ICF.cpp revision 360784
1//===- ICF.cpp ------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// ICF is short for Identical Code Folding. That is a size optimization to
10// identify and merge two or more read-only sections (typically functions)
11// that happened to have the same contents. It usually reduces output size
12// by a few percent.
13//
14// On Windows, ICF is enabled by default.
15//
16// See ELF/ICF.cpp for the details about the algorithm.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ICF.h"
21#include "Chunks.h"
22#include "Symbols.h"
23#include "lld/Common/ErrorHandler.h"
24#include "lld/Common/Threads.h"
25#include "lld/Common/Timer.h"
26#include "llvm/ADT/Hashing.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/Parallel.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Support/xxhash.h"
31#include <algorithm>
32#include <atomic>
33#include <vector>
34
35using namespace llvm;
36
37namespace lld {
38namespace coff {
39
40static Timer icfTimer("ICF", Timer::root());
41
42class ICF {
43public:
44  void run(ArrayRef<Chunk *> v);
45
46private:
47  void segregate(size_t begin, size_t end, bool constant);
48
49  bool assocEquals(const SectionChunk *a, const SectionChunk *b);
50
51  bool equalsConstant(const SectionChunk *a, const SectionChunk *b);
52  bool equalsVariable(const SectionChunk *a, const SectionChunk *b);
53
54  bool isEligible(SectionChunk *c);
55
56  size_t findBoundary(size_t begin, size_t end);
57
58  void forEachClassRange(size_t begin, size_t end,
59                         std::function<void(size_t, size_t)> fn);
60
61  void forEachClass(std::function<void(size_t, size_t)> fn);
62
63  std::vector<SectionChunk *> chunks;
64  int cnt = 0;
65  std::atomic<bool> repeat = {false};
66};
67
68// Returns true if section S is subject of ICF.
69//
70// Microsoft's documentation
71// (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
72// 2017) says that /opt:icf folds both functions and read-only data.
73// Despite that, the MSVC linker folds only functions. We found
74// a few instances of programs that are not safe for data merging.
75// Therefore, we merge only functions just like the MSVC tool. However, we also
76// merge read-only sections in a couple of cases where the address of the
77// section is insignificant to the user program and the behaviour matches that
78// of the Visual C++ linker.
79bool ICF::isEligible(SectionChunk *c) {
80  // Non-comdat chunks, dead chunks, and writable chunks are not eligible.
81  bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
82  if (!c->isCOMDAT() || !c->live || writable)
83    return false;
84
85  // Code sections are eligible.
86  if (c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
87    return true;
88
89  // .pdata and .xdata unwind info sections are eligible.
90  StringRef outSecName = c->getSectionName().split('$').first;
91  if (outSecName == ".pdata" || outSecName == ".xdata")
92    return true;
93
94  // So are vtables.
95  if (c->sym && c->sym->getName().startswith("??_7"))
96    return true;
97
98  // Anything else not in an address-significance table is eligible.
99  return !c->keepUnique;
100}
101
102// Split an equivalence class into smaller classes.
103void ICF::segregate(size_t begin, size_t end, bool constant) {
104  while (begin < end) {
105    // Divide [Begin, End) into two. Let Mid be the start index of the
106    // second group.
107    auto bound = std::stable_partition(
108        chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) {
109          if (constant)
110            return equalsConstant(chunks[begin], s);
111          return equalsVariable(chunks[begin], s);
112        });
113    size_t mid = bound - chunks.begin();
114
115    // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
116    // equivalence class ID because every group ends with a unique index.
117    for (size_t i = begin; i < mid; ++i)
118      chunks[i]->eqClass[(cnt + 1) % 2] = mid;
119
120    // If we created a group, we need to iterate the main loop again.
121    if (mid != end)
122      repeat = true;
123
124    begin = mid;
125  }
126}
127
128// Returns true if two sections' associative children are equal.
129bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) {
130  auto childClasses = [&](const SectionChunk *sc) {
131    std::vector<uint32_t> classes;
132    for (const SectionChunk &c : sc->children())
133      if (!c.getSectionName().startswith(".debug") &&
134          c.getSectionName() != ".gfids$y" && c.getSectionName() != ".gljmp$y")
135        classes.push_back(c.eqClass[cnt % 2]);
136    return classes;
137  };
138  return childClasses(a) == childClasses(b);
139}
140
141// Compare "non-moving" part of two sections, namely everything
142// except relocation targets.
143bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) {
144  if (a->relocsSize != b->relocsSize)
145    return false;
146
147  // Compare relocations.
148  auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
149    if (r1.Type != r2.Type ||
150        r1.VirtualAddress != r2.VirtualAddress) {
151      return false;
152    }
153    Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
154    Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
155    if (b1 == b2)
156      return true;
157    if (auto *d1 = dyn_cast<DefinedRegular>(b1))
158      if (auto *d2 = dyn_cast<DefinedRegular>(b2))
159        return d1->getValue() == d2->getValue() &&
160               d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
161    return false;
162  };
163  if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(),
164                  b->getRelocs().begin(), eq))
165    return false;
166
167  // Compare section attributes and contents.
168  return a->getOutputCharacteristics() == b->getOutputCharacteristics() &&
169         a->getSectionName() == b->getSectionName() &&
170         a->header->SizeOfRawData == b->header->SizeOfRawData &&
171         a->checksum == b->checksum && a->getContents() == b->getContents() &&
172         assocEquals(a, b);
173}
174
175// Compare "moving" part of two sections, namely relocation targets.
176bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) {
177  // Compare relocations.
178  auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
179    Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
180    Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
181    if (b1 == b2)
182      return true;
183    if (auto *d1 = dyn_cast<DefinedRegular>(b1))
184      if (auto *d2 = dyn_cast<DefinedRegular>(b2))
185        return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
186    return false;
187  };
188  return std::equal(a->getRelocs().begin(), a->getRelocs().end(),
189                    b->getRelocs().begin(), eq) &&
190         assocEquals(a, b);
191}
192
193// Find the first Chunk after Begin that has a different class from Begin.
194size_t ICF::findBoundary(size_t begin, size_t end) {
195  for (size_t i = begin + 1; i < end; ++i)
196    if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2])
197      return i;
198  return end;
199}
200
201void ICF::forEachClassRange(size_t begin, size_t end,
202                            std::function<void(size_t, size_t)> fn) {
203  while (begin < end) {
204    size_t mid = findBoundary(begin, end);
205    fn(begin, mid);
206    begin = mid;
207  }
208}
209
210// Call Fn on each class group.
211void ICF::forEachClass(std::function<void(size_t, size_t)> fn) {
212  // If the number of sections are too small to use threading,
213  // call Fn sequentially.
214  if (chunks.size() < 1024) {
215    forEachClassRange(0, chunks.size(), fn);
216    ++cnt;
217    return;
218  }
219
220  // Shard into non-overlapping intervals, and call Fn in parallel.
221  // The sharding must be completed before any calls to Fn are made
222  // so that Fn can modify the Chunks in its shard without causing data
223  // races.
224  const size_t numShards = 256;
225  size_t step = chunks.size() / numShards;
226  size_t boundaries[numShards + 1];
227  boundaries[0] = 0;
228  boundaries[numShards] = chunks.size();
229  parallelForEachN(1, numShards, [&](size_t i) {
230    boundaries[i] = findBoundary((i - 1) * step, chunks.size());
231  });
232  parallelForEachN(1, numShards + 1, [&](size_t i) {
233    if (boundaries[i - 1] < boundaries[i]) {
234      forEachClassRange(boundaries[i - 1], boundaries[i], fn);
235    }
236  });
237  ++cnt;
238}
239
240// Merge identical COMDAT sections.
241// Two sections are considered the same if their section headers,
242// contents and relocations are all the same.
243void ICF::run(ArrayRef<Chunk *> vec) {
244  ScopedTimer t(icfTimer);
245
246  // Collect only mergeable sections and group by hash value.
247  uint32_t nextId = 1;
248  for (Chunk *c : vec) {
249    if (auto *sc = dyn_cast<SectionChunk>(c)) {
250      if (isEligible(sc))
251        chunks.push_back(sc);
252      else
253        sc->eqClass[0] = nextId++;
254    }
255  }
256
257  // Make sure that ICF doesn't merge sections that are being handled by string
258  // tail merging.
259  for (MergeChunk *mc : MergeChunk::instances)
260    if (mc)
261      for (SectionChunk *sc : mc->sections)
262        sc->eqClass[0] = nextId++;
263
264  // Initially, we use hash values to partition sections.
265  parallelForEach(chunks, [&](SectionChunk *sc) {
266    sc->eqClass[0] = xxHash64(sc->getContents());
267  });
268
269  // Combine the hashes of the sections referenced by each section into its
270  // hash.
271  for (unsigned cnt = 0; cnt != 2; ++cnt) {
272    parallelForEach(chunks, [&](SectionChunk *sc) {
273      uint32_t hash = sc->eqClass[cnt % 2];
274      for (Symbol *b : sc->symbols())
275        if (auto *sym = dyn_cast_or_null<DefinedRegular>(b))
276          hash += sym->getChunk()->eqClass[cnt % 2];
277      // Set MSB to 1 to avoid collisions with non-hash classes.
278      sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
279    });
280  }
281
282  // From now on, sections in Chunks are ordered so that sections in
283  // the same group are consecutive in the vector.
284  llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) {
285    return a->eqClass[0] < b->eqClass[0];
286  });
287
288  // Compare static contents and assign unique IDs for each static content.
289  forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
290
291  // Split groups by comparing relocations until convergence is obtained.
292  do {
293    repeat = false;
294    forEachClass(
295        [&](size_t begin, size_t end) { segregate(begin, end, false); });
296  } while (repeat);
297
298  log("ICF needed " + Twine(cnt) + " iterations");
299
300  // Merge sections in the same classes.
301  forEachClass([&](size_t begin, size_t end) {
302    if (end - begin == 1)
303      return;
304
305    log("Selected " + chunks[begin]->getDebugName());
306    for (size_t i = begin + 1; i < end; ++i) {
307      log("  Removed " + chunks[i]->getDebugName());
308      chunks[begin]->replace(chunks[i]);
309    }
310  });
311}
312
313// Entry point to ICF.
314void doICF(ArrayRef<Chunk *> chunks) { ICF().run(chunks); }
315
316} // namespace coff
317} // namespace lld
318