotPlt - l1 - 8);
180}
181
182// The default PLT header requires the .plt.got to be within 128 Mb of the
183// .plt in the positive direction.
184void ARM::writePltHeader(uint8_t *buf) const {
185  // Use a similar sequence to that in writePlt(), the difference is the calling
186  // conventions mean we use lr instead of ip. The PLT entry is responsible for
187  // saving lr on the stack, the dynamic loader is responsible for reloading
188  // it.
189  const uint32_t pltData[] = {
190      0xe52de004, // L1: str lr, [sp,#-4]!
191      0xe28fe600, //     add lr, pc,  #0x0NN00000 &(.got.plt - L1 - 4)
192      0xe28eea00, //     add lr, lr,  #0x000NN000 &(.got.plt - L1 - 4)
193      0xe5bef000, //     ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
194  };
195
196  uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
197  if (!llvm::isUInt<27>(offset)) {
198    // We cannot encode the Offset, use the long form.
199    writePltHeaderLong(buf);
200    return;
201  }
202  write32le(buf + 0, pltData[0]);
203  write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
204  write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
205  write32le(buf + 12, pltData[3] | (offset & 0xfff));
206  memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
207  memcpy(buf + 20, trapInstr.data(), 4);
208  memcpy(buf + 24, trapInstr.data(), 4);
209  memcpy(buf + 28, trapInstr.data(), 4);
210}
211
212void ARM::addPltHeaderSymbols(InputSection &isec) const {
213  addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
214  addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
215}
216
217// Long form PLT entries that do not have any restrictions on the displacement
218// of the .plt from the .plt.got.
219static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
220                         uint64_t pltEntryAddr) {
221  const uint8_t pltData[] = {
222      0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
223      0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
224      0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
225      0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
226  };
227  memcpy(buf, pltData, sizeof(pltData));
228  uint64_t l1 = pltEntryAddr + 4;
229  write32le(buf + 12, gotPltEntryAddr - l1 - 8);
230}
231
232// The default PLT entries require the .plt.got to be within 128 Mb of the
233// .plt in the positive direction.
234void ARM::writePlt(uint8_t *buf, const Symbol &sym,
235                   uint64_t pltEntryAddr) const {
236  // The PLT entry is similar to the example given in Appendix A of ELF for
237  // the Arm Architecture. Instead of using the Group Relocations to find the
238  // optimal rotation for the 8-bit immediate used in the add instructions we
239  // hard code the most compact rotations for simplicity. This saves a load
240  // instruction over the long plt sequences.
241  const uint32_t pltData[] = {
242      0xe28fc600, // L1: add ip, pc,  #0x0NN00000  Offset(&(.plt.got) - L1 - 8
243      0xe28cca00, //     add ip, ip,  #0x000NN000  Offset(&(.plt.got) - L1 - 8
244      0xe5bcf000, //     ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
245  };
246
247  uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
248  if (!llvm::isUInt<27>(offset)) {
249    // We cannot encode the Offset, use the long form.
250    writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
251    return;
252  }
253  write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
254  write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
255  write32le(buf + 8, pltData[2] | (offset & 0xfff));
256  memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
257}
258
259void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
260  addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
261  addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
262}
263
264bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
265                     uint64_t branchAddr, const Symbol &s, int64_t /*a*/) const {
266  // If S is an undefined weak symbol and does not have a PLT entry then it
267  // will be resolved as a branch to the next instruction.
268  if (s.isUndefWeak() && !s.isInPlt())
269    return false;
270  // A state change from ARM to Thumb and vice versa must go through an
271  // interworking thunk if the relocation type is not R_ARM_CALL or
272  // R_ARM_THM_CALL.
273  switch (type) {
274  case R_ARM_PC24:
275  case R_ARM_PLT32:
276  case R_ARM_JUMP24:
277    // Source is ARM, all PLT entries are ARM so no interworking required.
278    // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
279    if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
280      return true;
281    LLVM_FALLTHROUGH;
282  case R_ARM_CALL: {
283    uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
284    return !inBranchRange(type, branchAddr, dst);
285  }
286  case R_ARM_THM_JUMP19:
287  case R_ARM_THM_JUMP24:
288    // Source is Thumb, all PLT entries are ARM so interworking is required.
289    // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
290    if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
291      return true;
292    LLVM_FALLTHROUGH;
293  case R_ARM_THM_CALL: {
294    uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
295    return !inBranchRange(type, branchAddr, dst);
296  }
297  }
298  return false;
299}
300
301uint32_t ARM::getThunkSectionSpacing() const {
302  // The placing of pre-created ThunkSections is controlled by the value
303  // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
304  // place the ThunkSection such that all branches from the InputSections
305  // prior to the ThunkSection can reach a Thunk placed at the end of the
306  // ThunkSection. Graphically:
307  // | up to thunkSectionSpacing .text input sections |
308  // | ThunkSection                                   |
309  // | up to thunkSectionSpacing .text input sections |
310  // | ThunkSection                                   |
311
312  // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
313  // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
314  // B.W:
315  // ARM B, BL, BLX range +/- 32MiB
316  // Thumb B.W, BL, BLX range +/- 16MiB
317  // Thumb B<cc>.W range +/- 1MiB
318  // If a branch cannot reach a pre-created ThunkSection a new one will be
319  // created so we can handle the rare cases of a Thumb 2 conditional branch.
320  // We intentionally use a lower size for thunkSectionSpacing than the maximum
321  // branch range so the end of the ThunkSection is more likely to be within
322  // range of the branch instruction that is furthest away. The value we shorten
323  // thunkSectionSpacing by is set conservatively to allow us to create 16,384
324  // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
325  // one of the Thunks going out of range.
326
327  // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
328  // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
329  // ARMv6T2) the range is +/- 4MiB.
330
331  return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
332                                         : 0x400000 - 0x7500;
333}
334
335bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
336  uint64_t range;
337  uint64_t instrSize;
338
339  switch (type) {
340  case R_ARM_PC24:
341  case R_ARM_PLT32:
342  case R_ARM_JUMP24:
343  case R_ARM_CALL:
344    range = 0x2000000;
345    instrSize = 4;
346    break;
347  case R_ARM_THM_JUMP19:
348    range = 0x100000;
349    instrSize = 2;
350    break;
351  case R_ARM_THM_JUMP24:
352  case R_ARM_THM_CALL:
353    range = config->armJ1J2BranchEncoding ? 0x1000000 : 0x400000;
354    instrSize = 2;
355    break;
356  default:
357    return true;
358  }
359  // PC at Src is 2 instructions ahead, immediate of branch is signed
360  if (src > dst)
361    range -= 2 * instrSize;
362  else
363    range += instrSize;
364
365  if ((dst & 0x1) == 0)
366    // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
367    // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
368    // destination will be 4 byte aligned.
369    src &= ~0x3;
370  else
371    // Bit 0 == 1 denotes Thumb state, it is not part of the range
372    dst &= ~0x1;
373
374  uint64_t distance = (src > dst) ? src - dst : dst - src;
375  return distance <= range;
376}
377
378void ARM::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
379  switch (type) {
380  case R_ARM_ABS32:
381  case R_ARM_BASE_PREL:
382  case R_ARM_GOTOFF32:
383  case R_ARM_GOT_BREL:
384  case R_ARM_GOT_PREL:
385  case R_ARM_REL32:
386  case R_ARM_RELATIVE:
387  case R_ARM_SBREL32:
388  case R_ARM_TARGET1:
389  case R_ARM_TARGET2:
390  case R_ARM_TLS_GD32:
391  case R_ARM_TLS_IE32:
392  case R_ARM_TLS_LDM32:
393  case R_ARM_TLS_LDO32:
394  case R_ARM_TLS_LE32:
395  case R_ARM_TLS_TPOFF32:
396  case R_ARM_TLS_DTPOFF32:
397    write32le(loc, val);
398    break;
399  case R_ARM_PREL31:
400    checkInt(loc, val, 31, type);
401    write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
402    break;
403  case R_ARM_CALL:
404    // R_ARM_CALL is used for BL and BLX instructions, depending on the
405    // value of bit 0 of Val, we must select a BL or BLX instruction
406    if (val & 1) {
407      // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
408      // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
409      checkInt(loc, val, 26, type);
410      write32le(loc, 0xfa000000 |                    // opcode
411                         ((val & 2) << 23) |         // H
412                         ((val >> 2) & 0x00ffffff)); // imm24
413      break;
414    }
415    if ((read32le(loc) & 0xfe000000) == 0xfa000000)
416      // BLX (always unconditional) instruction to an ARM Target, select an
417      // unconditional BL.
418      write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
419    // fall through as BL encoding is shared with B
420    LLVM_FALLTHROUGH;
421  case R_ARM_JUMP24:
422  case R_ARM_PC24:
423  case R_ARM_PLT32:
424    checkInt(loc, val, 26, type);
425    write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
426    break;
427  case R_ARM_THM_JUMP11:
428    checkInt(loc, val, 12, type);
429    write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
430    break;
431  case R_ARM_THM_JUMP19:
432    // Encoding T3: Val = S:J2:J1:imm6:imm11:0
433    checkInt(loc, val, 21, type);
434    write16le(loc,
435              (read16le(loc) & 0xfbc0) |   // opcode cond
436                  ((val >> 10) & 0x0400) | // S
437                  ((val >> 12) & 0x003f)); // imm6
438    write16le(loc + 2,
439              0x8000 |                    // opcode
440                  ((val >> 8) & 0x0800) | // J2
441                  ((val >> 5) & 0x2000) | // J1
442                  ((val >> 1) & 0x07ff)); // imm11
443    break;
444  case R_ARM_THM_CALL:
445    // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
446    // value of bit 0 of Val, we must select a BL or BLX instruction
447    if ((val & 1) == 0) {
448      // Ensure BLX destination is 4-byte aligned. As BLX instruction may
449      // only be two byte aligned. This must be done before overflow check
450      val = alignTo(val, 4);
451    }
452    // Bit 12 is 0 for BLX, 1 for BL
453    write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | (val & 1) << 12);
454    if (!config->armJ1J2BranchEncoding) {
455      // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
456      // different encoding rules and range due to J1 and J2 always being 1.
457      checkInt(loc, val, 23, type);
458      write16le(loc,
459                0xf000 |                     // opcode
460                    ((val >> 12) & 0x07ff)); // imm11
461      write16le(loc + 2,
462                (read16le(loc + 2) & 0xd000) | // opcode
463                    0x2800 |                   // J1 == J2 == 1
464                    ((val >> 1) & 0x07ff));    // imm11
465      break;
466    }
467    // Fall through as rest of encoding is the same as B.W
468    LLVM_FALLTHROUGH;
469  case R_ARM_THM_JUMP24:
470    // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
471    checkInt(loc, val, 25, type);
472    write16le(loc,
473              0xf000 |                     // opcode
474                  ((val >> 14) & 0x0400) | // S
475                  ((val >> 12) & 0x03ff)); // imm10
476    write16le(loc + 2,
477              (read16le(loc + 2) & 0xd000) |                  // opcode
478                  (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
479                  (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
480                  ((val >> 1) & 0x07ff));                     // imm11
481    break;
482  case R_ARM_MOVW_ABS_NC:
483  case R_ARM_MOVW_PREL_NC:
484    write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
485                       (val & 0x0fff));
486    break;
487  case R_ARM_MOVT_ABS:
488  case R_ARM_MOVT_PREL:
489    write32le(loc, (read32le(loc) & ~0x000f0fff) |
490                       (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
491    break;
492  case R_ARM_THM_MOVT_ABS:
493  case R_ARM_THM_MOVT_PREL:
494    // Encoding T1: A = imm4:i:imm3:imm8
495    write16le(loc,
496              0xf2c0 |                     // opcode
497                  ((val >> 17) & 0x0400) | // i
498                  ((val >> 28) & 0x000f)); // imm4
499    write16le(loc + 2,
500              (read16le(loc + 2) & 0x8f00) | // opcode
501                  ((val >> 12) & 0x7000) |   // imm3
502                  ((val >> 16) & 0x00ff));   // imm8
503    break;
504  case R_ARM_THM_MOVW_ABS_NC:
505  case R_ARM_THM_MOVW_PREL_NC:
506    // Encoding T3: A = imm4:i:imm3:imm8
507    write16le(loc,
508              0xf240 |                     // opcode
509                  ((val >> 1) & 0x0400) |  // i
510                  ((val >> 12) & 0x000f)); // imm4
511    write16le(loc + 2,
512              (read16le(loc + 2) & 0x8f00) | // opcode
513                  ((val << 4) & 0x7000) |    // imm3
514                  (val & 0x00ff));           // imm8
515    break;
516  default:
517    error(getErrorLocation(loc) + "unrecognized relocation " + toString(type));
518  }
519}
520
521int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
522  switch (type) {
523  default:
524    return 0;
525  case R_ARM_ABS32:
526  case R_ARM_BASE_PREL:
527  case R_ARM_GOTOFF32:
528  case R_ARM_GOT_BREL:
529  case R_ARM_GOT_PREL:
530  case R_ARM_REL32:
531  case R_ARM_TARGET1:
532  case R_ARM_TARGET2:
533  case R_ARM_TLS_GD32:
534  case R_ARM_TLS_LDM32:
535  case R_ARM_TLS_LDO32:
536  case R_ARM_TLS_IE32:
537  case R_ARM_TLS_LE32:
538    return SignExtend64<32>(read32le(buf));
539  case R_ARM_PREL31:
540    return SignExtend64<31>(read32le(buf));
541  case R_ARM_CALL:
542  case R_ARM_JUMP24:
543  case R_ARM_PC24:
544  case R_ARM_PLT32:
545    return SignExtend64<26>(read32le(buf) << 2);
546  case R_ARM_THM_JUMP11:
547    return SignExtend64<12>(read16le(buf) << 1);
548  case R_ARM_THM_JUMP19: {
549    // Encoding T3: A = S:J2:J1:imm10:imm6:0
550    uint16_t hi = read16le(buf);
551    uint16_t lo = read16le(buf + 2);
552    return SignExtend64<20>(((hi & 0x0400) << 10) | // S
553                            ((lo & 0x0800) << 8) |  // J2
554                            ((lo & 0x2000) << 5) |  // J1
555                            ((hi & 0x003f) << 12) | // imm6
556                            ((lo & 0x07ff) << 1));  // imm11:0
557  }
558  case R_ARM_THM_CALL:
559    if (!config->armJ1J2BranchEncoding) {
560      // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
561      // different encoding rules and range due to J1 and J2 always being 1.
562      uint16_t hi = read16le(buf);
563      uint16_t lo = read16le(buf + 2);
564      return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
565                              ((lo & 0x7ff) << 1));  // imm11:0
566      break;
567    }
568    LLVM_FALLTHROUGH;
569  case R_ARM_THM_JUMP24: {
570    // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
571    // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
572    uint16_t hi = read16le(buf);
573    uint16_t lo = read16le(buf + 2);
574    return SignExtend64<24>(((hi & 0x0400) << 14) |                    // S
575                            (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
576                            (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
577                            ((hi & 0x003ff) << 12) |                   // imm0
578                            ((lo & 0x007ff) << 1)); // imm11:0
579  }
580  // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
581  // MOVT is in the range -32768 <= A < 32768
582  case R_ARM_MOVW_ABS_NC:
583  case R_ARM_MOVT_ABS:
584  case R_ARM_MOVW_PREL_NC:
585  case R_ARM_MOVT_PREL: {
586    uint64_t val = read32le(buf) & 0x000f0fff;
587    return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
588  }
589  case R_ARM_THM_MOVW_ABS_NC:
590  case R_ARM_THM_MOVT_ABS:
591  case R_ARM_THM_MOVW_PREL_NC:
592  case R_ARM_THM_MOVT_PREL: {
593    // Encoding T3: A = imm4:i:imm3:imm8
594    uint16_t hi = read16le(buf);
595    uint16_t lo = read16le(buf + 2);
596    return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
597                            ((hi & 0x0400) << 1) |  // i
598                            ((lo & 0x7000) >> 4) |  // imm3
599                            (lo & 0x00ff));         // imm8
600  }
601  }
602}
603
604TargetInfo *getARMTargetInfo() {
605  static ARM target;
606  return &target;
607}
608
609} // namespace elf
610} // namespace lld
611