SemaStmt.cpp revision 360784
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements semantic analysis for statements.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/Ownership.h"
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/Scope.h"
34#include "clang/Sema/ScopeInfo.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallString.h"
40#include "llvm/ADT/SmallVector.h"
41
42using namespace clang;
43using namespace sema;
44
45StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
46  if (FE.isInvalid())
47    return StmtError();
48
49  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
50  if (FE.isInvalid())
51    return StmtError();
52
53  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
54  // void expression for its side effects.  Conversion to void allows any
55  // operand, even incomplete types.
56
57  // Same thing in for stmt first clause (when expr) and third clause.
58  return StmtResult(FE.getAs<Stmt>());
59}
60
61
62StmtResult Sema::ActOnExprStmtError() {
63  DiscardCleanupsInEvaluationContext();
64  return StmtError();
65}
66
67StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
68                               bool HasLeadingEmptyMacro) {
69  return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
70}
71
72StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
73                               SourceLocation EndLoc) {
74  DeclGroupRef DG = dg.get();
75
76  // If we have an invalid decl, just return an error.
77  if (DG.isNull()) return StmtError();
78
79  return new (Context) DeclStmt(DG, StartLoc, EndLoc);
80}
81
82void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
83  DeclGroupRef DG = dg.get();
84
85  // If we don't have a declaration, or we have an invalid declaration,
86  // just return.
87  if (DG.isNull() || !DG.isSingleDecl())
88    return;
89
90  Decl *decl = DG.getSingleDecl();
91  if (!decl || decl->isInvalidDecl())
92    return;
93
94  // Only variable declarations are permitted.
95  VarDecl *var = dyn_cast<VarDecl>(decl);
96  if (!var) {
97    Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
98    decl->setInvalidDecl();
99    return;
100  }
101
102  // foreach variables are never actually initialized in the way that
103  // the parser came up with.
104  var->setInit(nullptr);
105
106  // In ARC, we don't need to retain the iteration variable of a fast
107  // enumeration loop.  Rather than actually trying to catch that
108  // during declaration processing, we remove the consequences here.
109  if (getLangOpts().ObjCAutoRefCount) {
110    QualType type = var->getType();
111
112    // Only do this if we inferred the lifetime.  Inferred lifetime
113    // will show up as a local qualifier because explicit lifetime
114    // should have shown up as an AttributedType instead.
115    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
116      // Add 'const' and mark the variable as pseudo-strong.
117      var->setType(type.withConst());
118      var->setARCPseudoStrong(true);
119    }
120  }
121}
122
123/// Diagnose unused comparisons, both builtin and overloaded operators.
124/// For '==' and '!=', suggest fixits for '=' or '|='.
125///
126/// Adding a cast to void (or other expression wrappers) will prevent the
127/// warning from firing.
128static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
129  SourceLocation Loc;
130  bool CanAssign;
131  enum { Equality, Inequality, Relational, ThreeWay } Kind;
132
133  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
134    if (!Op->isComparisonOp())
135      return false;
136
137    if (Op->getOpcode() == BO_EQ)
138      Kind = Equality;
139    else if (Op->getOpcode() == BO_NE)
140      Kind = Inequality;
141    else if (Op->getOpcode() == BO_Cmp)
142      Kind = ThreeWay;
143    else {
144      assert(Op->isRelationalOp());
145      Kind = Relational;
146    }
147    Loc = Op->getOperatorLoc();
148    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
149  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
150    switch (Op->getOperator()) {
151    case OO_EqualEqual:
152      Kind = Equality;
153      break;
154    case OO_ExclaimEqual:
155      Kind = Inequality;
156      break;
157    case OO_Less:
158    case OO_Greater:
159    case OO_GreaterEqual:
160    case OO_LessEqual:
161      Kind = Relational;
162      break;
163    case OO_Spaceship:
164      Kind = ThreeWay;
165      break;
166    default:
167      return false;
168    }
169
170    Loc = Op->getOperatorLoc();
171    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
172  } else {
173    // Not a typo-prone comparison.
174    return false;
175  }
176
177  // Suppress warnings when the operator, suspicious as it may be, comes from
178  // a macro expansion.
179  if (S.SourceMgr.isMacroBodyExpansion(Loc))
180    return false;
181
182  S.Diag(Loc, diag::warn_unused_comparison)
183    << (unsigned)Kind << E->getSourceRange();
184
185  // If the LHS is a plausible entity to assign to, provide a fixit hint to
186  // correct common typos.
187  if (CanAssign) {
188    if (Kind == Inequality)
189      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
190        << FixItHint::CreateReplacement(Loc, "|=");
191    else if (Kind == Equality)
192      S.Diag(Loc, diag::note_equality_comparison_to_assign)
193        << FixItHint::CreateReplacement(Loc, "=");
194  }
195
196  return true;
197}
198
199static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
200                              SourceLocation Loc, SourceRange R1,
201                              SourceRange R2, bool IsCtor) {
202  if (!A)
203    return false;
204  StringRef Msg = A->getMessage();
205
206  if (Msg.empty()) {
207    if (IsCtor)
208      return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
209    return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
210  }
211
212  if (IsCtor)
213    return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
214                                                          << R2;
215  return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
216}
217
218void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
219  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
220    return DiagnoseUnusedExprResult(Label->getSubStmt());
221
222  const Expr *E = dyn_cast_or_null<Expr>(S);
223  if (!E)
224    return;
225
226  // If we are in an unevaluated expression context, then there can be no unused
227  // results because the results aren't expected to be used in the first place.
228  if (isUnevaluatedContext())
229    return;
230
231  SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
232  // In most cases, we don't want to warn if the expression is written in a
233  // macro body, or if the macro comes from a system header. If the offending
234  // expression is a call to a function with the warn_unused_result attribute,
235  // we warn no matter the location. Because of the order in which the various
236  // checks need to happen, we factor out the macro-related test here.
237  bool ShouldSuppress =
238      SourceMgr.isMacroBodyExpansion(ExprLoc) ||
239      SourceMgr.isInSystemMacro(ExprLoc);
240
241  const Expr *WarnExpr;
242  SourceLocation Loc;
243  SourceRange R1, R2;
244  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
245    return;
246
247  // If this is a GNU statement expression expanded from a macro, it is probably
248  // unused because it is a function-like macro that can be used as either an
249  // expression or statement.  Don't warn, because it is almost certainly a
250  // false positive.
251  if (isa<StmtExpr>(E) && Loc.isMacroID())
252    return;
253
254  // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
255  // That macro is frequently used to suppress "unused parameter" warnings,
256  // but its implementation makes clang's -Wunused-value fire.  Prevent this.
257  if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
258    SourceLocation SpellLoc = Loc;
259    if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
260      return;
261  }
262
263  // Okay, we have an unused result.  Depending on what the base expression is,
264  // we might want to make a more specific diagnostic.  Check for one of these
265  // cases now.
266  unsigned DiagID = diag::warn_unused_expr;
267  if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
268    E = Temps->getSubExpr();
269  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
270    E = TempExpr->getSubExpr();
271
272  if (DiagnoseUnusedComparison(*this, E))
273    return;
274
275  E = WarnExpr;
276  if (const auto *Cast = dyn_cast<CastExpr>(E))
277    if (Cast->getCastKind() == CK_NoOp ||
278        Cast->getCastKind() == CK_ConstructorConversion)
279      E = Cast->getSubExpr()->IgnoreImpCasts();
280
281  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
282    if (E->getType()->isVoidType())
283      return;
284
285    if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
286                                     CE->getUnusedResultAttr(Context)),
287                          Loc, R1, R2, /*isCtor=*/false))
288      return;
289
290    // If the callee has attribute pure, const, or warn_unused_result, warn with
291    // a more specific message to make it clear what is happening. If the call
292    // is written in a macro body, only warn if it has the warn_unused_result
293    // attribute.
294    if (const Decl *FD = CE->getCalleeDecl()) {
295      if (ShouldSuppress)
296        return;
297      if (FD->hasAttr<PureAttr>()) {
298        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
299        return;
300      }
301      if (FD->hasAttr<ConstAttr>()) {
302        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
303        return;
304      }
305    }
306  } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
307    if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
308      const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
309      A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
310      if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
311        return;
312    }
313  } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
314    if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
315
316      if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
317                            R2, /*isCtor=*/false))
318        return;
319    }
320  } else if (ShouldSuppress)
321    return;
322
323  E = WarnExpr;
324  if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
325    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
326      Diag(Loc, diag::err_arc_unused_init_message) << R1;
327      return;
328    }
329    const ObjCMethodDecl *MD = ME->getMethodDecl();
330    if (MD) {
331      if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
332                            R2, /*isCtor=*/false))
333        return;
334    }
335  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
336    const Expr *Source = POE->getSyntacticForm();
337    if (isa<ObjCSubscriptRefExpr>(Source))
338      DiagID = diag::warn_unused_container_subscript_expr;
339    else
340      DiagID = diag::warn_unused_property_expr;
341  } else if (const CXXFunctionalCastExpr *FC
342                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
343    const Expr *E = FC->getSubExpr();
344    if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
345      E = TE->getSubExpr();
346    if (isa<CXXTemporaryObjectExpr>(E))
347      return;
348    if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
349      if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
350        if (!RD->getAttr<WarnUnusedAttr>())
351          return;
352  }
353  // Diagnose "(void*) blah" as a typo for "(void) blah".
354  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
355    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
356    QualType T = TI->getType();
357
358    // We really do want to use the non-canonical type here.
359    if (T == Context.VoidPtrTy) {
360      PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
361
362      Diag(Loc, diag::warn_unused_voidptr)
363        << FixItHint::CreateRemoval(TL.getStarLoc());
364      return;
365    }
366  }
367
368  if (E->isGLValue() && E->getType().isVolatileQualified()) {
369    Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
370    return;
371  }
372
373  DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
374}
375
376void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
377  PushCompoundScope(IsStmtExpr);
378}
379
380void Sema::ActOnFinishOfCompoundStmt() {
381  PopCompoundScope();
382}
383
384sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
385  return getCurFunction()->CompoundScopes.back();
386}
387
388StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
389                                   ArrayRef<Stmt *> Elts, bool isStmtExpr) {
390  const unsigned NumElts = Elts.size();
391
392  // If we're in C89 mode, check that we don't have any decls after stmts.  If
393  // so, emit an extension diagnostic.
394  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
395    // Note that __extension__ can be around a decl.
396    unsigned i = 0;
397    // Skip over all declarations.
398    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
399      /*empty*/;
400
401    // We found the end of the list or a statement.  Scan for another declstmt.
402    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
403      /*empty*/;
404
405    if (i != NumElts) {
406      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
407      Diag(D->getLocation(), diag::ext_mixed_decls_code);
408    }
409  }
410
411  // Check for suspicious empty body (null statement) in `for' and `while'
412  // statements.  Don't do anything for template instantiations, this just adds
413  // noise.
414  if (NumElts != 0 && !CurrentInstantiationScope &&
415      getCurCompoundScope().HasEmptyLoopBodies) {
416    for (unsigned i = 0; i != NumElts - 1; ++i)
417      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
418  }
419
420  return CompoundStmt::Create(Context, Elts, L, R);
421}
422
423ExprResult
424Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
425  if (!Val.get())
426    return Val;
427
428  if (DiagnoseUnexpandedParameterPack(Val.get()))
429    return ExprError();
430
431  // If we're not inside a switch, let the 'case' statement handling diagnose
432  // this. Just clean up after the expression as best we can.
433  if (getCurFunction()->SwitchStack.empty())
434    return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
435                               getLangOpts().CPlusPlus11);
436
437  Expr *CondExpr =
438      getCurFunction()->SwitchStack.back().getPointer()->getCond();
439  if (!CondExpr)
440    return ExprError();
441  QualType CondType = CondExpr->getType();
442
443  auto CheckAndFinish = [&](Expr *E) {
444    if (CondType->isDependentType() || E->isTypeDependent())
445      return ExprResult(E);
446
447    if (getLangOpts().CPlusPlus11) {
448      // C++11 [stmt.switch]p2: the constant-expression shall be a converted
449      // constant expression of the promoted type of the switch condition.
450      llvm::APSInt TempVal;
451      return CheckConvertedConstantExpression(E, CondType, TempVal,
452                                              CCEK_CaseValue);
453    }
454
455    ExprResult ER = E;
456    if (!E->isValueDependent())
457      ER = VerifyIntegerConstantExpression(E);
458    if (!ER.isInvalid())
459      ER = DefaultLvalueConversion(ER.get());
460    if (!ER.isInvalid())
461      ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
462    if (!ER.isInvalid())
463      ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
464    return ER;
465  };
466
467  ExprResult Converted = CorrectDelayedTyposInExpr(Val, CheckAndFinish);
468  if (Converted.get() == Val.get())
469    Converted = CheckAndFinish(Val.get());
470  return Converted;
471}
472
473StmtResult
474Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
475                    SourceLocation DotDotDotLoc, ExprResult RHSVal,
476                    SourceLocation ColonLoc) {
477  assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
478  assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
479                                   : RHSVal.isInvalid() || RHSVal.get()) &&
480         "missing RHS value");
481
482  if (getCurFunction()->SwitchStack.empty()) {
483    Diag(CaseLoc, diag::err_case_not_in_switch);
484    return StmtError();
485  }
486
487  if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
488    getCurFunction()->SwitchStack.back().setInt(true);
489    return StmtError();
490  }
491
492  auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
493                              CaseLoc, DotDotDotLoc, ColonLoc);
494  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
495  return CS;
496}
497
498/// ActOnCaseStmtBody - This installs a statement as the body of a case.
499void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
500  cast<CaseStmt>(S)->setSubStmt(SubStmt);
501}
502
503StmtResult
504Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
505                       Stmt *SubStmt, Scope *CurScope) {
506  if (getCurFunction()->SwitchStack.empty()) {
507    Diag(DefaultLoc, diag::err_default_not_in_switch);
508    return SubStmt;
509  }
510
511  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
512  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
513  return DS;
514}
515
516StmtResult
517Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
518                     SourceLocation ColonLoc, Stmt *SubStmt) {
519  // If the label was multiply defined, reject it now.
520  if (TheDecl->getStmt()) {
521    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
522    Diag(TheDecl->getLocation(), diag::note_previous_definition);
523    return SubStmt;
524  }
525
526  // Otherwise, things are good.  Fill in the declaration and return it.
527  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
528  TheDecl->setStmt(LS);
529  if (!TheDecl->isGnuLocal()) {
530    TheDecl->setLocStart(IdentLoc);
531    if (!TheDecl->isMSAsmLabel()) {
532      // Don't update the location of MS ASM labels.  These will result in
533      // a diagnostic, and changing the location here will mess that up.
534      TheDecl->setLocation(IdentLoc);
535    }
536  }
537  return LS;
538}
539
540StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
541                                     ArrayRef<const Attr*> Attrs,
542                                     Stmt *SubStmt) {
543  // Fill in the declaration and return it.
544  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
545  return LS;
546}
547
548namespace {
549class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
550  typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
551  Sema &SemaRef;
552public:
553  CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
554  void VisitBinaryOperator(BinaryOperator *E) {
555    if (E->getOpcode() == BO_Comma)
556      SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
557    EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
558  }
559};
560}
561
562StmtResult
563Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt,
564                  ConditionResult Cond,
565                  Stmt *thenStmt, SourceLocation ElseLoc,
566                  Stmt *elseStmt) {
567  if (Cond.isInvalid())
568    Cond = ConditionResult(
569        *this, nullptr,
570        MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(),
571                                                   Context.BoolTy, VK_RValue),
572                     IfLoc),
573        false);
574
575  Expr *CondExpr = Cond.get().second;
576  // Only call the CommaVisitor when not C89 due to differences in scope flags.
577  if ((getLangOpts().C99 || getLangOpts().CPlusPlus) &&
578      !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
579    CommaVisitor(*this).Visit(CondExpr);
580
581  if (!elseStmt)
582    DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt,
583                          diag::warn_empty_if_body);
584
585  return BuildIfStmt(IfLoc, IsConstexpr, InitStmt, Cond, thenStmt, ElseLoc,
586                     elseStmt);
587}
588
589StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
590                             Stmt *InitStmt, ConditionResult Cond,
591                             Stmt *thenStmt, SourceLocation ElseLoc,
592                             Stmt *elseStmt) {
593  if (Cond.isInvalid())
594    return StmtError();
595
596  if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
597    setFunctionHasBranchProtectedScope();
598
599  return IfStmt::Create(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first,
600                        Cond.get().second, thenStmt, ElseLoc, elseStmt);
601}
602
603namespace {
604  struct CaseCompareFunctor {
605    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
606                    const llvm::APSInt &RHS) {
607      return LHS.first < RHS;
608    }
609    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
610                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
611      return LHS.first < RHS.first;
612    }
613    bool operator()(const llvm::APSInt &LHS,
614                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
615      return LHS < RHS.first;
616    }
617  };
618}
619
620/// CmpCaseVals - Comparison predicate for sorting case values.
621///
622static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
623                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
624  if (lhs.first < rhs.first)
625    return true;
626
627  if (lhs.first == rhs.first &&
628      lhs.second->getCaseLoc().getRawEncoding()
629       < rhs.second->getCaseLoc().getRawEncoding())
630    return true;
631  return false;
632}
633
634/// CmpEnumVals - Comparison predicate for sorting enumeration values.
635///
636static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
637                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
638{
639  return lhs.first < rhs.first;
640}
641
642/// EqEnumVals - Comparison preficate for uniqing enumeration values.
643///
644static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
645                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
646{
647  return lhs.first == rhs.first;
648}
649
650/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
651/// potentially integral-promoted expression @p expr.
652static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
653  if (const auto *FE = dyn_cast<FullExpr>(E))
654    E = FE->getSubExpr();
655  while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
656    if (ImpCast->getCastKind() != CK_IntegralCast) break;
657    E = ImpCast->getSubExpr();
658  }
659  return E->getType();
660}
661
662ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
663  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
664    Expr *Cond;
665
666  public:
667    SwitchConvertDiagnoser(Expr *Cond)
668        : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
669          Cond(Cond) {}
670
671    SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
672                                         QualType T) override {
673      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
674    }
675
676    SemaDiagnosticBuilder diagnoseIncomplete(
677        Sema &S, SourceLocation Loc, QualType T) override {
678      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
679               << T << Cond->getSourceRange();
680    }
681
682    SemaDiagnosticBuilder diagnoseExplicitConv(
683        Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
684      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
685    }
686
687    SemaDiagnosticBuilder noteExplicitConv(
688        Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
689      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
690        << ConvTy->isEnumeralType() << ConvTy;
691    }
692
693    SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
694                                            QualType T) override {
695      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
696    }
697
698    SemaDiagnosticBuilder noteAmbiguous(
699        Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
700      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
701      << ConvTy->isEnumeralType() << ConvTy;
702    }
703
704    SemaDiagnosticBuilder diagnoseConversion(
705        Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
706      llvm_unreachable("conversion functions are permitted");
707    }
708  } SwitchDiagnoser(Cond);
709
710  ExprResult CondResult =
711      PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
712  if (CondResult.isInvalid())
713    return ExprError();
714
715  // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
716  // failed and produced a diagnostic.
717  Cond = CondResult.get();
718  if (!Cond->isTypeDependent() &&
719      !Cond->getType()->isIntegralOrEnumerationType())
720    return ExprError();
721
722  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
723  return UsualUnaryConversions(Cond);
724}
725
726StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
727                                        Stmt *InitStmt, ConditionResult Cond) {
728  Expr *CondExpr = Cond.get().second;
729  assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
730
731  if (CondExpr && !CondExpr->isTypeDependent()) {
732    // We have already converted the expression to an integral or enumeration
733    // type, when we parsed the switch condition. If we don't have an
734    // appropriate type now, enter the switch scope but remember that it's
735    // invalid.
736    assert(CondExpr->getType()->isIntegralOrEnumerationType() &&
737           "invalid condition type");
738    if (CondExpr->isKnownToHaveBooleanValue()) {
739      // switch(bool_expr) {...} is often a programmer error, e.g.
740      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
741      // One can always use an if statement instead of switch(bool_expr).
742      Diag(SwitchLoc, diag::warn_bool_switch_condition)
743          << CondExpr->getSourceRange();
744    }
745  }
746
747  setFunctionHasBranchIntoScope();
748
749  auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr);
750  getCurFunction()->SwitchStack.push_back(
751      FunctionScopeInfo::SwitchInfo(SS, false));
752  return SS;
753}
754
755static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
756  Val = Val.extOrTrunc(BitWidth);
757  Val.setIsSigned(IsSigned);
758}
759
760/// Check the specified case value is in range for the given unpromoted switch
761/// type.
762static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
763                           unsigned UnpromotedWidth, bool UnpromotedSign) {
764  // In C++11 onwards, this is checked by the language rules.
765  if (S.getLangOpts().CPlusPlus11)
766    return;
767
768  // If the case value was signed and negative and the switch expression is
769  // unsigned, don't bother to warn: this is implementation-defined behavior.
770  // FIXME: Introduce a second, default-ignored warning for this case?
771  if (UnpromotedWidth < Val.getBitWidth()) {
772    llvm::APSInt ConvVal(Val);
773    AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
774    AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
775    // FIXME: Use different diagnostics for overflow  in conversion to promoted
776    // type versus "switch expression cannot have this value". Use proper
777    // IntRange checking rather than just looking at the unpromoted type here.
778    if (ConvVal != Val)
779      S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
780                                                  << ConvVal.toString(10);
781  }
782}
783
784typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
785
786/// Returns true if we should emit a diagnostic about this case expression not
787/// being a part of the enum used in the switch controlling expression.
788static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
789                                              const EnumDecl *ED,
790                                              const Expr *CaseExpr,
791                                              EnumValsTy::iterator &EI,
792                                              EnumValsTy::iterator &EIEnd,
793                                              const llvm::APSInt &Val) {
794  if (!ED->isClosed())
795    return false;
796
797  if (const DeclRefExpr *DRE =
798          dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
799    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
800      QualType VarType = VD->getType();
801      QualType EnumType = S.Context.getTypeDeclType(ED);
802      if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
803          S.Context.hasSameUnqualifiedType(EnumType, VarType))
804        return false;
805    }
806  }
807
808  if (ED->hasAttr<FlagEnumAttr>())
809    return !S.IsValueInFlagEnum(ED, Val, false);
810
811  while (EI != EIEnd && EI->first < Val)
812    EI++;
813
814  if (EI != EIEnd && EI->first == Val)
815    return false;
816
817  return true;
818}
819
820static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
821                                       const Expr *Case) {
822  QualType CondType = Cond->getType();
823  QualType CaseType = Case->getType();
824
825  const EnumType *CondEnumType = CondType->getAs<EnumType>();
826  const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
827  if (!CondEnumType || !CaseEnumType)
828    return;
829
830  // Ignore anonymous enums.
831  if (!CondEnumType->getDecl()->getIdentifier() &&
832      !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
833    return;
834  if (!CaseEnumType->getDecl()->getIdentifier() &&
835      !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
836    return;
837
838  if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
839    return;
840
841  S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
842      << CondType << CaseType << Cond->getSourceRange()
843      << Case->getSourceRange();
844}
845
846StmtResult
847Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
848                            Stmt *BodyStmt) {
849  SwitchStmt *SS = cast<SwitchStmt>(Switch);
850  bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
851  assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
852         "switch stack missing push/pop!");
853
854  getCurFunction()->SwitchStack.pop_back();
855
856  if (!BodyStmt) return StmtError();
857  SS->setBody(BodyStmt, SwitchLoc);
858
859  Expr *CondExpr = SS->getCond();
860  if (!CondExpr) return StmtError();
861
862  QualType CondType = CondExpr->getType();
863
864  // C++ 6.4.2.p2:
865  // Integral promotions are performed (on the switch condition).
866  //
867  // A case value unrepresentable by the original switch condition
868  // type (before the promotion) doesn't make sense, even when it can
869  // be represented by the promoted type.  Therefore we need to find
870  // the pre-promotion type of the switch condition.
871  const Expr *CondExprBeforePromotion = CondExpr;
872  QualType CondTypeBeforePromotion =
873      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
874
875  // Get the bitwidth of the switched-on value after promotions. We must
876  // convert the integer case values to this width before comparison.
877  bool HasDependentValue
878    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
879  unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
880  bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
881
882  // Get the width and signedness that the condition might actually have, for
883  // warning purposes.
884  // FIXME: Grab an IntRange for the condition rather than using the unpromoted
885  // type.
886  unsigned CondWidthBeforePromotion
887    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
888  bool CondIsSignedBeforePromotion
889    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
890
891  // Accumulate all of the case values in a vector so that we can sort them
892  // and detect duplicates.  This vector contains the APInt for the case after
893  // it has been converted to the condition type.
894  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
895  CaseValsTy CaseVals;
896
897  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
898  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
899  CaseRangesTy CaseRanges;
900
901  DefaultStmt *TheDefaultStmt = nullptr;
902
903  bool CaseListIsErroneous = false;
904
905  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
906       SC = SC->getNextSwitchCase()) {
907
908    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
909      if (TheDefaultStmt) {
910        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
911        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
912
913        // FIXME: Remove the default statement from the switch block so that
914        // we'll return a valid AST.  This requires recursing down the AST and
915        // finding it, not something we are set up to do right now.  For now,
916        // just lop the entire switch stmt out of the AST.
917        CaseListIsErroneous = true;
918      }
919      TheDefaultStmt = DS;
920
921    } else {
922      CaseStmt *CS = cast<CaseStmt>(SC);
923
924      Expr *Lo = CS->getLHS();
925
926      if (Lo->isValueDependent()) {
927        HasDependentValue = true;
928        break;
929      }
930
931      // We already verified that the expression has a constant value;
932      // get that value (prior to conversions).
933      const Expr *LoBeforePromotion = Lo;
934      GetTypeBeforeIntegralPromotion(LoBeforePromotion);
935      llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
936
937      // Check the unconverted value is within the range of possible values of
938      // the switch expression.
939      checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
940                     CondIsSignedBeforePromotion);
941
942      // FIXME: This duplicates the check performed for warn_not_in_enum below.
943      checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
944                                 LoBeforePromotion);
945
946      // Convert the value to the same width/sign as the condition.
947      AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
948
949      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
950      if (CS->getRHS()) {
951        if (CS->getRHS()->isValueDependent()) {
952          HasDependentValue = true;
953          break;
954        }
955        CaseRanges.push_back(std::make_pair(LoVal, CS));
956      } else
957        CaseVals.push_back(std::make_pair(LoVal, CS));
958    }
959  }
960
961  if (!HasDependentValue) {
962    // If we don't have a default statement, check whether the
963    // condition is constant.
964    llvm::APSInt ConstantCondValue;
965    bool HasConstantCond = false;
966    if (!TheDefaultStmt) {
967      Expr::EvalResult Result;
968      HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
969                                                Expr::SE_AllowSideEffects);
970      if (Result.Val.isInt())
971        ConstantCondValue = Result.Val.getInt();
972      assert(!HasConstantCond ||
973             (ConstantCondValue.getBitWidth() == CondWidth &&
974              ConstantCondValue.isSigned() == CondIsSigned));
975    }
976    bool ShouldCheckConstantCond = HasConstantCond;
977
978    // Sort all the scalar case values so we can easily detect duplicates.
979    llvm::stable_sort(CaseVals, CmpCaseVals);
980
981    if (!CaseVals.empty()) {
982      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
983        if (ShouldCheckConstantCond &&
984            CaseVals[i].first == ConstantCondValue)
985          ShouldCheckConstantCond = false;
986
987        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
988          // If we have a duplicate, report it.
989          // First, determine if either case value has a name
990          StringRef PrevString, CurrString;
991          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
992          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
993          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
994            PrevString = DeclRef->getDecl()->getName();
995          }
996          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
997            CurrString = DeclRef->getDecl()->getName();
998          }
999          SmallString<16> CaseValStr;
1000          CaseVals[i-1].first.toString(CaseValStr);
1001
1002          if (PrevString == CurrString)
1003            Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1004                 diag::err_duplicate_case)
1005                << (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
1006          else
1007            Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1008                 diag::err_duplicate_case_differing_expr)
1009                << (PrevString.empty() ? StringRef(CaseValStr) : PrevString)
1010                << (CurrString.empty() ? StringRef(CaseValStr) : CurrString)
1011                << CaseValStr;
1012
1013          Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1014               diag::note_duplicate_case_prev);
1015          // FIXME: We really want to remove the bogus case stmt from the
1016          // substmt, but we have no way to do this right now.
1017          CaseListIsErroneous = true;
1018        }
1019      }
1020    }
1021
1022    // Detect duplicate case ranges, which usually don't exist at all in
1023    // the first place.
1024    if (!CaseRanges.empty()) {
1025      // Sort all the case ranges by their low value so we can easily detect
1026      // overlaps between ranges.
1027      llvm::stable_sort(CaseRanges);
1028
1029      // Scan the ranges, computing the high values and removing empty ranges.
1030      std::vector<llvm::APSInt> HiVals;
1031      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1032        llvm::APSInt &LoVal = CaseRanges[i].first;
1033        CaseStmt *CR = CaseRanges[i].second;
1034        Expr *Hi = CR->getRHS();
1035
1036        const Expr *HiBeforePromotion = Hi;
1037        GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1038        llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1039
1040        // Check the unconverted value is within the range of possible values of
1041        // the switch expression.
1042        checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1043                       CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1044
1045        // Convert the value to the same width/sign as the condition.
1046        AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1047
1048        // If the low value is bigger than the high value, the case is empty.
1049        if (LoVal > HiVal) {
1050          Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1051              << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1052          CaseRanges.erase(CaseRanges.begin()+i);
1053          --i;
1054          --e;
1055          continue;
1056        }
1057
1058        if (ShouldCheckConstantCond &&
1059            LoVal <= ConstantCondValue &&
1060            ConstantCondValue <= HiVal)
1061          ShouldCheckConstantCond = false;
1062
1063        HiVals.push_back(HiVal);
1064      }
1065
1066      // Rescan the ranges, looking for overlap with singleton values and other
1067      // ranges.  Since the range list is sorted, we only need to compare case
1068      // ranges with their neighbors.
1069      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1070        llvm::APSInt &CRLo = CaseRanges[i].first;
1071        llvm::APSInt &CRHi = HiVals[i];
1072        CaseStmt *CR = CaseRanges[i].second;
1073
1074        // Check to see whether the case range overlaps with any
1075        // singleton cases.
1076        CaseStmt *OverlapStmt = nullptr;
1077        llvm::APSInt OverlapVal(32);
1078
1079        // Find the smallest value >= the lower bound.  If I is in the
1080        // case range, then we have overlap.
1081        CaseValsTy::iterator I =
1082            llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1083        if (I != CaseVals.end() && I->first < CRHi) {
1084          OverlapVal  = I->first;   // Found overlap with scalar.
1085          OverlapStmt = I->second;
1086        }
1087
1088        // Find the smallest value bigger than the upper bound.
1089        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1090        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1091          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1092          OverlapStmt = (I-1)->second;
1093        }
1094
1095        // Check to see if this case stmt overlaps with the subsequent
1096        // case range.
1097        if (i && CRLo <= HiVals[i-1]) {
1098          OverlapVal  = HiVals[i-1];       // Found overlap with range.
1099          OverlapStmt = CaseRanges[i-1].second;
1100        }
1101
1102        if (OverlapStmt) {
1103          // If we have a duplicate, report it.
1104          Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1105              << OverlapVal.toString(10);
1106          Diag(OverlapStmt->getLHS()->getBeginLoc(),
1107               diag::note_duplicate_case_prev);
1108          // FIXME: We really want to remove the bogus case stmt from the
1109          // substmt, but we have no way to do this right now.
1110          CaseListIsErroneous = true;
1111        }
1112      }
1113    }
1114
1115    // Complain if we have a constant condition and we didn't find a match.
1116    if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1117        ShouldCheckConstantCond) {
1118      // TODO: it would be nice if we printed enums as enums, chars as
1119      // chars, etc.
1120      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1121        << ConstantCondValue.toString(10)
1122        << CondExpr->getSourceRange();
1123    }
1124
1125    // Check to see if switch is over an Enum and handles all of its
1126    // values.  We only issue a warning if there is not 'default:', but
1127    // we still do the analysis to preserve this information in the AST
1128    // (which can be used by flow-based analyes).
1129    //
1130    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1131
1132    // If switch has default case, then ignore it.
1133    if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1134        ET && ET->getDecl()->isCompleteDefinition()) {
1135      const EnumDecl *ED = ET->getDecl();
1136      EnumValsTy EnumVals;
1137
1138      // Gather all enum values, set their type and sort them,
1139      // allowing easier comparison with CaseVals.
1140      for (auto *EDI : ED->enumerators()) {
1141        llvm::APSInt Val = EDI->getInitVal();
1142        AdjustAPSInt(Val, CondWidth, CondIsSigned);
1143        EnumVals.push_back(std::make_pair(Val, EDI));
1144      }
1145      llvm::stable_sort(EnumVals, CmpEnumVals);
1146      auto EI = EnumVals.begin(), EIEnd =
1147        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1148
1149      // See which case values aren't in enum.
1150      for (CaseValsTy::const_iterator CI = CaseVals.begin();
1151          CI != CaseVals.end(); CI++) {
1152        Expr *CaseExpr = CI->second->getLHS();
1153        if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1154                                              CI->first))
1155          Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1156            << CondTypeBeforePromotion;
1157      }
1158
1159      // See which of case ranges aren't in enum
1160      EI = EnumVals.begin();
1161      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1162          RI != CaseRanges.end(); RI++) {
1163        Expr *CaseExpr = RI->second->getLHS();
1164        if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1165                                              RI->first))
1166          Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1167            << CondTypeBeforePromotion;
1168
1169        llvm::APSInt Hi =
1170          RI->second->getRHS()->EvaluateKnownConstInt(Context);
1171        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1172
1173        CaseExpr = RI->second->getRHS();
1174        if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1175                                              Hi))
1176          Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1177            << CondTypeBeforePromotion;
1178      }
1179
1180      // Check which enum vals aren't in switch
1181      auto CI = CaseVals.begin();
1182      auto RI = CaseRanges.begin();
1183      bool hasCasesNotInSwitch = false;
1184
1185      SmallVector<DeclarationName,8> UnhandledNames;
1186
1187      for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1188        // Don't warn about omitted unavailable EnumConstantDecls.
1189        switch (EI->second->getAvailability()) {
1190        case AR_Deprecated:
1191          // Omitting a deprecated constant is ok; it should never materialize.
1192        case AR_Unavailable:
1193          continue;
1194
1195        case AR_NotYetIntroduced:
1196          // Partially available enum constants should be present. Note that we
1197          // suppress -Wunguarded-availability diagnostics for such uses.
1198        case AR_Available:
1199          break;
1200        }
1201
1202        if (EI->second->hasAttr<UnusedAttr>())
1203          continue;
1204
1205        // Drop unneeded case values
1206        while (CI != CaseVals.end() && CI->first < EI->first)
1207          CI++;
1208
1209        if (CI != CaseVals.end() && CI->first == EI->first)
1210          continue;
1211
1212        // Drop unneeded case ranges
1213        for (; RI != CaseRanges.end(); RI++) {
1214          llvm::APSInt Hi =
1215            RI->second->getRHS()->EvaluateKnownConstInt(Context);
1216          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1217          if (EI->first <= Hi)
1218            break;
1219        }
1220
1221        if (RI == CaseRanges.end() || EI->first < RI->first) {
1222          hasCasesNotInSwitch = true;
1223          UnhandledNames.push_back(EI->second->getDeclName());
1224        }
1225      }
1226
1227      if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1228        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1229
1230      // Produce a nice diagnostic if multiple values aren't handled.
1231      if (!UnhandledNames.empty()) {
1232        DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
1233                                    TheDefaultStmt ? diag::warn_def_missing_case
1234                                                   : diag::warn_missing_case)
1235                               << (int)UnhandledNames.size();
1236
1237        for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1238             I != E; ++I)
1239          DB << UnhandledNames[I];
1240      }
1241
1242      if (!hasCasesNotInSwitch)
1243        SS->setAllEnumCasesCovered();
1244    }
1245  }
1246
1247  if (BodyStmt)
1248    DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1249                          diag::warn_empty_switch_body);
1250
1251  // FIXME: If the case list was broken is some way, we don't have a good system
1252  // to patch it up.  Instead, just return the whole substmt as broken.
1253  if (CaseListIsErroneous)
1254    return StmtError();
1255
1256  return SS;
1257}
1258
1259void
1260Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1261                             Expr *SrcExpr) {
1262  if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1263    return;
1264
1265  if (const EnumType *ET = DstType->getAs<EnumType>())
1266    if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1267        SrcType->isIntegerType()) {
1268      if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1269          SrcExpr->isIntegerConstantExpr(Context)) {
1270        // Get the bitwidth of the enum value before promotions.
1271        unsigned DstWidth = Context.getIntWidth(DstType);
1272        bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1273
1274        llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1275        AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1276        const EnumDecl *ED = ET->getDecl();
1277
1278        if (!ED->isClosed())
1279          return;
1280
1281        if (ED->hasAttr<FlagEnumAttr>()) {
1282          if (!IsValueInFlagEnum(ED, RhsVal, true))
1283            Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1284              << DstType.getUnqualifiedType();
1285        } else {
1286          typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1287              EnumValsTy;
1288          EnumValsTy EnumVals;
1289
1290          // Gather all enum values, set their type and sort them,
1291          // allowing easier comparison with rhs constant.
1292          for (auto *EDI : ED->enumerators()) {
1293            llvm::APSInt Val = EDI->getInitVal();
1294            AdjustAPSInt(Val, DstWidth, DstIsSigned);
1295            EnumVals.push_back(std::make_pair(Val, EDI));
1296          }
1297          if (EnumVals.empty())
1298            return;
1299          llvm::stable_sort(EnumVals, CmpEnumVals);
1300          EnumValsTy::iterator EIend =
1301              std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1302
1303          // See which values aren't in the enum.
1304          EnumValsTy::const_iterator EI = EnumVals.begin();
1305          while (EI != EIend && EI->first < RhsVal)
1306            EI++;
1307          if (EI == EIend || EI->first != RhsVal) {
1308            Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1309                << DstType.getUnqualifiedType();
1310          }
1311        }
1312      }
1313    }
1314}
1315
1316StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond,
1317                                Stmt *Body) {
1318  if (Cond.isInvalid())
1319    return StmtError();
1320
1321  auto CondVal = Cond.get();
1322  CheckBreakContinueBinding(CondVal.second);
1323
1324  if (CondVal.second &&
1325      !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1326    CommaVisitor(*this).Visit(CondVal.second);
1327
1328  if (isa<NullStmt>(Body))
1329    getCurCompoundScope().setHasEmptyLoopBodies();
1330
1331  return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1332                           WhileLoc);
1333}
1334
1335StmtResult
1336Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1337                  SourceLocation WhileLoc, SourceLocation CondLParen,
1338                  Expr *Cond, SourceLocation CondRParen) {
1339  assert(Cond && "ActOnDoStmt(): missing expression");
1340
1341  CheckBreakContinueBinding(Cond);
1342  ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1343  if (CondResult.isInvalid())
1344    return StmtError();
1345  Cond = CondResult.get();
1346
1347  CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1348  if (CondResult.isInvalid())
1349    return StmtError();
1350  Cond = CondResult.get();
1351
1352  // Only call the CommaVisitor for C89 due to differences in scope flags.
1353  if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1354      !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1355    CommaVisitor(*this).Visit(Cond);
1356
1357  return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1358}
1359
1360namespace {
1361  // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1362  using DeclSetVector =
1363      llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
1364                      llvm::SmallPtrSet<VarDecl *, 8>>;
1365
1366  // This visitor will traverse a conditional statement and store all
1367  // the evaluated decls into a vector.  Simple is set to true if none
1368  // of the excluded constructs are used.
1369  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1370    DeclSetVector &Decls;
1371    SmallVectorImpl<SourceRange> &Ranges;
1372    bool Simple;
1373  public:
1374    typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1375
1376    DeclExtractor(Sema &S, DeclSetVector &Decls,
1377                  SmallVectorImpl<SourceRange> &Ranges) :
1378        Inherited(S.Context),
1379        Decls(Decls),
1380        Ranges(Ranges),
1381        Simple(true) {}
1382
1383    bool isSimple() { return Simple; }
1384
1385    // Replaces the method in EvaluatedExprVisitor.
1386    void VisitMemberExpr(MemberExpr* E) {
1387      Simple = false;
1388    }
1389
1390    // Any Stmt not whitelisted will cause the condition to be marked complex.
1391    void VisitStmt(Stmt *S) {
1392      Simple = false;
1393    }
1394
1395    void VisitBinaryOperator(BinaryOperator *E) {
1396      Visit(E->getLHS());
1397      Visit(E->getRHS());
1398    }
1399
1400    void VisitCastExpr(CastExpr *E) {
1401      Visit(E->getSubExpr());
1402    }
1403
1404    void VisitUnaryOperator(UnaryOperator *E) {
1405      // Skip checking conditionals with derefernces.
1406      if (E->getOpcode() == UO_Deref)
1407        Simple = false;
1408      else
1409        Visit(E->getSubExpr());
1410    }
1411
1412    void VisitConditionalOperator(ConditionalOperator *E) {
1413      Visit(E->getCond());
1414      Visit(E->getTrueExpr());
1415      Visit(E->getFalseExpr());
1416    }
1417
1418    void VisitParenExpr(ParenExpr *E) {
1419      Visit(E->getSubExpr());
1420    }
1421
1422    void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1423      Visit(E->getOpaqueValue()->getSourceExpr());
1424      Visit(E->getFalseExpr());
1425    }
1426
1427    void VisitIntegerLiteral(IntegerLiteral *E) { }
1428    void VisitFloatingLiteral(FloatingLiteral *E) { }
1429    void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1430    void VisitCharacterLiteral(CharacterLiteral *E) { }
1431    void VisitGNUNullExpr(GNUNullExpr *E) { }
1432    void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1433
1434    void VisitDeclRefExpr(DeclRefExpr *E) {
1435      VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1436      if (!VD) {
1437        // Don't allow unhandled Decl types.
1438        Simple = false;
1439        return;
1440      }
1441
1442      Ranges.push_back(E->getSourceRange());
1443
1444      Decls.insert(VD);
1445    }
1446
1447  }; // end class DeclExtractor
1448
1449  // DeclMatcher checks to see if the decls are used in a non-evaluated
1450  // context.
1451  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1452    DeclSetVector &Decls;
1453    bool FoundDecl;
1454
1455  public:
1456    typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1457
1458    DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1459        Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1460      if (!Statement) return;
1461
1462      Visit(Statement);
1463    }
1464
1465    void VisitReturnStmt(ReturnStmt *S) {
1466      FoundDecl = true;
1467    }
1468
1469    void VisitBreakStmt(BreakStmt *S) {
1470      FoundDecl = true;
1471    }
1472
1473    void VisitGotoStmt(GotoStmt *S) {
1474      FoundDecl = true;
1475    }
1476
1477    void VisitCastExpr(CastExpr *E) {
1478      if (E->getCastKind() == CK_LValueToRValue)
1479        CheckLValueToRValueCast(E->getSubExpr());
1480      else
1481        Visit(E->getSubExpr());
1482    }
1483
1484    void CheckLValueToRValueCast(Expr *E) {
1485      E = E->IgnoreParenImpCasts();
1486
1487      if (isa<DeclRefExpr>(E)) {
1488        return;
1489      }
1490
1491      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1492        Visit(CO->getCond());
1493        CheckLValueToRValueCast(CO->getTrueExpr());
1494        CheckLValueToRValueCast(CO->getFalseExpr());
1495        return;
1496      }
1497
1498      if (BinaryConditionalOperator *BCO =
1499              dyn_cast<BinaryConditionalOperator>(E)) {
1500        CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1501        CheckLValueToRValueCast(BCO->getFalseExpr());
1502        return;
1503      }
1504
1505      Visit(E);
1506    }
1507
1508    void VisitDeclRefExpr(DeclRefExpr *E) {
1509      if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1510        if (Decls.count(VD))
1511          FoundDecl = true;
1512    }
1513
1514    void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1515      // Only need to visit the semantics for POE.
1516      // SyntaticForm doesn't really use the Decal.
1517      for (auto *S : POE->semantics()) {
1518        if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1519          // Look past the OVE into the expression it binds.
1520          Visit(OVE->getSourceExpr());
1521        else
1522          Visit(S);
1523      }
1524    }
1525
1526    bool FoundDeclInUse() { return FoundDecl; }
1527
1528  };  // end class DeclMatcher
1529
1530  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1531                                        Expr *Third, Stmt *Body) {
1532    // Condition is empty
1533    if (!Second) return;
1534
1535    if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1536                          Second->getBeginLoc()))
1537      return;
1538
1539    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1540    DeclSetVector Decls;
1541    SmallVector<SourceRange, 10> Ranges;
1542    DeclExtractor DE(S, Decls, Ranges);
1543    DE.Visit(Second);
1544
1545    // Don't analyze complex conditionals.
1546    if (!DE.isSimple()) return;
1547
1548    // No decls found.
1549    if (Decls.size() == 0) return;
1550
1551    // Don't warn on volatile, static, or global variables.
1552    for (auto *VD : Decls)
1553      if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1554        return;
1555
1556    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1557        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1558        DeclMatcher(S, Decls, Body).FoundDeclInUse())
1559      return;
1560
1561    // Load decl names into diagnostic.
1562    if (Decls.size() > 4) {
1563      PDiag << 0;
1564    } else {
1565      PDiag << (unsigned)Decls.size();
1566      for (auto *VD : Decls)
1567        PDiag << VD->getDeclName();
1568    }
1569
1570    for (auto Range : Ranges)
1571      PDiag << Range;
1572
1573    S.Diag(Ranges.begin()->getBegin(), PDiag);
1574  }
1575
1576  // If Statement is an incemement or decrement, return true and sets the
1577  // variables Increment and DRE.
1578  bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1579                            DeclRefExpr *&DRE) {
1580    if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1581      if (!Cleanups->cleanupsHaveSideEffects())
1582        Statement = Cleanups->getSubExpr();
1583
1584    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1585      switch (UO->getOpcode()) {
1586        default: return false;
1587        case UO_PostInc:
1588        case UO_PreInc:
1589          Increment = true;
1590          break;
1591        case UO_PostDec:
1592        case UO_PreDec:
1593          Increment = false;
1594          break;
1595      }
1596      DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1597      return DRE;
1598    }
1599
1600    if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1601      FunctionDecl *FD = Call->getDirectCallee();
1602      if (!FD || !FD->isOverloadedOperator()) return false;
1603      switch (FD->getOverloadedOperator()) {
1604        default: return false;
1605        case OO_PlusPlus:
1606          Increment = true;
1607          break;
1608        case OO_MinusMinus:
1609          Increment = false;
1610          break;
1611      }
1612      DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1613      return DRE;
1614    }
1615
1616    return false;
1617  }
1618
1619  // A visitor to determine if a continue or break statement is a
1620  // subexpression.
1621  class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1622    SourceLocation BreakLoc;
1623    SourceLocation ContinueLoc;
1624    bool InSwitch = false;
1625
1626  public:
1627    BreakContinueFinder(Sema &S, const Stmt* Body) :
1628        Inherited(S.Context) {
1629      Visit(Body);
1630    }
1631
1632    typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
1633
1634    void VisitContinueStmt(const ContinueStmt* E) {
1635      ContinueLoc = E->getContinueLoc();
1636    }
1637
1638    void VisitBreakStmt(const BreakStmt* E) {
1639      if (!InSwitch)
1640        BreakLoc = E->getBreakLoc();
1641    }
1642
1643    void VisitSwitchStmt(const SwitchStmt* S) {
1644      if (const Stmt *Init = S->getInit())
1645        Visit(Init);
1646      if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
1647        Visit(CondVar);
1648      if (const Stmt *Cond = S->getCond())
1649        Visit(Cond);
1650
1651      // Don't return break statements from the body of a switch.
1652      InSwitch = true;
1653      if (const Stmt *Body = S->getBody())
1654        Visit(Body);
1655      InSwitch = false;
1656    }
1657
1658    void VisitForStmt(const ForStmt *S) {
1659      // Only visit the init statement of a for loop; the body
1660      // has a different break/continue scope.
1661      if (const Stmt *Init = S->getInit())
1662        Visit(Init);
1663    }
1664
1665    void VisitWhileStmt(const WhileStmt *) {
1666      // Do nothing; the children of a while loop have a different
1667      // break/continue scope.
1668    }
1669
1670    void VisitDoStmt(const DoStmt *) {
1671      // Do nothing; the children of a while loop have a different
1672      // break/continue scope.
1673    }
1674
1675    void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
1676      // Only visit the initialization of a for loop; the body
1677      // has a different break/continue scope.
1678      if (const Stmt *Init = S->getInit())
1679        Visit(Init);
1680      if (const Stmt *Range = S->getRangeStmt())
1681        Visit(Range);
1682      if (const Stmt *Begin = S->getBeginStmt())
1683        Visit(Begin);
1684      if (const Stmt *End = S->getEndStmt())
1685        Visit(End);
1686    }
1687
1688    void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
1689      // Only visit the initialization of a for loop; the body
1690      // has a different break/continue scope.
1691      if (const Stmt *Element = S->getElement())
1692        Visit(Element);
1693      if (const Stmt *Collection = S->getCollection())
1694        Visit(Collection);
1695    }
1696
1697    bool ContinueFound() { return ContinueLoc.isValid(); }
1698    bool BreakFound() { return BreakLoc.isValid(); }
1699    SourceLocation GetContinueLoc() { return ContinueLoc; }
1700    SourceLocation GetBreakLoc() { return BreakLoc; }
1701
1702  };  // end class BreakContinueFinder
1703
1704  // Emit a warning when a loop increment/decrement appears twice per loop
1705  // iteration.  The conditions which trigger this warning are:
1706  // 1) The last statement in the loop body and the third expression in the
1707  //    for loop are both increment or both decrement of the same variable
1708  // 2) No continue statements in the loop body.
1709  void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1710    // Return when there is nothing to check.
1711    if (!Body || !Third) return;
1712
1713    if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1714                          Third->getBeginLoc()))
1715      return;
1716
1717    // Get the last statement from the loop body.
1718    CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1719    if (!CS || CS->body_empty()) return;
1720    Stmt *LastStmt = CS->body_back();
1721    if (!LastStmt) return;
1722
1723    bool LoopIncrement, LastIncrement;
1724    DeclRefExpr *LoopDRE, *LastDRE;
1725
1726    if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1727    if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1728
1729    // Check that the two statements are both increments or both decrements
1730    // on the same variable.
1731    if (LoopIncrement != LastIncrement ||
1732        LoopDRE->getDecl() != LastDRE->getDecl()) return;
1733
1734    if (BreakContinueFinder(S, Body).ContinueFound()) return;
1735
1736    S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1737         << LastDRE->getDecl() << LastIncrement;
1738    S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1739         << LoopIncrement;
1740  }
1741
1742} // end namespace
1743
1744
1745void Sema::CheckBreakContinueBinding(Expr *E) {
1746  if (!E || getLangOpts().CPlusPlus)
1747    return;
1748  BreakContinueFinder BCFinder(*this, E);
1749  Scope *BreakParent = CurScope->getBreakParent();
1750  if (BCFinder.BreakFound() && BreakParent) {
1751    if (BreakParent->getFlags() & Scope::SwitchScope) {
1752      Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1753    } else {
1754      Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1755          << "break";
1756    }
1757  } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1758    Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1759        << "continue";
1760  }
1761}
1762
1763StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1764                              Stmt *First, ConditionResult Second,
1765                              FullExprArg third, SourceLocation RParenLoc,
1766                              Stmt *Body) {
1767  if (Second.isInvalid())
1768    return StmtError();
1769
1770  if (!getLangOpts().CPlusPlus) {
1771    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1772      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1773      // declare identifiers for objects having storage class 'auto' or
1774      // 'register'.
1775      for (auto *DI : DS->decls()) {
1776        VarDecl *VD = dyn_cast<VarDecl>(DI);
1777        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1778          VD = nullptr;
1779        if (!VD) {
1780          Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1781          DI->setInvalidDecl();
1782        }
1783      }
1784    }
1785  }
1786
1787  CheckBreakContinueBinding(Second.get().second);
1788  CheckBreakContinueBinding(third.get());
1789
1790  if (!Second.get().first)
1791    CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
1792                                     Body);
1793  CheckForRedundantIteration(*this, third.get(), Body);
1794
1795  if (Second.get().second &&
1796      !Diags.isIgnored(diag::warn_comma_operator,
1797                       Second.get().second->getExprLoc()))
1798    CommaVisitor(*this).Visit(Second.get().second);
1799
1800  Expr *Third  = third.release().getAs<Expr>();
1801  if (isa<NullStmt>(Body))
1802    getCurCompoundScope().setHasEmptyLoopBodies();
1803
1804  return new (Context)
1805      ForStmt(Context, First, Second.get().second, Second.get().first, Third,
1806              Body, ForLoc, LParenLoc, RParenLoc);
1807}
1808
1809/// In an Objective C collection iteration statement:
1810///   for (x in y)
1811/// x can be an arbitrary l-value expression.  Bind it up as a
1812/// full-expression.
1813StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1814  // Reduce placeholder expressions here.  Note that this rejects the
1815  // use of pseudo-object l-values in this position.
1816  ExprResult result = CheckPlaceholderExpr(E);
1817  if (result.isInvalid()) return StmtError();
1818  E = result.get();
1819
1820  ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
1821  if (FullExpr.isInvalid())
1822    return StmtError();
1823  return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1824}
1825
1826ExprResult
1827Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1828  if (!collection)
1829    return ExprError();
1830
1831  ExprResult result = CorrectDelayedTyposInExpr(collection);
1832  if (!result.isUsable())
1833    return ExprError();
1834  collection = result.get();
1835
1836  // Bail out early if we've got a type-dependent expression.
1837  if (collection->isTypeDependent()) return collection;
1838
1839  // Perform normal l-value conversion.
1840  result = DefaultFunctionArrayLvalueConversion(collection);
1841  if (result.isInvalid())
1842    return ExprError();
1843  collection = result.get();
1844
1845  // The operand needs to have object-pointer type.
1846  // TODO: should we do a contextual conversion?
1847  const ObjCObjectPointerType *pointerType =
1848    collection->getType()->getAs<ObjCObjectPointerType>();
1849  if (!pointerType)
1850    return Diag(forLoc, diag::err_collection_expr_type)
1851             << collection->getType() << collection->getSourceRange();
1852
1853  // Check that the operand provides
1854  //   - countByEnumeratingWithState:objects:count:
1855  const ObjCObjectType *objectType = pointerType->getObjectType();
1856  ObjCInterfaceDecl *iface = objectType->getInterface();
1857
1858  // If we have a forward-declared type, we can't do this check.
1859  // Under ARC, it is an error not to have a forward-declared class.
1860  if (iface &&
1861      (getLangOpts().ObjCAutoRefCount
1862           ? RequireCompleteType(forLoc, QualType(objectType, 0),
1863                                 diag::err_arc_collection_forward, collection)
1864           : !isCompleteType(forLoc, QualType(objectType, 0)))) {
1865    // Otherwise, if we have any useful type information, check that
1866    // the type declares the appropriate method.
1867  } else if (iface || !objectType->qual_empty()) {
1868    IdentifierInfo *selectorIdents[] = {
1869      &Context.Idents.get("countByEnumeratingWithState"),
1870      &Context.Idents.get("objects"),
1871      &Context.Idents.get("count")
1872    };
1873    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1874
1875    ObjCMethodDecl *method = nullptr;
1876
1877    // If there's an interface, look in both the public and private APIs.
1878    if (iface) {
1879      method = iface->lookupInstanceMethod(selector);
1880      if (!method) method = iface->lookupPrivateMethod(selector);
1881    }
1882
1883    // Also check protocol qualifiers.
1884    if (!method)
1885      method = LookupMethodInQualifiedType(selector, pointerType,
1886                                           /*instance*/ true);
1887
1888    // If we didn't find it anywhere, give up.
1889    if (!method) {
1890      Diag(forLoc, diag::warn_collection_expr_type)
1891        << collection->getType() << selector << collection->getSourceRange();
1892    }
1893
1894    // TODO: check for an incompatible signature?
1895  }
1896
1897  // Wrap up any cleanups in the expression.
1898  return collection;
1899}
1900
1901StmtResult
1902Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1903                                 Stmt *First, Expr *collection,
1904                                 SourceLocation RParenLoc) {
1905  setFunctionHasBranchProtectedScope();
1906
1907  ExprResult CollectionExprResult =
1908    CheckObjCForCollectionOperand(ForLoc, collection);
1909
1910  if (First) {
1911    QualType FirstType;
1912    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1913      if (!DS->isSingleDecl())
1914        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1915                         diag::err_toomany_element_decls));
1916
1917      VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1918      if (!D || D->isInvalidDecl())
1919        return StmtError();
1920
1921      FirstType = D->getType();
1922      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1923      // declare identifiers for objects having storage class 'auto' or
1924      // 'register'.
1925      if (!D->hasLocalStorage())
1926        return StmtError(Diag(D->getLocation(),
1927                              diag::err_non_local_variable_decl_in_for));
1928
1929      // If the type contained 'auto', deduce the 'auto' to 'id'.
1930      if (FirstType->getContainedAutoType()) {
1931        OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1932                                 VK_RValue);
1933        Expr *DeducedInit = &OpaqueId;
1934        if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1935                DAR_Failed)
1936          DiagnoseAutoDeductionFailure(D, DeducedInit);
1937        if (FirstType.isNull()) {
1938          D->setInvalidDecl();
1939          return StmtError();
1940        }
1941
1942        D->setType(FirstType);
1943
1944        if (!inTemplateInstantiation()) {
1945          SourceLocation Loc =
1946              D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1947          Diag(Loc, diag::warn_auto_var_is_id)
1948            << D->getDeclName();
1949        }
1950      }
1951
1952    } else {
1953      Expr *FirstE = cast<Expr>(First);
1954      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1955        return StmtError(
1956            Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
1957            << First->getSourceRange());
1958
1959      FirstType = static_cast<Expr*>(First)->getType();
1960      if (FirstType.isConstQualified())
1961        Diag(ForLoc, diag::err_selector_element_const_type)
1962          << FirstType << First->getSourceRange();
1963    }
1964    if (!FirstType->isDependentType() &&
1965        !FirstType->isObjCObjectPointerType() &&
1966        !FirstType->isBlockPointerType())
1967        return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1968                           << FirstType << First->getSourceRange());
1969  }
1970
1971  if (CollectionExprResult.isInvalid())
1972    return StmtError();
1973
1974  CollectionExprResult =
1975      ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
1976  if (CollectionExprResult.isInvalid())
1977    return StmtError();
1978
1979  return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1980                                             nullptr, ForLoc, RParenLoc);
1981}
1982
1983/// Finish building a variable declaration for a for-range statement.
1984/// \return true if an error occurs.
1985static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1986                                  SourceLocation Loc, int DiagID) {
1987  if (Decl->getType()->isUndeducedType()) {
1988    ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
1989    if (!Res.isUsable()) {
1990      Decl->setInvalidDecl();
1991      return true;
1992    }
1993    Init = Res.get();
1994  }
1995
1996  // Deduce the type for the iterator variable now rather than leaving it to
1997  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1998  QualType InitType;
1999  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
2000      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
2001          Sema::DAR_Failed)
2002    SemaRef.Diag(Loc, DiagID) << Init->getType();
2003  if (InitType.isNull()) {
2004    Decl->setInvalidDecl();
2005    return true;
2006  }
2007  Decl->setType(InitType);
2008
2009  // In ARC, infer lifetime.
2010  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2011  // we're doing the equivalent of fast iteration.
2012  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2013      SemaRef.inferObjCARCLifetime(Decl))
2014    Decl->setInvalidDecl();
2015
2016  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2017  SemaRef.FinalizeDeclaration(Decl);
2018  SemaRef.CurContext->addHiddenDecl(Decl);
2019  return false;
2020}
2021
2022namespace {
2023// An enum to represent whether something is dealing with a call to begin()
2024// or a call to end() in a range-based for loop.
2025enum BeginEndFunction {
2026  BEF_begin,
2027  BEF_end
2028};
2029
2030/// Produce a note indicating which begin/end function was implicitly called
2031/// by a C++11 for-range statement. This is often not obvious from the code,
2032/// nor from the diagnostics produced when analysing the implicit expressions
2033/// required in a for-range statement.
2034void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2035                                  BeginEndFunction BEF) {
2036  CallExpr *CE = dyn_cast<CallExpr>(E);
2037  if (!CE)
2038    return;
2039  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2040  if (!D)
2041    return;
2042  SourceLocation Loc = D->getLocation();
2043
2044  std::string Description;
2045  bool IsTemplate = false;
2046  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2047    Description = SemaRef.getTemplateArgumentBindingsText(
2048      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2049    IsTemplate = true;
2050  }
2051
2052  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2053    << BEF << IsTemplate << Description << E->getType();
2054}
2055
2056/// Build a variable declaration for a for-range statement.
2057VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2058                              QualType Type, StringRef Name) {
2059  DeclContext *DC = SemaRef.CurContext;
2060  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2061  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2062  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2063                                  TInfo, SC_None);
2064  Decl->setImplicit();
2065  return Decl;
2066}
2067
2068}
2069
2070static bool ObjCEnumerationCollection(Expr *Collection) {
2071  return !Collection->isTypeDependent()
2072          && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2073}
2074
2075/// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2076///
2077/// C++11 [stmt.ranged]:
2078///   A range-based for statement is equivalent to
2079///
2080///   {
2081///     auto && __range = range-init;
2082///     for ( auto __begin = begin-expr,
2083///           __end = end-expr;
2084///           __begin != __end;
2085///           ++__begin ) {
2086///       for-range-declaration = *__begin;
2087///       statement
2088///     }
2089///   }
2090///
2091/// The body of the loop is not available yet, since it cannot be analysed until
2092/// we have determined the type of the for-range-declaration.
2093StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
2094                                      SourceLocation CoawaitLoc, Stmt *InitStmt,
2095                                      Stmt *First, SourceLocation ColonLoc,
2096                                      Expr *Range, SourceLocation RParenLoc,
2097                                      BuildForRangeKind Kind) {
2098  if (!First)
2099    return StmtError();
2100
2101  if (Range && ObjCEnumerationCollection(Range)) {
2102    // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2103    if (InitStmt)
2104      return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2105                 << InitStmt->getSourceRange();
2106    return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2107  }
2108
2109  DeclStmt *DS = dyn_cast<DeclStmt>(First);
2110  assert(DS && "first part of for range not a decl stmt");
2111
2112  if (!DS->isSingleDecl()) {
2113    Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2114    return StmtError();
2115  }
2116
2117  Decl *LoopVar = DS->getSingleDecl();
2118  if (LoopVar->isInvalidDecl() || !Range ||
2119      DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2120    LoopVar->setInvalidDecl();
2121    return StmtError();
2122  }
2123
2124  // Build the coroutine state immediately and not later during template
2125  // instantiation
2126  if (!CoawaitLoc.isInvalid()) {
2127    if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await"))
2128      return StmtError();
2129  }
2130
2131  // Build  auto && __range = range-init
2132  // Divide by 2, since the variables are in the inner scope (loop body).
2133  const auto DepthStr = std::to_string(S->getDepth() / 2);
2134  SourceLocation RangeLoc = Range->getBeginLoc();
2135  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2136                                           Context.getAutoRRefDeductType(),
2137                                           std::string("__range") + DepthStr);
2138  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2139                            diag::err_for_range_deduction_failure)) {
2140    LoopVar->setInvalidDecl();
2141    return StmtError();
2142  }
2143
2144  // Claim the type doesn't contain auto: we've already done the checking.
2145  DeclGroupPtrTy RangeGroup =
2146      BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2147  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2148  if (RangeDecl.isInvalid()) {
2149    LoopVar->setInvalidDecl();
2150    return StmtError();
2151  }
2152
2153  return BuildCXXForRangeStmt(
2154      ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2155      /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2156      /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2157}
2158
2159/// Create the initialization, compare, and increment steps for
2160/// the range-based for loop expression.
2161/// This function does not handle array-based for loops,
2162/// which are created in Sema::BuildCXXForRangeStmt.
2163///
2164/// \returns a ForRangeStatus indicating success or what kind of error occurred.
2165/// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2166/// CandidateSet and BEF are set and some non-success value is returned on
2167/// failure.
2168static Sema::ForRangeStatus
2169BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2170                      QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2171                      SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2172                      OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2173                      ExprResult *EndExpr, BeginEndFunction *BEF) {
2174  DeclarationNameInfo BeginNameInfo(
2175      &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2176  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2177                                  ColonLoc);
2178
2179  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2180                                 Sema::LookupMemberName);
2181  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2182
2183  auto BuildBegin = [&] {
2184    *BEF = BEF_begin;
2185    Sema::ForRangeStatus RangeStatus =
2186        SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2187                                          BeginMemberLookup, CandidateSet,
2188                                          BeginRange, BeginExpr);
2189
2190    if (RangeStatus != Sema::FRS_Success) {
2191      if (RangeStatus == Sema::FRS_DiagnosticIssued)
2192        SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2193            << ColonLoc << BEF_begin << BeginRange->getType();
2194      return RangeStatus;
2195    }
2196    if (!CoawaitLoc.isInvalid()) {
2197      // FIXME: getCurScope() should not be used during template instantiation.
2198      // We should pick up the set of unqualified lookup results for operator
2199      // co_await during the initial parse.
2200      *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2201                                            BeginExpr->get());
2202      if (BeginExpr->isInvalid())
2203        return Sema::FRS_DiagnosticIssued;
2204    }
2205    if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2206                              diag::err_for_range_iter_deduction_failure)) {
2207      NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2208      return Sema::FRS_DiagnosticIssued;
2209    }
2210    return Sema::FRS_Success;
2211  };
2212
2213  auto BuildEnd = [&] {
2214    *BEF = BEF_end;
2215    Sema::ForRangeStatus RangeStatus =
2216        SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2217                                          EndMemberLookup, CandidateSet,
2218                                          EndRange, EndExpr);
2219    if (RangeStatus != Sema::FRS_Success) {
2220      if (RangeStatus == Sema::FRS_DiagnosticIssued)
2221        SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2222            << ColonLoc << BEF_end << EndRange->getType();
2223      return RangeStatus;
2224    }
2225    if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2226                              diag::err_for_range_iter_deduction_failure)) {
2227      NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2228      return Sema::FRS_DiagnosticIssued;
2229    }
2230    return Sema::FRS_Success;
2231  };
2232
2233  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2234    // - if _RangeT is a class type, the unqualified-ids begin and end are
2235    //   looked up in the scope of class _RangeT as if by class member access
2236    //   lookup (3.4.5), and if either (or both) finds at least one
2237    //   declaration, begin-expr and end-expr are __range.begin() and
2238    //   __range.end(), respectively;
2239    SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2240    if (BeginMemberLookup.isAmbiguous())
2241      return Sema::FRS_DiagnosticIssued;
2242
2243    SemaRef.LookupQualifiedName(EndMemberLookup, D);
2244    if (EndMemberLookup.isAmbiguous())
2245      return Sema::FRS_DiagnosticIssued;
2246
2247    if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2248      // Look up the non-member form of the member we didn't find, first.
2249      // This way we prefer a "no viable 'end'" diagnostic over a "i found
2250      // a 'begin' but ignored it because there was no member 'end'"
2251      // diagnostic.
2252      auto BuildNonmember = [&](
2253          BeginEndFunction BEFFound, LookupResult &Found,
2254          llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2255          llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2256        LookupResult OldFound = std::move(Found);
2257        Found.clear();
2258
2259        if (Sema::ForRangeStatus Result = BuildNotFound())
2260          return Result;
2261
2262        switch (BuildFound()) {
2263        case Sema::FRS_Success:
2264          return Sema::FRS_Success;
2265
2266        case Sema::FRS_NoViableFunction:
2267          CandidateSet->NoteCandidates(
2268              PartialDiagnosticAt(BeginRange->getBeginLoc(),
2269                                  SemaRef.PDiag(diag::err_for_range_invalid)
2270                                      << BeginRange->getType() << BEFFound),
2271              SemaRef, OCD_AllCandidates, BeginRange);
2272          LLVM_FALLTHROUGH;
2273
2274        case Sema::FRS_DiagnosticIssued:
2275          for (NamedDecl *D : OldFound) {
2276            SemaRef.Diag(D->getLocation(),
2277                         diag::note_for_range_member_begin_end_ignored)
2278                << BeginRange->getType() << BEFFound;
2279          }
2280          return Sema::FRS_DiagnosticIssued;
2281        }
2282        llvm_unreachable("unexpected ForRangeStatus");
2283      };
2284      if (BeginMemberLookup.empty())
2285        return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2286      return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2287    }
2288  } else {
2289    // - otherwise, begin-expr and end-expr are begin(__range) and
2290    //   end(__range), respectively, where begin and end are looked up with
2291    //   argument-dependent lookup (3.4.2). For the purposes of this name
2292    //   lookup, namespace std is an associated namespace.
2293  }
2294
2295  if (Sema::ForRangeStatus Result = BuildBegin())
2296    return Result;
2297  return BuildEnd();
2298}
2299
2300/// Speculatively attempt to dereference an invalid range expression.
2301/// If the attempt fails, this function will return a valid, null StmtResult
2302/// and emit no diagnostics.
2303static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2304                                                 SourceLocation ForLoc,
2305                                                 SourceLocation CoawaitLoc,
2306                                                 Stmt *InitStmt,
2307                                                 Stmt *LoopVarDecl,
2308                                                 SourceLocation ColonLoc,
2309                                                 Expr *Range,
2310                                                 SourceLocation RangeLoc,
2311                                                 SourceLocation RParenLoc) {
2312  // Determine whether we can rebuild the for-range statement with a
2313  // dereferenced range expression.
2314  ExprResult AdjustedRange;
2315  {
2316    Sema::SFINAETrap Trap(SemaRef);
2317
2318    AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2319    if (AdjustedRange.isInvalid())
2320      return StmtResult();
2321
2322    StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2323        S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2324        AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2325    if (SR.isInvalid())
2326      return StmtResult();
2327  }
2328
2329  // The attempt to dereference worked well enough that it could produce a valid
2330  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2331  // case there are any other (non-fatal) problems with it.
2332  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2333    << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2334  return SemaRef.ActOnCXXForRangeStmt(
2335      S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2336      AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2337}
2338
2339namespace {
2340/// RAII object to automatically invalidate a declaration if an error occurs.
2341struct InvalidateOnErrorScope {
2342  InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2343      : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
2344  ~InvalidateOnErrorScope() {
2345    if (Enabled && Trap.hasErrorOccurred())
2346      D->setInvalidDecl();
2347  }
2348
2349  DiagnosticErrorTrap Trap;
2350  Decl *D;
2351  bool Enabled;
2352};
2353}
2354
2355/// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2356StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc,
2357                                      SourceLocation CoawaitLoc, Stmt *InitStmt,
2358                                      SourceLocation ColonLoc, Stmt *RangeDecl,
2359                                      Stmt *Begin, Stmt *End, Expr *Cond,
2360                                      Expr *Inc, Stmt *LoopVarDecl,
2361                                      SourceLocation RParenLoc,
2362                                      BuildForRangeKind Kind) {
2363  // FIXME: This should not be used during template instantiation. We should
2364  // pick up the set of unqualified lookup results for the != and + operators
2365  // in the initial parse.
2366  //
2367  // Testcase (accepts-invalid):
2368  //   template<typename T> void f() { for (auto x : T()) {} }
2369  //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
2370  //   bool operator!=(N::X, N::X); void operator++(N::X);
2371  //   void g() { f<N::X>(); }
2372  Scope *S = getCurScope();
2373
2374  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2375  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2376  QualType RangeVarType = RangeVar->getType();
2377
2378  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2379  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2380
2381  // If we hit any errors, mark the loop variable as invalid if its type
2382  // contains 'auto'.
2383  InvalidateOnErrorScope Invalidate(*this, LoopVar,
2384                                    LoopVar->getType()->isUndeducedType());
2385
2386  StmtResult BeginDeclStmt = Begin;
2387  StmtResult EndDeclStmt = End;
2388  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2389
2390  if (RangeVarType->isDependentType()) {
2391    // The range is implicitly used as a placeholder when it is dependent.
2392    RangeVar->markUsed(Context);
2393
2394    // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2395    // them in properly when we instantiate the loop.
2396    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2397      if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2398        for (auto *Binding : DD->bindings())
2399          Binding->setType(Context.DependentTy);
2400      LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2401    }
2402  } else if (!BeginDeclStmt.get()) {
2403    SourceLocation RangeLoc = RangeVar->getLocation();
2404
2405    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2406
2407    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2408                                                VK_LValue, ColonLoc);
2409    if (BeginRangeRef.isInvalid())
2410      return StmtError();
2411
2412    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2413                                              VK_LValue, ColonLoc);
2414    if (EndRangeRef.isInvalid())
2415      return StmtError();
2416
2417    QualType AutoType = Context.getAutoDeductType();
2418    Expr *Range = RangeVar->getInit();
2419    if (!Range)
2420      return StmtError();
2421    QualType RangeType = Range->getType();
2422
2423    if (RequireCompleteType(RangeLoc, RangeType,
2424                            diag::err_for_range_incomplete_type))
2425      return StmtError();
2426
2427    // Build auto __begin = begin-expr, __end = end-expr.
2428    // Divide by 2, since the variables are in the inner scope (loop body).
2429    const auto DepthStr = std::to_string(S->getDepth() / 2);
2430    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2431                                             std::string("__begin") + DepthStr);
2432    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2433                                           std::string("__end") + DepthStr);
2434
2435    // Build begin-expr and end-expr and attach to __begin and __end variables.
2436    ExprResult BeginExpr, EndExpr;
2437    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2438      // - if _RangeT is an array type, begin-expr and end-expr are __range and
2439      //   __range + __bound, respectively, where __bound is the array bound. If
2440      //   _RangeT is an array of unknown size or an array of incomplete type,
2441      //   the program is ill-formed;
2442
2443      // begin-expr is __range.
2444      BeginExpr = BeginRangeRef;
2445      if (!CoawaitLoc.isInvalid()) {
2446        BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2447        if (BeginExpr.isInvalid())
2448          return StmtError();
2449      }
2450      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2451                                diag::err_for_range_iter_deduction_failure)) {
2452        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2453        return StmtError();
2454      }
2455
2456      // Find the array bound.
2457      ExprResult BoundExpr;
2458      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2459        BoundExpr = IntegerLiteral::Create(
2460            Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2461      else if (const VariableArrayType *VAT =
2462               dyn_cast<VariableArrayType>(UnqAT)) {
2463        // For a variably modified type we can't just use the expression within
2464        // the array bounds, since we don't want that to be re-evaluated here.
2465        // Rather, we need to determine what it was when the array was first
2466        // created - so we resort to using sizeof(vla)/sizeof(element).
2467        // For e.g.
2468        //  void f(int b) {
2469        //    int vla[b];
2470        //    b = -1;   <-- This should not affect the num of iterations below
2471        //    for (int &c : vla) { .. }
2472        //  }
2473
2474        // FIXME: This results in codegen generating IR that recalculates the
2475        // run-time number of elements (as opposed to just using the IR Value
2476        // that corresponds to the run-time value of each bound that was
2477        // generated when the array was created.) If this proves too embarrassing
2478        // even for unoptimized IR, consider passing a magic-value/cookie to
2479        // codegen that then knows to simply use that initial llvm::Value (that
2480        // corresponds to the bound at time of array creation) within
2481        // getelementptr.  But be prepared to pay the price of increasing a
2482        // customized form of coupling between the two components - which  could
2483        // be hard to maintain as the codebase evolves.
2484
2485        ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2486            EndVar->getLocation(), UETT_SizeOf,
2487            /*IsType=*/true,
2488            CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2489                                                 VAT->desugar(), RangeLoc))
2490                .getAsOpaquePtr(),
2491            EndVar->getSourceRange());
2492        if (SizeOfVLAExprR.isInvalid())
2493          return StmtError();
2494
2495        ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2496            EndVar->getLocation(), UETT_SizeOf,
2497            /*IsType=*/true,
2498            CreateParsedType(VAT->desugar(),
2499                             Context.getTrivialTypeSourceInfo(
2500                                 VAT->getElementType(), RangeLoc))
2501                .getAsOpaquePtr(),
2502            EndVar->getSourceRange());
2503        if (SizeOfEachElementExprR.isInvalid())
2504          return StmtError();
2505
2506        BoundExpr =
2507            ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2508                       SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2509        if (BoundExpr.isInvalid())
2510          return StmtError();
2511
2512      } else {
2513        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2514        // UnqAT is not incomplete and Range is not type-dependent.
2515        llvm_unreachable("Unexpected array type in for-range");
2516      }
2517
2518      // end-expr is __range + __bound.
2519      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2520                           BoundExpr.get());
2521      if (EndExpr.isInvalid())
2522        return StmtError();
2523      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2524                                diag::err_for_range_iter_deduction_failure)) {
2525        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2526        return StmtError();
2527      }
2528    } else {
2529      OverloadCandidateSet CandidateSet(RangeLoc,
2530                                        OverloadCandidateSet::CSK_Normal);
2531      BeginEndFunction BEFFailure;
2532      ForRangeStatus RangeStatus = BuildNonArrayForRange(
2533          *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2534          EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2535          &BEFFailure);
2536
2537      if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2538          BEFFailure == BEF_begin) {
2539        // If the range is being built from an array parameter, emit a
2540        // a diagnostic that it is being treated as a pointer.
2541        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2542          if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2543            QualType ArrayTy = PVD->getOriginalType();
2544            QualType PointerTy = PVD->getType();
2545            if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2546              Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2547                  << RangeLoc << PVD << ArrayTy << PointerTy;
2548              Diag(PVD->getLocation(), diag::note_declared_at);
2549              return StmtError();
2550            }
2551          }
2552        }
2553
2554        // If building the range failed, try dereferencing the range expression
2555        // unless a diagnostic was issued or the end function is problematic.
2556        StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2557                                                       CoawaitLoc, InitStmt,
2558                                                       LoopVarDecl, ColonLoc,
2559                                                       Range, RangeLoc,
2560                                                       RParenLoc);
2561        if (SR.isInvalid() || SR.isUsable())
2562          return SR;
2563      }
2564
2565      // Otherwise, emit diagnostics if we haven't already.
2566      if (RangeStatus == FRS_NoViableFunction) {
2567        Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2568        CandidateSet.NoteCandidates(
2569            PartialDiagnosticAt(Range->getBeginLoc(),
2570                                PDiag(diag::err_for_range_invalid)
2571                                    << RangeLoc << Range->getType()
2572                                    << BEFFailure),
2573            *this, OCD_AllCandidates, Range);
2574      }
2575      // Return an error if no fix was discovered.
2576      if (RangeStatus != FRS_Success)
2577        return StmtError();
2578    }
2579
2580    assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2581           "invalid range expression in for loop");
2582
2583    // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2584    // C++1z removes this restriction.
2585    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2586    if (!Context.hasSameType(BeginType, EndType)) {
2587      Diag(RangeLoc, getLangOpts().CPlusPlus17
2588                         ? diag::warn_for_range_begin_end_types_differ
2589                         : diag::ext_for_range_begin_end_types_differ)
2590          << BeginType << EndType;
2591      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2592      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2593    }
2594
2595    BeginDeclStmt =
2596        ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2597    EndDeclStmt =
2598        ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2599
2600    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2601    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2602                                           VK_LValue, ColonLoc);
2603    if (BeginRef.isInvalid())
2604      return StmtError();
2605
2606    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2607                                         VK_LValue, ColonLoc);
2608    if (EndRef.isInvalid())
2609      return StmtError();
2610
2611    // Build and check __begin != __end expression.
2612    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2613                           BeginRef.get(), EndRef.get());
2614    if (!NotEqExpr.isInvalid())
2615      NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2616    if (!NotEqExpr.isInvalid())
2617      NotEqExpr =
2618          ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
2619    if (NotEqExpr.isInvalid()) {
2620      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2621        << RangeLoc << 0 << BeginRangeRef.get()->getType();
2622      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2623      if (!Context.hasSameType(BeginType, EndType))
2624        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2625      return StmtError();
2626    }
2627
2628    // Build and check ++__begin expression.
2629    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2630                                VK_LValue, ColonLoc);
2631    if (BeginRef.isInvalid())
2632      return StmtError();
2633
2634    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2635    if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2636      // FIXME: getCurScope() should not be used during template instantiation.
2637      // We should pick up the set of unqualified lookup results for operator
2638      // co_await during the initial parse.
2639      IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2640    if (!IncrExpr.isInvalid())
2641      IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
2642    if (IncrExpr.isInvalid()) {
2643      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2644        << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2645      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2646      return StmtError();
2647    }
2648
2649    // Build and check *__begin  expression.
2650    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2651                                VK_LValue, ColonLoc);
2652    if (BeginRef.isInvalid())
2653      return StmtError();
2654
2655    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2656    if (DerefExpr.isInvalid()) {
2657      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2658        << RangeLoc << 1 << BeginRangeRef.get()->getType();
2659      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2660      return StmtError();
2661    }
2662
2663    // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2664    // trying to determine whether this would be a valid range.
2665    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2666      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
2667      if (LoopVar->isInvalidDecl())
2668        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2669    }
2670  }
2671
2672  // Don't bother to actually allocate the result if we're just trying to
2673  // determine whether it would be valid.
2674  if (Kind == BFRK_Check)
2675    return StmtResult();
2676
2677  // In OpenMP loop region loop control variable must be private. Perform
2678  // analysis of first part (if any).
2679  if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
2680    ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
2681
2682  return new (Context) CXXForRangeStmt(
2683      InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
2684      cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
2685      IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2686      ColonLoc, RParenLoc);
2687}
2688
2689/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2690/// statement.
2691StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2692  if (!S || !B)
2693    return StmtError();
2694  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2695
2696  ForStmt->setBody(B);
2697  return S;
2698}
2699
2700// Warn when the loop variable is a const reference that creates a copy.
2701// Suggest using the non-reference type for copies.  If a copy can be prevented
2702// suggest the const reference type that would do so.
2703// For instance, given "for (const &Foo : Range)", suggest
2704// "for (const Foo : Range)" to denote a copy is made for the loop.  If
2705// possible, also suggest "for (const &Bar : Range)" if this type prevents
2706// the copy altogether.
2707static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
2708                                                    const VarDecl *VD,
2709                                                    QualType RangeInitType) {
2710  const Expr *InitExpr = VD->getInit();
2711  if (!InitExpr)
2712    return;
2713
2714  QualType VariableType = VD->getType();
2715
2716  if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
2717    if (!Cleanups->cleanupsHaveSideEffects())
2718      InitExpr = Cleanups->getSubExpr();
2719
2720  const MaterializeTemporaryExpr *MTE =
2721      dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2722
2723  // No copy made.
2724  if (!MTE)
2725    return;
2726
2727  const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
2728
2729  // Searching for either UnaryOperator for dereference of a pointer or
2730  // CXXOperatorCallExpr for handling iterators.
2731  while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2732    if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2733      E = CCE->getArg(0);
2734    } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2735      const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2736      E = ME->getBase();
2737    } else {
2738      const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2739      E = MTE->getSubExpr();
2740    }
2741    E = E->IgnoreImpCasts();
2742  }
2743
2744  bool ReturnsReference = false;
2745  if (isa<UnaryOperator>(E)) {
2746    ReturnsReference = true;
2747  } else {
2748    const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2749    const FunctionDecl *FD = Call->getDirectCallee();
2750    QualType ReturnType = FD->getReturnType();
2751    ReturnsReference = ReturnType->isReferenceType();
2752  }
2753
2754  if (ReturnsReference) {
2755    // Loop variable creates a temporary.  Suggest either to go with
2756    // non-reference loop variable to indicate a copy is made, or
2757    // the correct time to bind a const reference.
2758    SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
2759        << VD << VariableType << E->getType();
2760    QualType NonReferenceType = VariableType.getNonReferenceType();
2761    NonReferenceType.removeLocalConst();
2762    QualType NewReferenceType =
2763        SemaRef.Context.getLValueReferenceType(E->getType().withConst());
2764    SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
2765        << NonReferenceType << NewReferenceType << VD->getSourceRange()
2766        << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
2767  } else if (!VariableType->isRValueReferenceType()) {
2768    // The range always returns a copy, so a temporary is always created.
2769    // Suggest removing the reference from the loop variable.
2770    // If the type is a rvalue reference do not warn since that changes the
2771    // semantic of the code.
2772    SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
2773        << VD << RangeInitType;
2774    QualType NonReferenceType = VariableType.getNonReferenceType();
2775    NonReferenceType.removeLocalConst();
2776    SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
2777        << NonReferenceType << VD->getSourceRange()
2778        << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
2779  }
2780}
2781
2782/// Determines whether the @p VariableType's declaration is a record with the
2783/// clang::trivial_abi attribute.
2784static bool hasTrivialABIAttr(QualType VariableType) {
2785  if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
2786    return RD->hasAttr<TrivialABIAttr>();
2787
2788  return false;
2789}
2790
2791// Warns when the loop variable can be changed to a reference type to
2792// prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
2793// "for (const Foo &x : Range)" if this form does not make a copy.
2794static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
2795                                                const VarDecl *VD) {
2796  const Expr *InitExpr = VD->getInit();
2797  if (!InitExpr)
2798    return;
2799
2800  QualType VariableType = VD->getType();
2801
2802  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2803    if (!CE->getConstructor()->isCopyConstructor())
2804      return;
2805  } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2806    if (CE->getCastKind() != CK_LValueToRValue)
2807      return;
2808  } else {
2809    return;
2810  }
2811
2812  // Small trivially copyable types are cheap to copy. Do not emit the
2813  // diagnostic for these instances. 64 bytes is a common size of a cache line.
2814  // (The function `getTypeSize` returns the size in bits.)
2815  ASTContext &Ctx = SemaRef.Context;
2816  if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
2817      (VariableType.isTriviallyCopyableType(Ctx) ||
2818       hasTrivialABIAttr(VariableType)))
2819    return;
2820
2821  // Suggest changing from a const variable to a const reference variable
2822  // if doing so will prevent a copy.
2823  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2824      << VD << VariableType << InitExpr->getType();
2825  SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
2826      << SemaRef.Context.getLValueReferenceType(VariableType)
2827      << VD->getSourceRange()
2828      << FixItHint::CreateInsertion(VD->getLocation(), "&");
2829}
2830
2831/// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2832/// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
2833///    using "const foo x" to show that a copy is made
2834/// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
2835///    Suggest either "const bar x" to keep the copying or "const foo& x" to
2836///    prevent the copy.
2837/// 3) for (const foo x : foos) where x is constructed from a reference foo.
2838///    Suggest "const foo &x" to prevent the copy.
2839static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
2840                                           const CXXForRangeStmt *ForStmt) {
2841  if (SemaRef.inTemplateInstantiation())
2842    return;
2843
2844  if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
2845                              ForStmt->getBeginLoc()) &&
2846      SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
2847                              ForStmt->getBeginLoc()) &&
2848      SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2849                              ForStmt->getBeginLoc())) {
2850    return;
2851  }
2852
2853  const VarDecl *VD = ForStmt->getLoopVariable();
2854  if (!VD)
2855    return;
2856
2857  QualType VariableType = VD->getType();
2858
2859  if (VariableType->isIncompleteType())
2860    return;
2861
2862  const Expr *InitExpr = VD->getInit();
2863  if (!InitExpr)
2864    return;
2865
2866  if (InitExpr->getExprLoc().isMacroID())
2867    return;
2868
2869  if (VariableType->isReferenceType()) {
2870    DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
2871                                            ForStmt->getRangeInit()->getType());
2872  } else if (VariableType.isConstQualified()) {
2873    DiagnoseForRangeConstVariableCopies(SemaRef, VD);
2874  }
2875}
2876
2877/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2878/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2879/// body cannot be performed until after the type of the range variable is
2880/// determined.
2881StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2882  if (!S || !B)
2883    return StmtError();
2884
2885  if (isa<ObjCForCollectionStmt>(S))
2886    return FinishObjCForCollectionStmt(S, B);
2887
2888  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2889  ForStmt->setBody(B);
2890
2891  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2892                        diag::warn_empty_range_based_for_body);
2893
2894  DiagnoseForRangeVariableCopies(*this, ForStmt);
2895
2896  return S;
2897}
2898
2899StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2900                               SourceLocation LabelLoc,
2901                               LabelDecl *TheDecl) {
2902  setFunctionHasBranchIntoScope();
2903  TheDecl->markUsed(Context);
2904  return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2905}
2906
2907StmtResult
2908Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2909                            Expr *E) {
2910  // Convert operand to void*
2911  if (!E->isTypeDependent()) {
2912    QualType ETy = E->getType();
2913    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2914    ExprResult ExprRes = E;
2915    AssignConvertType ConvTy =
2916      CheckSingleAssignmentConstraints(DestTy, ExprRes);
2917    if (ExprRes.isInvalid())
2918      return StmtError();
2919    E = ExprRes.get();
2920    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2921      return StmtError();
2922  }
2923
2924  ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2925  if (ExprRes.isInvalid())
2926    return StmtError();
2927  E = ExprRes.get();
2928
2929  setFunctionHasIndirectGoto();
2930
2931  return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2932}
2933
2934static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
2935                                     const Scope &DestScope) {
2936  if (!S.CurrentSEHFinally.empty() &&
2937      DestScope.Contains(*S.CurrentSEHFinally.back())) {
2938    S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2939  }
2940}
2941
2942StmtResult
2943Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2944  Scope *S = CurScope->getContinueParent();
2945  if (!S) {
2946    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2947    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2948  }
2949  CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2950
2951  return new (Context) ContinueStmt(ContinueLoc);
2952}
2953
2954StmtResult
2955Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2956  Scope *S = CurScope->getBreakParent();
2957  if (!S) {
2958    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2959    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2960  }
2961  if (S->isOpenMPLoopScope())
2962    return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2963                     << "break");
2964  CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
2965
2966  return new (Context) BreakStmt(BreakLoc);
2967}
2968
2969/// Determine whether the given expression is a candidate for
2970/// copy elision in either a return statement or a throw expression.
2971///
2972/// \param ReturnType If we're determining the copy elision candidate for
2973/// a return statement, this is the return type of the function. If we're
2974/// determining the copy elision candidate for a throw expression, this will
2975/// be a NULL type.
2976///
2977/// \param E The expression being returned from the function or block, or
2978/// being thrown.
2979///
2980/// \param CESK Whether we allow function parameters or
2981/// id-expressions that could be moved out of the function to be considered NRVO
2982/// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to
2983/// determine whether we should try to move as part of a return or throw (which
2984/// does allow function parameters).
2985///
2986/// \returns The NRVO candidate variable, if the return statement may use the
2987/// NRVO, or NULL if there is no such candidate.
2988VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType, Expr *E,
2989                                       CopyElisionSemanticsKind CESK) {
2990  // - in a return statement in a function [where] ...
2991  // ... the expression is the name of a non-volatile automatic object ...
2992  DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2993  if (!DR || DR->refersToEnclosingVariableOrCapture())
2994    return nullptr;
2995  VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2996  if (!VD)
2997    return nullptr;
2998
2999  if (isCopyElisionCandidate(ReturnType, VD, CESK))
3000    return VD;
3001  return nullptr;
3002}
3003
3004bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
3005                                  CopyElisionSemanticsKind CESK) {
3006  QualType VDType = VD->getType();
3007  // - in a return statement in a function with ...
3008  // ... a class return type ...
3009  if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
3010    if (!ReturnType->isRecordType())
3011      return false;
3012    // ... the same cv-unqualified type as the function return type ...
3013    // When considering moving this expression out, allow dissimilar types.
3014    if (!(CESK & CES_AllowDifferentTypes) && !VDType->isDependentType() &&
3015        !Context.hasSameUnqualifiedType(ReturnType, VDType))
3016      return false;
3017  }
3018
3019  // ...object (other than a function or catch-clause parameter)...
3020  if (VD->getKind() != Decl::Var &&
3021      !((CESK & CES_AllowParameters) && VD->getKind() == Decl::ParmVar))
3022    return false;
3023  if (!(CESK & CES_AllowExceptionVariables) && VD->isExceptionVariable())
3024    return false;
3025
3026  // ...automatic...
3027  if (!VD->hasLocalStorage()) return false;
3028
3029  // Return false if VD is a __block variable. We don't want to implicitly move
3030  // out of a __block variable during a return because we cannot assume the
3031  // variable will no longer be used.
3032  if (VD->hasAttr<BlocksAttr>()) return false;
3033
3034  if (CESK & CES_AllowDifferentTypes)
3035    return true;
3036
3037  // ...non-volatile...
3038  if (VD->getType().isVolatileQualified()) return false;
3039
3040  // Variables with higher required alignment than their type's ABI
3041  // alignment cannot use NRVO.
3042  if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
3043      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
3044    return false;
3045
3046  return true;
3047}
3048
3049/// Try to perform the initialization of a potentially-movable value,
3050/// which is the operand to a return or throw statement.
3051///
3052/// This routine implements C++14 [class.copy]p32, which attempts to treat
3053/// returned lvalues as rvalues in certain cases (to prefer move construction),
3054/// then falls back to treating them as lvalues if that failed.
3055///
3056/// \param ConvertingConstructorsOnly If true, follow [class.copy]p32 and reject
3057/// resolutions that find non-constructors, such as derived-to-base conversions
3058/// or `operator T()&&` member functions. If false, do consider such
3059/// conversion sequences.
3060///
3061/// \param Res We will fill this in if move-initialization was possible.
3062/// If move-initialization is not possible, such that we must fall back to
3063/// treating the operand as an lvalue, we will leave Res in its original
3064/// invalid state.
3065static void TryMoveInitialization(Sema& S,
3066                                  const InitializedEntity &Entity,
3067                                  const VarDecl *NRVOCandidate,
3068                                  QualType ResultType,
3069                                  Expr *&Value,
3070                                  bool ConvertingConstructorsOnly,
3071                                  ExprResult &Res) {
3072  ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3073                            CK_NoOp, Value, VK_XValue);
3074
3075  Expr *InitExpr = &AsRvalue;
3076
3077  InitializationKind Kind = InitializationKind::CreateCopy(
3078      Value->getBeginLoc(), Value->getBeginLoc());
3079
3080  InitializationSequence Seq(S, Entity, Kind, InitExpr);
3081
3082  if (!Seq)
3083    return;
3084
3085  for (const InitializationSequence::Step &Step : Seq.steps()) {
3086    if (Step.Kind != InitializationSequence::SK_ConstructorInitialization &&
3087        Step.Kind != InitializationSequence::SK_UserConversion)
3088      continue;
3089
3090    FunctionDecl *FD = Step.Function.Function;
3091    if (ConvertingConstructorsOnly) {
3092      if (isa<CXXConstructorDecl>(FD)) {
3093        // C++14 [class.copy]p32:
3094        // [...] If the first overload resolution fails or was not performed,
3095        // or if the type of the first parameter of the selected constructor
3096        // is not an rvalue reference to the object's type (possibly
3097        // cv-qualified), overload resolution is performed again, considering
3098        // the object as an lvalue.
3099        const RValueReferenceType *RRefType =
3100            FD->getParamDecl(0)->getType()->getAs<RValueReferenceType>();
3101        if (!RRefType)
3102          break;
3103        if (!S.Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
3104                                              NRVOCandidate->getType()))
3105          break;
3106      } else {
3107        continue;
3108      }
3109    } else {
3110      if (isa<CXXConstructorDecl>(FD)) {
3111        // Check that overload resolution selected a constructor taking an
3112        // rvalue reference. If it selected an lvalue reference, then we
3113        // didn't need to cast this thing to an rvalue in the first place.
3114        if (!isa<RValueReferenceType>(FD->getParamDecl(0)->getType()))
3115          break;
3116      } else if (isa<CXXMethodDecl>(FD)) {
3117        // Check that overload resolution selected a conversion operator
3118        // taking an rvalue reference.
3119        if (cast<CXXMethodDecl>(FD)->getRefQualifier() != RQ_RValue)
3120          break;
3121      } else {
3122        continue;
3123      }
3124    }
3125
3126    // Promote "AsRvalue" to the heap, since we now need this
3127    // expression node to persist.
3128    Value = ImplicitCastExpr::Create(S.Context, Value->getType(), CK_NoOp,
3129                                     Value, nullptr, VK_XValue);
3130
3131    // Complete type-checking the initialization of the return type
3132    // using the constructor we found.
3133    Res = Seq.Perform(S, Entity, Kind, Value);
3134  }
3135}
3136
3137/// Perform the initialization of a potentially-movable value, which
3138/// is the result of return value.
3139///
3140/// This routine implements C++14 [class.copy]p32, which attempts to treat
3141/// returned lvalues as rvalues in certain cases (to prefer move construction),
3142/// then falls back to treating them as lvalues if that failed.
3143ExprResult
3144Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
3145                                      const VarDecl *NRVOCandidate,
3146                                      QualType ResultType,
3147                                      Expr *Value,
3148                                      bool AllowNRVO) {
3149  // C++14 [class.copy]p32:
3150  // When the criteria for elision of a copy/move operation are met, but not for
3151  // an exception-declaration, and the object to be copied is designated by an
3152  // lvalue, or when the expression in a return statement is a (possibly
3153  // parenthesized) id-expression that names an object with automatic storage
3154  // duration declared in the body or parameter-declaration-clause of the
3155  // innermost enclosing function or lambda-expression, overload resolution to
3156  // select the constructor for the copy is first performed as if the object
3157  // were designated by an rvalue.
3158  ExprResult Res = ExprError();
3159
3160  if (AllowNRVO) {
3161    bool AffectedByCWG1579 = false;
3162
3163    if (!NRVOCandidate) {
3164      NRVOCandidate = getCopyElisionCandidate(ResultType, Value, CES_Default);
3165      if (NRVOCandidate &&
3166          !getDiagnostics().isIgnored(diag::warn_return_std_move_in_cxx11,
3167                                      Value->getExprLoc())) {
3168        const VarDecl *NRVOCandidateInCXX11 =
3169            getCopyElisionCandidate(ResultType, Value, CES_FormerDefault);
3170        AffectedByCWG1579 = (!NRVOCandidateInCXX11);
3171      }
3172    }
3173
3174    if (NRVOCandidate) {
3175      TryMoveInitialization(*this, Entity, NRVOCandidate, ResultType, Value,
3176                            true, Res);
3177    }
3178
3179    if (!Res.isInvalid() && AffectedByCWG1579) {
3180      QualType QT = NRVOCandidate->getType();
3181      if (QT.getNonReferenceType()
3182                     .getUnqualifiedType()
3183                     .isTriviallyCopyableType(Context)) {
3184        // Adding 'std::move' around a trivially copyable variable is probably
3185        // pointless. Don't suggest it.
3186      } else {
3187        // Common cases for this are returning unique_ptr<Derived> from a
3188        // function of return type unique_ptr<Base>, or returning T from a
3189        // function of return type Expected<T>. This is totally fine in a
3190        // post-CWG1579 world, but was not fine before.
3191        assert(!ResultType.isNull());
3192        SmallString<32> Str;
3193        Str += "std::move(";
3194        Str += NRVOCandidate->getDeclName().getAsString();
3195        Str += ")";
3196        Diag(Value->getExprLoc(), diag::warn_return_std_move_in_cxx11)
3197            << Value->getSourceRange()
3198            << NRVOCandidate->getDeclName() << ResultType << QT;
3199        Diag(Value->getExprLoc(), diag::note_add_std_move_in_cxx11)
3200            << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3201      }
3202    } else if (Res.isInvalid() &&
3203               !getDiagnostics().isIgnored(diag::warn_return_std_move,
3204                                           Value->getExprLoc())) {
3205      const VarDecl *FakeNRVOCandidate =
3206          getCopyElisionCandidate(QualType(), Value, CES_AsIfByStdMove);
3207      if (FakeNRVOCandidate) {
3208        QualType QT = FakeNRVOCandidate->getType();
3209        if (QT->isLValueReferenceType()) {
3210          // Adding 'std::move' around an lvalue reference variable's name is
3211          // dangerous. Don't suggest it.
3212        } else if (QT.getNonReferenceType()
3213                       .getUnqualifiedType()
3214                       .isTriviallyCopyableType(Context)) {
3215          // Adding 'std::move' around a trivially copyable variable is probably
3216          // pointless. Don't suggest it.
3217        } else {
3218          ExprResult FakeRes = ExprError();
3219          Expr *FakeValue = Value;
3220          TryMoveInitialization(*this, Entity, FakeNRVOCandidate, ResultType,
3221                                FakeValue, false, FakeRes);
3222          if (!FakeRes.isInvalid()) {
3223            bool IsThrow =
3224                (Entity.getKind() == InitializedEntity::EK_Exception);
3225            SmallString<32> Str;
3226            Str += "std::move(";
3227            Str += FakeNRVOCandidate->getDeclName().getAsString();
3228            Str += ")";
3229            Diag(Value->getExprLoc(), diag::warn_return_std_move)
3230                << Value->getSourceRange()
3231                << FakeNRVOCandidate->getDeclName() << IsThrow;
3232            Diag(Value->getExprLoc(), diag::note_add_std_move)
3233                << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3234          }
3235        }
3236      }
3237    }
3238  }
3239
3240  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3241  // above, or overload resolution failed. Either way, we need to try
3242  // (again) now with the return value expression as written.
3243  if (Res.isInvalid())
3244    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
3245
3246  return Res;
3247}
3248
3249/// Determine whether the declared return type of the specified function
3250/// contains 'auto'.
3251static bool hasDeducedReturnType(FunctionDecl *FD) {
3252  const FunctionProtoType *FPT =
3253      FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
3254  return FPT->getReturnType()->isUndeducedType();
3255}
3256
3257/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3258/// for capturing scopes.
3259///
3260StmtResult
3261Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3262  // If this is the first return we've seen, infer the return type.
3263  // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3264  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3265  QualType FnRetType = CurCap->ReturnType;
3266  LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3267  bool HasDeducedReturnType =
3268      CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3269
3270  if (ExprEvalContexts.back().Context ==
3271          ExpressionEvaluationContext::DiscardedStatement &&
3272      (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3273    if (RetValExp) {
3274      ExprResult ER =
3275          ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3276      if (ER.isInvalid())
3277        return StmtError();
3278      RetValExp = ER.get();
3279    }
3280    return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3281                              /* NRVOCandidate=*/nullptr);
3282  }
3283
3284  if (HasDeducedReturnType) {
3285    // In C++1y, the return type may involve 'auto'.
3286    // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3287    FunctionDecl *FD = CurLambda->CallOperator;
3288    if (CurCap->ReturnType.isNull())
3289      CurCap->ReturnType = FD->getReturnType();
3290
3291    AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3292    assert(AT && "lost auto type from lambda return type");
3293    if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3294      FD->setInvalidDecl();
3295      return StmtError();
3296    }
3297    CurCap->ReturnType = FnRetType = FD->getReturnType();
3298  } else if (CurCap->HasImplicitReturnType) {
3299    // For blocks/lambdas with implicit return types, we check each return
3300    // statement individually, and deduce the common return type when the block
3301    // or lambda is completed.
3302    // FIXME: Fold this into the 'auto' codepath above.
3303    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3304      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3305      if (Result.isInvalid())
3306        return StmtError();
3307      RetValExp = Result.get();
3308
3309      // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3310      // when deducing a return type for a lambda-expression (or by extension
3311      // for a block). These rules differ from the stated C++11 rules only in
3312      // that they remove top-level cv-qualifiers.
3313      if (!CurContext->isDependentContext())
3314        FnRetType = RetValExp->getType().getUnqualifiedType();
3315      else
3316        FnRetType = CurCap->ReturnType = Context.DependentTy;
3317    } else {
3318      if (RetValExp) {
3319        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3320        // initializer list, because it is not an expression (even
3321        // though we represent it as one). We still deduce 'void'.
3322        Diag(ReturnLoc, diag::err_lambda_return_init_list)
3323          << RetValExp->getSourceRange();
3324      }
3325
3326      FnRetType = Context.VoidTy;
3327    }
3328
3329    // Although we'll properly infer the type of the block once it's completed,
3330    // make sure we provide a return type now for better error recovery.
3331    if (CurCap->ReturnType.isNull())
3332      CurCap->ReturnType = FnRetType;
3333  }
3334  assert(!FnRetType.isNull());
3335
3336  if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3337    if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3338      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3339      return StmtError();
3340    }
3341  } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3342    Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3343    return StmtError();
3344  } else {
3345    assert(CurLambda && "unknown kind of captured scope");
3346    if (CurLambda->CallOperator->getType()
3347            ->castAs<FunctionType>()
3348            ->getNoReturnAttr()) {
3349      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3350      return StmtError();
3351    }
3352  }
3353
3354  // Otherwise, verify that this result type matches the previous one.  We are
3355  // pickier with blocks than for normal functions because we don't have GCC
3356  // compatibility to worry about here.
3357  const VarDecl *NRVOCandidate = nullptr;
3358  if (FnRetType->isDependentType()) {
3359    // Delay processing for now.  TODO: there are lots of dependent
3360    // types we can conclusively prove aren't void.
3361  } else if (FnRetType->isVoidType()) {
3362    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3363        !(getLangOpts().CPlusPlus &&
3364          (RetValExp->isTypeDependent() ||
3365           RetValExp->getType()->isVoidType()))) {
3366      if (!getLangOpts().CPlusPlus &&
3367          RetValExp->getType()->isVoidType())
3368        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3369      else {
3370        Diag(ReturnLoc, diag::err_return_block_has_expr);
3371        RetValExp = nullptr;
3372      }
3373    }
3374  } else if (!RetValExp) {
3375    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3376  } else if (!RetValExp->isTypeDependent()) {
3377    // we have a non-void block with an expression, continue checking
3378
3379    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3380    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3381    // function return.
3382
3383    // In C++ the return statement is handled via a copy initialization.
3384    // the C version of which boils down to CheckSingleAssignmentConstraints.
3385    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3386    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3387                                                                   FnRetType,
3388                                                      NRVOCandidate != nullptr);
3389    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3390                                                     FnRetType, RetValExp);
3391    if (Res.isInvalid()) {
3392      // FIXME: Cleanup temporaries here, anyway?
3393      return StmtError();
3394    }
3395    RetValExp = Res.get();
3396    CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3397  } else {
3398    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3399  }
3400
3401  if (RetValExp) {
3402    ExprResult ER =
3403        ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3404    if (ER.isInvalid())
3405      return StmtError();
3406    RetValExp = ER.get();
3407  }
3408  auto *Result =
3409      ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3410
3411  // If we need to check for the named return value optimization,
3412  // or if we need to infer the return type,
3413  // save the return statement in our scope for later processing.
3414  if (CurCap->HasImplicitReturnType || NRVOCandidate)
3415    FunctionScopes.back()->Returns.push_back(Result);
3416
3417  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3418    FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3419
3420  return Result;
3421}
3422
3423namespace {
3424/// Marks all typedefs in all local classes in a type referenced.
3425///
3426/// In a function like
3427/// auto f() {
3428///   struct S { typedef int a; };
3429///   return S();
3430/// }
3431///
3432/// the local type escapes and could be referenced in some TUs but not in
3433/// others. Pretend that all local typedefs are always referenced, to not warn
3434/// on this. This isn't necessary if f has internal linkage, or the typedef
3435/// is private.
3436class LocalTypedefNameReferencer
3437    : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3438public:
3439  LocalTypedefNameReferencer(Sema &S) : S(S) {}
3440  bool VisitRecordType(const RecordType *RT);
3441private:
3442  Sema &S;
3443};
3444bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3445  auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3446  if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3447      R->isDependentType())
3448    return true;
3449  for (auto *TmpD : R->decls())
3450    if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3451      if (T->getAccess() != AS_private || R->hasFriends())
3452        S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3453  return true;
3454}
3455}
3456
3457TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
3458  return FD->getTypeSourceInfo()
3459      ->getTypeLoc()
3460      .getAsAdjusted<FunctionProtoTypeLoc>()
3461      .getReturnLoc();
3462}
3463
3464/// Deduce the return type for a function from a returned expression, per
3465/// C++1y [dcl.spec.auto]p6.
3466bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3467                                            SourceLocation ReturnLoc,
3468                                            Expr *&RetExpr,
3469                                            AutoType *AT) {
3470  // If this is the conversion function for a lambda, we choose to deduce it
3471  // type from the corresponding call operator, not from the synthesized return
3472  // statement within it. See Sema::DeduceReturnType.
3473  if (isLambdaConversionOperator(FD))
3474    return false;
3475
3476  TypeLoc OrigResultType = getReturnTypeLoc(FD);
3477  QualType Deduced;
3478
3479  if (RetExpr && isa<InitListExpr>(RetExpr)) {
3480    //  If the deduction is for a return statement and the initializer is
3481    //  a braced-init-list, the program is ill-formed.
3482    Diag(RetExpr->getExprLoc(),
3483         getCurLambda() ? diag::err_lambda_return_init_list
3484                        : diag::err_auto_fn_return_init_list)
3485        << RetExpr->getSourceRange();
3486    return true;
3487  }
3488
3489  if (FD->isDependentContext()) {
3490    // C++1y [dcl.spec.auto]p12:
3491    //   Return type deduction [...] occurs when the definition is
3492    //   instantiated even if the function body contains a return
3493    //   statement with a non-type-dependent operand.
3494    assert(AT->isDeduced() && "should have deduced to dependent type");
3495    return false;
3496  }
3497
3498  if (RetExpr) {
3499    //  Otherwise, [...] deduce a value for U using the rules of template
3500    //  argument deduction.
3501    DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3502
3503    if (DAR == DAR_Failed && !FD->isInvalidDecl())
3504      Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3505        << OrigResultType.getType() << RetExpr->getType();
3506
3507    if (DAR != DAR_Succeeded)
3508      return true;
3509
3510    // If a local type is part of the returned type, mark its fields as
3511    // referenced.
3512    LocalTypedefNameReferencer Referencer(*this);
3513    Referencer.TraverseType(RetExpr->getType());
3514  } else {
3515    //  In the case of a return with no operand, the initializer is considered
3516    //  to be void().
3517    //
3518    // Deduction here can only succeed if the return type is exactly 'cv auto'
3519    // or 'decltype(auto)', so just check for that case directly.
3520    if (!OrigResultType.getType()->getAs<AutoType>()) {
3521      Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3522        << OrigResultType.getType();
3523      return true;
3524    }
3525    // We always deduce U = void in this case.
3526    Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3527    if (Deduced.isNull())
3528      return true;
3529  }
3530
3531  // CUDA: Kernel function must have 'void' return type.
3532  if (getLangOpts().CUDA)
3533    if (FD->hasAttr<CUDAGlobalAttr>() && !Deduced->isVoidType()) {
3534      Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3535          << FD->getType() << FD->getSourceRange();
3536      return true;
3537    }
3538
3539  //  If a function with a declared return type that contains a placeholder type
3540  //  has multiple return statements, the return type is deduced for each return
3541  //  statement. [...] if the type deduced is not the same in each deduction,
3542  //  the program is ill-formed.
3543  QualType DeducedT = AT->getDeducedType();
3544  if (!DeducedT.isNull() && !FD->isInvalidDecl()) {
3545    AutoType *NewAT = Deduced->getContainedAutoType();
3546    // It is possible that NewAT->getDeducedType() is null. When that happens,
3547    // we should not crash, instead we ignore this deduction.
3548    if (NewAT->getDeducedType().isNull())
3549      return false;
3550
3551    CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
3552                                   DeducedT);
3553    CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
3554                                   NewAT->getDeducedType());
3555    if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
3556      const LambdaScopeInfo *LambdaSI = getCurLambda();
3557      if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3558        Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3559          << NewAT->getDeducedType() << DeducedT
3560          << true /*IsLambda*/;
3561      } else {
3562        Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3563          << (AT->isDecltypeAuto() ? 1 : 0)
3564          << NewAT->getDeducedType() << DeducedT;
3565      }
3566      return true;
3567    }
3568  } else if (!FD->isInvalidDecl()) {
3569    // Update all declarations of the function to have the deduced return type.
3570    Context.adjustDeducedFunctionResultType(FD, Deduced);
3571  }
3572
3573  return false;
3574}
3575
3576StmtResult
3577Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3578                      Scope *CurScope) {
3579  // Correct typos, in case the containing function returns 'auto' and
3580  // RetValExp should determine the deduced type.
3581  ExprResult RetVal = CorrectDelayedTyposInExpr(RetValExp);
3582  if (RetVal.isInvalid())
3583    return StmtError();
3584  StmtResult R = BuildReturnStmt(ReturnLoc, RetVal.get());
3585  if (R.isInvalid() || ExprEvalContexts.back().Context ==
3586                           ExpressionEvaluationContext::DiscardedStatement)
3587    return R;
3588
3589  if (VarDecl *VD =
3590      const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3591    CurScope->addNRVOCandidate(VD);
3592  } else {
3593    CurScope->setNoNRVO();
3594  }
3595
3596  CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3597
3598  return R;
3599}
3600
3601StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3602  // Check for unexpanded parameter packs.
3603  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3604    return StmtError();
3605
3606  if (isa<CapturingScopeInfo>(getCurFunction()))
3607    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3608
3609  QualType FnRetType;
3610  QualType RelatedRetType;
3611  const AttrVec *Attrs = nullptr;
3612  bool isObjCMethod = false;
3613
3614  if (const FunctionDecl *FD = getCurFunctionDecl()) {
3615    FnRetType = FD->getReturnType();
3616    if (FD->hasAttrs())
3617      Attrs = &FD->getAttrs();
3618    if (FD->isNoReturn())
3619      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
3620        << FD->getDeclName();
3621    if (FD->isMain() && RetValExp)
3622      if (isa<CXXBoolLiteralExpr>(RetValExp))
3623        Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3624          << RetValExp->getSourceRange();
3625  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3626    FnRetType = MD->getReturnType();
3627    isObjCMethod = true;
3628    if (MD->hasAttrs())
3629      Attrs = &MD->getAttrs();
3630    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3631      // In the implementation of a method with a related return type, the
3632      // type used to type-check the validity of return statements within the
3633      // method body is a pointer to the type of the class being implemented.
3634      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3635      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3636    }
3637  } else // If we don't have a function/method context, bail.
3638    return StmtError();
3639
3640  // C++1z: discarded return statements are not considered when deducing a
3641  // return type.
3642  if (ExprEvalContexts.back().Context ==
3643          ExpressionEvaluationContext::DiscardedStatement &&
3644      FnRetType->getContainedAutoType()) {
3645    if (RetValExp) {
3646      ExprResult ER =
3647          ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3648      if (ER.isInvalid())
3649        return StmtError();
3650      RetValExp = ER.get();
3651    }
3652    return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3653                              /* NRVOCandidate=*/nullptr);
3654  }
3655
3656  // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3657  // deduction.
3658  if (getLangOpts().CPlusPlus14) {
3659    if (AutoType *AT = FnRetType->getContainedAutoType()) {
3660      FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3661      if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3662        FD->setInvalidDecl();
3663        return StmtError();
3664      } else {
3665        FnRetType = FD->getReturnType();
3666      }
3667    }
3668  }
3669
3670  bool HasDependentReturnType = FnRetType->isDependentType();
3671
3672  ReturnStmt *Result = nullptr;
3673  if (FnRetType->isVoidType()) {
3674    if (RetValExp) {
3675      if (isa<InitListExpr>(RetValExp)) {
3676        // We simply never allow init lists as the return value of void
3677        // functions. This is compatible because this was never allowed before,
3678        // so there's no legacy code to deal with.
3679        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3680        int FunctionKind = 0;
3681        if (isa<ObjCMethodDecl>(CurDecl))
3682          FunctionKind = 1;
3683        else if (isa<CXXConstructorDecl>(CurDecl))
3684          FunctionKind = 2;
3685        else if (isa<CXXDestructorDecl>(CurDecl))
3686          FunctionKind = 3;
3687
3688        Diag(ReturnLoc, diag::err_return_init_list)
3689          << CurDecl->getDeclName() << FunctionKind
3690          << RetValExp->getSourceRange();
3691
3692        // Drop the expression.
3693        RetValExp = nullptr;
3694      } else if (!RetValExp->isTypeDependent()) {
3695        // C99 6.8.6.4p1 (ext_ since GCC warns)
3696        unsigned D = diag::ext_return_has_expr;
3697        if (RetValExp->getType()->isVoidType()) {
3698          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3699          if (isa<CXXConstructorDecl>(CurDecl) ||
3700              isa<CXXDestructorDecl>(CurDecl))
3701            D = diag::err_ctor_dtor_returns_void;
3702          else
3703            D = diag::ext_return_has_void_expr;
3704        }
3705        else {
3706          ExprResult Result = RetValExp;
3707          Result = IgnoredValueConversions(Result.get());
3708          if (Result.isInvalid())
3709            return StmtError();
3710          RetValExp = Result.get();
3711          RetValExp = ImpCastExprToType(RetValExp,
3712                                        Context.VoidTy, CK_ToVoid).get();
3713        }
3714        // return of void in constructor/destructor is illegal in C++.
3715        if (D == diag::err_ctor_dtor_returns_void) {
3716          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3717          Diag(ReturnLoc, D)
3718            << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3719            << RetValExp->getSourceRange();
3720        }
3721        // return (some void expression); is legal in C++.
3722        else if (D != diag::ext_return_has_void_expr ||
3723                 !getLangOpts().CPlusPlus) {
3724          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3725
3726          int FunctionKind = 0;
3727          if (isa<ObjCMethodDecl>(CurDecl))
3728            FunctionKind = 1;
3729          else if (isa<CXXConstructorDecl>(CurDecl))
3730            FunctionKind = 2;
3731          else if (isa<CXXDestructorDecl>(CurDecl))
3732            FunctionKind = 3;
3733
3734          Diag(ReturnLoc, D)
3735            << CurDecl->getDeclName() << FunctionKind
3736            << RetValExp->getSourceRange();
3737        }
3738      }
3739
3740      if (RetValExp) {
3741        ExprResult ER =
3742            ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3743        if (ER.isInvalid())
3744          return StmtError();
3745        RetValExp = ER.get();
3746      }
3747    }
3748
3749    Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3750                                /* NRVOCandidate=*/nullptr);
3751  } else if (!RetValExp && !HasDependentReturnType) {
3752    FunctionDecl *FD = getCurFunctionDecl();
3753
3754    unsigned DiagID;
3755    if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3756      // C++11 [stmt.return]p2
3757      DiagID = diag::err_constexpr_return_missing_expr;
3758      FD->setInvalidDecl();
3759    } else if (getLangOpts().C99) {
3760      // C99 6.8.6.4p1 (ext_ since GCC warns)
3761      DiagID = diag::ext_return_missing_expr;
3762    } else {
3763      // C90 6.6.6.4p4
3764      DiagID = diag::warn_return_missing_expr;
3765    }
3766
3767    if (FD)
3768      Diag(ReturnLoc, DiagID)
3769          << FD->getIdentifier() << 0 /*fn*/ << FD->isConsteval();
3770    else
3771      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3772
3773    Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
3774                                /* NRVOCandidate=*/nullptr);
3775  } else {
3776    assert(RetValExp || HasDependentReturnType);
3777    const VarDecl *NRVOCandidate = nullptr;
3778
3779    QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3780
3781    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3782    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3783    // function return.
3784
3785    // In C++ the return statement is handled via a copy initialization,
3786    // the C version of which boils down to CheckSingleAssignmentConstraints.
3787    if (RetValExp)
3788      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3789    if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3790      // we have a non-void function with an expression, continue checking
3791      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3792                                                                     RetType,
3793                                                      NRVOCandidate != nullptr);
3794      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3795                                                       RetType, RetValExp);
3796      if (Res.isInvalid()) {
3797        // FIXME: Clean up temporaries here anyway?
3798        return StmtError();
3799      }
3800      RetValExp = Res.getAs<Expr>();
3801
3802      // If we have a related result type, we need to implicitly
3803      // convert back to the formal result type.  We can't pretend to
3804      // initialize the result again --- we might end double-retaining
3805      // --- so instead we initialize a notional temporary.
3806      if (!RelatedRetType.isNull()) {
3807        Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3808                                                            FnRetType);
3809        Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3810        if (Res.isInvalid()) {
3811          // FIXME: Clean up temporaries here anyway?
3812          return StmtError();
3813        }
3814        RetValExp = Res.getAs<Expr>();
3815      }
3816
3817      CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3818                         getCurFunctionDecl());
3819    }
3820
3821    if (RetValExp) {
3822      ExprResult ER =
3823          ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3824      if (ER.isInvalid())
3825        return StmtError();
3826      RetValExp = ER.get();
3827    }
3828    Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3829  }
3830
3831  // If we need to check for the named return value optimization, save the
3832  // return statement in our scope for later processing.
3833  if (Result->getNRVOCandidate())
3834    FunctionScopes.back()->Returns.push_back(Result);
3835
3836  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3837    FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3838
3839  return Result;
3840}
3841
3842StmtResult
3843Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
3844                           SourceLocation RParen, Decl *Parm,
3845                           Stmt *Body) {
3846  VarDecl *Var = cast_or_null<VarDecl>(Parm);
3847  if (Var && Var->isInvalidDecl())
3848    return StmtError();
3849
3850  return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3851}
3852
3853StmtResult
3854Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
3855  return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3856}
3857
3858StmtResult
3859Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
3860                         MultiStmtArg CatchStmts, Stmt *Finally) {
3861  if (!getLangOpts().ObjCExceptions)
3862    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3863
3864  setFunctionHasBranchProtectedScope();
3865  unsigned NumCatchStmts = CatchStmts.size();
3866  return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3867                               NumCatchStmts, Finally);
3868}
3869
3870StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
3871  if (Throw) {
3872    ExprResult Result = DefaultLvalueConversion(Throw);
3873    if (Result.isInvalid())
3874      return StmtError();
3875
3876    Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
3877    if (Result.isInvalid())
3878      return StmtError();
3879    Throw = Result.get();
3880
3881    QualType ThrowType = Throw->getType();
3882    // Make sure the expression type is an ObjC pointer or "void *".
3883    if (!ThrowType->isDependentType() &&
3884        !ThrowType->isObjCObjectPointerType()) {
3885      const PointerType *PT = ThrowType->getAs<PointerType>();
3886      if (!PT || !PT->getPointeeType()->isVoidType())
3887        return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
3888                         << Throw->getType() << Throw->getSourceRange());
3889    }
3890  }
3891
3892  return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3893}
3894
3895StmtResult
3896Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
3897                           Scope *CurScope) {
3898  if (!getLangOpts().ObjCExceptions)
3899    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3900
3901  if (!Throw) {
3902    // @throw without an expression designates a rethrow (which must occur
3903    // in the context of an @catch clause).
3904    Scope *AtCatchParent = CurScope;
3905    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3906      AtCatchParent = AtCatchParent->getParent();
3907    if (!AtCatchParent)
3908      return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
3909  }
3910  return BuildObjCAtThrowStmt(AtLoc, Throw);
3911}
3912
3913ExprResult
3914Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
3915  ExprResult result = DefaultLvalueConversion(operand);
3916  if (result.isInvalid())
3917    return ExprError();
3918  operand = result.get();
3919
3920  // Make sure the expression type is an ObjC pointer or "void *".
3921  QualType type = operand->getType();
3922  if (!type->isDependentType() &&
3923      !type->isObjCObjectPointerType()) {
3924    const PointerType *pointerType = type->getAs<PointerType>();
3925    if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3926      if (getLangOpts().CPlusPlus) {
3927        if (RequireCompleteType(atLoc, type,
3928                                diag::err_incomplete_receiver_type))
3929          return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3930                   << type << operand->getSourceRange();
3931
3932        ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3933        if (result.isInvalid())
3934          return ExprError();
3935        if (!result.isUsable())
3936          return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3937                   << type << operand->getSourceRange();
3938
3939        operand = result.get();
3940      } else {
3941          return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3942                   << type << operand->getSourceRange();
3943      }
3944    }
3945  }
3946
3947  // The operand to @synchronized is a full-expression.
3948  return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
3949}
3950
3951StmtResult
3952Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
3953                                  Stmt *SyncBody) {
3954  // We can't jump into or indirect-jump out of a @synchronized block.
3955  setFunctionHasBranchProtectedScope();
3956  return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3957}
3958
3959/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3960/// and creates a proper catch handler from them.
3961StmtResult
3962Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
3963                         Stmt *HandlerBlock) {
3964  // There's nothing to test that ActOnExceptionDecl didn't already test.
3965  return new (Context)
3966      CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3967}
3968
3969StmtResult
3970Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
3971  setFunctionHasBranchProtectedScope();
3972  return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3973}
3974
3975namespace {
3976class CatchHandlerType {
3977  QualType QT;
3978  unsigned IsPointer : 1;
3979
3980  // This is a special constructor to be used only with DenseMapInfo's
3981  // getEmptyKey() and getTombstoneKey() functions.
3982  friend struct llvm::DenseMapInfo<CatchHandlerType>;
3983  enum Unique { ForDenseMap };
3984  CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
3985
3986public:
3987  /// Used when creating a CatchHandlerType from a handler type; will determine
3988  /// whether the type is a pointer or reference and will strip off the top
3989  /// level pointer and cv-qualifiers.
3990  CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
3991    if (QT->isPointerType())
3992      IsPointer = true;
3993
3994    if (IsPointer || QT->isReferenceType())
3995      QT = QT->getPointeeType();
3996    QT = QT.getUnqualifiedType();
3997  }
3998
3999  /// Used when creating a CatchHandlerType from a base class type; pretends the
4000  /// type passed in had the pointer qualifier, does not need to get an
4001  /// unqualified type.
4002  CatchHandlerType(QualType QT, bool IsPointer)
4003      : QT(QT), IsPointer(IsPointer) {}
4004
4005  QualType underlying() const { return QT; }
4006  bool isPointer() const { return IsPointer; }
4007
4008  friend bool operator==(const CatchHandlerType &LHS,
4009                         const CatchHandlerType &RHS) {
4010    // If the pointer qualification does not match, we can return early.
4011    if (LHS.IsPointer != RHS.IsPointer)
4012      return false;
4013    // Otherwise, check the underlying type without cv-qualifiers.
4014    return LHS.QT == RHS.QT;
4015  }
4016};
4017} // namespace
4018
4019namespace llvm {
4020template <> struct DenseMapInfo<CatchHandlerType> {
4021  static CatchHandlerType getEmptyKey() {
4022    return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4023                       CatchHandlerType::ForDenseMap);
4024  }
4025
4026  static CatchHandlerType getTombstoneKey() {
4027    return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4028                       CatchHandlerType::ForDenseMap);
4029  }
4030
4031  static unsigned getHashValue(const CatchHandlerType &Base) {
4032    return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4033  }
4034
4035  static bool isEqual(const CatchHandlerType &LHS,
4036                      const CatchHandlerType &RHS) {
4037    return LHS == RHS;
4038  }
4039};
4040}
4041
4042namespace {
4043class CatchTypePublicBases {
4044  ASTContext &Ctx;
4045  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
4046  const bool CheckAgainstPointer;
4047
4048  CXXCatchStmt *FoundHandler;
4049  CanQualType FoundHandlerType;
4050
4051public:
4052  CatchTypePublicBases(
4053      ASTContext &Ctx,
4054      const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
4055      : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
4056        FoundHandler(nullptr) {}
4057
4058  CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
4059  CanQualType getFoundHandlerType() const { return FoundHandlerType; }
4060
4061  bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4062    if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4063      CatchHandlerType Check(S->getType(), CheckAgainstPointer);
4064      const auto &M = TypesToCheck;
4065      auto I = M.find(Check);
4066      if (I != M.end()) {
4067        FoundHandler = I->second;
4068        FoundHandlerType = Ctx.getCanonicalType(S->getType());
4069        return true;
4070      }
4071    }
4072    return false;
4073  }
4074};
4075}
4076
4077/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
4078/// handlers and creates a try statement from them.
4079StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4080                                  ArrayRef<Stmt *> Handlers) {
4081  // Don't report an error if 'try' is used in system headers.
4082  if (!getLangOpts().CXXExceptions &&
4083      !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4084    // Delay error emission for the OpenMP device code.
4085    targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4086  }
4087
4088  // Exceptions aren't allowed in CUDA device code.
4089  if (getLangOpts().CUDA)
4090    CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4091        << "try" << CurrentCUDATarget();
4092
4093  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4094    Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4095
4096  sema::FunctionScopeInfo *FSI = getCurFunction();
4097
4098  // C++ try is incompatible with SEH __try.
4099  if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4100    Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4101    Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4102  }
4103
4104  const unsigned NumHandlers = Handlers.size();
4105  assert(!Handlers.empty() &&
4106         "The parser shouldn't call this if there are no handlers.");
4107
4108  llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4109  for (unsigned i = 0; i < NumHandlers; ++i) {
4110    CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4111
4112    // Diagnose when the handler is a catch-all handler, but it isn't the last
4113    // handler for the try block. [except.handle]p5. Also, skip exception
4114    // declarations that are invalid, since we can't usefully report on them.
4115    if (!H->getExceptionDecl()) {
4116      if (i < NumHandlers - 1)
4117        return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4118      continue;
4119    } else if (H->getExceptionDecl()->isInvalidDecl())
4120      continue;
4121
4122    // Walk the type hierarchy to diagnose when this type has already been
4123    // handled (duplication), or cannot be handled (derivation inversion). We
4124    // ignore top-level cv-qualifiers, per [except.handle]p3
4125    CatchHandlerType HandlerCHT =
4126        (QualType)Context.getCanonicalType(H->getCaughtType());
4127
4128    // We can ignore whether the type is a reference or a pointer; we need the
4129    // underlying declaration type in order to get at the underlying record
4130    // decl, if there is one.
4131    QualType Underlying = HandlerCHT.underlying();
4132    if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4133      if (!RD->hasDefinition())
4134        continue;
4135      // Check that none of the public, unambiguous base classes are in the
4136      // map ([except.handle]p1). Give the base classes the same pointer
4137      // qualification as the original type we are basing off of. This allows
4138      // comparison against the handler type using the same top-level pointer
4139      // as the original type.
4140      CXXBasePaths Paths;
4141      Paths.setOrigin(RD);
4142      CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
4143      if (RD->lookupInBases(CTPB, Paths)) {
4144        const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4145        if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
4146          Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4147               diag::warn_exception_caught_by_earlier_handler)
4148              << H->getCaughtType();
4149          Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4150                diag::note_previous_exception_handler)
4151              << Problem->getCaughtType();
4152        }
4153      }
4154    }
4155
4156    // Add the type the list of ones we have handled; diagnose if we've already
4157    // handled it.
4158    auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
4159    if (!R.second) {
4160      const CXXCatchStmt *Problem = R.first->second;
4161      Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4162           diag::warn_exception_caught_by_earlier_handler)
4163          << H->getCaughtType();
4164      Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4165           diag::note_previous_exception_handler)
4166          << Problem->getCaughtType();
4167    }
4168  }
4169
4170  FSI->setHasCXXTry(TryLoc);
4171
4172  return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
4173}
4174
4175StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
4176                                  Stmt *TryBlock, Stmt *Handler) {
4177  assert(TryBlock && Handler);
4178
4179  sema::FunctionScopeInfo *FSI = getCurFunction();
4180
4181  // SEH __try is incompatible with C++ try. Borland appears to support this,
4182  // however.
4183  if (!getLangOpts().Borland) {
4184    if (FSI->FirstCXXTryLoc.isValid()) {
4185      Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4186      Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
4187    }
4188  }
4189
4190  FSI->setHasSEHTry(TryLoc);
4191
4192  // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4193  // track if they use SEH.
4194  DeclContext *DC = CurContext;
4195  while (DC && !DC->isFunctionOrMethod())
4196    DC = DC->getParent();
4197  FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4198  if (FD)
4199    FD->setUsesSEHTry(true);
4200  else
4201    Diag(TryLoc, diag::err_seh_try_outside_functions);
4202
4203  // Reject __try on unsupported targets.
4204  if (!Context.getTargetInfo().isSEHTrySupported())
4205    Diag(TryLoc, diag::err_seh_try_unsupported);
4206
4207  return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4208}
4209
4210StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
4211                                     Stmt *Block) {
4212  assert(FilterExpr && Block);
4213  QualType FTy = FilterExpr->getType();
4214  if (!FTy->isIntegerType() && !FTy->isDependentType()) {
4215    return StmtError(
4216        Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
4217        << FTy);
4218  }
4219  return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
4220}
4221
4222void Sema::ActOnStartSEHFinallyBlock() {
4223  CurrentSEHFinally.push_back(CurScope);
4224}
4225
4226void Sema::ActOnAbortSEHFinallyBlock() {
4227  CurrentSEHFinally.pop_back();
4228}
4229
4230StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
4231  assert(Block);
4232  CurrentSEHFinally.pop_back();
4233  return SEHFinallyStmt::Create(Context, Loc, Block);
4234}
4235
4236StmtResult
4237Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
4238  Scope *SEHTryParent = CurScope;
4239  while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4240    SEHTryParent = SEHTryParent->getParent();
4241  if (!SEHTryParent)
4242    return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4243  CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4244
4245  return new (Context) SEHLeaveStmt(Loc);
4246}
4247
4248StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
4249                                            bool IsIfExists,
4250                                            NestedNameSpecifierLoc QualifierLoc,
4251                                            DeclarationNameInfo NameInfo,
4252                                            Stmt *Nested)
4253{
4254  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4255                                             QualifierLoc, NameInfo,
4256                                             cast<CompoundStmt>(Nested));
4257}
4258
4259
4260StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
4261                                            bool IsIfExists,
4262                                            CXXScopeSpec &SS,
4263                                            UnqualifiedId &Name,
4264                                            Stmt *Nested) {
4265  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4266                                    SS.getWithLocInContext(Context),
4267                                    GetNameFromUnqualifiedId(Name),
4268                                    Nested);
4269}
4270
4271RecordDecl*
4272Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
4273                                   unsigned NumParams) {
4274  DeclContext *DC = CurContext;
4275  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4276    DC = DC->getParent();
4277
4278  RecordDecl *RD = nullptr;
4279  if (getLangOpts().CPlusPlus)
4280    RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
4281                               /*Id=*/nullptr);
4282  else
4283    RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
4284
4285  RD->setCapturedRecord();
4286  DC->addDecl(RD);
4287  RD->setImplicit();
4288  RD->startDefinition();
4289
4290  assert(NumParams > 0 && "CapturedStmt requires context parameter");
4291  CD = CapturedDecl::Create(Context, CurContext, NumParams);
4292  DC->addDecl(CD);
4293  return RD;
4294}
4295
4296static bool
4297buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
4298                             SmallVectorImpl<CapturedStmt::Capture> &Captures,
4299                             SmallVectorImpl<Expr *> &CaptureInits) {
4300  for (const sema::Capture &Cap : RSI->Captures) {
4301    if (Cap.isInvalid())
4302      continue;
4303
4304    // Form the initializer for the capture.
4305    ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4306                                         RSI->CapRegionKind == CR_OpenMP);
4307
4308    // FIXME: Bail out now if the capture is not used and the initializer has
4309    // no side-effects.
4310
4311    // Create a field for this capture.
4312    FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4313
4314    // Add the capture to our list of captures.
4315    if (Cap.isThisCapture()) {
4316      Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4317                                               CapturedStmt::VCK_This));
4318    } else if (Cap.isVLATypeCapture()) {
4319      Captures.push_back(
4320          CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4321    } else {
4322      assert(Cap.isVariableCapture() && "unknown kind of capture");
4323
4324      if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4325        S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);
4326
4327      Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4328                                               Cap.isReferenceCapture()
4329                                                   ? CapturedStmt::VCK_ByRef
4330                                                   : CapturedStmt::VCK_ByCopy,
4331                                               Cap.getVariable()));
4332    }
4333    CaptureInits.push_back(Init.get());
4334  }
4335  return false;
4336}
4337
4338void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4339                                    CapturedRegionKind Kind,
4340                                    unsigned NumParams) {
4341  CapturedDecl *CD = nullptr;
4342  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4343
4344  // Build the context parameter
4345  DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4346  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4347  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4348  auto *Param =
4349      ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4350                                ImplicitParamDecl::CapturedContext);
4351  DC->addDecl(Param);
4352
4353  CD->setContextParam(0, Param);
4354
4355  // Enter the capturing scope for this captured region.
4356  PushCapturedRegionScope(CurScope, CD, RD, Kind);
4357
4358  if (CurScope)
4359    PushDeclContext(CurScope, CD);
4360  else
4361    CurContext = CD;
4362
4363  PushExpressionEvaluationContext(
4364      ExpressionEvaluationContext::PotentiallyEvaluated);
4365}
4366
4367void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4368                                    CapturedRegionKind Kind,
4369                                    ArrayRef<CapturedParamNameType> Params,
4370                                    unsigned OpenMPCaptureLevel) {
4371  CapturedDecl *CD = nullptr;
4372  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4373
4374  // Build the context parameter
4375  DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4376  bool ContextIsFound = false;
4377  unsigned ParamNum = 0;
4378  for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4379                                                 E = Params.end();
4380       I != E; ++I, ++ParamNum) {
4381    if (I->second.isNull()) {
4382      assert(!ContextIsFound &&
4383             "null type has been found already for '__context' parameter");
4384      IdentifierInfo *ParamName = &Context.Idents.get("__context");
4385      QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4386                               .withConst()
4387                               .withRestrict();
4388      auto *Param =
4389          ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4390                                    ImplicitParamDecl::CapturedContext);
4391      DC->addDecl(Param);
4392      CD->setContextParam(ParamNum, Param);
4393      ContextIsFound = true;
4394    } else {
4395      IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4396      auto *Param =
4397          ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4398                                    ImplicitParamDecl::CapturedContext);
4399      DC->addDecl(Param);
4400      CD->setParam(ParamNum, Param);
4401    }
4402  }
4403  assert(ContextIsFound && "no null type for '__context' parameter");
4404  if (!ContextIsFound) {
4405    // Add __context implicitly if it is not specified.
4406    IdentifierInfo *ParamName = &Context.Idents.get("__context");
4407    QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4408    auto *Param =
4409        ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4410                                  ImplicitParamDecl::CapturedContext);
4411    DC->addDecl(Param);
4412    CD->setContextParam(ParamNum, Param);
4413  }
4414  // Enter the capturing scope for this captured region.
4415  PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4416
4417  if (CurScope)
4418    PushDeclContext(CurScope, CD);
4419  else
4420    CurContext = CD;
4421
4422  PushExpressionEvaluationContext(
4423      ExpressionEvaluationContext::PotentiallyEvaluated);
4424}
4425
4426void Sema::ActOnCapturedRegionError() {
4427  DiscardCleanupsInEvaluationContext();
4428  PopExpressionEvaluationContext();
4429  PopDeclContext();
4430  PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4431  CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4432
4433  RecordDecl *Record = RSI->TheRecordDecl;
4434  Record->setInvalidDecl();
4435
4436  SmallVector<Decl*, 4> Fields(Record->fields());
4437  ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4438              SourceLocation(), SourceLocation(), ParsedAttributesView());
4439}
4440
4441StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
4442  // Leave the captured scope before we start creating captures in the
4443  // enclosing scope.
4444  DiscardCleanupsInEvaluationContext();
4445  PopExpressionEvaluationContext();
4446  PopDeclContext();
4447  PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4448  CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4449
4450  SmallVector<CapturedStmt::Capture, 4> Captures;
4451  SmallVector<Expr *, 4> CaptureInits;
4452  if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4453    return StmtError();
4454
4455  CapturedDecl *CD = RSI->TheCapturedDecl;
4456  RecordDecl *RD = RSI->TheRecordDecl;
4457
4458  CapturedStmt *Res = CapturedStmt::Create(
4459      getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4460      Captures, CaptureInits, CD, RD);
4461
4462  CD->setBody(Res->getCapturedStmt());
4463  RD->completeDefinition();
4464
4465  return Res;
4466}
4467