interception_win.cpp revision 360784
1//===-- interception_linux.cpp ----------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of AddressSanitizer, an address sanity checker.
10//
11// Windows-specific interception methods.
12//
13// This file is implementing several hooking techniques to intercept calls
14// to functions. The hooks are dynamically installed by modifying the assembly
15// code.
16//
17// The hooking techniques are making assumptions on the way the code is
18// generated and are safe under these assumptions.
19//
20// On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
21// arbitrary branching on the whole memory space, the notion of trampoline
22// region is used. A trampoline region is a memory space withing 2G boundary
23// where it is safe to add custom assembly code to build 64-bit jumps.
24//
25// Hooking techniques
26// ==================
27//
28// 1) Detour
29//
30//    The Detour hooking technique is assuming the presence of an header with
31//    padding and an overridable 2-bytes nop instruction (mov edi, edi). The
32//    nop instruction can safely be replaced by a 2-bytes jump without any need
33//    to save the instruction. A jump to the target is encoded in the function
34//    header and the nop instruction is replaced by a short jump to the header.
35//
36//        head:  5 x nop                 head:  jmp <hook>
37//        func:  mov edi, edi    -->     func:  jmp short <head>
38//               [...]                   real:  [...]
39//
40//    This technique is only implemented on 32-bit architecture.
41//    Most of the time, Windows API are hookable with the detour technique.
42//
43// 2) Redirect Jump
44//
45//    The redirect jump is applicable when the first instruction is a direct
46//    jump. The instruction is replaced by jump to the hook.
47//
48//        func:  jmp <label>     -->     func:  jmp <hook>
49//
50//    On an 64-bit architecture, a trampoline is inserted.
51//
52//        func:  jmp <label>     -->     func:  jmp <tramp>
53//                                              [...]
54//
55//                                   [trampoline]
56//                                      tramp:  jmp QWORD [addr]
57//                                       addr:  .bytes <hook>
58//
59//    Note: <real> is equilavent to <label>.
60//
61// 3) HotPatch
62//
63//    The HotPatch hooking is assuming the presence of an header with padding
64//    and a first instruction with at least 2-bytes.
65//
66//    The reason to enforce the 2-bytes limitation is to provide the minimal
67//    space to encode a short jump. HotPatch technique is only rewriting one
68//    instruction to avoid breaking a sequence of instructions containing a
69//    branching target.
70//
71//    Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
72//      see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
73//    Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
74//
75//        head:   5 x nop                head:  jmp <hook>
76//        func:   <instr>        -->     func:  jmp short <head>
77//                [...]                  body:  [...]
78//
79//                                   [trampoline]
80//                                       real:  <instr>
81//                                              jmp <body>
82//
83//    On an 64-bit architecture:
84//
85//        head:   6 x nop                head:  jmp QWORD [addr1]
86//        func:   <instr>        -->     func:  jmp short <head>
87//                [...]                  body:  [...]
88//
89//                                   [trampoline]
90//                                      addr1:  .bytes <hook>
91//                                       real:  <instr>
92//                                              jmp QWORD [addr2]
93//                                      addr2:  .bytes <body>
94//
95// 4) Trampoline
96//
97//    The Trampoline hooking technique is the most aggressive one. It is
98//    assuming that there is a sequence of instructions that can be safely
99//    replaced by a jump (enough room and no incoming branches).
100//
101//    Unfortunately, these assumptions can't be safely presumed and code may
102//    be broken after hooking.
103//
104//        func:   <instr>        -->     func:  jmp <hook>
105//                <instr>
106//                [...]                  body:  [...]
107//
108//                                   [trampoline]
109//                                       real:  <instr>
110//                                              <instr>
111//                                              jmp <body>
112//
113//    On an 64-bit architecture:
114//
115//        func:   <instr>        -->     func:  jmp QWORD [addr1]
116//                <instr>
117//                [...]                  body:  [...]
118//
119//                                   [trampoline]
120//                                      addr1:  .bytes <hook>
121//                                       real:  <instr>
122//                                              <instr>
123//                                              jmp QWORD [addr2]
124//                                      addr2:  .bytes <body>
125//===----------------------------------------------------------------------===//
126
127#include "interception.h"
128
129#if SANITIZER_WINDOWS
130#include "sanitizer_common/sanitizer_platform.h"
131#define WIN32_LEAN_AND_MEAN
132#include <windows.h>
133
134namespace __interception {
135
136static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
137static const int kJumpInstructionLength = 5;
138static const int kShortJumpInstructionLength = 2;
139static const int kIndirectJumpInstructionLength = 6;
140static const int kBranchLength =
141    FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
142static const int kDirectBranchLength = kBranchLength + kAddressLength;
143
144static void InterceptionFailed() {
145  // Do we have a good way to abort with an error message here?
146  __debugbreak();
147}
148
149static bool DistanceIsWithin2Gig(uptr from, uptr target) {
150#if SANITIZER_WINDOWS64
151  if (from < target)
152    return target - from <= (uptr)0x7FFFFFFFU;
153  else
154    return from - target <= (uptr)0x80000000U;
155#else
156  // In a 32-bit address space, the address calculation will wrap, so this check
157  // is unnecessary.
158  return true;
159#endif
160}
161
162static uptr GetMmapGranularity() {
163  SYSTEM_INFO si;
164  GetSystemInfo(&si);
165  return si.dwAllocationGranularity;
166}
167
168static uptr RoundUpTo(uptr size, uptr boundary) {
169  return (size + boundary - 1) & ~(boundary - 1);
170}
171
172// FIXME: internal_str* and internal_mem* functions should be moved from the
173// ASan sources into interception/.
174
175static size_t _strlen(const char *str) {
176  const char* p = str;
177  while (*p != '\0') ++p;
178  return p - str;
179}
180
181static char* _strchr(char* str, char c) {
182  while (*str) {
183    if (*str == c)
184      return str;
185    ++str;
186  }
187  return nullptr;
188}
189
190static void _memset(void *p, int value, size_t sz) {
191  for (size_t i = 0; i < sz; ++i)
192    ((char*)p)[i] = (char)value;
193}
194
195static void _memcpy(void *dst, void *src, size_t sz) {
196  char *dst_c = (char*)dst,
197       *src_c = (char*)src;
198  for (size_t i = 0; i < sz; ++i)
199    dst_c[i] = src_c[i];
200}
201
202static bool ChangeMemoryProtection(
203    uptr address, uptr size, DWORD *old_protection) {
204  return ::VirtualProtect((void*)address, size,
205                          PAGE_EXECUTE_READWRITE,
206                          old_protection) != FALSE;
207}
208
209static bool RestoreMemoryProtection(
210    uptr address, uptr size, DWORD old_protection) {
211  DWORD unused;
212  return ::VirtualProtect((void*)address, size,
213                          old_protection,
214                          &unused) != FALSE;
215}
216
217static bool IsMemoryPadding(uptr address, uptr size) {
218  u8* function = (u8*)address;
219  for (size_t i = 0; i < size; ++i)
220    if (function[i] != 0x90 && function[i] != 0xCC)
221      return false;
222  return true;
223}
224
225static const u8 kHintNop8Bytes[] = {
226  0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00
227};
228
229template<class T>
230static bool FunctionHasPrefix(uptr address, const T &pattern) {
231  u8* function = (u8*)address - sizeof(pattern);
232  for (size_t i = 0; i < sizeof(pattern); ++i)
233    if (function[i] != pattern[i])
234      return false;
235  return true;
236}
237
238static bool FunctionHasPadding(uptr address, uptr size) {
239  if (IsMemoryPadding(address - size, size))
240    return true;
241  if (size <= sizeof(kHintNop8Bytes) &&
242      FunctionHasPrefix(address, kHintNop8Bytes))
243    return true;
244  return false;
245}
246
247static void WritePadding(uptr from, uptr size) {
248  _memset((void*)from, 0xCC, (size_t)size);
249}
250
251static void WriteJumpInstruction(uptr from, uptr target) {
252  if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target))
253    InterceptionFailed();
254  ptrdiff_t offset = target - from - kJumpInstructionLength;
255  *(u8*)from = 0xE9;
256  *(u32*)(from + 1) = offset;
257}
258
259static void WriteShortJumpInstruction(uptr from, uptr target) {
260  sptr offset = target - from - kShortJumpInstructionLength;
261  if (offset < -128 || offset > 127)
262    InterceptionFailed();
263  *(u8*)from = 0xEB;
264  *(u8*)(from + 1) = (u8)offset;
265}
266
267#if SANITIZER_WINDOWS64
268static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
269  // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
270  // offset.
271  // The offset is the distance from then end of the jump instruction to the
272  // memory location containing the targeted address. The displacement is still
273  // 32-bit in x64, so indirect_target must be located within +/- 2GB range.
274  int offset = indirect_target - from - kIndirectJumpInstructionLength;
275  if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
276                            indirect_target)) {
277    InterceptionFailed();
278  }
279  *(u16*)from = 0x25FF;
280  *(u32*)(from + 2) = offset;
281}
282#endif
283
284static void WriteBranch(
285    uptr from, uptr indirect_target, uptr target) {
286#if SANITIZER_WINDOWS64
287  WriteIndirectJumpInstruction(from, indirect_target);
288  *(u64*)indirect_target = target;
289#else
290  (void)indirect_target;
291  WriteJumpInstruction(from, target);
292#endif
293}
294
295static void WriteDirectBranch(uptr from, uptr target) {
296#if SANITIZER_WINDOWS64
297  // Emit an indirect jump through immediately following bytes:
298  //   jmp [rip + kBranchLength]
299  //   .quad <target>
300  WriteBranch(from, from + kBranchLength, target);
301#else
302  WriteJumpInstruction(from, target);
303#endif
304}
305
306struct TrampolineMemoryRegion {
307  uptr content;
308  uptr allocated_size;
309  uptr max_size;
310};
311
312static const uptr kTrampolineScanLimitRange = 1 << 31;  // 2 gig
313static const int kMaxTrampolineRegion = 1024;
314static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];
315
316static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) {
317#if SANITIZER_WINDOWS64
318  uptr address = image_address;
319  uptr scanned = 0;
320  while (scanned < kTrampolineScanLimitRange) {
321    MEMORY_BASIC_INFORMATION info;
322    if (!::VirtualQuery((void*)address, &info, sizeof(info)))
323      return nullptr;
324
325    // Check whether a region can be allocated at |address|.
326    if (info.State == MEM_FREE && info.RegionSize >= granularity) {
327      void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity),
328                                  granularity,
329                                  MEM_RESERVE | MEM_COMMIT,
330                                  PAGE_EXECUTE_READWRITE);
331      return page;
332    }
333
334    // Move to the next region.
335    address = (uptr)info.BaseAddress + info.RegionSize;
336    scanned += info.RegionSize;
337  }
338  return nullptr;
339#else
340  return ::VirtualAlloc(nullptr,
341                        granularity,
342                        MEM_RESERVE | MEM_COMMIT,
343                        PAGE_EXECUTE_READWRITE);
344#endif
345}
346
347// Used by unittests to release mapped memory space.
348void TestOnlyReleaseTrampolineRegions() {
349  for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
350    TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
351    if (current->content == 0)
352      return;
353    ::VirtualFree((void*)current->content, 0, MEM_RELEASE);
354    current->content = 0;
355  }
356}
357
358static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) {
359  // Find a region within 2G with enough space to allocate |size| bytes.
360  TrampolineMemoryRegion *region = nullptr;
361  for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
362    TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
363    if (current->content == 0) {
364      // No valid region found, allocate a new region.
365      size_t bucket_size = GetMmapGranularity();
366      void *content = AllocateTrampolineRegion(image_address, bucket_size);
367      if (content == nullptr)
368        return 0U;
369
370      current->content = (uptr)content;
371      current->allocated_size = 0;
372      current->max_size = bucket_size;
373      region = current;
374      break;
375    } else if (current->max_size - current->allocated_size > size) {
376#if SANITIZER_WINDOWS64
377        // In 64-bits, the memory space must be allocated within 2G boundary.
378        uptr next_address = current->content + current->allocated_size;
379        if (next_address < image_address ||
380            next_address - image_address >= 0x7FFF0000)
381          continue;
382#endif
383      // The space can be allocated in the current region.
384      region = current;
385      break;
386    }
387  }
388
389  // Failed to find a region.
390  if (region == nullptr)
391    return 0U;
392
393  // Allocate the space in the current region.
394  uptr allocated_space = region->content + region->allocated_size;
395  region->allocated_size += size;
396  WritePadding(allocated_space, size);
397
398  return allocated_space;
399}
400
401// Returns 0 on error.
402static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) {
403  switch (*(u64*)address) {
404    case 0x90909090909006EB:  // stub: jmp over 6 x nop.
405      return 8;
406  }
407
408  switch (*(u8*)address) {
409    case 0x90:  // 90 : nop
410      return 1;
411
412    case 0x50:  // push eax / rax
413    case 0x51:  // push ecx / rcx
414    case 0x52:  // push edx / rdx
415    case 0x53:  // push ebx / rbx
416    case 0x54:  // push esp / rsp
417    case 0x55:  // push ebp / rbp
418    case 0x56:  // push esi / rsi
419    case 0x57:  // push edi / rdi
420    case 0x5D:  // pop ebp / rbp
421      return 1;
422
423    case 0x6A:  // 6A XX = push XX
424      return 2;
425
426    case 0xb8:  // b8 XX XX XX XX : mov eax, XX XX XX XX
427    case 0xB9:  // b9 XX XX XX XX : mov ecx, XX XX XX XX
428      return 5;
429
430    // Cannot overwrite control-instruction. Return 0 to indicate failure.
431    case 0xE9:  // E9 XX XX XX XX : jmp <label>
432    case 0xE8:  // E8 XX XX XX XX : call <func>
433    case 0xC3:  // C3 : ret
434    case 0xEB:  // EB XX : jmp XX (short jump)
435    case 0x70:  // 7Y YY : jy XX (short conditional jump)
436    case 0x71:
437    case 0x72:
438    case 0x73:
439    case 0x74:
440    case 0x75:
441    case 0x76:
442    case 0x77:
443    case 0x78:
444    case 0x79:
445    case 0x7A:
446    case 0x7B:
447    case 0x7C:
448    case 0x7D:
449    case 0x7E:
450    case 0x7F:
451      return 0;
452  }
453
454  switch (*(u16*)(address)) {
455    case 0x018A:  // 8A 01 : mov al, byte ptr [ecx]
456    case 0xFF8B:  // 8B FF : mov edi, edi
457    case 0xEC8B:  // 8B EC : mov ebp, esp
458    case 0xc889:  // 89 C8 : mov eax, ecx
459    case 0xC18B:  // 8B C1 : mov eax, ecx
460    case 0xC033:  // 33 C0 : xor eax, eax
461    case 0xC933:  // 33 C9 : xor ecx, ecx
462    case 0xD233:  // 33 D2 : xor edx, edx
463      return 2;
464
465    // Cannot overwrite control-instruction. Return 0 to indicate failure.
466    case 0x25FF:  // FF 25 XX XX XX XX : jmp [XXXXXXXX]
467      return 0;
468  }
469
470  switch (0x00FFFFFF & *(u32*)address) {
471    case 0x24A48D:  // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX]
472      return 7;
473  }
474
475#if SANITIZER_WINDOWS64
476  switch (*(u8*)address) {
477    case 0xA1:  // A1 XX XX XX XX XX XX XX XX :
478                //   movabs eax, dword ptr ds:[XXXXXXXX]
479      return 9;
480  }
481
482  switch (*(u16*)address) {
483    case 0x5040:  // push rax
484    case 0x5140:  // push rcx
485    case 0x5240:  // push rdx
486    case 0x5340:  // push rbx
487    case 0x5440:  // push rsp
488    case 0x5540:  // push rbp
489    case 0x5640:  // push rsi
490    case 0x5740:  // push rdi
491    case 0x5441:  // push r12
492    case 0x5541:  // push r13
493    case 0x5641:  // push r14
494    case 0x5741:  // push r15
495    case 0x9066:  // Two-byte NOP
496      return 2;
497
498    case 0x058B:  // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX]
499      if (rel_offset)
500        *rel_offset = 2;
501      return 6;
502  }
503
504  switch (0x00FFFFFF & *(u32*)address) {
505    case 0xe58948:    // 48 8b c4 : mov rbp, rsp
506    case 0xc18b48:    // 48 8b c1 : mov rax, rcx
507    case 0xc48b48:    // 48 8b c4 : mov rax, rsp
508    case 0xd9f748:    // 48 f7 d9 : neg rcx
509    case 0xd12b48:    // 48 2b d1 : sub rdx, rcx
510    case 0x07c1f6:    // f6 c1 07 : test cl, 0x7
511    case 0xc98548:    // 48 85 C9 : test rcx, rcx
512    case 0xc0854d:    // 4d 85 c0 : test r8, r8
513    case 0xc2b60f:    // 0f b6 c2 : movzx eax, dl
514    case 0xc03345:    // 45 33 c0 : xor r8d, r8d
515    case 0xc93345:    // 45 33 c9 : xor r9d, r9d
516    case 0xdb3345:    // 45 33 DB : xor r11d, r11d
517    case 0xd98b4c:    // 4c 8b d9 : mov r11, rcx
518    case 0xd28b4c:    // 4c 8b d2 : mov r10, rdx
519    case 0xc98b4c:    // 4C 8B C9 : mov r9, rcx
520    case 0xc18b4c:    // 4C 8B C1 : mov r8, rcx
521    case 0xd2b60f:    // 0f b6 d2 : movzx edx, dl
522    case 0xca2b48:    // 48 2b ca : sub rcx, rdx
523    case 0x10b70f:    // 0f b7 10 : movzx edx, WORD PTR [rax]
524    case 0xc00b4d:    // 3d 0b c0 : or r8, r8
525    case 0xd18b48:    // 48 8b d1 : mov rdx, rcx
526    case 0xdc8b4c:    // 4c 8b dc : mov r11, rsp
527    case 0xd18b4c:    // 4c 8b d1 : mov r10, rcx
528    case 0xE0E483:    // 83 E4 E0 : and esp, 0xFFFFFFE0
529      return 3;
530
531    case 0xec8348:    // 48 83 ec XX : sub rsp, XX
532    case 0xf88349:    // 49 83 f8 XX : cmp r8, XX
533    case 0x588948:    // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
534      return 4;
535
536    case 0xec8148:    // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX
537      return 7;
538
539    case 0x058b48:    // 48 8b 05 XX XX XX XX :
540                      //   mov rax, QWORD PTR [rip + XXXXXXXX]
541    case 0x25ff48:    // 48 ff 25 XX XX XX XX :
542                      //   rex.W jmp QWORD PTR [rip + XXXXXXXX]
543
544      // Instructions having offset relative to 'rip' need offset adjustment.
545      if (rel_offset)
546        *rel_offset = 3;
547      return 7;
548
549    case 0x2444c7:    // C7 44 24 XX YY YY YY YY
550                      //   mov dword ptr [rsp + XX], YYYYYYYY
551      return 8;
552  }
553
554  switch (*(u32*)(address)) {
555    case 0x24448b48:  // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX]
556    case 0x246c8948:  // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp
557    case 0x245c8948:  // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
558    case 0x24748948:  // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
559    case 0x244C8948:  // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx
560    case 0x24548948:  // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx
561    case 0x244c894c:  // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9
562    case 0x2444894c:  // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8
563      return 5;
564    case 0x24648348:  // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY
565      return 6;
566  }
567
568#else
569
570  switch (*(u8*)address) {
571    case 0xA1:  // A1 XX XX XX XX :  mov eax, dword ptr ds:[XXXXXXXX]
572      return 5;
573  }
574  switch (*(u16*)address) {
575    case 0x458B:  // 8B 45 XX : mov eax, dword ptr [ebp + XX]
576    case 0x5D8B:  // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
577    case 0x7D8B:  // 8B 7D XX : mov edi, dword ptr [ebp + XX]
578    case 0xEC83:  // 83 EC XX : sub esp, XX
579    case 0x75FF:  // FF 75 XX : push dword ptr [ebp + XX]
580      return 3;
581    case 0xC1F7:  // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
582    case 0x25FF:  // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
583      return 6;
584    case 0x3D83:  // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
585      return 7;
586    case 0x7D83:  // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
587      return 4;
588  }
589
590  switch (0x00FFFFFF & *(u32*)address) {
591    case 0x24448A:  // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
592    case 0x24448B:  // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
593    case 0x244C8B:  // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
594    case 0x24548B:  // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
595    case 0x24748B:  // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
596    case 0x247C8B:  // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
597      return 4;
598  }
599
600  switch (*(u32*)address) {
601    case 0x2444B60F:  // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
602      return 5;
603  }
604#endif
605
606  // Unknown instruction!
607  // FIXME: Unknown instruction failures might happen when we add a new
608  // interceptor or a new compiler version. In either case, they should result
609  // in visible and readable error messages. However, merely calling abort()
610  // leads to an infinite recursion in CheckFailed.
611  InterceptionFailed();
612  return 0;
613}
614
615// Returns 0 on error.
616static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
617  size_t cursor = 0;
618  while (cursor < size) {
619    size_t instruction_size = GetInstructionSize(address + cursor);
620    if (!instruction_size)
621      return 0;
622    cursor += instruction_size;
623  }
624  return cursor;
625}
626
627static bool CopyInstructions(uptr to, uptr from, size_t size) {
628  size_t cursor = 0;
629  while (cursor != size) {
630    size_t rel_offset = 0;
631    size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset);
632    _memcpy((void*)(to + cursor), (void*)(from + cursor),
633            (size_t)instruction_size);
634    if (rel_offset) {
635      uptr delta = to - from;
636      uptr relocated_offset = *(u32*)(to + cursor + rel_offset) - delta;
637#if SANITIZER_WINDOWS64
638      if (relocated_offset + 0x80000000U >= 0xFFFFFFFFU)
639        return false;
640#endif
641      *(u32*)(to + cursor + rel_offset) = relocated_offset;
642    }
643    cursor += instruction_size;
644  }
645  return true;
646}
647
648
649#if !SANITIZER_WINDOWS64
650bool OverrideFunctionWithDetour(
651    uptr old_func, uptr new_func, uptr *orig_old_func) {
652  const int kDetourHeaderLen = 5;
653  const u16 kDetourInstruction = 0xFF8B;
654
655  uptr header = (uptr)old_func - kDetourHeaderLen;
656  uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;
657
658  // Validate that the function is hookable.
659  if (*(u16*)old_func != kDetourInstruction ||
660      !IsMemoryPadding(header, kDetourHeaderLen))
661    return false;
662
663  // Change memory protection to writable.
664  DWORD protection = 0;
665  if (!ChangeMemoryProtection(header, patch_length, &protection))
666    return false;
667
668  // Write a relative jump to the redirected function.
669  WriteJumpInstruction(header, new_func);
670
671  // Write the short jump to the function prefix.
672  WriteShortJumpInstruction(old_func, header);
673
674  // Restore previous memory protection.
675  if (!RestoreMemoryProtection(header, patch_length, protection))
676    return false;
677
678  if (orig_old_func)
679    *orig_old_func = old_func + kShortJumpInstructionLength;
680
681  return true;
682}
683#endif
684
685bool OverrideFunctionWithRedirectJump(
686    uptr old_func, uptr new_func, uptr *orig_old_func) {
687  // Check whether the first instruction is a relative jump.
688  if (*(u8*)old_func != 0xE9)
689    return false;
690
691  if (orig_old_func) {
692    uptr relative_offset = *(u32*)(old_func + 1);
693    uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
694    *orig_old_func = absolute_target;
695  }
696
697#if SANITIZER_WINDOWS64
698  // If needed, get memory space for a trampoline jump.
699  uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
700  if (!trampoline)
701    return false;
702  WriteDirectBranch(trampoline, new_func);
703#endif
704
705  // Change memory protection to writable.
706  DWORD protection = 0;
707  if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
708    return false;
709
710  // Write a relative jump to the redirected function.
711  WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));
712
713  // Restore previous memory protection.
714  if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
715    return false;
716
717  return true;
718}
719
720bool OverrideFunctionWithHotPatch(
721    uptr old_func, uptr new_func, uptr *orig_old_func) {
722  const int kHotPatchHeaderLen = kBranchLength;
723
724  uptr header = (uptr)old_func - kHotPatchHeaderLen;
725  uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;
726
727  // Validate that the function is hot patchable.
728  size_t instruction_size = GetInstructionSize(old_func);
729  if (instruction_size < kShortJumpInstructionLength ||
730      !FunctionHasPadding(old_func, kHotPatchHeaderLen))
731    return false;
732
733  if (orig_old_func) {
734    // Put the needed instructions into the trampoline bytes.
735    uptr trampoline_length = instruction_size + kDirectBranchLength;
736    uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
737    if (!trampoline)
738      return false;
739    if (!CopyInstructions(trampoline, old_func, instruction_size))
740      return false;
741    WriteDirectBranch(trampoline + instruction_size,
742                      old_func + instruction_size);
743    *orig_old_func = trampoline;
744  }
745
746  // If needed, get memory space for indirect address.
747  uptr indirect_address = 0;
748#if SANITIZER_WINDOWS64
749  indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
750  if (!indirect_address)
751    return false;
752#endif
753
754  // Change memory protection to writable.
755  DWORD protection = 0;
756  if (!ChangeMemoryProtection(header, patch_length, &protection))
757    return false;
758
759  // Write jumps to the redirected function.
760  WriteBranch(header, indirect_address, new_func);
761  WriteShortJumpInstruction(old_func, header);
762
763  // Restore previous memory protection.
764  if (!RestoreMemoryProtection(header, patch_length, protection))
765    return false;
766
767  return true;
768}
769
770bool OverrideFunctionWithTrampoline(
771    uptr old_func, uptr new_func, uptr *orig_old_func) {
772
773  size_t instructions_length = kBranchLength;
774  size_t padding_length = 0;
775  uptr indirect_address = 0;
776
777  if (orig_old_func) {
778    // Find out the number of bytes of the instructions we need to copy
779    // to the trampoline.
780    instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
781    if (!instructions_length)
782      return false;
783
784    // Put the needed instructions into the trampoline bytes.
785    uptr trampoline_length = instructions_length + kDirectBranchLength;
786    uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
787    if (!trampoline)
788      return false;
789    if (!CopyInstructions(trampoline, old_func, instructions_length))
790      return false;
791    WriteDirectBranch(trampoline + instructions_length,
792                      old_func + instructions_length);
793    *orig_old_func = trampoline;
794  }
795
796#if SANITIZER_WINDOWS64
797  // Check if the targeted address can be encoded in the function padding.
798  // Otherwise, allocate it in the trampoline region.
799  if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
800    indirect_address = old_func - kAddressLength;
801    padding_length = kAddressLength;
802  } else {
803    indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
804    if (!indirect_address)
805      return false;
806  }
807#endif
808
809  // Change memory protection to writable.
810  uptr patch_address = old_func - padding_length;
811  uptr patch_length = instructions_length + padding_length;
812  DWORD protection = 0;
813  if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
814    return false;
815
816  // Patch the original function.
817  WriteBranch(old_func, indirect_address, new_func);
818
819  // Restore previous memory protection.
820  if (!RestoreMemoryProtection(patch_address, patch_length, protection))
821    return false;
822
823  return true;
824}
825
826bool OverrideFunction(
827    uptr old_func, uptr new_func, uptr *orig_old_func) {
828#if !SANITIZER_WINDOWS64
829  if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
830    return true;
831#endif
832  if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
833    return true;
834  if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
835    return true;
836  if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
837    return true;
838  return false;
839}
840
841static void **InterestingDLLsAvailable() {
842  static const char *InterestingDLLs[] = {
843      "kernel32.dll",
844      "msvcr100.dll",      // VS2010
845      "msvcr110.dll",      // VS2012
846      "msvcr120.dll",      // VS2013
847      "vcruntime140.dll",  // VS2015
848      "ucrtbase.dll",      // Universal CRT
849      // NTDLL should go last as it exports some functions that we should
850      // override in the CRT [presumably only used internally].
851      "ntdll.dll", NULL};
852  static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
853  if (!result[0]) {
854    for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
855      if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
856        result[j++] = (void *)h;
857    }
858  }
859  return &result[0];
860}
861
862namespace {
863// Utility for reading loaded PE images.
864template <typename T> class RVAPtr {
865 public:
866  RVAPtr(void *module, uptr rva)
867      : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
868  operator T *() { return ptr_; }
869  T *operator->() { return ptr_; }
870  T *operator++() { return ++ptr_; }
871
872 private:
873  T *ptr_;
874};
875} // namespace
876
877// Internal implementation of GetProcAddress. At least since Windows 8,
878// GetProcAddress appears to initialize DLLs before returning function pointers
879// into them. This is problematic for the sanitizers, because they typically
880// want to intercept malloc *before* MSVCRT initializes. Our internal
881// implementation walks the export list manually without doing initialization.
882uptr InternalGetProcAddress(void *module, const char *func_name) {
883  // Check that the module header is full and present.
884  RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
885  RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
886  if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE ||  // "MZ"
887      headers->Signature != IMAGE_NT_SIGNATURE ||             // "PE\0\0"
888      headers->FileHeader.SizeOfOptionalHeader <
889          sizeof(IMAGE_OPTIONAL_HEADER)) {
890    return 0;
891  }
892
893  IMAGE_DATA_DIRECTORY *export_directory =
894      &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
895  if (export_directory->Size == 0)
896    return 0;
897  RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
898                                         export_directory->VirtualAddress);
899  RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
900  RVAPtr<DWORD> names(module, exports->AddressOfNames);
901  RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);
902
903  for (DWORD i = 0; i < exports->NumberOfNames; i++) {
904    RVAPtr<char> name(module, names[i]);
905    if (!strcmp(func_name, name)) {
906      DWORD index = ordinals[i];
907      RVAPtr<char> func(module, functions[index]);
908
909      // Handle forwarded functions.
910      DWORD offset = functions[index];
911      if (offset >= export_directory->VirtualAddress &&
912          offset < export_directory->VirtualAddress + export_directory->Size) {
913        // An entry for a forwarded function is a string with the following
914        // format: "<module> . <function_name>" that is stored into the
915        // exported directory.
916        char function_name[256];
917        size_t funtion_name_length = _strlen(func);
918        if (funtion_name_length >= sizeof(function_name) - 1)
919          InterceptionFailed();
920
921        _memcpy(function_name, func, funtion_name_length);
922        function_name[funtion_name_length] = '\0';
923        char* separator = _strchr(function_name, '.');
924        if (!separator)
925          InterceptionFailed();
926        *separator = '\0';
927
928        void* redirected_module = GetModuleHandleA(function_name);
929        if (!redirected_module)
930          InterceptionFailed();
931        return InternalGetProcAddress(redirected_module, separator + 1);
932      }
933
934      return (uptr)(char *)func;
935    }
936  }
937
938  return 0;
939}
940
941bool OverrideFunction(
942    const char *func_name, uptr new_func, uptr *orig_old_func) {
943  bool hooked = false;
944  void **DLLs = InterestingDLLsAvailable();
945  for (size_t i = 0; DLLs[i]; ++i) {
946    uptr func_addr = InternalGetProcAddress(DLLs[i], func_name);
947    if (func_addr &&
948        OverrideFunction(func_addr, new_func, orig_old_func)) {
949      hooked = true;
950    }
951  }
952  return hooked;
953}
954
955bool OverrideImportedFunction(const char *module_to_patch,
956                              const char *imported_module,
957                              const char *function_name, uptr new_function,
958                              uptr *orig_old_func) {
959  HMODULE module = GetModuleHandleA(module_to_patch);
960  if (!module)
961    return false;
962
963  // Check that the module header is full and present.
964  RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
965  RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
966  if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE ||  // "MZ"
967      headers->Signature != IMAGE_NT_SIGNATURE ||             // "PE\0\0"
968      headers->FileHeader.SizeOfOptionalHeader <
969          sizeof(IMAGE_OPTIONAL_HEADER)) {
970    return false;
971  }
972
973  IMAGE_DATA_DIRECTORY *import_directory =
974      &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
975
976  // Iterate the list of imported DLLs. FirstThunk will be null for the last
977  // entry.
978  RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
979                                          import_directory->VirtualAddress);
980  for (; imports->FirstThunk != 0; ++imports) {
981    RVAPtr<const char> modname(module, imports->Name);
982    if (_stricmp(&*modname, imported_module) == 0)
983      break;
984  }
985  if (imports->FirstThunk == 0)
986    return false;
987
988  // We have two parallel arrays: the import address table (IAT) and the table
989  // of names. They start out containing the same data, but the loader rewrites
990  // the IAT to hold imported addresses and leaves the name table in
991  // OriginalFirstThunk alone.
992  RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
993  RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
994  for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
995    if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
996      RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
997          module, name_table->u1.ForwarderString);
998      const char *funcname = &import_by_name->Name[0];
999      if (strcmp(funcname, function_name) == 0)
1000        break;
1001    }
1002  }
1003  if (name_table->u1.Ordinal == 0)
1004    return false;
1005
1006  // Now we have the correct IAT entry. Do the swap. We have to make the page
1007  // read/write first.
1008  if (orig_old_func)
1009    *orig_old_func = iat->u1.AddressOfData;
1010  DWORD old_prot, unused_prot;
1011  if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
1012                      &old_prot))
1013    return false;
1014  iat->u1.AddressOfData = new_function;
1015  if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
1016    return false;  // Not clear if this failure bothers us.
1017  return true;
1018}
1019
1020}  // namespace __interception
1021
1022#endif  // SANITIZER_MAC
1023