Store.cpp revision 360784
1//===- Store.cpp - Interface for maps from Locations to Values ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file defined the types Store and StoreManager.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/CharUnits.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/Type.h"
22#include "clang/Basic/LLVM.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
28#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
29#include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
30#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
31#include "llvm/ADT/APSInt.h"
32#include "llvm/ADT/Optional.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/Support/Casting.h"
35#include "llvm/Support/ErrorHandling.h"
36#include <cassert>
37#include <cstdint>
38
39using namespace clang;
40using namespace ento;
41
42StoreManager::StoreManager(ProgramStateManager &stateMgr)
43    : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
44      MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
45
46StoreRef StoreManager::enterStackFrame(Store OldStore,
47                                       const CallEvent &Call,
48                                       const StackFrameContext *LCtx) {
49  StoreRef Store = StoreRef(OldStore, *this);
50
51  SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
52  Call.getInitialStackFrameContents(LCtx, InitialBindings);
53
54  for (const auto &I : InitialBindings)
55    Store = Bind(Store.getStore(), I.first.castAs<Loc>(), I.second);
56
57  return Store;
58}
59
60const ElementRegion *StoreManager::MakeElementRegion(const SubRegion *Base,
61                                                     QualType EleTy,
62                                                     uint64_t index) {
63  NonLoc idx = svalBuilder.makeArrayIndex(index);
64  return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
65}
66
67const ElementRegion *StoreManager::GetElementZeroRegion(const SubRegion *R,
68                                                        QualType T) {
69  NonLoc idx = svalBuilder.makeZeroArrayIndex();
70  assert(!T.isNull());
71  return MRMgr.getElementRegion(T, idx, R, Ctx);
72}
73
74const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
75  ASTContext &Ctx = StateMgr.getContext();
76
77  // Handle casts to Objective-C objects.
78  if (CastToTy->isObjCObjectPointerType())
79    return R->StripCasts();
80
81  if (CastToTy->isBlockPointerType()) {
82    // FIXME: We may need different solutions, depending on the symbol
83    // involved.  Blocks can be casted to/from 'id', as they can be treated
84    // as Objective-C objects.  This could possibly be handled by enhancing
85    // our reasoning of downcasts of symbolic objects.
86    if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
87      return R;
88
89    // We don't know what to make of it.  Return a NULL region, which
90    // will be interpreted as UnknownVal.
91    return nullptr;
92  }
93
94  // Now assume we are casting from pointer to pointer. Other cases should
95  // already be handled.
96  QualType PointeeTy = CastToTy->getPointeeType();
97  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
98
99  // Handle casts to void*.  We just pass the region through.
100  if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
101    return R;
102
103  // Handle casts from compatible types.
104  if (R->isBoundable())
105    if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
106      QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
107      if (CanonPointeeTy == ObjTy)
108        return R;
109    }
110
111  // Process region cast according to the kind of the region being cast.
112  switch (R->getKind()) {
113    case MemRegion::CXXThisRegionKind:
114    case MemRegion::CodeSpaceRegionKind:
115    case MemRegion::StackLocalsSpaceRegionKind:
116    case MemRegion::StackArgumentsSpaceRegionKind:
117    case MemRegion::HeapSpaceRegionKind:
118    case MemRegion::UnknownSpaceRegionKind:
119    case MemRegion::StaticGlobalSpaceRegionKind:
120    case MemRegion::GlobalInternalSpaceRegionKind:
121    case MemRegion::GlobalSystemSpaceRegionKind:
122    case MemRegion::GlobalImmutableSpaceRegionKind: {
123      llvm_unreachable("Invalid region cast");
124    }
125
126    case MemRegion::FunctionCodeRegionKind:
127    case MemRegion::BlockCodeRegionKind:
128    case MemRegion::BlockDataRegionKind:
129    case MemRegion::StringRegionKind:
130      // FIXME: Need to handle arbitrary downcasts.
131    case MemRegion::SymbolicRegionKind:
132    case MemRegion::AllocaRegionKind:
133    case MemRegion::CompoundLiteralRegionKind:
134    case MemRegion::FieldRegionKind:
135    case MemRegion::ObjCIvarRegionKind:
136    case MemRegion::ObjCStringRegionKind:
137    case MemRegion::VarRegionKind:
138    case MemRegion::CXXTempObjectRegionKind:
139    case MemRegion::CXXBaseObjectRegionKind:
140    case MemRegion::CXXDerivedObjectRegionKind:
141      return MakeElementRegion(cast<SubRegion>(R), PointeeTy);
142
143    case MemRegion::ElementRegionKind: {
144      // If we are casting from an ElementRegion to another type, the
145      // algorithm is as follows:
146      //
147      // (1) Compute the "raw offset" of the ElementRegion from the
148      //     base region.  This is done by calling 'getAsRawOffset()'.
149      //
150      // (2a) If we get a 'RegionRawOffset' after calling
151      //      'getAsRawOffset()', determine if the absolute offset
152      //      can be exactly divided into chunks of the size of the
153      //      casted-pointee type.  If so, create a new ElementRegion with
154      //      the pointee-cast type as the new ElementType and the index
155      //      being the offset divded by the chunk size.  If not, create
156      //      a new ElementRegion at offset 0 off the raw offset region.
157      //
158      // (2b) If we don't a get a 'RegionRawOffset' after calling
159      //      'getAsRawOffset()', it means that we are at offset 0.
160      //
161      // FIXME: Handle symbolic raw offsets.
162
163      const ElementRegion *elementR = cast<ElementRegion>(R);
164      const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
165      const MemRegion *baseR = rawOff.getRegion();
166
167      // If we cannot compute a raw offset, throw up our hands and return
168      // a NULL MemRegion*.
169      if (!baseR)
170        return nullptr;
171
172      CharUnits off = rawOff.getOffset();
173
174      if (off.isZero()) {
175        // Edge case: we are at 0 bytes off the beginning of baseR.  We
176        // check to see if type we are casting to is the same as the base
177        // region.  If so, just return the base region.
178        if (const auto *TR = dyn_cast<TypedValueRegion>(baseR)) {
179          QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
180          QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
181          if (CanonPointeeTy == ObjTy)
182            return baseR;
183        }
184
185        // Otherwise, create a new ElementRegion at offset 0.
186        return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy);
187      }
188
189      // We have a non-zero offset from the base region.  We want to determine
190      // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
191      // we create an ElementRegion whose index is that value.  Otherwise, we
192      // create two ElementRegions, one that reflects a raw offset and the other
193      // that reflects the cast.
194
195      // Compute the index for the new ElementRegion.
196      int64_t newIndex = 0;
197      const MemRegion *newSuperR = nullptr;
198
199      // We can only compute sizeof(PointeeTy) if it is a complete type.
200      if (!PointeeTy->isIncompleteType()) {
201        // Compute the size in **bytes**.
202        CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
203        if (!pointeeTySize.isZero()) {
204          // Is the offset a multiple of the size?  If so, we can layer the
205          // ElementRegion (with elementType == PointeeTy) directly on top of
206          // the base region.
207          if (off % pointeeTySize == 0) {
208            newIndex = off / pointeeTySize;
209            newSuperR = baseR;
210          }
211        }
212      }
213
214      if (!newSuperR) {
215        // Create an intermediate ElementRegion to represent the raw byte.
216        // This will be the super region of the final ElementRegion.
217        newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy,
218                                      off.getQuantity());
219      }
220
221      return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex);
222    }
223  }
224
225  llvm_unreachable("unreachable");
226}
227
228static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
229  const MemRegion *MR = V.getAsRegion();
230  if (!MR)
231    return true;
232
233  const auto *TVR = dyn_cast<TypedValueRegion>(MR);
234  if (!TVR)
235    return true;
236
237  const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
238  if (!RD)
239    return true;
240
241  const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
242  if (!Expected)
243    Expected = Ty->getAsCXXRecordDecl();
244
245  return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
246}
247
248SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
249  // Sanity check to avoid doing the wrong thing in the face of
250  // reinterpret_cast.
251  if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
252    return UnknownVal();
253
254  // Walk through the cast path to create nested CXXBaseRegions.
255  SVal Result = Derived;
256  for (CastExpr::path_const_iterator I = Cast->path_begin(),
257                                     E = Cast->path_end();
258       I != E; ++I) {
259    Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
260  }
261  return Result;
262}
263
264SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
265  // Walk through the path to create nested CXXBaseRegions.
266  SVal Result = Derived;
267  for (const auto &I : Path)
268    Result = evalDerivedToBase(Result, I.Base->getType(),
269                               I.Base->isVirtual());
270  return Result;
271}
272
273SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
274                                     bool IsVirtual) {
275  const MemRegion *DerivedReg = Derived.getAsRegion();
276  if (!DerivedReg)
277    return Derived;
278
279  const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
280  if (!BaseDecl)
281    BaseDecl = BaseType->getAsCXXRecordDecl();
282  assert(BaseDecl && "not a C++ object?");
283
284  if (const auto *AlreadyDerivedReg =
285          dyn_cast<CXXDerivedObjectRegion>(DerivedReg)) {
286    if (const auto *SR =
287            dyn_cast<SymbolicRegion>(AlreadyDerivedReg->getSuperRegion()))
288      if (SR->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl)
289        return loc::MemRegionVal(SR);
290
291    DerivedReg = AlreadyDerivedReg->getSuperRegion();
292  }
293
294  const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion(
295      BaseDecl, cast<SubRegion>(DerivedReg), IsVirtual);
296
297  return loc::MemRegionVal(BaseReg);
298}
299
300/// Returns the static type of the given region, if it represents a C++ class
301/// object.
302///
303/// This handles both fully-typed regions, where the dynamic type is known, and
304/// symbolic regions, where the dynamic type is merely bounded (and even then,
305/// only ostensibly!), but does not take advantage of any dynamic type info.
306static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
307  if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
308    return TVR->getValueType()->getAsCXXRecordDecl();
309  if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
310    return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
311  return nullptr;
312}
313
314SVal StoreManager::attemptDownCast(SVal Base, QualType TargetType,
315                                   bool &Failed) {
316  Failed = false;
317
318  const MemRegion *MR = Base.getAsRegion();
319  if (!MR)
320    return UnknownVal();
321
322  // Assume the derived class is a pointer or a reference to a CXX record.
323  TargetType = TargetType->getPointeeType();
324  assert(!TargetType.isNull());
325  const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
326  if (!TargetClass && !TargetType->isVoidType())
327    return UnknownVal();
328
329  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
330  // derived to base).
331  while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
332    // If found the derived class, the cast succeeds.
333    if (MRClass == TargetClass)
334      return loc::MemRegionVal(MR);
335
336    // We skip over incomplete types. They must be the result of an earlier
337    // reinterpret_cast, as one can only dynamic_cast between types in the same
338    // class hierarchy.
339    if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
340      // Static upcasts are marked as DerivedToBase casts by Sema, so this will
341      // only happen when multiple or virtual inheritance is involved.
342      CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
343                         /*DetectVirtual=*/false);
344      if (MRClass->isDerivedFrom(TargetClass, Paths))
345        return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
346    }
347
348    if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
349      // Drill down the chain to get the derived classes.
350      MR = BaseR->getSuperRegion();
351      continue;
352    }
353
354    // If this is a cast to void*, return the region.
355    if (TargetType->isVoidType())
356      return loc::MemRegionVal(MR);
357
358    // Strange use of reinterpret_cast can give us paths we don't reason
359    // about well, by putting in ElementRegions where we'd expect
360    // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
361    // derived class has a zero offset from the base class), then it's safe
362    // to strip the cast; if it's invalid, -Wreinterpret-base-class should
363    // catch it. In the interest of performance, the analyzer will silently
364    // do the wrong thing in the invalid case (because offsets for subregions
365    // will be wrong).
366    const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
367    if (Uncasted == MR) {
368      // We reached the bottom of the hierarchy and did not find the derived
369      // class. We must be casting the base to derived, so the cast should
370      // fail.
371      break;
372    }
373
374    MR = Uncasted;
375  }
376
377  // If we're casting a symbolic base pointer to a derived class, use
378  // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
379  // unrelated type, it must be a weird reinterpret_cast and we have to
380  // be fine with ElementRegion. TODO: Should we instead make
381  // Derived{TargetClass, Element{SourceClass, SR}}?
382  if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
383    QualType T = SR->getSymbol()->getType();
384    const CXXRecordDecl *SourceClass = T->getPointeeCXXRecordDecl();
385    if (TargetClass && SourceClass && TargetClass->isDerivedFrom(SourceClass))
386      return loc::MemRegionVal(
387          MRMgr.getCXXDerivedObjectRegion(TargetClass, SR));
388    return loc::MemRegionVal(GetElementZeroRegion(SR, TargetType));
389  }
390
391  // We failed if the region we ended up with has perfect type info.
392  Failed = isa<TypedValueRegion>(MR);
393  return UnknownVal();
394}
395
396static bool hasSameUnqualifiedPointeeType(QualType ty1, QualType ty2) {
397  return ty1->getPointeeType().getCanonicalType().getTypePtr() ==
398         ty2->getPointeeType().getCanonicalType().getTypePtr();
399}
400
401/// CastRetrievedVal - Used by subclasses of StoreManager to implement
402///  implicit casts that arise from loads from regions that are reinterpreted
403///  as another region.
404SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
405                                    QualType castTy) {
406  if (castTy.isNull() || V.isUnknownOrUndef())
407    return V;
408
409  // The dispatchCast() call below would convert the int into a float.
410  // What we want, however, is a bit-by-bit reinterpretation of the int
411  // as a float, which usually yields nothing garbage. For now skip casts
412  // from ints to floats.
413  // TODO: What other combinations of types are affected?
414  if (castTy->isFloatingType()) {
415    SymbolRef Sym = V.getAsSymbol();
416    if (Sym && !Sym->getType()->isFloatingType())
417      return UnknownVal();
418  }
419
420  // When retrieving symbolic pointer and expecting a non-void pointer,
421  // wrap them into element regions of the expected type if necessary.
422  // SValBuilder::dispatchCast() doesn't do that, but it is necessary to
423  // make sure that the retrieved value makes sense, because there's no other
424  // cast in the AST that would tell us to cast it to the correct pointer type.
425  // We might need to do that for non-void pointers as well.
426  // FIXME: We really need a single good function to perform casts for us
427  // correctly every time we need it.
428  if (castTy->isPointerType() && !castTy->isVoidPointerType())
429    if (const auto *SR = dyn_cast_or_null<SymbolicRegion>(V.getAsRegion())) {
430      QualType sr = SR->getSymbol()->getType();
431      if (!hasSameUnqualifiedPointeeType(sr, castTy))
432          return loc::MemRegionVal(castRegion(SR, castTy));
433    }
434
435  return svalBuilder.dispatchCast(V, castTy);
436}
437
438SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
439  if (Base.isUnknownOrUndef())
440    return Base;
441
442  Loc BaseL = Base.castAs<Loc>();
443  const SubRegion* BaseR = nullptr;
444
445  switch (BaseL.getSubKind()) {
446  case loc::MemRegionValKind:
447    BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion());
448    break;
449
450  case loc::GotoLabelKind:
451    // These are anormal cases. Flag an undefined value.
452    return UndefinedVal();
453
454  case loc::ConcreteIntKind:
455    // While these seem funny, this can happen through casts.
456    // FIXME: What we should return is the field offset, not base. For example,
457    //  add the field offset to the integer value.  That way things
458    //  like this work properly:  &(((struct foo *) 0xa)->f)
459    //  However, that's not easy to fix without reducing our abilities
460    //  to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
461    //  is a null dereference even though we're dereferencing offset of f
462    //  rather than null. Coming up with an approach that computes offsets
463    //  over null pointers properly while still being able to catch null
464    //  dereferences might be worth it.
465    return Base;
466
467  default:
468    llvm_unreachable("Unhandled Base.");
469  }
470
471  // NOTE: We must have this check first because ObjCIvarDecl is a subclass
472  // of FieldDecl.
473  if (const auto *ID = dyn_cast<ObjCIvarDecl>(D))
474    return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
475
476  return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
477}
478
479SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
480  return getLValueFieldOrIvar(decl, base);
481}
482
483SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
484                                    SVal Base) {
485  // If the base is an unknown or undefined value, just return it back.
486  // FIXME: For absolute pointer addresses, we just return that value back as
487  //  well, although in reality we should return the offset added to that
488  //  value. See also the similar FIXME in getLValueFieldOrIvar().
489  if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
490    return Base;
491
492  if (Base.getAs<loc::GotoLabel>())
493    return UnknownVal();
494
495  const SubRegion *BaseRegion =
496      Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>();
497
498  // Pointer of any type can be cast and used as array base.
499  const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion);
500
501  // Convert the offset to the appropriate size and signedness.
502  Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
503
504  if (!ElemR) {
505    // If the base region is not an ElementRegion, create one.
506    // This can happen in the following example:
507    //
508    //   char *p = __builtin_alloc(10);
509    //   p[1] = 8;
510    //
511    //  Observe that 'p' binds to an AllocaRegion.
512    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
513                                                    BaseRegion, Ctx));
514  }
515
516  SVal BaseIdx = ElemR->getIndex();
517
518  if (!BaseIdx.getAs<nonloc::ConcreteInt>())
519    return UnknownVal();
520
521  const llvm::APSInt &BaseIdxI =
522      BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
523
524  // Only allow non-integer offsets if the base region has no offset itself.
525  // FIXME: This is a somewhat arbitrary restriction. We should be using
526  // SValBuilder here to add the two offsets without checking their types.
527  if (!Offset.getAs<nonloc::ConcreteInt>()) {
528    if (isa<ElementRegion>(BaseRegion->StripCasts()))
529      return UnknownVal();
530
531    return loc::MemRegionVal(MRMgr.getElementRegion(
532        elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx));
533  }
534
535  const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
536  assert(BaseIdxI.isSigned());
537
538  // Compute the new index.
539  nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
540                                                                    OffI));
541
542  // Construct the new ElementRegion.
543  const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion());
544  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
545                                                  Ctx));
546}
547
548StoreManager::BindingsHandler::~BindingsHandler() = default;
549
550bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
551                                                    Store store,
552                                                    const MemRegion* R,
553                                                    SVal val) {
554  SymbolRef SymV = val.getAsLocSymbol();
555  if (!SymV || SymV != Sym)
556    return true;
557
558  if (Binding) {
559    First = false;
560    return false;
561  }
562  else
563    Binding = R;
564
565  return true;
566}
567