SemaLookup.cpp revision 360784
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements name lookup for C, C++, Objective-C, and
10//  Objective-C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclLookups.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/FileManager.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "clang/Sema/SemaInternal.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "clang/Sema/TypoCorrection.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/ADT/edit_distance.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <algorithm>
44#include <iterator>
45#include <list>
46#include <set>
47#include <utility>
48#include <vector>
49
50#include "OpenCLBuiltins.inc"
51
52using namespace clang;
53using namespace sema;
54
55namespace {
56  class UnqualUsingEntry {
57    const DeclContext *Nominated;
58    const DeclContext *CommonAncestor;
59
60  public:
61    UnqualUsingEntry(const DeclContext *Nominated,
62                     const DeclContext *CommonAncestor)
63      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64    }
65
66    const DeclContext *getCommonAncestor() const {
67      return CommonAncestor;
68    }
69
70    const DeclContext *getNominatedNamespace() const {
71      return Nominated;
72    }
73
74    // Sort by the pointer value of the common ancestor.
75    struct Comparator {
76      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77        return L.getCommonAncestor() < R.getCommonAncestor();
78      }
79
80      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81        return E.getCommonAncestor() < DC;
82      }
83
84      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85        return DC < E.getCommonAncestor();
86      }
87    };
88  };
89
90  /// A collection of using directives, as used by C++ unqualified
91  /// lookup.
92  class UnqualUsingDirectiveSet {
93    Sema &SemaRef;
94
95    typedef SmallVector<UnqualUsingEntry, 8> ListTy;
96
97    ListTy list;
98    llvm::SmallPtrSet<DeclContext*, 8> visited;
99
100  public:
101    UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
102
103    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
104      // C++ [namespace.udir]p1:
105      //   During unqualified name lookup, the names appear as if they
106      //   were declared in the nearest enclosing namespace which contains
107      //   both the using-directive and the nominated namespace.
108      DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
109      assert(InnermostFileDC && InnermostFileDC->isFileContext());
110
111      for (; S; S = S->getParent()) {
112        // C++ [namespace.udir]p1:
113        //   A using-directive shall not appear in class scope, but may
114        //   appear in namespace scope or in block scope.
115        DeclContext *Ctx = S->getEntity();
116        if (Ctx && Ctx->isFileContext()) {
117          visit(Ctx, Ctx);
118        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
119          for (auto *I : S->using_directives())
120            if (SemaRef.isVisible(I))
121              visit(I, InnermostFileDC);
122        }
123      }
124    }
125
126    // Visits a context and collect all of its using directives
127    // recursively.  Treats all using directives as if they were
128    // declared in the context.
129    //
130    // A given context is only every visited once, so it is important
131    // that contexts be visited from the inside out in order to get
132    // the effective DCs right.
133    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
134      if (!visited.insert(DC).second)
135        return;
136
137      addUsingDirectives(DC, EffectiveDC);
138    }
139
140    // Visits a using directive and collects all of its using
141    // directives recursively.  Treats all using directives as if they
142    // were declared in the effective DC.
143    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
144      DeclContext *NS = UD->getNominatedNamespace();
145      if (!visited.insert(NS).second)
146        return;
147
148      addUsingDirective(UD, EffectiveDC);
149      addUsingDirectives(NS, EffectiveDC);
150    }
151
152    // Adds all the using directives in a context (and those nominated
153    // by its using directives, transitively) as if they appeared in
154    // the given effective context.
155    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
156      SmallVector<DeclContext*, 4> queue;
157      while (true) {
158        for (auto UD : DC->using_directives()) {
159          DeclContext *NS = UD->getNominatedNamespace();
160          if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
161            addUsingDirective(UD, EffectiveDC);
162            queue.push_back(NS);
163          }
164        }
165
166        if (queue.empty())
167          return;
168
169        DC = queue.pop_back_val();
170      }
171    }
172
173    // Add a using directive as if it had been declared in the given
174    // context.  This helps implement C++ [namespace.udir]p3:
175    //   The using-directive is transitive: if a scope contains a
176    //   using-directive that nominates a second namespace that itself
177    //   contains using-directives, the effect is as if the
178    //   using-directives from the second namespace also appeared in
179    //   the first.
180    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
181      // Find the common ancestor between the effective context and
182      // the nominated namespace.
183      DeclContext *Common = UD->getNominatedNamespace();
184      while (!Common->Encloses(EffectiveDC))
185        Common = Common->getParent();
186      Common = Common->getPrimaryContext();
187
188      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
189    }
190
191    void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
192
193    typedef ListTy::const_iterator const_iterator;
194
195    const_iterator begin() const { return list.begin(); }
196    const_iterator end() const { return list.end(); }
197
198    llvm::iterator_range<const_iterator>
199    getNamespacesFor(DeclContext *DC) const {
200      return llvm::make_range(std::equal_range(begin(), end(),
201                                               DC->getPrimaryContext(),
202                                               UnqualUsingEntry::Comparator()));
203    }
204  };
205} // end anonymous namespace
206
207// Retrieve the set of identifier namespaces that correspond to a
208// specific kind of name lookup.
209static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210                               bool CPlusPlus,
211                               bool Redeclaration) {
212  unsigned IDNS = 0;
213  switch (NameKind) {
214  case Sema::LookupObjCImplicitSelfParam:
215  case Sema::LookupOrdinaryName:
216  case Sema::LookupRedeclarationWithLinkage:
217  case Sema::LookupLocalFriendName:
218    IDNS = Decl::IDNS_Ordinary;
219    if (CPlusPlus) {
220      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
221      if (Redeclaration)
222        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
223    }
224    if (Redeclaration)
225      IDNS |= Decl::IDNS_LocalExtern;
226    break;
227
228  case Sema::LookupOperatorName:
229    // Operator lookup is its own crazy thing;  it is not the same
230    // as (e.g.) looking up an operator name for redeclaration.
231    assert(!Redeclaration && "cannot do redeclaration operator lookup");
232    IDNS = Decl::IDNS_NonMemberOperator;
233    break;
234
235  case Sema::LookupTagName:
236    if (CPlusPlus) {
237      IDNS = Decl::IDNS_Type;
238
239      // When looking for a redeclaration of a tag name, we add:
240      // 1) TagFriend to find undeclared friend decls
241      // 2) Namespace because they can't "overload" with tag decls.
242      // 3) Tag because it includes class templates, which can't
243      //    "overload" with tag decls.
244      if (Redeclaration)
245        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246    } else {
247      IDNS = Decl::IDNS_Tag;
248    }
249    break;
250
251  case Sema::LookupLabel:
252    IDNS = Decl::IDNS_Label;
253    break;
254
255  case Sema::LookupMemberName:
256    IDNS = Decl::IDNS_Member;
257    if (CPlusPlus)
258      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
259    break;
260
261  case Sema::LookupNestedNameSpecifierName:
262    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
263    break;
264
265  case Sema::LookupNamespaceName:
266    IDNS = Decl::IDNS_Namespace;
267    break;
268
269  case Sema::LookupUsingDeclName:
270    assert(Redeclaration && "should only be used for redecl lookup");
271    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
272           Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
273           Decl::IDNS_LocalExtern;
274    break;
275
276  case Sema::LookupObjCProtocolName:
277    IDNS = Decl::IDNS_ObjCProtocol;
278    break;
279
280  case Sema::LookupOMPReductionName:
281    IDNS = Decl::IDNS_OMPReduction;
282    break;
283
284  case Sema::LookupOMPMapperName:
285    IDNS = Decl::IDNS_OMPMapper;
286    break;
287
288  case Sema::LookupAnyName:
289    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
290      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
291      | Decl::IDNS_Type;
292    break;
293  }
294  return IDNS;
295}
296
297void LookupResult::configure() {
298  IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
299                 isForRedeclaration());
300
301  // If we're looking for one of the allocation or deallocation
302  // operators, make sure that the implicitly-declared new and delete
303  // operators can be found.
304  switch (NameInfo.getName().getCXXOverloadedOperator()) {
305  case OO_New:
306  case OO_Delete:
307  case OO_Array_New:
308  case OO_Array_Delete:
309    getSema().DeclareGlobalNewDelete();
310    break;
311
312  default:
313    break;
314  }
315
316  // Compiler builtins are always visible, regardless of where they end
317  // up being declared.
318  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
319    if (unsigned BuiltinID = Id->getBuiltinID()) {
320      if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
321        AllowHidden = true;
322    }
323  }
324}
325
326bool LookupResult::sanity() const {
327  // This function is never called by NDEBUG builds.
328  assert(ResultKind != NotFound || Decls.size() == 0);
329  assert(ResultKind != Found || Decls.size() == 1);
330  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
331         (Decls.size() == 1 &&
332          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
333  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
334  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
335         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
336                                Ambiguity == AmbiguousBaseSubobjectTypes)));
337  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
338                                (Ambiguity == AmbiguousBaseSubobjectTypes ||
339                                 Ambiguity == AmbiguousBaseSubobjects)));
340  return true;
341}
342
343// Necessary because CXXBasePaths is not complete in Sema.h
344void LookupResult::deletePaths(CXXBasePaths *Paths) {
345  delete Paths;
346}
347
348/// Get a representative context for a declaration such that two declarations
349/// will have the same context if they were found within the same scope.
350static DeclContext *getContextForScopeMatching(Decl *D) {
351  // For function-local declarations, use that function as the context. This
352  // doesn't account for scopes within the function; the caller must deal with
353  // those.
354  DeclContext *DC = D->getLexicalDeclContext();
355  if (DC->isFunctionOrMethod())
356    return DC;
357
358  // Otherwise, look at the semantic context of the declaration. The
359  // declaration must have been found there.
360  return D->getDeclContext()->getRedeclContext();
361}
362
363/// Determine whether \p D is a better lookup result than \p Existing,
364/// given that they declare the same entity.
365static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
366                                    NamedDecl *D, NamedDecl *Existing) {
367  // When looking up redeclarations of a using declaration, prefer a using
368  // shadow declaration over any other declaration of the same entity.
369  if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
370      !isa<UsingShadowDecl>(Existing))
371    return true;
372
373  auto *DUnderlying = D->getUnderlyingDecl();
374  auto *EUnderlying = Existing->getUnderlyingDecl();
375
376  // If they have different underlying declarations, prefer a typedef over the
377  // original type (this happens when two type declarations denote the same
378  // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
379  // might carry additional semantic information, such as an alignment override.
380  // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
381  // declaration over a typedef.
382  if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
383    assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
384    bool HaveTag = isa<TagDecl>(EUnderlying);
385    bool WantTag = Kind == Sema::LookupTagName;
386    return HaveTag != WantTag;
387  }
388
389  // Pick the function with more default arguments.
390  // FIXME: In the presence of ambiguous default arguments, we should keep both,
391  //        so we can diagnose the ambiguity if the default argument is needed.
392  //        See C++ [over.match.best]p3.
393  if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
394    auto *EFD = cast<FunctionDecl>(EUnderlying);
395    unsigned DMin = DFD->getMinRequiredArguments();
396    unsigned EMin = EFD->getMinRequiredArguments();
397    // If D has more default arguments, it is preferred.
398    if (DMin != EMin)
399      return DMin < EMin;
400    // FIXME: When we track visibility for default function arguments, check
401    // that we pick the declaration with more visible default arguments.
402  }
403
404  // Pick the template with more default template arguments.
405  if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
406    auto *ETD = cast<TemplateDecl>(EUnderlying);
407    unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
408    unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
409    // If D has more default arguments, it is preferred. Note that default
410    // arguments (and their visibility) is monotonically increasing across the
411    // redeclaration chain, so this is a quick proxy for "is more recent".
412    if (DMin != EMin)
413      return DMin < EMin;
414    // If D has more *visible* default arguments, it is preferred. Note, an
415    // earlier default argument being visible does not imply that a later
416    // default argument is visible, so we can't just check the first one.
417    for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
418        I != N; ++I) {
419      if (!S.hasVisibleDefaultArgument(
420              ETD->getTemplateParameters()->getParam(I)) &&
421          S.hasVisibleDefaultArgument(
422              DTD->getTemplateParameters()->getParam(I)))
423        return true;
424    }
425  }
426
427  // VarDecl can have incomplete array types, prefer the one with more complete
428  // array type.
429  if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
430    VarDecl *EVD = cast<VarDecl>(EUnderlying);
431    if (EVD->getType()->isIncompleteType() &&
432        !DVD->getType()->isIncompleteType()) {
433      // Prefer the decl with a more complete type if visible.
434      return S.isVisible(DVD);
435    }
436    return false; // Avoid picking up a newer decl, just because it was newer.
437  }
438
439  // For most kinds of declaration, it doesn't really matter which one we pick.
440  if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
441    // If the existing declaration is hidden, prefer the new one. Otherwise,
442    // keep what we've got.
443    return !S.isVisible(Existing);
444  }
445
446  // Pick the newer declaration; it might have a more precise type.
447  for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
448       Prev = Prev->getPreviousDecl())
449    if (Prev == EUnderlying)
450      return true;
451  return false;
452}
453
454/// Determine whether \p D can hide a tag declaration.
455static bool canHideTag(NamedDecl *D) {
456  // C++ [basic.scope.declarative]p4:
457  //   Given a set of declarations in a single declarative region [...]
458  //   exactly one declaration shall declare a class name or enumeration name
459  //   that is not a typedef name and the other declarations shall all refer to
460  //   the same variable, non-static data member, or enumerator, or all refer
461  //   to functions and function templates; in this case the class name or
462  //   enumeration name is hidden.
463  // C++ [basic.scope.hiding]p2:
464  //   A class name or enumeration name can be hidden by the name of a
465  //   variable, data member, function, or enumerator declared in the same
466  //   scope.
467  // An UnresolvedUsingValueDecl always instantiates to one of these.
468  D = D->getUnderlyingDecl();
469  return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
470         isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
471         isa<UnresolvedUsingValueDecl>(D);
472}
473
474/// Resolves the result kind of this lookup.
475void LookupResult::resolveKind() {
476  unsigned N = Decls.size();
477
478  // Fast case: no possible ambiguity.
479  if (N == 0) {
480    assert(ResultKind == NotFound ||
481           ResultKind == NotFoundInCurrentInstantiation);
482    return;
483  }
484
485  // If there's a single decl, we need to examine it to decide what
486  // kind of lookup this is.
487  if (N == 1) {
488    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
489    if (isa<FunctionTemplateDecl>(D))
490      ResultKind = FoundOverloaded;
491    else if (isa<UnresolvedUsingValueDecl>(D))
492      ResultKind = FoundUnresolvedValue;
493    return;
494  }
495
496  // Don't do any extra resolution if we've already resolved as ambiguous.
497  if (ResultKind == Ambiguous) return;
498
499  llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
500  llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
501
502  bool Ambiguous = false;
503  bool HasTag = false, HasFunction = false;
504  bool HasFunctionTemplate = false, HasUnresolved = false;
505  NamedDecl *HasNonFunction = nullptr;
506
507  llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
508
509  unsigned UniqueTagIndex = 0;
510
511  unsigned I = 0;
512  while (I < N) {
513    NamedDecl *D = Decls[I]->getUnderlyingDecl();
514    D = cast<NamedDecl>(D->getCanonicalDecl());
515
516    // Ignore an invalid declaration unless it's the only one left.
517    if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
518      Decls[I] = Decls[--N];
519      continue;
520    }
521
522    llvm::Optional<unsigned> ExistingI;
523
524    // Redeclarations of types via typedef can occur both within a scope
525    // and, through using declarations and directives, across scopes. There is
526    // no ambiguity if they all refer to the same type, so unique based on the
527    // canonical type.
528    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
529      QualType T = getSema().Context.getTypeDeclType(TD);
530      auto UniqueResult = UniqueTypes.insert(
531          std::make_pair(getSema().Context.getCanonicalType(T), I));
532      if (!UniqueResult.second) {
533        // The type is not unique.
534        ExistingI = UniqueResult.first->second;
535      }
536    }
537
538    // For non-type declarations, check for a prior lookup result naming this
539    // canonical declaration.
540    if (!ExistingI) {
541      auto UniqueResult = Unique.insert(std::make_pair(D, I));
542      if (!UniqueResult.second) {
543        // We've seen this entity before.
544        ExistingI = UniqueResult.first->second;
545      }
546    }
547
548    if (ExistingI) {
549      // This is not a unique lookup result. Pick one of the results and
550      // discard the other.
551      if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
552                                  Decls[*ExistingI]))
553        Decls[*ExistingI] = Decls[I];
554      Decls[I] = Decls[--N];
555      continue;
556    }
557
558    // Otherwise, do some decl type analysis and then continue.
559
560    if (isa<UnresolvedUsingValueDecl>(D)) {
561      HasUnresolved = true;
562    } else if (isa<TagDecl>(D)) {
563      if (HasTag)
564        Ambiguous = true;
565      UniqueTagIndex = I;
566      HasTag = true;
567    } else if (isa<FunctionTemplateDecl>(D)) {
568      HasFunction = true;
569      HasFunctionTemplate = true;
570    } else if (isa<FunctionDecl>(D)) {
571      HasFunction = true;
572    } else {
573      if (HasNonFunction) {
574        // If we're about to create an ambiguity between two declarations that
575        // are equivalent, but one is an internal linkage declaration from one
576        // module and the other is an internal linkage declaration from another
577        // module, just skip it.
578        if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
579                                                             D)) {
580          EquivalentNonFunctions.push_back(D);
581          Decls[I] = Decls[--N];
582          continue;
583        }
584
585        Ambiguous = true;
586      }
587      HasNonFunction = D;
588    }
589    I++;
590  }
591
592  // C++ [basic.scope.hiding]p2:
593  //   A class name or enumeration name can be hidden by the name of
594  //   an object, function, or enumerator declared in the same
595  //   scope. If a class or enumeration name and an object, function,
596  //   or enumerator are declared in the same scope (in any order)
597  //   with the same name, the class or enumeration name is hidden
598  //   wherever the object, function, or enumerator name is visible.
599  // But it's still an error if there are distinct tag types found,
600  // even if they're not visible. (ref?)
601  if (N > 1 && HideTags && HasTag && !Ambiguous &&
602      (HasFunction || HasNonFunction || HasUnresolved)) {
603    NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
604    if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
605        getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
606            getContextForScopeMatching(OtherDecl)) &&
607        canHideTag(OtherDecl))
608      Decls[UniqueTagIndex] = Decls[--N];
609    else
610      Ambiguous = true;
611  }
612
613  // FIXME: This diagnostic should really be delayed until we're done with
614  // the lookup result, in case the ambiguity is resolved by the caller.
615  if (!EquivalentNonFunctions.empty() && !Ambiguous)
616    getSema().diagnoseEquivalentInternalLinkageDeclarations(
617        getNameLoc(), HasNonFunction, EquivalentNonFunctions);
618
619  Decls.set_size(N);
620
621  if (HasNonFunction && (HasFunction || HasUnresolved))
622    Ambiguous = true;
623
624  if (Ambiguous)
625    setAmbiguous(LookupResult::AmbiguousReference);
626  else if (HasUnresolved)
627    ResultKind = LookupResult::FoundUnresolvedValue;
628  else if (N > 1 || HasFunctionTemplate)
629    ResultKind = LookupResult::FoundOverloaded;
630  else
631    ResultKind = LookupResult::Found;
632}
633
634void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
635  CXXBasePaths::const_paths_iterator I, E;
636  for (I = P.begin(), E = P.end(); I != E; ++I)
637    for (DeclContext::lookup_iterator DI = I->Decls.begin(),
638         DE = I->Decls.end(); DI != DE; ++DI)
639      addDecl(*DI);
640}
641
642void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
643  Paths = new CXXBasePaths;
644  Paths->swap(P);
645  addDeclsFromBasePaths(*Paths);
646  resolveKind();
647  setAmbiguous(AmbiguousBaseSubobjects);
648}
649
650void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
651  Paths = new CXXBasePaths;
652  Paths->swap(P);
653  addDeclsFromBasePaths(*Paths);
654  resolveKind();
655  setAmbiguous(AmbiguousBaseSubobjectTypes);
656}
657
658void LookupResult::print(raw_ostream &Out) {
659  Out << Decls.size() << " result(s)";
660  if (isAmbiguous()) Out << ", ambiguous";
661  if (Paths) Out << ", base paths present";
662
663  for (iterator I = begin(), E = end(); I != E; ++I) {
664    Out << "\n";
665    (*I)->print(Out, 2);
666  }
667}
668
669LLVM_DUMP_METHOD void LookupResult::dump() {
670  llvm::errs() << "lookup results for " << getLookupName().getAsString()
671               << ":\n";
672  for (NamedDecl *D : *this)
673    D->dump();
674}
675
676/// Get the QualType instances of the return type and arguments for an OpenCL
677/// builtin function signature.
678/// \param Context (in) The Context instance.
679/// \param OpenCLBuiltin (in) The signature currently handled.
680/// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
681///        type used as return type or as argument.
682///        Only meaningful for generic types, otherwise equals 1.
683/// \param RetTypes (out) List of the possible return types.
684/// \param ArgTypes (out) List of the possible argument types.  For each
685///        argument, ArgTypes contains QualTypes for the Cartesian product
686///        of (vector sizes) x (types) .
687static void GetQualTypesForOpenCLBuiltin(
688    ASTContext &Context, const OpenCLBuiltinStruct &OpenCLBuiltin,
689    unsigned &GenTypeMaxCnt, SmallVector<QualType, 1> &RetTypes,
690    SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
691  // Get the QualType instances of the return types.
692  unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
693  OCL2Qual(Context, TypeTable[Sig], RetTypes);
694  GenTypeMaxCnt = RetTypes.size();
695
696  // Get the QualType instances of the arguments.
697  // First type is the return type, skip it.
698  for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
699    SmallVector<QualType, 1> Ty;
700    OCL2Qual(Context,
701        TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], Ty);
702    GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
703    ArgTypes.push_back(std::move(Ty));
704  }
705}
706
707/// Create a list of the candidate function overloads for an OpenCL builtin
708/// function.
709/// \param Context (in) The ASTContext instance.
710/// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
711///        type used as return type or as argument.
712///        Only meaningful for generic types, otherwise equals 1.
713/// \param FunctionList (out) List of FunctionTypes.
714/// \param RetTypes (in) List of the possible return types.
715/// \param ArgTypes (in) List of the possible types for the arguments.
716static void GetOpenCLBuiltinFctOverloads(
717    ASTContext &Context, unsigned GenTypeMaxCnt,
718    std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
719    SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
720  FunctionProtoType::ExtProtoInfo PI;
721  PI.Variadic = false;
722
723  // Create FunctionTypes for each (gen)type.
724  for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
725    SmallVector<QualType, 5> ArgList;
726
727    for (unsigned A = 0; A < ArgTypes.size(); A++) {
728      // Builtins such as "max" have an "sgentype" argument that represents
729      // the corresponding scalar type of a gentype.  The number of gentypes
730      // must be a multiple of the number of sgentypes.
731      assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
732             "argument type count not compatible with gentype type count");
733      unsigned Idx = IGenType % ArgTypes[A].size();
734      ArgList.push_back(ArgTypes[A][Idx]);
735    }
736
737    FunctionList.push_back(Context.getFunctionType(
738        RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
739  }
740}
741
742/// Add extensions to the function declaration.
743/// \param S (in/out) The Sema instance.
744/// \param BIDecl (in) Description of the builtin.
745/// \param FDecl (in/out) FunctionDecl instance.
746static void AddOpenCLExtensions(Sema &S, const OpenCLBuiltinStruct &BIDecl,
747                                FunctionDecl *FDecl) {
748  // Fetch extension associated with a function prototype.
749  StringRef E = FunctionExtensionTable[BIDecl.Extension];
750  if (E != "")
751    S.setOpenCLExtensionForDecl(FDecl, E);
752}
753
754/// When trying to resolve a function name, if isOpenCLBuiltin() returns a
755/// non-null <Index, Len> pair, then the name is referencing an OpenCL
756/// builtin function.  Add all candidate signatures to the LookUpResult.
757///
758/// \param S (in) The Sema instance.
759/// \param LR (inout) The LookupResult instance.
760/// \param II (in) The identifier being resolved.
761/// \param FctIndex (in) Starting index in the BuiltinTable.
762/// \param Len (in) The signature list has Len elements.
763static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
764                                                  IdentifierInfo *II,
765                                                  const unsigned FctIndex,
766                                                  const unsigned Len) {
767  // The builtin function declaration uses generic types (gentype).
768  bool HasGenType = false;
769
770  // Maximum number of types contained in a generic type used as return type or
771  // as argument.  Only meaningful for generic types, otherwise equals 1.
772  unsigned GenTypeMaxCnt;
773
774  for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
775    const OpenCLBuiltinStruct &OpenCLBuiltin =
776        BuiltinTable[FctIndex + SignatureIndex];
777    ASTContext &Context = S.Context;
778
779    // Ignore this BIF if its version does not match the language options.
780    unsigned OpenCLVersion = Context.getLangOpts().OpenCLVersion;
781    if (Context.getLangOpts().OpenCLCPlusPlus)
782      OpenCLVersion = 200;
783    if (OpenCLVersion < OpenCLBuiltin.MinVersion)
784      continue;
785    if ((OpenCLBuiltin.MaxVersion != 0) &&
786        (OpenCLVersion >= OpenCLBuiltin.MaxVersion))
787      continue;
788
789    SmallVector<QualType, 1> RetTypes;
790    SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
791
792    // Obtain QualType lists for the function signature.
793    GetQualTypesForOpenCLBuiltin(Context, OpenCLBuiltin, GenTypeMaxCnt,
794                                 RetTypes, ArgTypes);
795    if (GenTypeMaxCnt > 1) {
796      HasGenType = true;
797    }
798
799    // Create function overload for each type combination.
800    std::vector<QualType> FunctionList;
801    GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
802                                 ArgTypes);
803
804    SourceLocation Loc = LR.getNameLoc();
805    DeclContext *Parent = Context.getTranslationUnitDecl();
806    FunctionDecl *NewOpenCLBuiltin;
807
808    for (unsigned Index = 0; Index < GenTypeMaxCnt; Index++) {
809      NewOpenCLBuiltin = FunctionDecl::Create(
810          Context, Parent, Loc, Loc, II, FunctionList[Index],
811          /*TInfo=*/nullptr, SC_Extern, false,
812          FunctionList[Index]->isFunctionProtoType());
813      NewOpenCLBuiltin->setImplicit();
814
815      // Create Decl objects for each parameter, adding them to the
816      // FunctionDecl.
817      if (const FunctionProtoType *FP =
818              dyn_cast<FunctionProtoType>(FunctionList[Index])) {
819        SmallVector<ParmVarDecl *, 16> ParmList;
820        for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
821          ParmVarDecl *Parm = ParmVarDecl::Create(
822              Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
823              nullptr, FP->getParamType(IParm),
824              /*TInfo=*/nullptr, SC_None, nullptr);
825          Parm->setScopeInfo(0, IParm);
826          ParmList.push_back(Parm);
827        }
828        NewOpenCLBuiltin->setParams(ParmList);
829      }
830
831      // Add function attributes.
832      if (OpenCLBuiltin.IsPure)
833        NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
834      if (OpenCLBuiltin.IsConst)
835        NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
836      if (OpenCLBuiltin.IsConv)
837        NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
838
839      if (!S.getLangOpts().OpenCLCPlusPlus)
840        NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
841
842      AddOpenCLExtensions(S, OpenCLBuiltin, NewOpenCLBuiltin);
843
844      LR.addDecl(NewOpenCLBuiltin);
845    }
846  }
847
848  // If we added overloads, need to resolve the lookup result.
849  if (Len > 1 || HasGenType)
850    LR.resolveKind();
851}
852
853/// Lookup a builtin function, when name lookup would otherwise
854/// fail.
855bool Sema::LookupBuiltin(LookupResult &R) {
856  Sema::LookupNameKind NameKind = R.getLookupKind();
857
858  // If we didn't find a use of this identifier, and if the identifier
859  // corresponds to a compiler builtin, create the decl object for the builtin
860  // now, injecting it into translation unit scope, and return it.
861  if (NameKind == Sema::LookupOrdinaryName ||
862      NameKind == Sema::LookupRedeclarationWithLinkage) {
863    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
864    if (II) {
865      if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
866        if (II == getASTContext().getMakeIntegerSeqName()) {
867          R.addDecl(getASTContext().getMakeIntegerSeqDecl());
868          return true;
869        } else if (II == getASTContext().getTypePackElementName()) {
870          R.addDecl(getASTContext().getTypePackElementDecl());
871          return true;
872        }
873      }
874
875      // Check if this is an OpenCL Builtin, and if so, insert its overloads.
876      if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
877        auto Index = isOpenCLBuiltin(II->getName());
878        if (Index.first) {
879          InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
880                                                Index.second);
881          return true;
882        }
883      }
884
885      // If this is a builtin on this (or all) targets, create the decl.
886      if (unsigned BuiltinID = II->getBuiltinID()) {
887        // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
888        // library functions like 'malloc'. Instead, we'll just error.
889        if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
890            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
891          return false;
892
893        if (NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II,
894                                               BuiltinID, TUScope,
895                                               R.isForRedeclaration(),
896                                               R.getNameLoc())) {
897          R.addDecl(D);
898          return true;
899        }
900      }
901    }
902  }
903
904  return false;
905}
906
907/// Determine whether we can declare a special member function within
908/// the class at this point.
909static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
910  // We need to have a definition for the class.
911  if (!Class->getDefinition() || Class->isDependentContext())
912    return false;
913
914  // We can't be in the middle of defining the class.
915  return !Class->isBeingDefined();
916}
917
918void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
919  if (!CanDeclareSpecialMemberFunction(Class))
920    return;
921
922  // If the default constructor has not yet been declared, do so now.
923  if (Class->needsImplicitDefaultConstructor())
924    DeclareImplicitDefaultConstructor(Class);
925
926  // If the copy constructor has not yet been declared, do so now.
927  if (Class->needsImplicitCopyConstructor())
928    DeclareImplicitCopyConstructor(Class);
929
930  // If the copy assignment operator has not yet been declared, do so now.
931  if (Class->needsImplicitCopyAssignment())
932    DeclareImplicitCopyAssignment(Class);
933
934  if (getLangOpts().CPlusPlus11) {
935    // If the move constructor has not yet been declared, do so now.
936    if (Class->needsImplicitMoveConstructor())
937      DeclareImplicitMoveConstructor(Class);
938
939    // If the move assignment operator has not yet been declared, do so now.
940    if (Class->needsImplicitMoveAssignment())
941      DeclareImplicitMoveAssignment(Class);
942  }
943
944  // If the destructor has not yet been declared, do so now.
945  if (Class->needsImplicitDestructor())
946    DeclareImplicitDestructor(Class);
947}
948
949/// Determine whether this is the name of an implicitly-declared
950/// special member function.
951static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
952  switch (Name.getNameKind()) {
953  case DeclarationName::CXXConstructorName:
954  case DeclarationName::CXXDestructorName:
955    return true;
956
957  case DeclarationName::CXXOperatorName:
958    return Name.getCXXOverloadedOperator() == OO_Equal;
959
960  default:
961    break;
962  }
963
964  return false;
965}
966
967/// If there are any implicit member functions with the given name
968/// that need to be declared in the given declaration context, do so.
969static void DeclareImplicitMemberFunctionsWithName(Sema &S,
970                                                   DeclarationName Name,
971                                                   SourceLocation Loc,
972                                                   const DeclContext *DC) {
973  if (!DC)
974    return;
975
976  switch (Name.getNameKind()) {
977  case DeclarationName::CXXConstructorName:
978    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
979      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
980        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
981        if (Record->needsImplicitDefaultConstructor())
982          S.DeclareImplicitDefaultConstructor(Class);
983        if (Record->needsImplicitCopyConstructor())
984          S.DeclareImplicitCopyConstructor(Class);
985        if (S.getLangOpts().CPlusPlus11 &&
986            Record->needsImplicitMoveConstructor())
987          S.DeclareImplicitMoveConstructor(Class);
988      }
989    break;
990
991  case DeclarationName::CXXDestructorName:
992    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
993      if (Record->getDefinition() && Record->needsImplicitDestructor() &&
994          CanDeclareSpecialMemberFunction(Record))
995        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
996    break;
997
998  case DeclarationName::CXXOperatorName:
999    if (Name.getCXXOverloadedOperator() != OO_Equal)
1000      break;
1001
1002    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1003      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1004        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1005        if (Record->needsImplicitCopyAssignment())
1006          S.DeclareImplicitCopyAssignment(Class);
1007        if (S.getLangOpts().CPlusPlus11 &&
1008            Record->needsImplicitMoveAssignment())
1009          S.DeclareImplicitMoveAssignment(Class);
1010      }
1011    }
1012    break;
1013
1014  case DeclarationName::CXXDeductionGuideName:
1015    S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1016    break;
1017
1018  default:
1019    break;
1020  }
1021}
1022
1023// Adds all qualifying matches for a name within a decl context to the
1024// given lookup result.  Returns true if any matches were found.
1025static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1026  bool Found = false;
1027
1028  // Lazily declare C++ special member functions.
1029  if (S.getLangOpts().CPlusPlus)
1030    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1031                                           DC);
1032
1033  // Perform lookup into this declaration context.
1034  DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1035  for (NamedDecl *D : DR) {
1036    if ((D = R.getAcceptableDecl(D))) {
1037      R.addDecl(D);
1038      Found = true;
1039    }
1040  }
1041
1042  if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1043    return true;
1044
1045  if (R.getLookupName().getNameKind()
1046        != DeclarationName::CXXConversionFunctionName ||
1047      R.getLookupName().getCXXNameType()->isDependentType() ||
1048      !isa<CXXRecordDecl>(DC))
1049    return Found;
1050
1051  // C++ [temp.mem]p6:
1052  //   A specialization of a conversion function template is not found by
1053  //   name lookup. Instead, any conversion function templates visible in the
1054  //   context of the use are considered. [...]
1055  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1056  if (!Record->isCompleteDefinition())
1057    return Found;
1058
1059  // For conversion operators, 'operator auto' should only match
1060  // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
1061  // as a candidate for template substitution.
1062  auto *ContainedDeducedType =
1063      R.getLookupName().getCXXNameType()->getContainedDeducedType();
1064  if (R.getLookupName().getNameKind() ==
1065          DeclarationName::CXXConversionFunctionName &&
1066      ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1067    return Found;
1068
1069  for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1070         UEnd = Record->conversion_end(); U != UEnd; ++U) {
1071    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1072    if (!ConvTemplate)
1073      continue;
1074
1075    // When we're performing lookup for the purposes of redeclaration, just
1076    // add the conversion function template. When we deduce template
1077    // arguments for specializations, we'll end up unifying the return
1078    // type of the new declaration with the type of the function template.
1079    if (R.isForRedeclaration()) {
1080      R.addDecl(ConvTemplate);
1081      Found = true;
1082      continue;
1083    }
1084
1085    // C++ [temp.mem]p6:
1086    //   [...] For each such operator, if argument deduction succeeds
1087    //   (14.9.2.3), the resulting specialization is used as if found by
1088    //   name lookup.
1089    //
1090    // When referencing a conversion function for any purpose other than
1091    // a redeclaration (such that we'll be building an expression with the
1092    // result), perform template argument deduction and place the
1093    // specialization into the result set. We do this to avoid forcing all
1094    // callers to perform special deduction for conversion functions.
1095    TemplateDeductionInfo Info(R.getNameLoc());
1096    FunctionDecl *Specialization = nullptr;
1097
1098    const FunctionProtoType *ConvProto
1099      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1100    assert(ConvProto && "Nonsensical conversion function template type");
1101
1102    // Compute the type of the function that we would expect the conversion
1103    // function to have, if it were to match the name given.
1104    // FIXME: Calling convention!
1105    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1106    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1107    EPI.ExceptionSpec = EST_None;
1108    QualType ExpectedType
1109      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
1110                                            None, EPI);
1111
1112    // Perform template argument deduction against the type that we would
1113    // expect the function to have.
1114    if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1115                                            Specialization, Info)
1116          == Sema::TDK_Success) {
1117      R.addDecl(Specialization);
1118      Found = true;
1119    }
1120  }
1121
1122  return Found;
1123}
1124
1125// Performs C++ unqualified lookup into the given file context.
1126static bool
1127CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1128                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1129
1130  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1131
1132  // Perform direct name lookup into the LookupCtx.
1133  bool Found = LookupDirect(S, R, NS);
1134
1135  // Perform direct name lookup into the namespaces nominated by the
1136  // using directives whose common ancestor is this namespace.
1137  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1138    if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1139      Found = true;
1140
1141  R.resolveKind();
1142
1143  return Found;
1144}
1145
1146static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1147  if (DeclContext *Ctx = S->getEntity())
1148    return Ctx->isFileContext();
1149  return false;
1150}
1151
1152// Find the next outer declaration context from this scope. This
1153// routine actually returns the semantic outer context, which may
1154// differ from the lexical context (encoded directly in the Scope
1155// stack) when we are parsing a member of a class template. In this
1156// case, the second element of the pair will be true, to indicate that
1157// name lookup should continue searching in this semantic context when
1158// it leaves the current template parameter scope.
1159static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
1160  DeclContext *DC = S->getEntity();
1161  DeclContext *Lexical = nullptr;
1162  for (Scope *OuterS = S->getParent(); OuterS;
1163       OuterS = OuterS->getParent()) {
1164    if (OuterS->getEntity()) {
1165      Lexical = OuterS->getEntity();
1166      break;
1167    }
1168  }
1169
1170  // C++ [temp.local]p8:
1171  //   In the definition of a member of a class template that appears
1172  //   outside of the namespace containing the class template
1173  //   definition, the name of a template-parameter hides the name of
1174  //   a member of this namespace.
1175  //
1176  // Example:
1177  //
1178  //   namespace N {
1179  //     class C { };
1180  //
1181  //     template<class T> class B {
1182  //       void f(T);
1183  //     };
1184  //   }
1185  //
1186  //   template<class C> void N::B<C>::f(C) {
1187  //     C b;  // C is the template parameter, not N::C
1188  //   }
1189  //
1190  // In this example, the lexical context we return is the
1191  // TranslationUnit, while the semantic context is the namespace N.
1192  if (!Lexical || !DC || !S->getParent() ||
1193      !S->getParent()->isTemplateParamScope())
1194    return std::make_pair(Lexical, false);
1195
1196  // Find the outermost template parameter scope.
1197  // For the example, this is the scope for the template parameters of
1198  // template<class C>.
1199  Scope *OutermostTemplateScope = S->getParent();
1200  while (OutermostTemplateScope->getParent() &&
1201         OutermostTemplateScope->getParent()->isTemplateParamScope())
1202    OutermostTemplateScope = OutermostTemplateScope->getParent();
1203
1204  // Find the namespace context in which the original scope occurs. In
1205  // the example, this is namespace N.
1206  DeclContext *Semantic = DC;
1207  while (!Semantic->isFileContext())
1208    Semantic = Semantic->getParent();
1209
1210  // Find the declaration context just outside of the template
1211  // parameter scope. This is the context in which the template is
1212  // being lexically declaration (a namespace context). In the
1213  // example, this is the global scope.
1214  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1215      Lexical->Encloses(Semantic))
1216    return std::make_pair(Semantic, true);
1217
1218  return std::make_pair(Lexical, false);
1219}
1220
1221namespace {
1222/// An RAII object to specify that we want to find block scope extern
1223/// declarations.
1224struct FindLocalExternScope {
1225  FindLocalExternScope(LookupResult &R)
1226      : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1227                                 Decl::IDNS_LocalExtern) {
1228    R.setFindLocalExtern(R.getIdentifierNamespace() &
1229                         (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1230  }
1231  void restore() {
1232    R.setFindLocalExtern(OldFindLocalExtern);
1233  }
1234  ~FindLocalExternScope() {
1235    restore();
1236  }
1237  LookupResult &R;
1238  bool OldFindLocalExtern;
1239};
1240} // end anonymous namespace
1241
1242bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1243  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1244
1245  DeclarationName Name = R.getLookupName();
1246  Sema::LookupNameKind NameKind = R.getLookupKind();
1247
1248  // If this is the name of an implicitly-declared special member function,
1249  // go through the scope stack to implicitly declare
1250  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1251    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1252      if (DeclContext *DC = PreS->getEntity())
1253        DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1254  }
1255
1256  // Implicitly declare member functions with the name we're looking for, if in
1257  // fact we are in a scope where it matters.
1258
1259  Scope *Initial = S;
1260  IdentifierResolver::iterator
1261    I = IdResolver.begin(Name),
1262    IEnd = IdResolver.end();
1263
1264  // First we lookup local scope.
1265  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1266  // ...During unqualified name lookup (3.4.1), the names appear as if
1267  // they were declared in the nearest enclosing namespace which contains
1268  // both the using-directive and the nominated namespace.
1269  // [Note: in this context, "contains" means "contains directly or
1270  // indirectly".
1271  //
1272  // For example:
1273  // namespace A { int i; }
1274  // void foo() {
1275  //   int i;
1276  //   {
1277  //     using namespace A;
1278  //     ++i; // finds local 'i', A::i appears at global scope
1279  //   }
1280  // }
1281  //
1282  UnqualUsingDirectiveSet UDirs(*this);
1283  bool VisitedUsingDirectives = false;
1284  bool LeftStartingScope = false;
1285  DeclContext *OutsideOfTemplateParamDC = nullptr;
1286
1287  // When performing a scope lookup, we want to find local extern decls.
1288  FindLocalExternScope FindLocals(R);
1289
1290  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1291    DeclContext *Ctx = S->getEntity();
1292    bool SearchNamespaceScope = true;
1293    // Check whether the IdResolver has anything in this scope.
1294    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1295      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1296        if (NameKind == LookupRedeclarationWithLinkage &&
1297            !(*I)->isTemplateParameter()) {
1298          // If it's a template parameter, we still find it, so we can diagnose
1299          // the invalid redeclaration.
1300
1301          // Determine whether this (or a previous) declaration is
1302          // out-of-scope.
1303          if (!LeftStartingScope && !Initial->isDeclScope(*I))
1304            LeftStartingScope = true;
1305
1306          // If we found something outside of our starting scope that
1307          // does not have linkage, skip it.
1308          if (LeftStartingScope && !((*I)->hasLinkage())) {
1309            R.setShadowed();
1310            continue;
1311          }
1312        } else {
1313          // We found something in this scope, we should not look at the
1314          // namespace scope
1315          SearchNamespaceScope = false;
1316        }
1317        R.addDecl(ND);
1318      }
1319    }
1320    if (!SearchNamespaceScope) {
1321      R.resolveKind();
1322      if (S->isClassScope())
1323        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1324          R.setNamingClass(Record);
1325      return true;
1326    }
1327
1328    if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1329      // C++11 [class.friend]p11:
1330      //   If a friend declaration appears in a local class and the name
1331      //   specified is an unqualified name, a prior declaration is
1332      //   looked up without considering scopes that are outside the
1333      //   innermost enclosing non-class scope.
1334      return false;
1335    }
1336
1337    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1338        S->getParent() && !S->getParent()->isTemplateParamScope()) {
1339      // We've just searched the last template parameter scope and
1340      // found nothing, so look into the contexts between the
1341      // lexical and semantic declaration contexts returned by
1342      // findOuterContext(). This implements the name lookup behavior
1343      // of C++ [temp.local]p8.
1344      Ctx = OutsideOfTemplateParamDC;
1345      OutsideOfTemplateParamDC = nullptr;
1346    }
1347
1348    if (Ctx) {
1349      DeclContext *OuterCtx;
1350      bool SearchAfterTemplateScope;
1351      std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1352      if (SearchAfterTemplateScope)
1353        OutsideOfTemplateParamDC = OuterCtx;
1354
1355      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1356        // We do not directly look into transparent contexts, since
1357        // those entities will be found in the nearest enclosing
1358        // non-transparent context.
1359        if (Ctx->isTransparentContext())
1360          continue;
1361
1362        // We do not look directly into function or method contexts,
1363        // since all of the local variables and parameters of the
1364        // function/method are present within the Scope.
1365        if (Ctx->isFunctionOrMethod()) {
1366          // If we have an Objective-C instance method, look for ivars
1367          // in the corresponding interface.
1368          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1369            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1370              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1371                ObjCInterfaceDecl *ClassDeclared;
1372                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1373                                                 Name.getAsIdentifierInfo(),
1374                                                             ClassDeclared)) {
1375                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1376                    R.addDecl(ND);
1377                    R.resolveKind();
1378                    return true;
1379                  }
1380                }
1381              }
1382          }
1383
1384          continue;
1385        }
1386
1387        // If this is a file context, we need to perform unqualified name
1388        // lookup considering using directives.
1389        if (Ctx->isFileContext()) {
1390          // If we haven't handled using directives yet, do so now.
1391          if (!VisitedUsingDirectives) {
1392            // Add using directives from this context up to the top level.
1393            for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1394              if (UCtx->isTransparentContext())
1395                continue;
1396
1397              UDirs.visit(UCtx, UCtx);
1398            }
1399
1400            // Find the innermost file scope, so we can add using directives
1401            // from local scopes.
1402            Scope *InnermostFileScope = S;
1403            while (InnermostFileScope &&
1404                   !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1405              InnermostFileScope = InnermostFileScope->getParent();
1406            UDirs.visitScopeChain(Initial, InnermostFileScope);
1407
1408            UDirs.done();
1409
1410            VisitedUsingDirectives = true;
1411          }
1412
1413          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1414            R.resolveKind();
1415            return true;
1416          }
1417
1418          continue;
1419        }
1420
1421        // Perform qualified name lookup into this context.
1422        // FIXME: In some cases, we know that every name that could be found by
1423        // this qualified name lookup will also be on the identifier chain. For
1424        // example, inside a class without any base classes, we never need to
1425        // perform qualified lookup because all of the members are on top of the
1426        // identifier chain.
1427        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1428          return true;
1429      }
1430    }
1431  }
1432
1433  // Stop if we ran out of scopes.
1434  // FIXME:  This really, really shouldn't be happening.
1435  if (!S) return false;
1436
1437  // If we are looking for members, no need to look into global/namespace scope.
1438  if (NameKind == LookupMemberName)
1439    return false;
1440
1441  // Collect UsingDirectiveDecls in all scopes, and recursively all
1442  // nominated namespaces by those using-directives.
1443  //
1444  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1445  // don't build it for each lookup!
1446  if (!VisitedUsingDirectives) {
1447    UDirs.visitScopeChain(Initial, S);
1448    UDirs.done();
1449  }
1450
1451  // If we're not performing redeclaration lookup, do not look for local
1452  // extern declarations outside of a function scope.
1453  if (!R.isForRedeclaration())
1454    FindLocals.restore();
1455
1456  // Lookup namespace scope, and global scope.
1457  // Unqualified name lookup in C++ requires looking into scopes
1458  // that aren't strictly lexical, and therefore we walk through the
1459  // context as well as walking through the scopes.
1460  for (; S; S = S->getParent()) {
1461    // Check whether the IdResolver has anything in this scope.
1462    bool Found = false;
1463    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1464      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1465        // We found something.  Look for anything else in our scope
1466        // with this same name and in an acceptable identifier
1467        // namespace, so that we can construct an overload set if we
1468        // need to.
1469        Found = true;
1470        R.addDecl(ND);
1471      }
1472    }
1473
1474    if (Found && S->isTemplateParamScope()) {
1475      R.resolveKind();
1476      return true;
1477    }
1478
1479    DeclContext *Ctx = S->getEntity();
1480    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1481        S->getParent() && !S->getParent()->isTemplateParamScope()) {
1482      // We've just searched the last template parameter scope and
1483      // found nothing, so look into the contexts between the
1484      // lexical and semantic declaration contexts returned by
1485      // findOuterContext(). This implements the name lookup behavior
1486      // of C++ [temp.local]p8.
1487      Ctx = OutsideOfTemplateParamDC;
1488      OutsideOfTemplateParamDC = nullptr;
1489    }
1490
1491    if (Ctx) {
1492      DeclContext *OuterCtx;
1493      bool SearchAfterTemplateScope;
1494      std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1495      if (SearchAfterTemplateScope)
1496        OutsideOfTemplateParamDC = OuterCtx;
1497
1498      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1499        // We do not directly look into transparent contexts, since
1500        // those entities will be found in the nearest enclosing
1501        // non-transparent context.
1502        if (Ctx->isTransparentContext())
1503          continue;
1504
1505        // If we have a context, and it's not a context stashed in the
1506        // template parameter scope for an out-of-line definition, also
1507        // look into that context.
1508        if (!(Found && S->isTemplateParamScope())) {
1509          assert(Ctx->isFileContext() &&
1510              "We should have been looking only at file context here already.");
1511
1512          // Look into context considering using-directives.
1513          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1514            Found = true;
1515        }
1516
1517        if (Found) {
1518          R.resolveKind();
1519          return true;
1520        }
1521
1522        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1523          return false;
1524      }
1525    }
1526
1527    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1528      return false;
1529  }
1530
1531  return !R.empty();
1532}
1533
1534void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1535  if (auto *M = getCurrentModule())
1536    Context.mergeDefinitionIntoModule(ND, M);
1537  else
1538    // We're not building a module; just make the definition visible.
1539    ND->setVisibleDespiteOwningModule();
1540
1541  // If ND is a template declaration, make the template parameters
1542  // visible too. They're not (necessarily) within a mergeable DeclContext.
1543  if (auto *TD = dyn_cast<TemplateDecl>(ND))
1544    for (auto *Param : *TD->getTemplateParameters())
1545      makeMergedDefinitionVisible(Param);
1546}
1547
1548/// Find the module in which the given declaration was defined.
1549static Module *getDefiningModule(Sema &S, Decl *Entity) {
1550  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1551    // If this function was instantiated from a template, the defining module is
1552    // the module containing the pattern.
1553    if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1554      Entity = Pattern;
1555  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1556    if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1557      Entity = Pattern;
1558  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1559    if (auto *Pattern = ED->getTemplateInstantiationPattern())
1560      Entity = Pattern;
1561  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1562    if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1563      Entity = Pattern;
1564  }
1565
1566  // Walk up to the containing context. That might also have been instantiated
1567  // from a template.
1568  DeclContext *Context = Entity->getLexicalDeclContext();
1569  if (Context->isFileContext())
1570    return S.getOwningModule(Entity);
1571  return getDefiningModule(S, cast<Decl>(Context));
1572}
1573
1574llvm::DenseSet<Module*> &Sema::getLookupModules() {
1575  unsigned N = CodeSynthesisContexts.size();
1576  for (unsigned I = CodeSynthesisContextLookupModules.size();
1577       I != N; ++I) {
1578    Module *M = CodeSynthesisContexts[I].Entity ?
1579                getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1580                nullptr;
1581    if (M && !LookupModulesCache.insert(M).second)
1582      M = nullptr;
1583    CodeSynthesisContextLookupModules.push_back(M);
1584  }
1585  return LookupModulesCache;
1586}
1587
1588/// Determine whether the module M is part of the current module from the
1589/// perspective of a module-private visibility check.
1590static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1591  // If M is the global module fragment of a module that we've not yet finished
1592  // parsing, then it must be part of the current module.
1593  return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1594         (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1595}
1596
1597bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1598  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1599    if (isModuleVisible(Merged))
1600      return true;
1601  return false;
1602}
1603
1604bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1605  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1606    if (isInCurrentModule(Merged, getLangOpts()))
1607      return true;
1608  return false;
1609}
1610
1611template<typename ParmDecl>
1612static bool
1613hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1614                          llvm::SmallVectorImpl<Module *> *Modules) {
1615  if (!D->hasDefaultArgument())
1616    return false;
1617
1618  while (D) {
1619    auto &DefaultArg = D->getDefaultArgStorage();
1620    if (!DefaultArg.isInherited() && S.isVisible(D))
1621      return true;
1622
1623    if (!DefaultArg.isInherited() && Modules) {
1624      auto *NonConstD = const_cast<ParmDecl*>(D);
1625      Modules->push_back(S.getOwningModule(NonConstD));
1626    }
1627
1628    // If there was a previous default argument, maybe its parameter is visible.
1629    D = DefaultArg.getInheritedFrom();
1630  }
1631  return false;
1632}
1633
1634bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1635                                     llvm::SmallVectorImpl<Module *> *Modules) {
1636  if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1637    return ::hasVisibleDefaultArgument(*this, P, Modules);
1638  if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1639    return ::hasVisibleDefaultArgument(*this, P, Modules);
1640  return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1641                                     Modules);
1642}
1643
1644template<typename Filter>
1645static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1646                                      llvm::SmallVectorImpl<Module *> *Modules,
1647                                      Filter F) {
1648  bool HasFilteredRedecls = false;
1649
1650  for (auto *Redecl : D->redecls()) {
1651    auto *R = cast<NamedDecl>(Redecl);
1652    if (!F(R))
1653      continue;
1654
1655    if (S.isVisible(R))
1656      return true;
1657
1658    HasFilteredRedecls = true;
1659
1660    if (Modules)
1661      Modules->push_back(R->getOwningModule());
1662  }
1663
1664  // Only return false if there is at least one redecl that is not filtered out.
1665  if (HasFilteredRedecls)
1666    return false;
1667
1668  return true;
1669}
1670
1671bool Sema::hasVisibleExplicitSpecialization(
1672    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1673  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1674    if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1675      return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1676    if (auto *FD = dyn_cast<FunctionDecl>(D))
1677      return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1678    if (auto *VD = dyn_cast<VarDecl>(D))
1679      return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1680    llvm_unreachable("unknown explicit specialization kind");
1681  });
1682}
1683
1684bool Sema::hasVisibleMemberSpecialization(
1685    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1686  assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1687         "not a member specialization");
1688  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1689    // If the specialization is declared at namespace scope, then it's a member
1690    // specialization declaration. If it's lexically inside the class
1691    // definition then it was instantiated.
1692    //
1693    // FIXME: This is a hack. There should be a better way to determine this.
1694    // FIXME: What about MS-style explicit specializations declared within a
1695    //        class definition?
1696    return D->getLexicalDeclContext()->isFileContext();
1697  });
1698}
1699
1700/// Determine whether a declaration is visible to name lookup.
1701///
1702/// This routine determines whether the declaration D is visible in the current
1703/// lookup context, taking into account the current template instantiation
1704/// stack. During template instantiation, a declaration is visible if it is
1705/// visible from a module containing any entity on the template instantiation
1706/// path (by instantiating a template, you allow it to see the declarations that
1707/// your module can see, including those later on in your module).
1708bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1709  assert(D->isHidden() && "should not call this: not in slow case");
1710
1711  Module *DeclModule = SemaRef.getOwningModule(D);
1712  assert(DeclModule && "hidden decl has no owning module");
1713
1714  // If the owning module is visible, the decl is visible.
1715  if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1716    return true;
1717
1718  // Determine whether a decl context is a file context for the purpose of
1719  // visibility. This looks through some (export and linkage spec) transparent
1720  // contexts, but not others (enums).
1721  auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1722    return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1723           isa<ExportDecl>(DC);
1724  };
1725
1726  // If this declaration is not at namespace scope
1727  // then it is visible if its lexical parent has a visible definition.
1728  DeclContext *DC = D->getLexicalDeclContext();
1729  if (DC && !IsEffectivelyFileContext(DC)) {
1730    // For a parameter, check whether our current template declaration's
1731    // lexical context is visible, not whether there's some other visible
1732    // definition of it, because parameters aren't "within" the definition.
1733    //
1734    // In C++ we need to check for a visible definition due to ODR merging,
1735    // and in C we must not because each declaration of a function gets its own
1736    // set of declarations for tags in prototype scope.
1737    bool VisibleWithinParent;
1738    if (D->isTemplateParameter()) {
1739      bool SearchDefinitions = true;
1740      if (const auto *DCD = dyn_cast<Decl>(DC)) {
1741        if (const auto *TD = DCD->getDescribedTemplate()) {
1742          TemplateParameterList *TPL = TD->getTemplateParameters();
1743          auto Index = getDepthAndIndex(D).second;
1744          SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1745        }
1746      }
1747      if (SearchDefinitions)
1748        VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1749      else
1750        VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1751    } else if (isa<ParmVarDecl>(D) ||
1752               (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1753      VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1754    else if (D->isModulePrivate()) {
1755      // A module-private declaration is only visible if an enclosing lexical
1756      // parent was merged with another definition in the current module.
1757      VisibleWithinParent = false;
1758      do {
1759        if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1760          VisibleWithinParent = true;
1761          break;
1762        }
1763        DC = DC->getLexicalParent();
1764      } while (!IsEffectivelyFileContext(DC));
1765    } else {
1766      VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1767    }
1768
1769    if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1770        // FIXME: Do something better in this case.
1771        !SemaRef.getLangOpts().ModulesLocalVisibility) {
1772      // Cache the fact that this declaration is implicitly visible because
1773      // its parent has a visible definition.
1774      D->setVisibleDespiteOwningModule();
1775    }
1776    return VisibleWithinParent;
1777  }
1778
1779  return false;
1780}
1781
1782bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1783  // The module might be ordinarily visible. For a module-private query, that
1784  // means it is part of the current module. For any other query, that means it
1785  // is in our visible module set.
1786  if (ModulePrivate) {
1787    if (isInCurrentModule(M, getLangOpts()))
1788      return true;
1789  } else {
1790    if (VisibleModules.isVisible(M))
1791      return true;
1792  }
1793
1794  // Otherwise, it might be visible by virtue of the query being within a
1795  // template instantiation or similar that is permitted to look inside M.
1796
1797  // Find the extra places where we need to look.
1798  const auto &LookupModules = getLookupModules();
1799  if (LookupModules.empty())
1800    return false;
1801
1802  // If our lookup set contains the module, it's visible.
1803  if (LookupModules.count(M))
1804    return true;
1805
1806  // For a module-private query, that's everywhere we get to look.
1807  if (ModulePrivate)
1808    return false;
1809
1810  // Check whether M is transitively exported to an import of the lookup set.
1811  return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1812    return LookupM->isModuleVisible(M);
1813  });
1814}
1815
1816bool Sema::isVisibleSlow(const NamedDecl *D) {
1817  return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1818}
1819
1820bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1821  // FIXME: If there are both visible and hidden declarations, we need to take
1822  // into account whether redeclaration is possible. Example:
1823  //
1824  // Non-imported module:
1825  //   int f(T);        // #1
1826  // Some TU:
1827  //   static int f(U); // #2, not a redeclaration of #1
1828  //   int f(T);        // #3, finds both, should link with #1 if T != U, but
1829  //                    // with #2 if T == U; neither should be ambiguous.
1830  for (auto *D : R) {
1831    if (isVisible(D))
1832      return true;
1833    assert(D->isExternallyDeclarable() &&
1834           "should not have hidden, non-externally-declarable result here");
1835  }
1836
1837  // This function is called once "New" is essentially complete, but before a
1838  // previous declaration is attached. We can't query the linkage of "New" in
1839  // general, because attaching the previous declaration can change the
1840  // linkage of New to match the previous declaration.
1841  //
1842  // However, because we've just determined that there is no *visible* prior
1843  // declaration, we can compute the linkage here. There are two possibilities:
1844  //
1845  //  * This is not a redeclaration; it's safe to compute the linkage now.
1846  //
1847  //  * This is a redeclaration of a prior declaration that is externally
1848  //    redeclarable. In that case, the linkage of the declaration is not
1849  //    changed by attaching the prior declaration, because both are externally
1850  //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
1851  //
1852  // FIXME: This is subtle and fragile.
1853  return New->isExternallyDeclarable();
1854}
1855
1856/// Retrieve the visible declaration corresponding to D, if any.
1857///
1858/// This routine determines whether the declaration D is visible in the current
1859/// module, with the current imports. If not, it checks whether any
1860/// redeclaration of D is visible, and if so, returns that declaration.
1861///
1862/// \returns D, or a visible previous declaration of D, whichever is more recent
1863/// and visible. If no declaration of D is visible, returns null.
1864static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1865                                     unsigned IDNS) {
1866  assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1867
1868  for (auto RD : D->redecls()) {
1869    // Don't bother with extra checks if we already know this one isn't visible.
1870    if (RD == D)
1871      continue;
1872
1873    auto ND = cast<NamedDecl>(RD);
1874    // FIXME: This is wrong in the case where the previous declaration is not
1875    // visible in the same scope as D. This needs to be done much more
1876    // carefully.
1877    if (ND->isInIdentifierNamespace(IDNS) &&
1878        LookupResult::isVisible(SemaRef, ND))
1879      return ND;
1880  }
1881
1882  return nullptr;
1883}
1884
1885bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1886                                     llvm::SmallVectorImpl<Module *> *Modules) {
1887  assert(!isVisible(D) && "not in slow case");
1888  return hasVisibleDeclarationImpl(*this, D, Modules,
1889                                   [](const NamedDecl *) { return true; });
1890}
1891
1892NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1893  if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1894    // Namespaces are a bit of a special case: we expect there to be a lot of
1895    // redeclarations of some namespaces, all declarations of a namespace are
1896    // essentially interchangeable, all declarations are found by name lookup
1897    // if any is, and namespaces are never looked up during template
1898    // instantiation. So we benefit from caching the check in this case, and
1899    // it is correct to do so.
1900    auto *Key = ND->getCanonicalDecl();
1901    if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1902      return Acceptable;
1903    auto *Acceptable = isVisible(getSema(), Key)
1904                           ? Key
1905                           : findAcceptableDecl(getSema(), Key, IDNS);
1906    if (Acceptable)
1907      getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1908    return Acceptable;
1909  }
1910
1911  return findAcceptableDecl(getSema(), D, IDNS);
1912}
1913
1914/// Perform unqualified name lookup starting from a given
1915/// scope.
1916///
1917/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1918/// used to find names within the current scope. For example, 'x' in
1919/// @code
1920/// int x;
1921/// int f() {
1922///   return x; // unqualified name look finds 'x' in the global scope
1923/// }
1924/// @endcode
1925///
1926/// Different lookup criteria can find different names. For example, a
1927/// particular scope can have both a struct and a function of the same
1928/// name, and each can be found by certain lookup criteria. For more
1929/// information about lookup criteria, see the documentation for the
1930/// class LookupCriteria.
1931///
1932/// @param S        The scope from which unqualified name lookup will
1933/// begin. If the lookup criteria permits, name lookup may also search
1934/// in the parent scopes.
1935///
1936/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1937/// look up and the lookup kind), and is updated with the results of lookup
1938/// including zero or more declarations and possibly additional information
1939/// used to diagnose ambiguities.
1940///
1941/// @returns \c true if lookup succeeded and false otherwise.
1942bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1943  DeclarationName Name = R.getLookupName();
1944  if (!Name) return false;
1945
1946  LookupNameKind NameKind = R.getLookupKind();
1947
1948  if (!getLangOpts().CPlusPlus) {
1949    // Unqualified name lookup in C/Objective-C is purely lexical, so
1950    // search in the declarations attached to the name.
1951    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1952      // Find the nearest non-transparent declaration scope.
1953      while (!(S->getFlags() & Scope::DeclScope) ||
1954             (S->getEntity() && S->getEntity()->isTransparentContext()))
1955        S = S->getParent();
1956    }
1957
1958    // When performing a scope lookup, we want to find local extern decls.
1959    FindLocalExternScope FindLocals(R);
1960
1961    // Scan up the scope chain looking for a decl that matches this
1962    // identifier that is in the appropriate namespace.  This search
1963    // should not take long, as shadowing of names is uncommon, and
1964    // deep shadowing is extremely uncommon.
1965    bool LeftStartingScope = false;
1966
1967    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1968                                   IEnd = IdResolver.end();
1969         I != IEnd; ++I)
1970      if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1971        if (NameKind == LookupRedeclarationWithLinkage) {
1972          // Determine whether this (or a previous) declaration is
1973          // out-of-scope.
1974          if (!LeftStartingScope && !S->isDeclScope(*I))
1975            LeftStartingScope = true;
1976
1977          // If we found something outside of our starting scope that
1978          // does not have linkage, skip it.
1979          if (LeftStartingScope && !((*I)->hasLinkage())) {
1980            R.setShadowed();
1981            continue;
1982          }
1983        }
1984        else if (NameKind == LookupObjCImplicitSelfParam &&
1985                 !isa<ImplicitParamDecl>(*I))
1986          continue;
1987
1988        R.addDecl(D);
1989
1990        // Check whether there are any other declarations with the same name
1991        // and in the same scope.
1992        if (I != IEnd) {
1993          // Find the scope in which this declaration was declared (if it
1994          // actually exists in a Scope).
1995          while (S && !S->isDeclScope(D))
1996            S = S->getParent();
1997
1998          // If the scope containing the declaration is the translation unit,
1999          // then we'll need to perform our checks based on the matching
2000          // DeclContexts rather than matching scopes.
2001          if (S && isNamespaceOrTranslationUnitScope(S))
2002            S = nullptr;
2003
2004          // Compute the DeclContext, if we need it.
2005          DeclContext *DC = nullptr;
2006          if (!S)
2007            DC = (*I)->getDeclContext()->getRedeclContext();
2008
2009          IdentifierResolver::iterator LastI = I;
2010          for (++LastI; LastI != IEnd; ++LastI) {
2011            if (S) {
2012              // Match based on scope.
2013              if (!S->isDeclScope(*LastI))
2014                break;
2015            } else {
2016              // Match based on DeclContext.
2017              DeclContext *LastDC
2018                = (*LastI)->getDeclContext()->getRedeclContext();
2019              if (!LastDC->Equals(DC))
2020                break;
2021            }
2022
2023            // If the declaration is in the right namespace and visible, add it.
2024            if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2025              R.addDecl(LastD);
2026          }
2027
2028          R.resolveKind();
2029        }
2030
2031        return true;
2032      }
2033  } else {
2034    // Perform C++ unqualified name lookup.
2035    if (CppLookupName(R, S))
2036      return true;
2037  }
2038
2039  // If we didn't find a use of this identifier, and if the identifier
2040  // corresponds to a compiler builtin, create the decl object for the builtin
2041  // now, injecting it into translation unit scope, and return it.
2042  if (AllowBuiltinCreation && LookupBuiltin(R))
2043    return true;
2044
2045  // If we didn't find a use of this identifier, the ExternalSource
2046  // may be able to handle the situation.
2047  // Note: some lookup failures are expected!
2048  // See e.g. R.isForRedeclaration().
2049  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2050}
2051
2052/// Perform qualified name lookup in the namespaces nominated by
2053/// using directives by the given context.
2054///
2055/// C++98 [namespace.qual]p2:
2056///   Given X::m (where X is a user-declared namespace), or given \::m
2057///   (where X is the global namespace), let S be the set of all
2058///   declarations of m in X and in the transitive closure of all
2059///   namespaces nominated by using-directives in X and its used
2060///   namespaces, except that using-directives are ignored in any
2061///   namespace, including X, directly containing one or more
2062///   declarations of m. No namespace is searched more than once in
2063///   the lookup of a name. If S is the empty set, the program is
2064///   ill-formed. Otherwise, if S has exactly one member, or if the
2065///   context of the reference is a using-declaration
2066///   (namespace.udecl), S is the required set of declarations of
2067///   m. Otherwise if the use of m is not one that allows a unique
2068///   declaration to be chosen from S, the program is ill-formed.
2069///
2070/// C++98 [namespace.qual]p5:
2071///   During the lookup of a qualified namespace member name, if the
2072///   lookup finds more than one declaration of the member, and if one
2073///   declaration introduces a class name or enumeration name and the
2074///   other declarations either introduce the same object, the same
2075///   enumerator or a set of functions, the non-type name hides the
2076///   class or enumeration name if and only if the declarations are
2077///   from the same namespace; otherwise (the declarations are from
2078///   different namespaces), the program is ill-formed.
2079static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2080                                                 DeclContext *StartDC) {
2081  assert(StartDC->isFileContext() && "start context is not a file context");
2082
2083  // We have not yet looked into these namespaces, much less added
2084  // their "using-children" to the queue.
2085  SmallVector<NamespaceDecl*, 8> Queue;
2086
2087  // We have at least added all these contexts to the queue.
2088  llvm::SmallPtrSet<DeclContext*, 8> Visited;
2089  Visited.insert(StartDC);
2090
2091  // We have already looked into the initial namespace; seed the queue
2092  // with its using-children.
2093  for (auto *I : StartDC->using_directives()) {
2094    NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2095    if (S.isVisible(I) && Visited.insert(ND).second)
2096      Queue.push_back(ND);
2097  }
2098
2099  // The easiest way to implement the restriction in [namespace.qual]p5
2100  // is to check whether any of the individual results found a tag
2101  // and, if so, to declare an ambiguity if the final result is not
2102  // a tag.
2103  bool FoundTag = false;
2104  bool FoundNonTag = false;
2105
2106  LookupResult LocalR(LookupResult::Temporary, R);
2107
2108  bool Found = false;
2109  while (!Queue.empty()) {
2110    NamespaceDecl *ND = Queue.pop_back_val();
2111
2112    // We go through some convolutions here to avoid copying results
2113    // between LookupResults.
2114    bool UseLocal = !R.empty();
2115    LookupResult &DirectR = UseLocal ? LocalR : R;
2116    bool FoundDirect = LookupDirect(S, DirectR, ND);
2117
2118    if (FoundDirect) {
2119      // First do any local hiding.
2120      DirectR.resolveKind();
2121
2122      // If the local result is a tag, remember that.
2123      if (DirectR.isSingleTagDecl())
2124        FoundTag = true;
2125      else
2126        FoundNonTag = true;
2127
2128      // Append the local results to the total results if necessary.
2129      if (UseLocal) {
2130        R.addAllDecls(LocalR);
2131        LocalR.clear();
2132      }
2133    }
2134
2135    // If we find names in this namespace, ignore its using directives.
2136    if (FoundDirect) {
2137      Found = true;
2138      continue;
2139    }
2140
2141    for (auto I : ND->using_directives()) {
2142      NamespaceDecl *Nom = I->getNominatedNamespace();
2143      if (S.isVisible(I) && Visited.insert(Nom).second)
2144        Queue.push_back(Nom);
2145    }
2146  }
2147
2148  if (Found) {
2149    if (FoundTag && FoundNonTag)
2150      R.setAmbiguousQualifiedTagHiding();
2151    else
2152      R.resolveKind();
2153  }
2154
2155  return Found;
2156}
2157
2158/// Callback that looks for any member of a class with the given name.
2159static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
2160                            CXXBasePath &Path, DeclarationName Name) {
2161  RecordDecl *BaseRecord = Specifier->getType()->castAs<RecordType>()->getDecl();
2162
2163  Path.Decls = BaseRecord->lookup(Name);
2164  return !Path.Decls.empty();
2165}
2166
2167/// Determine whether the given set of member declarations contains only
2168/// static members, nested types, and enumerators.
2169template<typename InputIterator>
2170static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
2171  Decl *D = (*First)->getUnderlyingDecl();
2172  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
2173    return true;
2174
2175  if (isa<CXXMethodDecl>(D)) {
2176    // Determine whether all of the methods are static.
2177    bool AllMethodsAreStatic = true;
2178    for(; First != Last; ++First) {
2179      D = (*First)->getUnderlyingDecl();
2180
2181      if (!isa<CXXMethodDecl>(D)) {
2182        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
2183        break;
2184      }
2185
2186      if (!cast<CXXMethodDecl>(D)->isStatic()) {
2187        AllMethodsAreStatic = false;
2188        break;
2189      }
2190    }
2191
2192    if (AllMethodsAreStatic)
2193      return true;
2194  }
2195
2196  return false;
2197}
2198
2199/// Perform qualified name lookup into a given context.
2200///
2201/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2202/// names when the context of those names is explicit specified, e.g.,
2203/// "std::vector" or "x->member", or as part of unqualified name lookup.
2204///
2205/// Different lookup criteria can find different names. For example, a
2206/// particular scope can have both a struct and a function of the same
2207/// name, and each can be found by certain lookup criteria. For more
2208/// information about lookup criteria, see the documentation for the
2209/// class LookupCriteria.
2210///
2211/// \param R captures both the lookup criteria and any lookup results found.
2212///
2213/// \param LookupCtx The context in which qualified name lookup will
2214/// search. If the lookup criteria permits, name lookup may also search
2215/// in the parent contexts or (for C++ classes) base classes.
2216///
2217/// \param InUnqualifiedLookup true if this is qualified name lookup that
2218/// occurs as part of unqualified name lookup.
2219///
2220/// \returns true if lookup succeeded, false if it failed.
2221bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2222                               bool InUnqualifiedLookup) {
2223  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2224
2225  if (!R.getLookupName())
2226    return false;
2227
2228  // Make sure that the declaration context is complete.
2229  assert((!isa<TagDecl>(LookupCtx) ||
2230          LookupCtx->isDependentContext() ||
2231          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2232          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2233         "Declaration context must already be complete!");
2234
2235  struct QualifiedLookupInScope {
2236    bool oldVal;
2237    DeclContext *Context;
2238    // Set flag in DeclContext informing debugger that we're looking for qualified name
2239    QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2240      oldVal = ctx->setUseQualifiedLookup();
2241    }
2242    ~QualifiedLookupInScope() {
2243      Context->setUseQualifiedLookup(oldVal);
2244    }
2245  } QL(LookupCtx);
2246
2247  if (LookupDirect(*this, R, LookupCtx)) {
2248    R.resolveKind();
2249    if (isa<CXXRecordDecl>(LookupCtx))
2250      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2251    return true;
2252  }
2253
2254  // Don't descend into implied contexts for redeclarations.
2255  // C++98 [namespace.qual]p6:
2256  //   In a declaration for a namespace member in which the
2257  //   declarator-id is a qualified-id, given that the qualified-id
2258  //   for the namespace member has the form
2259  //     nested-name-specifier unqualified-id
2260  //   the unqualified-id shall name a member of the namespace
2261  //   designated by the nested-name-specifier.
2262  // See also [class.mfct]p5 and [class.static.data]p2.
2263  if (R.isForRedeclaration())
2264    return false;
2265
2266  // If this is a namespace, look it up in the implied namespaces.
2267  if (LookupCtx->isFileContext())
2268    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2269
2270  // If this isn't a C++ class, we aren't allowed to look into base
2271  // classes, we're done.
2272  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2273  if (!LookupRec || !LookupRec->getDefinition())
2274    return false;
2275
2276  // If we're performing qualified name lookup into a dependent class,
2277  // then we are actually looking into a current instantiation. If we have any
2278  // dependent base classes, then we either have to delay lookup until
2279  // template instantiation time (at which point all bases will be available)
2280  // or we have to fail.
2281  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2282      LookupRec->hasAnyDependentBases()) {
2283    R.setNotFoundInCurrentInstantiation();
2284    return false;
2285  }
2286
2287  // Perform lookup into our base classes.
2288  CXXBasePaths Paths;
2289  Paths.setOrigin(LookupRec);
2290
2291  // Look for this member in our base classes
2292  bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2293                       DeclarationName Name) = nullptr;
2294  switch (R.getLookupKind()) {
2295    case LookupObjCImplicitSelfParam:
2296    case LookupOrdinaryName:
2297    case LookupMemberName:
2298    case LookupRedeclarationWithLinkage:
2299    case LookupLocalFriendName:
2300      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2301      break;
2302
2303    case LookupTagName:
2304      BaseCallback = &CXXRecordDecl::FindTagMember;
2305      break;
2306
2307    case LookupAnyName:
2308      BaseCallback = &LookupAnyMember;
2309      break;
2310
2311    case LookupOMPReductionName:
2312      BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2313      break;
2314
2315    case LookupOMPMapperName:
2316      BaseCallback = &CXXRecordDecl::FindOMPMapperMember;
2317      break;
2318
2319    case LookupUsingDeclName:
2320      // This lookup is for redeclarations only.
2321
2322    case LookupOperatorName:
2323    case LookupNamespaceName:
2324    case LookupObjCProtocolName:
2325    case LookupLabel:
2326      // These lookups will never find a member in a C++ class (or base class).
2327      return false;
2328
2329    case LookupNestedNameSpecifierName:
2330      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2331      break;
2332  }
2333
2334  DeclarationName Name = R.getLookupName();
2335  if (!LookupRec->lookupInBases(
2336          [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2337            return BaseCallback(Specifier, Path, Name);
2338          },
2339          Paths))
2340    return false;
2341
2342  R.setNamingClass(LookupRec);
2343
2344  // C++ [class.member.lookup]p2:
2345  //   [...] If the resulting set of declarations are not all from
2346  //   sub-objects of the same type, or the set has a nonstatic member
2347  //   and includes members from distinct sub-objects, there is an
2348  //   ambiguity and the program is ill-formed. Otherwise that set is
2349  //   the result of the lookup.
2350  QualType SubobjectType;
2351  int SubobjectNumber = 0;
2352  AccessSpecifier SubobjectAccess = AS_none;
2353
2354  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2355       Path != PathEnd; ++Path) {
2356    const CXXBasePathElement &PathElement = Path->back();
2357
2358    // Pick the best (i.e. most permissive i.e. numerically lowest) access
2359    // across all paths.
2360    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2361
2362    // Determine whether we're looking at a distinct sub-object or not.
2363    if (SubobjectType.isNull()) {
2364      // This is the first subobject we've looked at. Record its type.
2365      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2366      SubobjectNumber = PathElement.SubobjectNumber;
2367      continue;
2368    }
2369
2370    if (SubobjectType
2371                 != Context.getCanonicalType(PathElement.Base->getType())) {
2372      // We found members of the given name in two subobjects of
2373      // different types. If the declaration sets aren't the same, this
2374      // lookup is ambiguous.
2375      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2376        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2377        DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2378        DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2379
2380        // Get the decl that we should use for deduplicating this lookup.
2381        auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * {
2382          // C++ [temp.local]p3:
2383          //   A lookup that finds an injected-class-name (10.2) can result in
2384          //   an ambiguity in certain cases (for example, if it is found in
2385          //   more than one base class). If all of the injected-class-names
2386          //   that are found refer to specializations of the same class
2387          //   template, and if the name is used as a template-name, the
2388          //   reference refers to the class template itself and not a
2389          //   specialization thereof, and is not ambiguous.
2390          if (R.isTemplateNameLookup())
2391            if (auto *TD = getAsTemplateNameDecl(D))
2392              D = TD;
2393          return D->getUnderlyingDecl()->getCanonicalDecl();
2394        };
2395
2396        while (FirstD != FirstPath->Decls.end() &&
2397               CurrentD != Path->Decls.end()) {
2398          if (GetRepresentativeDecl(*FirstD) !=
2399              GetRepresentativeDecl(*CurrentD))
2400            break;
2401
2402          ++FirstD;
2403          ++CurrentD;
2404        }
2405
2406        if (FirstD == FirstPath->Decls.end() &&
2407            CurrentD == Path->Decls.end())
2408          continue;
2409      }
2410
2411      R.setAmbiguousBaseSubobjectTypes(Paths);
2412      return true;
2413    }
2414
2415    if (SubobjectNumber != PathElement.SubobjectNumber) {
2416      // We have a different subobject of the same type.
2417
2418      // C++ [class.member.lookup]p5:
2419      //   A static member, a nested type or an enumerator defined in
2420      //   a base class T can unambiguously be found even if an object
2421      //   has more than one base class subobject of type T.
2422      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2423        continue;
2424
2425      // We have found a nonstatic member name in multiple, distinct
2426      // subobjects. Name lookup is ambiguous.
2427      R.setAmbiguousBaseSubobjects(Paths);
2428      return true;
2429    }
2430  }
2431
2432  // Lookup in a base class succeeded; return these results.
2433
2434  for (auto *D : Paths.front().Decls) {
2435    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2436                                                    D->getAccess());
2437    R.addDecl(D, AS);
2438  }
2439  R.resolveKind();
2440  return true;
2441}
2442
2443/// Performs qualified name lookup or special type of lookup for
2444/// "__super::" scope specifier.
2445///
2446/// This routine is a convenience overload meant to be called from contexts
2447/// that need to perform a qualified name lookup with an optional C++ scope
2448/// specifier that might require special kind of lookup.
2449///
2450/// \param R captures both the lookup criteria and any lookup results found.
2451///
2452/// \param LookupCtx The context in which qualified name lookup will
2453/// search.
2454///
2455/// \param SS An optional C++ scope-specifier.
2456///
2457/// \returns true if lookup succeeded, false if it failed.
2458bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2459                               CXXScopeSpec &SS) {
2460  auto *NNS = SS.getScopeRep();
2461  if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2462    return LookupInSuper(R, NNS->getAsRecordDecl());
2463  else
2464
2465    return LookupQualifiedName(R, LookupCtx);
2466}
2467
2468/// Performs name lookup for a name that was parsed in the
2469/// source code, and may contain a C++ scope specifier.
2470///
2471/// This routine is a convenience routine meant to be called from
2472/// contexts that receive a name and an optional C++ scope specifier
2473/// (e.g., "N::M::x"). It will then perform either qualified or
2474/// unqualified name lookup (with LookupQualifiedName or LookupName,
2475/// respectively) on the given name and return those results. It will
2476/// perform a special type of lookup for "__super::" scope specifier.
2477///
2478/// @param S        The scope from which unqualified name lookup will
2479/// begin.
2480///
2481/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2482///
2483/// @param EnteringContext Indicates whether we are going to enter the
2484/// context of the scope-specifier SS (if present).
2485///
2486/// @returns True if any decls were found (but possibly ambiguous)
2487bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2488                            bool AllowBuiltinCreation, bool EnteringContext) {
2489  if (SS && SS->isInvalid()) {
2490    // When the scope specifier is invalid, don't even look for
2491    // anything.
2492    return false;
2493  }
2494
2495  if (SS && SS->isSet()) {
2496    NestedNameSpecifier *NNS = SS->getScopeRep();
2497    if (NNS->getKind() == NestedNameSpecifier::Super)
2498      return LookupInSuper(R, NNS->getAsRecordDecl());
2499
2500    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2501      // We have resolved the scope specifier to a particular declaration
2502      // contex, and will perform name lookup in that context.
2503      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2504        return false;
2505
2506      R.setContextRange(SS->getRange());
2507      return LookupQualifiedName(R, DC);
2508    }
2509
2510    // We could not resolve the scope specified to a specific declaration
2511    // context, which means that SS refers to an unknown specialization.
2512    // Name lookup can't find anything in this case.
2513    R.setNotFoundInCurrentInstantiation();
2514    R.setContextRange(SS->getRange());
2515    return false;
2516  }
2517
2518  // Perform unqualified name lookup starting in the given scope.
2519  return LookupName(R, S, AllowBuiltinCreation);
2520}
2521
2522/// Perform qualified name lookup into all base classes of the given
2523/// class.
2524///
2525/// \param R captures both the lookup criteria and any lookup results found.
2526///
2527/// \param Class The context in which qualified name lookup will
2528/// search. Name lookup will search in all base classes merging the results.
2529///
2530/// @returns True if any decls were found (but possibly ambiguous)
2531bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2532  // The access-control rules we use here are essentially the rules for
2533  // doing a lookup in Class that just magically skipped the direct
2534  // members of Class itself.  That is, the naming class is Class, and the
2535  // access includes the access of the base.
2536  for (const auto &BaseSpec : Class->bases()) {
2537    CXXRecordDecl *RD = cast<CXXRecordDecl>(
2538        BaseSpec.getType()->castAs<RecordType>()->getDecl());
2539    LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2540    Result.setBaseObjectType(Context.getRecordType(Class));
2541    LookupQualifiedName(Result, RD);
2542
2543    // Copy the lookup results into the target, merging the base's access into
2544    // the path access.
2545    for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2546      R.addDecl(I.getDecl(),
2547                CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2548                                           I.getAccess()));
2549    }
2550
2551    Result.suppressDiagnostics();
2552  }
2553
2554  R.resolveKind();
2555  R.setNamingClass(Class);
2556
2557  return !R.empty();
2558}
2559
2560/// Produce a diagnostic describing the ambiguity that resulted
2561/// from name lookup.
2562///
2563/// \param Result The result of the ambiguous lookup to be diagnosed.
2564void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2565  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2566
2567  DeclarationName Name = Result.getLookupName();
2568  SourceLocation NameLoc = Result.getNameLoc();
2569  SourceRange LookupRange = Result.getContextRange();
2570
2571  switch (Result.getAmbiguityKind()) {
2572  case LookupResult::AmbiguousBaseSubobjects: {
2573    CXXBasePaths *Paths = Result.getBasePaths();
2574    QualType SubobjectType = Paths->front().back().Base->getType();
2575    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2576      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2577      << LookupRange;
2578
2579    DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2580    while (isa<CXXMethodDecl>(*Found) &&
2581           cast<CXXMethodDecl>(*Found)->isStatic())
2582      ++Found;
2583
2584    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2585    break;
2586  }
2587
2588  case LookupResult::AmbiguousBaseSubobjectTypes: {
2589    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2590      << Name << LookupRange;
2591
2592    CXXBasePaths *Paths = Result.getBasePaths();
2593    std::set<Decl *> DeclsPrinted;
2594    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2595                                      PathEnd = Paths->end();
2596         Path != PathEnd; ++Path) {
2597      Decl *D = Path->Decls.front();
2598      if (DeclsPrinted.insert(D).second)
2599        Diag(D->getLocation(), diag::note_ambiguous_member_found);
2600    }
2601    break;
2602  }
2603
2604  case LookupResult::AmbiguousTagHiding: {
2605    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2606
2607    llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2608
2609    for (auto *D : Result)
2610      if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2611        TagDecls.insert(TD);
2612        Diag(TD->getLocation(), diag::note_hidden_tag);
2613      }
2614
2615    for (auto *D : Result)
2616      if (!isa<TagDecl>(D))
2617        Diag(D->getLocation(), diag::note_hiding_object);
2618
2619    // For recovery purposes, go ahead and implement the hiding.
2620    LookupResult::Filter F = Result.makeFilter();
2621    while (F.hasNext()) {
2622      if (TagDecls.count(F.next()))
2623        F.erase();
2624    }
2625    F.done();
2626    break;
2627  }
2628
2629  case LookupResult::AmbiguousReference: {
2630    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2631
2632    for (auto *D : Result)
2633      Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2634    break;
2635  }
2636  }
2637}
2638
2639namespace {
2640  struct AssociatedLookup {
2641    AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2642                     Sema::AssociatedNamespaceSet &Namespaces,
2643                     Sema::AssociatedClassSet &Classes)
2644      : S(S), Namespaces(Namespaces), Classes(Classes),
2645        InstantiationLoc(InstantiationLoc) {
2646    }
2647
2648    bool addClassTransitive(CXXRecordDecl *RD) {
2649      Classes.insert(RD);
2650      return ClassesTransitive.insert(RD);
2651    }
2652
2653    Sema &S;
2654    Sema::AssociatedNamespaceSet &Namespaces;
2655    Sema::AssociatedClassSet &Classes;
2656    SourceLocation InstantiationLoc;
2657
2658  private:
2659    Sema::AssociatedClassSet ClassesTransitive;
2660  };
2661} // end anonymous namespace
2662
2663static void
2664addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2665
2666// Given the declaration context \param Ctx of a class, class template or
2667// enumeration, add the associated namespaces to \param Namespaces as described
2668// in [basic.lookup.argdep]p2.
2669static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2670                                      DeclContext *Ctx) {
2671  // The exact wording has been changed in C++14 as a result of
2672  // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2673  // to all language versions since it is possible to return a local type
2674  // from a lambda in C++11.
2675  //
2676  // C++14 [basic.lookup.argdep]p2:
2677  //   If T is a class type [...]. Its associated namespaces are the innermost
2678  //   enclosing namespaces of its associated classes. [...]
2679  //
2680  //   If T is an enumeration type, its associated namespace is the innermost
2681  //   enclosing namespace of its declaration. [...]
2682
2683  // We additionally skip inline namespaces. The innermost non-inline namespace
2684  // contains all names of all its nested inline namespaces anyway, so we can
2685  // replace the entire inline namespace tree with its root.
2686  while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2687    Ctx = Ctx->getParent();
2688
2689  Namespaces.insert(Ctx->getPrimaryContext());
2690}
2691
2692// Add the associated classes and namespaces for argument-dependent
2693// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2694static void
2695addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2696                                  const TemplateArgument &Arg) {
2697  // C++ [basic.lookup.argdep]p2, last bullet:
2698  //   -- [...] ;
2699  switch (Arg.getKind()) {
2700    case TemplateArgument::Null:
2701      break;
2702
2703    case TemplateArgument::Type:
2704      // [...] the namespaces and classes associated with the types of the
2705      // template arguments provided for template type parameters (excluding
2706      // template template parameters)
2707      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2708      break;
2709
2710    case TemplateArgument::Template:
2711    case TemplateArgument::TemplateExpansion: {
2712      // [...] the namespaces in which any template template arguments are
2713      // defined; and the classes in which any member templates used as
2714      // template template arguments are defined.
2715      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2716      if (ClassTemplateDecl *ClassTemplate
2717                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2718        DeclContext *Ctx = ClassTemplate->getDeclContext();
2719        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2720          Result.Classes.insert(EnclosingClass);
2721        // Add the associated namespace for this class.
2722        CollectEnclosingNamespace(Result.Namespaces, Ctx);
2723      }
2724      break;
2725    }
2726
2727    case TemplateArgument::Declaration:
2728    case TemplateArgument::Integral:
2729    case TemplateArgument::Expression:
2730    case TemplateArgument::NullPtr:
2731      // [Note: non-type template arguments do not contribute to the set of
2732      //  associated namespaces. ]
2733      break;
2734
2735    case TemplateArgument::Pack:
2736      for (const auto &P : Arg.pack_elements())
2737        addAssociatedClassesAndNamespaces(Result, P);
2738      break;
2739  }
2740}
2741
2742// Add the associated classes and namespaces for argument-dependent lookup
2743// with an argument of class type (C++ [basic.lookup.argdep]p2).
2744static void
2745addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2746                                  CXXRecordDecl *Class) {
2747
2748  // Just silently ignore anything whose name is __va_list_tag.
2749  if (Class->getDeclName() == Result.S.VAListTagName)
2750    return;
2751
2752  // C++ [basic.lookup.argdep]p2:
2753  //   [...]
2754  //     -- If T is a class type (including unions), its associated
2755  //        classes are: the class itself; the class of which it is a
2756  //        member, if any; and its direct and indirect base classes.
2757  //        Its associated namespaces are the innermost enclosing
2758  //        namespaces of its associated classes.
2759
2760  // Add the class of which it is a member, if any.
2761  DeclContext *Ctx = Class->getDeclContext();
2762  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2763    Result.Classes.insert(EnclosingClass);
2764
2765  // Add the associated namespace for this class.
2766  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2767
2768  // -- If T is a template-id, its associated namespaces and classes are
2769  //    the namespace in which the template is defined; for member
2770  //    templates, the member template's class; the namespaces and classes
2771  //    associated with the types of the template arguments provided for
2772  //    template type parameters (excluding template template parameters); the
2773  //    namespaces in which any template template arguments are defined; and
2774  //    the classes in which any member templates used as template template
2775  //    arguments are defined. [Note: non-type template arguments do not
2776  //    contribute to the set of associated namespaces. ]
2777  if (ClassTemplateSpecializationDecl *Spec
2778        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2779    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2780    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2781      Result.Classes.insert(EnclosingClass);
2782    // Add the associated namespace for this class.
2783    CollectEnclosingNamespace(Result.Namespaces, Ctx);
2784
2785    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2786    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2787      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2788  }
2789
2790  // Add the class itself. If we've already transitively visited this class,
2791  // we don't need to visit base classes.
2792  if (!Result.addClassTransitive(Class))
2793    return;
2794
2795  // Only recurse into base classes for complete types.
2796  if (!Result.S.isCompleteType(Result.InstantiationLoc,
2797                               Result.S.Context.getRecordType(Class)))
2798    return;
2799
2800  // Add direct and indirect base classes along with their associated
2801  // namespaces.
2802  SmallVector<CXXRecordDecl *, 32> Bases;
2803  Bases.push_back(Class);
2804  while (!Bases.empty()) {
2805    // Pop this class off the stack.
2806    Class = Bases.pop_back_val();
2807
2808    // Visit the base classes.
2809    for (const auto &Base : Class->bases()) {
2810      const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2811      // In dependent contexts, we do ADL twice, and the first time around,
2812      // the base type might be a dependent TemplateSpecializationType, or a
2813      // TemplateTypeParmType. If that happens, simply ignore it.
2814      // FIXME: If we want to support export, we probably need to add the
2815      // namespace of the template in a TemplateSpecializationType, or even
2816      // the classes and namespaces of known non-dependent arguments.
2817      if (!BaseType)
2818        continue;
2819      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2820      if (Result.addClassTransitive(BaseDecl)) {
2821        // Find the associated namespace for this base class.
2822        DeclContext *BaseCtx = BaseDecl->getDeclContext();
2823        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2824
2825        // Make sure we visit the bases of this base class.
2826        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2827          Bases.push_back(BaseDecl);
2828      }
2829    }
2830  }
2831}
2832
2833// Add the associated classes and namespaces for
2834// argument-dependent lookup with an argument of type T
2835// (C++ [basic.lookup.koenig]p2).
2836static void
2837addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2838  // C++ [basic.lookup.koenig]p2:
2839  //
2840  //   For each argument type T in the function call, there is a set
2841  //   of zero or more associated namespaces and a set of zero or more
2842  //   associated classes to be considered. The sets of namespaces and
2843  //   classes is determined entirely by the types of the function
2844  //   arguments (and the namespace of any template template
2845  //   argument). Typedef names and using-declarations used to specify
2846  //   the types do not contribute to this set. The sets of namespaces
2847  //   and classes are determined in the following way:
2848
2849  SmallVector<const Type *, 16> Queue;
2850  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2851
2852  while (true) {
2853    switch (T->getTypeClass()) {
2854
2855#define TYPE(Class, Base)
2856#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2857#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2858#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2859#define ABSTRACT_TYPE(Class, Base)
2860#include "clang/AST/TypeNodes.inc"
2861      // T is canonical.  We can also ignore dependent types because
2862      // we don't need to do ADL at the definition point, but if we
2863      // wanted to implement template export (or if we find some other
2864      // use for associated classes and namespaces...) this would be
2865      // wrong.
2866      break;
2867
2868    //    -- If T is a pointer to U or an array of U, its associated
2869    //       namespaces and classes are those associated with U.
2870    case Type::Pointer:
2871      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2872      continue;
2873    case Type::ConstantArray:
2874    case Type::IncompleteArray:
2875    case Type::VariableArray:
2876      T = cast<ArrayType>(T)->getElementType().getTypePtr();
2877      continue;
2878
2879    //     -- If T is a fundamental type, its associated sets of
2880    //        namespaces and classes are both empty.
2881    case Type::Builtin:
2882      break;
2883
2884    //     -- If T is a class type (including unions), its associated
2885    //        classes are: the class itself; the class of which it is
2886    //        a member, if any; and its direct and indirect base classes.
2887    //        Its associated namespaces are the innermost enclosing
2888    //        namespaces of its associated classes.
2889    case Type::Record: {
2890      CXXRecordDecl *Class =
2891          cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2892      addAssociatedClassesAndNamespaces(Result, Class);
2893      break;
2894    }
2895
2896    //     -- If T is an enumeration type, its associated namespace
2897    //        is the innermost enclosing namespace of its declaration.
2898    //        If it is a class member, its associated class is the
2899    //        member���s class; else it has no associated class.
2900    case Type::Enum: {
2901      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2902
2903      DeclContext *Ctx = Enum->getDeclContext();
2904      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2905        Result.Classes.insert(EnclosingClass);
2906
2907      // Add the associated namespace for this enumeration.
2908      CollectEnclosingNamespace(Result.Namespaces, Ctx);
2909
2910      break;
2911    }
2912
2913    //     -- If T is a function type, its associated namespaces and
2914    //        classes are those associated with the function parameter
2915    //        types and those associated with the return type.
2916    case Type::FunctionProto: {
2917      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2918      for (const auto &Arg : Proto->param_types())
2919        Queue.push_back(Arg.getTypePtr());
2920      // fallthrough
2921      LLVM_FALLTHROUGH;
2922    }
2923    case Type::FunctionNoProto: {
2924      const FunctionType *FnType = cast<FunctionType>(T);
2925      T = FnType->getReturnType().getTypePtr();
2926      continue;
2927    }
2928
2929    //     -- If T is a pointer to a member function of a class X, its
2930    //        associated namespaces and classes are those associated
2931    //        with the function parameter types and return type,
2932    //        together with those associated with X.
2933    //
2934    //     -- If T is a pointer to a data member of class X, its
2935    //        associated namespaces and classes are those associated
2936    //        with the member type together with those associated with
2937    //        X.
2938    case Type::MemberPointer: {
2939      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2940
2941      // Queue up the class type into which this points.
2942      Queue.push_back(MemberPtr->getClass());
2943
2944      // And directly continue with the pointee type.
2945      T = MemberPtr->getPointeeType().getTypePtr();
2946      continue;
2947    }
2948
2949    // As an extension, treat this like a normal pointer.
2950    case Type::BlockPointer:
2951      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2952      continue;
2953
2954    // References aren't covered by the standard, but that's such an
2955    // obvious defect that we cover them anyway.
2956    case Type::LValueReference:
2957    case Type::RValueReference:
2958      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2959      continue;
2960
2961    // These are fundamental types.
2962    case Type::Vector:
2963    case Type::ExtVector:
2964    case Type::Complex:
2965      break;
2966
2967    // Non-deduced auto types only get here for error cases.
2968    case Type::Auto:
2969    case Type::DeducedTemplateSpecialization:
2970      break;
2971
2972    // If T is an Objective-C object or interface type, or a pointer to an
2973    // object or interface type, the associated namespace is the global
2974    // namespace.
2975    case Type::ObjCObject:
2976    case Type::ObjCInterface:
2977    case Type::ObjCObjectPointer:
2978      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2979      break;
2980
2981    // Atomic types are just wrappers; use the associations of the
2982    // contained type.
2983    case Type::Atomic:
2984      T = cast<AtomicType>(T)->getValueType().getTypePtr();
2985      continue;
2986    case Type::Pipe:
2987      T = cast<PipeType>(T)->getElementType().getTypePtr();
2988      continue;
2989    }
2990
2991    if (Queue.empty())
2992      break;
2993    T = Queue.pop_back_val();
2994  }
2995}
2996
2997/// Find the associated classes and namespaces for
2998/// argument-dependent lookup for a call with the given set of
2999/// arguments.
3000///
3001/// This routine computes the sets of associated classes and associated
3002/// namespaces searched by argument-dependent lookup
3003/// (C++ [basic.lookup.argdep]) for a given set of arguments.
3004void Sema::FindAssociatedClassesAndNamespaces(
3005    SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3006    AssociatedNamespaceSet &AssociatedNamespaces,
3007    AssociatedClassSet &AssociatedClasses) {
3008  AssociatedNamespaces.clear();
3009  AssociatedClasses.clear();
3010
3011  AssociatedLookup Result(*this, InstantiationLoc,
3012                          AssociatedNamespaces, AssociatedClasses);
3013
3014  // C++ [basic.lookup.koenig]p2:
3015  //   For each argument type T in the function call, there is a set
3016  //   of zero or more associated namespaces and a set of zero or more
3017  //   associated classes to be considered. The sets of namespaces and
3018  //   classes is determined entirely by the types of the function
3019  //   arguments (and the namespace of any template template
3020  //   argument).
3021  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3022    Expr *Arg = Args[ArgIdx];
3023
3024    if (Arg->getType() != Context.OverloadTy) {
3025      addAssociatedClassesAndNamespaces(Result, Arg->getType());
3026      continue;
3027    }
3028
3029    // [...] In addition, if the argument is the name or address of a
3030    // set of overloaded functions and/or function templates, its
3031    // associated classes and namespaces are the union of those
3032    // associated with each of the members of the set: the namespace
3033    // in which the function or function template is defined and the
3034    // classes and namespaces associated with its (non-dependent)
3035    // parameter types and return type.
3036    OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3037
3038    for (const NamedDecl *D : OE->decls()) {
3039      // Look through any using declarations to find the underlying function.
3040      const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3041
3042      // Add the classes and namespaces associated with the parameter
3043      // types and return type of this function.
3044      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3045    }
3046  }
3047}
3048
3049NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3050                                  SourceLocation Loc,
3051                                  LookupNameKind NameKind,
3052                                  RedeclarationKind Redecl) {
3053  LookupResult R(*this, Name, Loc, NameKind, Redecl);
3054  LookupName(R, S);
3055  return R.getAsSingle<NamedDecl>();
3056}
3057
3058/// Find the protocol with the given name, if any.
3059ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3060                                       SourceLocation IdLoc,
3061                                       RedeclarationKind Redecl) {
3062  Decl *D = LookupSingleName(TUScope, II, IdLoc,
3063                             LookupObjCProtocolName, Redecl);
3064  return cast_or_null<ObjCProtocolDecl>(D);
3065}
3066
3067void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3068                                        QualType T1, QualType T2,
3069                                        UnresolvedSetImpl &Functions) {
3070  // C++ [over.match.oper]p3:
3071  //     -- The set of non-member candidates is the result of the
3072  //        unqualified lookup of operator@ in the context of the
3073  //        expression according to the usual rules for name lookup in
3074  //        unqualified function calls (3.4.2) except that all member
3075  //        functions are ignored.
3076  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3077  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3078  LookupName(Operators, S);
3079
3080  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3081  Functions.append(Operators.begin(), Operators.end());
3082}
3083
3084Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3085                                                           CXXSpecialMember SM,
3086                                                           bool ConstArg,
3087                                                           bool VolatileArg,
3088                                                           bool RValueThis,
3089                                                           bool ConstThis,
3090                                                           bool VolatileThis) {
3091  assert(CanDeclareSpecialMemberFunction(RD) &&
3092         "doing special member lookup into record that isn't fully complete");
3093  RD = RD->getDefinition();
3094  if (RValueThis || ConstThis || VolatileThis)
3095    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3096           "constructors and destructors always have unqualified lvalue this");
3097  if (ConstArg || VolatileArg)
3098    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3099           "parameter-less special members can't have qualified arguments");
3100
3101  // FIXME: Get the caller to pass in a location for the lookup.
3102  SourceLocation LookupLoc = RD->getLocation();
3103
3104  llvm::FoldingSetNodeID ID;
3105  ID.AddPointer(RD);
3106  ID.AddInteger(SM);
3107  ID.AddInteger(ConstArg);
3108  ID.AddInteger(VolatileArg);
3109  ID.AddInteger(RValueThis);
3110  ID.AddInteger(ConstThis);
3111  ID.AddInteger(VolatileThis);
3112
3113  void *InsertPoint;
3114  SpecialMemberOverloadResultEntry *Result =
3115    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3116
3117  // This was already cached
3118  if (Result)
3119    return *Result;
3120
3121  Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3122  Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3123  SpecialMemberCache.InsertNode(Result, InsertPoint);
3124
3125  if (SM == CXXDestructor) {
3126    if (RD->needsImplicitDestructor()) {
3127      runWithSufficientStackSpace(RD->getLocation(), [&] {
3128        DeclareImplicitDestructor(RD);
3129      });
3130    }
3131    CXXDestructorDecl *DD = RD->getDestructor();
3132    Result->setMethod(DD);
3133    Result->setKind(DD && !DD->isDeleted()
3134                        ? SpecialMemberOverloadResult::Success
3135                        : SpecialMemberOverloadResult::NoMemberOrDeleted);
3136    return *Result;
3137  }
3138
3139  // Prepare for overload resolution. Here we construct a synthetic argument
3140  // if necessary and make sure that implicit functions are declared.
3141  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3142  DeclarationName Name;
3143  Expr *Arg = nullptr;
3144  unsigned NumArgs;
3145
3146  QualType ArgType = CanTy;
3147  ExprValueKind VK = VK_LValue;
3148
3149  if (SM == CXXDefaultConstructor) {
3150    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3151    NumArgs = 0;
3152    if (RD->needsImplicitDefaultConstructor()) {
3153      runWithSufficientStackSpace(RD->getLocation(), [&] {
3154        DeclareImplicitDefaultConstructor(RD);
3155      });
3156    }
3157  } else {
3158    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3159      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3160      if (RD->needsImplicitCopyConstructor()) {
3161        runWithSufficientStackSpace(RD->getLocation(), [&] {
3162          DeclareImplicitCopyConstructor(RD);
3163        });
3164      }
3165      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3166        runWithSufficientStackSpace(RD->getLocation(), [&] {
3167          DeclareImplicitMoveConstructor(RD);
3168        });
3169      }
3170    } else {
3171      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3172      if (RD->needsImplicitCopyAssignment()) {
3173        runWithSufficientStackSpace(RD->getLocation(), [&] {
3174          DeclareImplicitCopyAssignment(RD);
3175        });
3176      }
3177      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3178        runWithSufficientStackSpace(RD->getLocation(), [&] {
3179          DeclareImplicitMoveAssignment(RD);
3180        });
3181      }
3182    }
3183
3184    if (ConstArg)
3185      ArgType.addConst();
3186    if (VolatileArg)
3187      ArgType.addVolatile();
3188
3189    // This isn't /really/ specified by the standard, but it's implied
3190    // we should be working from an RValue in the case of move to ensure
3191    // that we prefer to bind to rvalue references, and an LValue in the
3192    // case of copy to ensure we don't bind to rvalue references.
3193    // Possibly an XValue is actually correct in the case of move, but
3194    // there is no semantic difference for class types in this restricted
3195    // case.
3196    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3197      VK = VK_LValue;
3198    else
3199      VK = VK_RValue;
3200  }
3201
3202  OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3203
3204  if (SM != CXXDefaultConstructor) {
3205    NumArgs = 1;
3206    Arg = &FakeArg;
3207  }
3208
3209  // Create the object argument
3210  QualType ThisTy = CanTy;
3211  if (ConstThis)
3212    ThisTy.addConst();
3213  if (VolatileThis)
3214    ThisTy.addVolatile();
3215  Expr::Classification Classification =
3216    OpaqueValueExpr(LookupLoc, ThisTy,
3217                    RValueThis ? VK_RValue : VK_LValue).Classify(Context);
3218
3219  // Now we perform lookup on the name we computed earlier and do overload
3220  // resolution. Lookup is only performed directly into the class since there
3221  // will always be a (possibly implicit) declaration to shadow any others.
3222  OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3223  DeclContext::lookup_result R = RD->lookup(Name);
3224
3225  if (R.empty()) {
3226    // We might have no default constructor because we have a lambda's closure
3227    // type, rather than because there's some other declared constructor.
3228    // Every class has a copy/move constructor, copy/move assignment, and
3229    // destructor.
3230    assert(SM == CXXDefaultConstructor &&
3231           "lookup for a constructor or assignment operator was empty");
3232    Result->setMethod(nullptr);
3233    Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3234    return *Result;
3235  }
3236
3237  // Copy the candidates as our processing of them may load new declarations
3238  // from an external source and invalidate lookup_result.
3239  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3240
3241  for (NamedDecl *CandDecl : Candidates) {
3242    if (CandDecl->isInvalidDecl())
3243      continue;
3244
3245    DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3246    auto CtorInfo = getConstructorInfo(Cand);
3247    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3248      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3249        AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3250                           llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3251      else if (CtorInfo)
3252        AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3253                             llvm::makeArrayRef(&Arg, NumArgs), OCS,
3254                             /*SuppressUserConversions*/ true);
3255      else
3256        AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3257                             /*SuppressUserConversions*/ true);
3258    } else if (FunctionTemplateDecl *Tmpl =
3259                 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3260      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3261        AddMethodTemplateCandidate(
3262            Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3263            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3264      else if (CtorInfo)
3265        AddTemplateOverloadCandidate(
3266            CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3267            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3268      else
3269        AddTemplateOverloadCandidate(
3270            Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3271    } else {
3272      assert(isa<UsingDecl>(Cand.getDecl()) &&
3273             "illegal Kind of operator = Decl");
3274    }
3275  }
3276
3277  OverloadCandidateSet::iterator Best;
3278  switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3279    case OR_Success:
3280      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3281      Result->setKind(SpecialMemberOverloadResult::Success);
3282      break;
3283
3284    case OR_Deleted:
3285      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3286      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3287      break;
3288
3289    case OR_Ambiguous:
3290      Result->setMethod(nullptr);
3291      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3292      break;
3293
3294    case OR_No_Viable_Function:
3295      Result->setMethod(nullptr);
3296      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3297      break;
3298  }
3299
3300  return *Result;
3301}
3302
3303/// Look up the default constructor for the given class.
3304CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3305  SpecialMemberOverloadResult Result =
3306    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3307                        false, false);
3308
3309  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3310}
3311
3312/// Look up the copying constructor for the given class.
3313CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3314                                                   unsigned Quals) {
3315  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3316         "non-const, non-volatile qualifiers for copy ctor arg");
3317  SpecialMemberOverloadResult Result =
3318    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3319                        Quals & Qualifiers::Volatile, false, false, false);
3320
3321  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3322}
3323
3324/// Look up the moving constructor for the given class.
3325CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3326                                                  unsigned Quals) {
3327  SpecialMemberOverloadResult Result =
3328    LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3329                        Quals & Qualifiers::Volatile, false, false, false);
3330
3331  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3332}
3333
3334/// Look up the constructors for the given class.
3335DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3336  // If the implicit constructors have not yet been declared, do so now.
3337  if (CanDeclareSpecialMemberFunction(Class)) {
3338    runWithSufficientStackSpace(Class->getLocation(), [&] {
3339      if (Class->needsImplicitDefaultConstructor())
3340        DeclareImplicitDefaultConstructor(Class);
3341      if (Class->needsImplicitCopyConstructor())
3342        DeclareImplicitCopyConstructor(Class);
3343      if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3344        DeclareImplicitMoveConstructor(Class);
3345    });
3346  }
3347
3348  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3349  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3350  return Class->lookup(Name);
3351}
3352
3353/// Look up the copying assignment operator for the given class.
3354CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3355                                             unsigned Quals, bool RValueThis,
3356                                             unsigned ThisQuals) {
3357  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3358         "non-const, non-volatile qualifiers for copy assignment arg");
3359  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3360         "non-const, non-volatile qualifiers for copy assignment this");
3361  SpecialMemberOverloadResult Result =
3362    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3363                        Quals & Qualifiers::Volatile, RValueThis,
3364                        ThisQuals & Qualifiers::Const,
3365                        ThisQuals & Qualifiers::Volatile);
3366
3367  return Result.getMethod();
3368}
3369
3370/// Look up the moving assignment operator for the given class.
3371CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3372                                            unsigned Quals,
3373                                            bool RValueThis,
3374                                            unsigned ThisQuals) {
3375  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3376         "non-const, non-volatile qualifiers for copy assignment this");
3377  SpecialMemberOverloadResult Result =
3378    LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3379                        Quals & Qualifiers::Volatile, RValueThis,
3380                        ThisQuals & Qualifiers::Const,
3381                        ThisQuals & Qualifiers::Volatile);
3382
3383  return Result.getMethod();
3384}
3385
3386/// Look for the destructor of the given class.
3387///
3388/// During semantic analysis, this routine should be used in lieu of
3389/// CXXRecordDecl::getDestructor().
3390///
3391/// \returns The destructor for this class.
3392CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3393  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3394                                                     false, false, false,
3395                                                     false, false).getMethod());
3396}
3397
3398/// LookupLiteralOperator - Determine which literal operator should be used for
3399/// a user-defined literal, per C++11 [lex.ext].
3400///
3401/// Normal overload resolution is not used to select which literal operator to
3402/// call for a user-defined literal. Look up the provided literal operator name,
3403/// and filter the results to the appropriate set for the given argument types.
3404Sema::LiteralOperatorLookupResult
3405Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3406                            ArrayRef<QualType> ArgTys,
3407                            bool AllowRaw, bool AllowTemplate,
3408                            bool AllowStringTemplate, bool DiagnoseMissing) {
3409  LookupName(R, S);
3410  assert(R.getResultKind() != LookupResult::Ambiguous &&
3411         "literal operator lookup can't be ambiguous");
3412
3413  // Filter the lookup results appropriately.
3414  LookupResult::Filter F = R.makeFilter();
3415
3416  bool FoundRaw = false;
3417  bool FoundTemplate = false;
3418  bool FoundStringTemplate = false;
3419  bool FoundExactMatch = false;
3420
3421  while (F.hasNext()) {
3422    Decl *D = F.next();
3423    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3424      D = USD->getTargetDecl();
3425
3426    // If the declaration we found is invalid, skip it.
3427    if (D->isInvalidDecl()) {
3428      F.erase();
3429      continue;
3430    }
3431
3432    bool IsRaw = false;
3433    bool IsTemplate = false;
3434    bool IsStringTemplate = false;
3435    bool IsExactMatch = false;
3436
3437    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3438      if (FD->getNumParams() == 1 &&
3439          FD->getParamDecl(0)->getType()->getAs<PointerType>())
3440        IsRaw = true;
3441      else if (FD->getNumParams() == ArgTys.size()) {
3442        IsExactMatch = true;
3443        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3444          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3445          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3446            IsExactMatch = false;
3447            break;
3448          }
3449        }
3450      }
3451    }
3452    if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3453      TemplateParameterList *Params = FD->getTemplateParameters();
3454      if (Params->size() == 1)
3455        IsTemplate = true;
3456      else
3457        IsStringTemplate = true;
3458    }
3459
3460    if (IsExactMatch) {
3461      FoundExactMatch = true;
3462      AllowRaw = false;
3463      AllowTemplate = false;
3464      AllowStringTemplate = false;
3465      if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3466        // Go through again and remove the raw and template decls we've
3467        // already found.
3468        F.restart();
3469        FoundRaw = FoundTemplate = FoundStringTemplate = false;
3470      }
3471    } else if (AllowRaw && IsRaw) {
3472      FoundRaw = true;
3473    } else if (AllowTemplate && IsTemplate) {
3474      FoundTemplate = true;
3475    } else if (AllowStringTemplate && IsStringTemplate) {
3476      FoundStringTemplate = true;
3477    } else {
3478      F.erase();
3479    }
3480  }
3481
3482  F.done();
3483
3484  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3485  // parameter type, that is used in preference to a raw literal operator
3486  // or literal operator template.
3487  if (FoundExactMatch)
3488    return LOLR_Cooked;
3489
3490  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3491  // operator template, but not both.
3492  if (FoundRaw && FoundTemplate) {
3493    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3494    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3495      NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3496    return LOLR_Error;
3497  }
3498
3499  if (FoundRaw)
3500    return LOLR_Raw;
3501
3502  if (FoundTemplate)
3503    return LOLR_Template;
3504
3505  if (FoundStringTemplate)
3506    return LOLR_StringTemplate;
3507
3508  // Didn't find anything we could use.
3509  if (DiagnoseMissing) {
3510    Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3511        << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3512        << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3513        << (AllowTemplate || AllowStringTemplate);
3514    return LOLR_Error;
3515  }
3516
3517  return LOLR_ErrorNoDiagnostic;
3518}
3519
3520void ADLResult::insert(NamedDecl *New) {
3521  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3522
3523  // If we haven't yet seen a decl for this key, or the last decl
3524  // was exactly this one, we're done.
3525  if (Old == nullptr || Old == New) {
3526    Old = New;
3527    return;
3528  }
3529
3530  // Otherwise, decide which is a more recent redeclaration.
3531  FunctionDecl *OldFD = Old->getAsFunction();
3532  FunctionDecl *NewFD = New->getAsFunction();
3533
3534  FunctionDecl *Cursor = NewFD;
3535  while (true) {
3536    Cursor = Cursor->getPreviousDecl();
3537
3538    // If we got to the end without finding OldFD, OldFD is the newer
3539    // declaration;  leave things as they are.
3540    if (!Cursor) return;
3541
3542    // If we do find OldFD, then NewFD is newer.
3543    if (Cursor == OldFD) break;
3544
3545    // Otherwise, keep looking.
3546  }
3547
3548  Old = New;
3549}
3550
3551void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3552                                   ArrayRef<Expr *> Args, ADLResult &Result) {
3553  // Find all of the associated namespaces and classes based on the
3554  // arguments we have.
3555  AssociatedNamespaceSet AssociatedNamespaces;
3556  AssociatedClassSet AssociatedClasses;
3557  FindAssociatedClassesAndNamespaces(Loc, Args,
3558                                     AssociatedNamespaces,
3559                                     AssociatedClasses);
3560
3561  // C++ [basic.lookup.argdep]p3:
3562  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3563  //   and let Y be the lookup set produced by argument dependent
3564  //   lookup (defined as follows). If X contains [...] then Y is
3565  //   empty. Otherwise Y is the set of declarations found in the
3566  //   namespaces associated with the argument types as described
3567  //   below. The set of declarations found by the lookup of the name
3568  //   is the union of X and Y.
3569  //
3570  // Here, we compute Y and add its members to the overloaded
3571  // candidate set.
3572  for (auto *NS : AssociatedNamespaces) {
3573    //   When considering an associated namespace, the lookup is the
3574    //   same as the lookup performed when the associated namespace is
3575    //   used as a qualifier (3.4.3.2) except that:
3576    //
3577    //     -- Any using-directives in the associated namespace are
3578    //        ignored.
3579    //
3580    //     -- Any namespace-scope friend functions declared in
3581    //        associated classes are visible within their respective
3582    //        namespaces even if they are not visible during an ordinary
3583    //        lookup (11.4).
3584    DeclContext::lookup_result R = NS->lookup(Name);
3585    for (auto *D : R) {
3586      auto *Underlying = D;
3587      if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3588        Underlying = USD->getTargetDecl();
3589
3590      if (!isa<FunctionDecl>(Underlying) &&
3591          !isa<FunctionTemplateDecl>(Underlying))
3592        continue;
3593
3594      // The declaration is visible to argument-dependent lookup if either
3595      // it's ordinarily visible or declared as a friend in an associated
3596      // class.
3597      bool Visible = false;
3598      for (D = D->getMostRecentDecl(); D;
3599           D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3600        if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3601          if (isVisible(D)) {
3602            Visible = true;
3603            break;
3604          }
3605        } else if (D->getFriendObjectKind()) {
3606          auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3607          if (AssociatedClasses.count(RD) && isVisible(D)) {
3608            Visible = true;
3609            break;
3610          }
3611        }
3612      }
3613
3614      // FIXME: Preserve D as the FoundDecl.
3615      if (Visible)
3616        Result.insert(Underlying);
3617    }
3618  }
3619}
3620
3621//----------------------------------------------------------------------------
3622// Search for all visible declarations.
3623//----------------------------------------------------------------------------
3624VisibleDeclConsumer::~VisibleDeclConsumer() { }
3625
3626bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3627
3628namespace {
3629
3630class ShadowContextRAII;
3631
3632class VisibleDeclsRecord {
3633public:
3634  /// An entry in the shadow map, which is optimized to store a
3635  /// single declaration (the common case) but can also store a list
3636  /// of declarations.
3637  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3638
3639private:
3640  /// A mapping from declaration names to the declarations that have
3641  /// this name within a particular scope.
3642  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3643
3644  /// A list of shadow maps, which is used to model name hiding.
3645  std::list<ShadowMap> ShadowMaps;
3646
3647  /// The declaration contexts we have already visited.
3648  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3649
3650  friend class ShadowContextRAII;
3651
3652public:
3653  /// Determine whether we have already visited this context
3654  /// (and, if not, note that we are going to visit that context now).
3655  bool visitedContext(DeclContext *Ctx) {
3656    return !VisitedContexts.insert(Ctx).second;
3657  }
3658
3659  bool alreadyVisitedContext(DeclContext *Ctx) {
3660    return VisitedContexts.count(Ctx);
3661  }
3662
3663  /// Determine whether the given declaration is hidden in the
3664  /// current scope.
3665  ///
3666  /// \returns the declaration that hides the given declaration, or
3667  /// NULL if no such declaration exists.
3668  NamedDecl *checkHidden(NamedDecl *ND);
3669
3670  /// Add a declaration to the current shadow map.
3671  void add(NamedDecl *ND) {
3672    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3673  }
3674};
3675
3676/// RAII object that records when we've entered a shadow context.
3677class ShadowContextRAII {
3678  VisibleDeclsRecord &Visible;
3679
3680  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3681
3682public:
3683  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3684    Visible.ShadowMaps.emplace_back();
3685  }
3686
3687  ~ShadowContextRAII() {
3688    Visible.ShadowMaps.pop_back();
3689  }
3690};
3691
3692} // end anonymous namespace
3693
3694NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3695  unsigned IDNS = ND->getIdentifierNamespace();
3696  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3697  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3698       SM != SMEnd; ++SM) {
3699    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3700    if (Pos == SM->end())
3701      continue;
3702
3703    for (auto *D : Pos->second) {
3704      // A tag declaration does not hide a non-tag declaration.
3705      if (D->hasTagIdentifierNamespace() &&
3706          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3707                   Decl::IDNS_ObjCProtocol)))
3708        continue;
3709
3710      // Protocols are in distinct namespaces from everything else.
3711      if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3712           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3713          D->getIdentifierNamespace() != IDNS)
3714        continue;
3715
3716      // Functions and function templates in the same scope overload
3717      // rather than hide.  FIXME: Look for hiding based on function
3718      // signatures!
3719      if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3720          ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3721          SM == ShadowMaps.rbegin())
3722        continue;
3723
3724      // A shadow declaration that's created by a resolved using declaration
3725      // is not hidden by the same using declaration.
3726      if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3727          cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3728        continue;
3729
3730      // We've found a declaration that hides this one.
3731      return D;
3732    }
3733  }
3734
3735  return nullptr;
3736}
3737
3738namespace {
3739class LookupVisibleHelper {
3740public:
3741  LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
3742                      bool LoadExternal)
3743      : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
3744        LoadExternal(LoadExternal) {}
3745
3746  void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
3747                          bool IncludeGlobalScope) {
3748    // Determine the set of using directives available during
3749    // unqualified name lookup.
3750    Scope *Initial = S;
3751    UnqualUsingDirectiveSet UDirs(SemaRef);
3752    if (SemaRef.getLangOpts().CPlusPlus) {
3753      // Find the first namespace or translation-unit scope.
3754      while (S && !isNamespaceOrTranslationUnitScope(S))
3755        S = S->getParent();
3756
3757      UDirs.visitScopeChain(Initial, S);
3758    }
3759    UDirs.done();
3760
3761    // Look for visible declarations.
3762    LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3763    Result.setAllowHidden(Consumer.includeHiddenDecls());
3764    if (!IncludeGlobalScope)
3765      Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3766    ShadowContextRAII Shadow(Visited);
3767    lookupInScope(Initial, Result, UDirs);
3768  }
3769
3770  void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
3771                          Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
3772    LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3773    Result.setAllowHidden(Consumer.includeHiddenDecls());
3774    if (!IncludeGlobalScope)
3775      Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3776
3777    ShadowContextRAII Shadow(Visited);
3778    lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
3779                        /*InBaseClass=*/false);
3780  }
3781
3782private:
3783  void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
3784                           bool QualifiedNameLookup, bool InBaseClass) {
3785    if (!Ctx)
3786      return;
3787
3788    // Make sure we don't visit the same context twice.
3789    if (Visited.visitedContext(Ctx->getPrimaryContext()))
3790      return;
3791
3792    Consumer.EnteredContext(Ctx);
3793
3794    // Outside C++, lookup results for the TU live on identifiers.
3795    if (isa<TranslationUnitDecl>(Ctx) &&
3796        !Result.getSema().getLangOpts().CPlusPlus) {
3797      auto &S = Result.getSema();
3798      auto &Idents = S.Context.Idents;
3799
3800      // Ensure all external identifiers are in the identifier table.
3801      if (LoadExternal)
3802        if (IdentifierInfoLookup *External =
3803                Idents.getExternalIdentifierLookup()) {
3804          std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3805          for (StringRef Name = Iter->Next(); !Name.empty();
3806               Name = Iter->Next())
3807            Idents.get(Name);
3808        }
3809
3810      // Walk all lookup results in the TU for each identifier.
3811      for (const auto &Ident : Idents) {
3812        for (auto I = S.IdResolver.begin(Ident.getValue()),
3813                  E = S.IdResolver.end();
3814             I != E; ++I) {
3815          if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3816            if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3817              Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3818              Visited.add(ND);
3819            }
3820          }
3821        }
3822      }
3823
3824      return;
3825    }
3826
3827    if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3828      Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3829
3830    // We sometimes skip loading namespace-level results (they tend to be huge).
3831    bool Load = LoadExternal ||
3832                !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3833    // Enumerate all of the results in this context.
3834    for (DeclContextLookupResult R :
3835         Load ? Ctx->lookups()
3836              : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3837      for (auto *D : R) {
3838        if (auto *ND = Result.getAcceptableDecl(D)) {
3839          Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3840          Visited.add(ND);
3841        }
3842      }
3843    }
3844
3845    // Traverse using directives for qualified name lookup.
3846    if (QualifiedNameLookup) {
3847      ShadowContextRAII Shadow(Visited);
3848      for (auto I : Ctx->using_directives()) {
3849        if (!Result.getSema().isVisible(I))
3850          continue;
3851        lookupInDeclContext(I->getNominatedNamespace(), Result,
3852                            QualifiedNameLookup, InBaseClass);
3853      }
3854    }
3855
3856    // Traverse the contexts of inherited C++ classes.
3857    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3858      if (!Record->hasDefinition())
3859        return;
3860
3861      for (const auto &B : Record->bases()) {
3862        QualType BaseType = B.getType();
3863
3864        RecordDecl *RD;
3865        if (BaseType->isDependentType()) {
3866          if (!IncludeDependentBases) {
3867            // Don't look into dependent bases, because name lookup can't look
3868            // there anyway.
3869            continue;
3870          }
3871          const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3872          if (!TST)
3873            continue;
3874          TemplateName TN = TST->getTemplateName();
3875          const auto *TD =
3876              dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3877          if (!TD)
3878            continue;
3879          RD = TD->getTemplatedDecl();
3880        } else {
3881          const auto *Record = BaseType->getAs<RecordType>();
3882          if (!Record)
3883            continue;
3884          RD = Record->getDecl();
3885        }
3886
3887        // FIXME: It would be nice to be able to determine whether referencing
3888        // a particular member would be ambiguous. For example, given
3889        //
3890        //   struct A { int member; };
3891        //   struct B { int member; };
3892        //   struct C : A, B { };
3893        //
3894        //   void f(C *c) { c->### }
3895        //
3896        // accessing 'member' would result in an ambiguity. However, we
3897        // could be smart enough to qualify the member with the base
3898        // class, e.g.,
3899        //
3900        //   c->B::member
3901        //
3902        // or
3903        //
3904        //   c->A::member
3905
3906        // Find results in this base class (and its bases).
3907        ShadowContextRAII Shadow(Visited);
3908        lookupInDeclContext(RD, Result, QualifiedNameLookup,
3909                            /*InBaseClass=*/true);
3910      }
3911    }
3912
3913    // Traverse the contexts of Objective-C classes.
3914    if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3915      // Traverse categories.
3916      for (auto *Cat : IFace->visible_categories()) {
3917        ShadowContextRAII Shadow(Visited);
3918        lookupInDeclContext(Cat, Result, QualifiedNameLookup,
3919                            /*InBaseClass=*/false);
3920      }
3921
3922      // Traverse protocols.
3923      for (auto *I : IFace->all_referenced_protocols()) {
3924        ShadowContextRAII Shadow(Visited);
3925        lookupInDeclContext(I, Result, QualifiedNameLookup,
3926                            /*InBaseClass=*/false);
3927      }
3928
3929      // Traverse the superclass.
3930      if (IFace->getSuperClass()) {
3931        ShadowContextRAII Shadow(Visited);
3932        lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
3933                            /*InBaseClass=*/true);
3934      }
3935
3936      // If there is an implementation, traverse it. We do this to find
3937      // synthesized ivars.
3938      if (IFace->getImplementation()) {
3939        ShadowContextRAII Shadow(Visited);
3940        lookupInDeclContext(IFace->getImplementation(), Result,
3941                            QualifiedNameLookup, InBaseClass);
3942      }
3943    } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3944      for (auto *I : Protocol->protocols()) {
3945        ShadowContextRAII Shadow(Visited);
3946        lookupInDeclContext(I, Result, QualifiedNameLookup,
3947                            /*InBaseClass=*/false);
3948      }
3949    } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3950      for (auto *I : Category->protocols()) {
3951        ShadowContextRAII Shadow(Visited);
3952        lookupInDeclContext(I, Result, QualifiedNameLookup,
3953                            /*InBaseClass=*/false);
3954      }
3955
3956      // If there is an implementation, traverse it.
3957      if (Category->getImplementation()) {
3958        ShadowContextRAII Shadow(Visited);
3959        lookupInDeclContext(Category->getImplementation(), Result,
3960                            QualifiedNameLookup, /*InBaseClass=*/true);
3961      }
3962    }
3963  }
3964
3965  void lookupInScope(Scope *S, LookupResult &Result,
3966                     UnqualUsingDirectiveSet &UDirs) {
3967    // No clients run in this mode and it's not supported. Please add tests and
3968    // remove the assertion if you start relying on it.
3969    assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
3970
3971    if (!S)
3972      return;
3973
3974    if (!S->getEntity() ||
3975        (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
3976        (S->getEntity())->isFunctionOrMethod()) {
3977      FindLocalExternScope FindLocals(Result);
3978      // Walk through the declarations in this Scope. The consumer might add new
3979      // decls to the scope as part of deserialization, so make a copy first.
3980      SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3981      for (Decl *D : ScopeDecls) {
3982        if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3983          if ((ND = Result.getAcceptableDecl(ND))) {
3984            Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3985            Visited.add(ND);
3986          }
3987      }
3988    }
3989
3990    // FIXME: C++ [temp.local]p8
3991    DeclContext *Entity = nullptr;
3992    if (S->getEntity()) {
3993      // Look into this scope's declaration context, along with any of its
3994      // parent lookup contexts (e.g., enclosing classes), up to the point
3995      // where we hit the context stored in the next outer scope.
3996      Entity = S->getEntity();
3997      DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3998
3999      for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4000           Ctx = Ctx->getLookupParent()) {
4001        if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4002          if (Method->isInstanceMethod()) {
4003            // For instance methods, look for ivars in the method's interface.
4004            LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4005                                    Result.getNameLoc(),
4006                                    Sema::LookupMemberName);
4007            if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4008              lookupInDeclContext(IFace, IvarResult,
4009                                  /*QualifiedNameLookup=*/false,
4010                                  /*InBaseClass=*/false);
4011            }
4012          }
4013
4014          // We've already performed all of the name lookup that we need
4015          // to for Objective-C methods; the next context will be the
4016          // outer scope.
4017          break;
4018        }
4019
4020        if (Ctx->isFunctionOrMethod())
4021          continue;
4022
4023        lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4024                            /*InBaseClass=*/false);
4025      }
4026    } else if (!S->getParent()) {
4027      // Look into the translation unit scope. We walk through the translation
4028      // unit's declaration context, because the Scope itself won't have all of
4029      // the declarations if we loaded a precompiled header.
4030      // FIXME: We would like the translation unit's Scope object to point to
4031      // the translation unit, so we don't need this special "if" branch.
4032      // However, doing so would force the normal C++ name-lookup code to look
4033      // into the translation unit decl when the IdentifierInfo chains would
4034      // suffice. Once we fix that problem (which is part of a more general
4035      // "don't look in DeclContexts unless we have to" optimization), we can
4036      // eliminate this.
4037      Entity = Result.getSema().Context.getTranslationUnitDecl();
4038      lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4039                          /*InBaseClass=*/false);
4040    }
4041
4042    if (Entity) {
4043      // Lookup visible declarations in any namespaces found by using
4044      // directives.
4045      for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4046        lookupInDeclContext(
4047            const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4048            /*QualifiedNameLookup=*/false,
4049            /*InBaseClass=*/false);
4050    }
4051
4052    // Lookup names in the parent scope.
4053    ShadowContextRAII Shadow(Visited);
4054    lookupInScope(S->getParent(), Result, UDirs);
4055  }
4056
4057private:
4058  VisibleDeclsRecord Visited;
4059  VisibleDeclConsumer &Consumer;
4060  bool IncludeDependentBases;
4061  bool LoadExternal;
4062};
4063} // namespace
4064
4065void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4066                              VisibleDeclConsumer &Consumer,
4067                              bool IncludeGlobalScope, bool LoadExternal) {
4068  LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4069                        LoadExternal);
4070  H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4071}
4072
4073void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4074                              VisibleDeclConsumer &Consumer,
4075                              bool IncludeGlobalScope,
4076                              bool IncludeDependentBases, bool LoadExternal) {
4077  LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4078  H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4079}
4080
4081/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4082/// If GnuLabelLoc is a valid source location, then this is a definition
4083/// of an __label__ label name, otherwise it is a normal label definition
4084/// or use.
4085LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4086                                     SourceLocation GnuLabelLoc) {
4087  // Do a lookup to see if we have a label with this name already.
4088  NamedDecl *Res = nullptr;
4089
4090  if (GnuLabelLoc.isValid()) {
4091    // Local label definitions always shadow existing labels.
4092    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4093    Scope *S = CurScope;
4094    PushOnScopeChains(Res, S, true);
4095    return cast<LabelDecl>(Res);
4096  }
4097
4098  // Not a GNU local label.
4099  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4100  // If we found a label, check to see if it is in the same context as us.
4101  // When in a Block, we don't want to reuse a label in an enclosing function.
4102  if (Res && Res->getDeclContext() != CurContext)
4103    Res = nullptr;
4104  if (!Res) {
4105    // If not forward referenced or defined already, create the backing decl.
4106    Res = LabelDecl::Create(Context, CurContext, Loc, II);
4107    Scope *S = CurScope->getFnParent();
4108    assert(S && "Not in a function?");
4109    PushOnScopeChains(Res, S, true);
4110  }
4111  return cast<LabelDecl>(Res);
4112}
4113
4114//===----------------------------------------------------------------------===//
4115// Typo correction
4116//===----------------------------------------------------------------------===//
4117
4118static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4119                              TypoCorrection &Candidate) {
4120  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4121  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4122}
4123
4124static void LookupPotentialTypoResult(Sema &SemaRef,
4125                                      LookupResult &Res,
4126                                      IdentifierInfo *Name,
4127                                      Scope *S, CXXScopeSpec *SS,
4128                                      DeclContext *MemberContext,
4129                                      bool EnteringContext,
4130                                      bool isObjCIvarLookup,
4131                                      bool FindHidden);
4132
4133/// Check whether the declarations found for a typo correction are
4134/// visible. Set the correction's RequiresImport flag to true if none of the
4135/// declarations are visible, false otherwise.
4136static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4137  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4138
4139  for (/**/; DI != DE; ++DI)
4140    if (!LookupResult::isVisible(SemaRef, *DI))
4141      break;
4142  // No filtering needed if all decls are visible.
4143  if (DI == DE) {
4144    TC.setRequiresImport(false);
4145    return;
4146  }
4147
4148  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4149  bool AnyVisibleDecls = !NewDecls.empty();
4150
4151  for (/**/; DI != DE; ++DI) {
4152    if (LookupResult::isVisible(SemaRef, *DI)) {
4153      if (!AnyVisibleDecls) {
4154        // Found a visible decl, discard all hidden ones.
4155        AnyVisibleDecls = true;
4156        NewDecls.clear();
4157      }
4158      NewDecls.push_back(*DI);
4159    } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4160      NewDecls.push_back(*DI);
4161  }
4162
4163  if (NewDecls.empty())
4164    TC = TypoCorrection();
4165  else {
4166    TC.setCorrectionDecls(NewDecls);
4167    TC.setRequiresImport(!AnyVisibleDecls);
4168  }
4169}
4170
4171// Fill the supplied vector with the IdentifierInfo pointers for each piece of
4172// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4173// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4174static void getNestedNameSpecifierIdentifiers(
4175    NestedNameSpecifier *NNS,
4176    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4177  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4178    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4179  else
4180    Identifiers.clear();
4181
4182  const IdentifierInfo *II = nullptr;
4183
4184  switch (NNS->getKind()) {
4185  case NestedNameSpecifier::Identifier:
4186    II = NNS->getAsIdentifier();
4187    break;
4188
4189  case NestedNameSpecifier::Namespace:
4190    if (NNS->getAsNamespace()->isAnonymousNamespace())
4191      return;
4192    II = NNS->getAsNamespace()->getIdentifier();
4193    break;
4194
4195  case NestedNameSpecifier::NamespaceAlias:
4196    II = NNS->getAsNamespaceAlias()->getIdentifier();
4197    break;
4198
4199  case NestedNameSpecifier::TypeSpecWithTemplate:
4200  case NestedNameSpecifier::TypeSpec:
4201    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4202    break;
4203
4204  case NestedNameSpecifier::Global:
4205  case NestedNameSpecifier::Super:
4206    return;
4207  }
4208
4209  if (II)
4210    Identifiers.push_back(II);
4211}
4212
4213void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4214                                       DeclContext *Ctx, bool InBaseClass) {
4215  // Don't consider hidden names for typo correction.
4216  if (Hiding)
4217    return;
4218
4219  // Only consider entities with identifiers for names, ignoring
4220  // special names (constructors, overloaded operators, selectors,
4221  // etc.).
4222  IdentifierInfo *Name = ND->getIdentifier();
4223  if (!Name)
4224    return;
4225
4226  // Only consider visible declarations and declarations from modules with
4227  // names that exactly match.
4228  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4229    return;
4230
4231  FoundName(Name->getName());
4232}
4233
4234void TypoCorrectionConsumer::FoundName(StringRef Name) {
4235  // Compute the edit distance between the typo and the name of this
4236  // entity, and add the identifier to the list of results.
4237  addName(Name, nullptr);
4238}
4239
4240void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4241  // Compute the edit distance between the typo and this keyword,
4242  // and add the keyword to the list of results.
4243  addName(Keyword, nullptr, nullptr, true);
4244}
4245
4246void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4247                                     NestedNameSpecifier *NNS, bool isKeyword) {
4248  // Use a simple length-based heuristic to determine the minimum possible
4249  // edit distance. If the minimum isn't good enough, bail out early.
4250  StringRef TypoStr = Typo->getName();
4251  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4252  if (MinED && TypoStr.size() / MinED < 3)
4253    return;
4254
4255  // Compute an upper bound on the allowable edit distance, so that the
4256  // edit-distance algorithm can short-circuit.
4257  unsigned UpperBound = (TypoStr.size() + 2) / 3;
4258  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4259  if (ED > UpperBound) return;
4260
4261  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4262  if (isKeyword) TC.makeKeyword();
4263  TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4264  addCorrection(TC);
4265}
4266
4267static const unsigned MaxTypoDistanceResultSets = 5;
4268
4269void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4270  StringRef TypoStr = Typo->getName();
4271  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4272
4273  // For very short typos, ignore potential corrections that have a different
4274  // base identifier from the typo or which have a normalized edit distance
4275  // longer than the typo itself.
4276  if (TypoStr.size() < 3 &&
4277      (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4278    return;
4279
4280  // If the correction is resolved but is not viable, ignore it.
4281  if (Correction.isResolved()) {
4282    checkCorrectionVisibility(SemaRef, Correction);
4283    if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4284      return;
4285  }
4286
4287  TypoResultList &CList =
4288      CorrectionResults[Correction.getEditDistance(false)][Name];
4289
4290  if (!CList.empty() && !CList.back().isResolved())
4291    CList.pop_back();
4292  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4293    std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4294    for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4295         RI != RIEnd; ++RI) {
4296      // If the Correction refers to a decl already in the result list,
4297      // replace the existing result if the string representation of Correction
4298      // comes before the current result alphabetically, then stop as there is
4299      // nothing more to be done to add Correction to the candidate set.
4300      if (RI->getCorrectionDecl() == NewND) {
4301        if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4302          *RI = Correction;
4303        return;
4304      }
4305    }
4306  }
4307  if (CList.empty() || Correction.isResolved())
4308    CList.push_back(Correction);
4309
4310  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4311    CorrectionResults.erase(std::prev(CorrectionResults.end()));
4312}
4313
4314void TypoCorrectionConsumer::addNamespaces(
4315    const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4316  SearchNamespaces = true;
4317
4318  for (auto KNPair : KnownNamespaces)
4319    Namespaces.addNameSpecifier(KNPair.first);
4320
4321  bool SSIsTemplate = false;
4322  if (NestedNameSpecifier *NNS =
4323          (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4324    if (const Type *T = NNS->getAsType())
4325      SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4326  }
4327  // Do not transform this into an iterator-based loop. The loop body can
4328  // trigger the creation of further types (through lazy deserialization) and
4329  // invalid iterators into this list.
4330  auto &Types = SemaRef.getASTContext().getTypes();
4331  for (unsigned I = 0; I != Types.size(); ++I) {
4332    const auto *TI = Types[I];
4333    if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4334      CD = CD->getCanonicalDecl();
4335      if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4336          !CD->isUnion() && CD->getIdentifier() &&
4337          (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4338          (CD->isBeingDefined() || CD->isCompleteDefinition()))
4339        Namespaces.addNameSpecifier(CD);
4340    }
4341  }
4342}
4343
4344const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4345  if (++CurrentTCIndex < ValidatedCorrections.size())
4346    return ValidatedCorrections[CurrentTCIndex];
4347
4348  CurrentTCIndex = ValidatedCorrections.size();
4349  while (!CorrectionResults.empty()) {
4350    auto DI = CorrectionResults.begin();
4351    if (DI->second.empty()) {
4352      CorrectionResults.erase(DI);
4353      continue;
4354    }
4355
4356    auto RI = DI->second.begin();
4357    if (RI->second.empty()) {
4358      DI->second.erase(RI);
4359      performQualifiedLookups();
4360      continue;
4361    }
4362
4363    TypoCorrection TC = RI->second.pop_back_val();
4364    if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4365      ValidatedCorrections.push_back(TC);
4366      return ValidatedCorrections[CurrentTCIndex];
4367    }
4368  }
4369  return ValidatedCorrections[0];  // The empty correction.
4370}
4371
4372bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4373  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4374  DeclContext *TempMemberContext = MemberContext;
4375  CXXScopeSpec *TempSS = SS.get();
4376retry_lookup:
4377  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4378                            EnteringContext,
4379                            CorrectionValidator->IsObjCIvarLookup,
4380                            Name == Typo && !Candidate.WillReplaceSpecifier());
4381  switch (Result.getResultKind()) {
4382  case LookupResult::NotFound:
4383  case LookupResult::NotFoundInCurrentInstantiation:
4384  case LookupResult::FoundUnresolvedValue:
4385    if (TempSS) {
4386      // Immediately retry the lookup without the given CXXScopeSpec
4387      TempSS = nullptr;
4388      Candidate.WillReplaceSpecifier(true);
4389      goto retry_lookup;
4390    }
4391    if (TempMemberContext) {
4392      if (SS && !TempSS)
4393        TempSS = SS.get();
4394      TempMemberContext = nullptr;
4395      goto retry_lookup;
4396    }
4397    if (SearchNamespaces)
4398      QualifiedResults.push_back(Candidate);
4399    break;
4400
4401  case LookupResult::Ambiguous:
4402    // We don't deal with ambiguities.
4403    break;
4404
4405  case LookupResult::Found:
4406  case LookupResult::FoundOverloaded:
4407    // Store all of the Decls for overloaded symbols
4408    for (auto *TRD : Result)
4409      Candidate.addCorrectionDecl(TRD);
4410    checkCorrectionVisibility(SemaRef, Candidate);
4411    if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4412      if (SearchNamespaces)
4413        QualifiedResults.push_back(Candidate);
4414      break;
4415    }
4416    Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4417    return true;
4418  }
4419  return false;
4420}
4421
4422void TypoCorrectionConsumer::performQualifiedLookups() {
4423  unsigned TypoLen = Typo->getName().size();
4424  for (const TypoCorrection &QR : QualifiedResults) {
4425    for (const auto &NSI : Namespaces) {
4426      DeclContext *Ctx = NSI.DeclCtx;
4427      const Type *NSType = NSI.NameSpecifier->getAsType();
4428
4429      // If the current NestedNameSpecifier refers to a class and the
4430      // current correction candidate is the name of that class, then skip
4431      // it as it is unlikely a qualified version of the class' constructor
4432      // is an appropriate correction.
4433      if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4434                                           nullptr) {
4435        if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4436          continue;
4437      }
4438
4439      TypoCorrection TC(QR);
4440      TC.ClearCorrectionDecls();
4441      TC.setCorrectionSpecifier(NSI.NameSpecifier);
4442      TC.setQualifierDistance(NSI.EditDistance);
4443      TC.setCallbackDistance(0); // Reset the callback distance
4444
4445      // If the current correction candidate and namespace combination are
4446      // too far away from the original typo based on the normalized edit
4447      // distance, then skip performing a qualified name lookup.
4448      unsigned TmpED = TC.getEditDistance(true);
4449      if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4450          TypoLen / TmpED < 3)
4451        continue;
4452
4453      Result.clear();
4454      Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4455      if (!SemaRef.LookupQualifiedName(Result, Ctx))
4456        continue;
4457
4458      // Any corrections added below will be validated in subsequent
4459      // iterations of the main while() loop over the Consumer's contents.
4460      switch (Result.getResultKind()) {
4461      case LookupResult::Found:
4462      case LookupResult::FoundOverloaded: {
4463        if (SS && SS->isValid()) {
4464          std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4465          std::string OldQualified;
4466          llvm::raw_string_ostream OldOStream(OldQualified);
4467          SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4468          OldOStream << Typo->getName();
4469          // If correction candidate would be an identical written qualified
4470          // identifier, then the existing CXXScopeSpec probably included a
4471          // typedef that didn't get accounted for properly.
4472          if (OldOStream.str() == NewQualified)
4473            break;
4474        }
4475        for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4476             TRD != TRDEnd; ++TRD) {
4477          if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4478                                        NSType ? NSType->getAsCXXRecordDecl()
4479                                               : nullptr,
4480                                        TRD.getPair()) == Sema::AR_accessible)
4481            TC.addCorrectionDecl(*TRD);
4482        }
4483        if (TC.isResolved()) {
4484          TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4485          addCorrection(TC);
4486        }
4487        break;
4488      }
4489      case LookupResult::NotFound:
4490      case LookupResult::NotFoundInCurrentInstantiation:
4491      case LookupResult::Ambiguous:
4492      case LookupResult::FoundUnresolvedValue:
4493        break;
4494      }
4495    }
4496  }
4497  QualifiedResults.clear();
4498}
4499
4500TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4501    ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4502    : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4503  if (NestedNameSpecifier *NNS =
4504          CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4505    llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4506    NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4507
4508    getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4509  }
4510  // Build the list of identifiers that would be used for an absolute
4511  // (from the global context) NestedNameSpecifier referring to the current
4512  // context.
4513  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4514    if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4515      CurContextIdentifiers.push_back(ND->getIdentifier());
4516  }
4517
4518  // Add the global context as a NestedNameSpecifier
4519  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4520                      NestedNameSpecifier::GlobalSpecifier(Context), 1};
4521  DistanceMap[1].push_back(SI);
4522}
4523
4524auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4525    DeclContext *Start) -> DeclContextList {
4526  assert(Start && "Building a context chain from a null context");
4527  DeclContextList Chain;
4528  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4529       DC = DC->getLookupParent()) {
4530    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4531    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4532        !(ND && ND->isAnonymousNamespace()))
4533      Chain.push_back(DC->getPrimaryContext());
4534  }
4535  return Chain;
4536}
4537
4538unsigned
4539TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4540    DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4541  unsigned NumSpecifiers = 0;
4542  for (DeclContext *C : llvm::reverse(DeclChain)) {
4543    if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4544      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4545      ++NumSpecifiers;
4546    } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4547      NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4548                                        RD->getTypeForDecl());
4549      ++NumSpecifiers;
4550    }
4551  }
4552  return NumSpecifiers;
4553}
4554
4555void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4556    DeclContext *Ctx) {
4557  NestedNameSpecifier *NNS = nullptr;
4558  unsigned NumSpecifiers = 0;
4559  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4560  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4561
4562  // Eliminate common elements from the two DeclContext chains.
4563  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4564    if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4565      break;
4566    NamespaceDeclChain.pop_back();
4567  }
4568
4569  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4570  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4571
4572  // Add an explicit leading '::' specifier if needed.
4573  if (NamespaceDeclChain.empty()) {
4574    // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4575    NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4576    NumSpecifiers =
4577        buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4578  } else if (NamedDecl *ND =
4579                 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4580    IdentifierInfo *Name = ND->getIdentifier();
4581    bool SameNameSpecifier = false;
4582    if (std::find(CurNameSpecifierIdentifiers.begin(),
4583                  CurNameSpecifierIdentifiers.end(),
4584                  Name) != CurNameSpecifierIdentifiers.end()) {
4585      std::string NewNameSpecifier;
4586      llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4587      SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4588      getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4589      NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4590      SpecifierOStream.flush();
4591      SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4592    }
4593    if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) !=
4594                                 CurContextIdentifiers.end()) {
4595      // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4596      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4597      NumSpecifiers =
4598          buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4599    }
4600  }
4601
4602  // If the built NestedNameSpecifier would be replacing an existing
4603  // NestedNameSpecifier, use the number of component identifiers that
4604  // would need to be changed as the edit distance instead of the number
4605  // of components in the built NestedNameSpecifier.
4606  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4607    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4608    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4609    NumSpecifiers = llvm::ComputeEditDistance(
4610        llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4611        llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4612  }
4613
4614  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4615  DistanceMap[NumSpecifiers].push_back(SI);
4616}
4617
4618/// Perform name lookup for a possible result for typo correction.
4619static void LookupPotentialTypoResult(Sema &SemaRef,
4620                                      LookupResult &Res,
4621                                      IdentifierInfo *Name,
4622                                      Scope *S, CXXScopeSpec *SS,
4623                                      DeclContext *MemberContext,
4624                                      bool EnteringContext,
4625                                      bool isObjCIvarLookup,
4626                                      bool FindHidden) {
4627  Res.suppressDiagnostics();
4628  Res.clear();
4629  Res.setLookupName(Name);
4630  Res.setAllowHidden(FindHidden);
4631  if (MemberContext) {
4632    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4633      if (isObjCIvarLookup) {
4634        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4635          Res.addDecl(Ivar);
4636          Res.resolveKind();
4637          return;
4638        }
4639      }
4640
4641      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4642              Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4643        Res.addDecl(Prop);
4644        Res.resolveKind();
4645        return;
4646      }
4647    }
4648
4649    SemaRef.LookupQualifiedName(Res, MemberContext);
4650    return;
4651  }
4652
4653  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4654                           EnteringContext);
4655
4656  // Fake ivar lookup; this should really be part of
4657  // LookupParsedName.
4658  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4659    if (Method->isInstanceMethod() && Method->getClassInterface() &&
4660        (Res.empty() ||
4661         (Res.isSingleResult() &&
4662          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4663       if (ObjCIvarDecl *IV
4664             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4665         Res.addDecl(IV);
4666         Res.resolveKind();
4667       }
4668     }
4669  }
4670}
4671
4672/// Add keywords to the consumer as possible typo corrections.
4673static void AddKeywordsToConsumer(Sema &SemaRef,
4674                                  TypoCorrectionConsumer &Consumer,
4675                                  Scope *S, CorrectionCandidateCallback &CCC,
4676                                  bool AfterNestedNameSpecifier) {
4677  if (AfterNestedNameSpecifier) {
4678    // For 'X::', we know exactly which keywords can appear next.
4679    Consumer.addKeywordResult("template");
4680    if (CCC.WantExpressionKeywords)
4681      Consumer.addKeywordResult("operator");
4682    return;
4683  }
4684
4685  if (CCC.WantObjCSuper)
4686    Consumer.addKeywordResult("super");
4687
4688  if (CCC.WantTypeSpecifiers) {
4689    // Add type-specifier keywords to the set of results.
4690    static const char *const CTypeSpecs[] = {
4691      "char", "const", "double", "enum", "float", "int", "long", "short",
4692      "signed", "struct", "union", "unsigned", "void", "volatile",
4693      "_Complex", "_Imaginary",
4694      // storage-specifiers as well
4695      "extern", "inline", "static", "typedef"
4696    };
4697
4698    const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4699    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4700      Consumer.addKeywordResult(CTypeSpecs[I]);
4701
4702    if (SemaRef.getLangOpts().C99)
4703      Consumer.addKeywordResult("restrict");
4704    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4705      Consumer.addKeywordResult("bool");
4706    else if (SemaRef.getLangOpts().C99)
4707      Consumer.addKeywordResult("_Bool");
4708
4709    if (SemaRef.getLangOpts().CPlusPlus) {
4710      Consumer.addKeywordResult("class");
4711      Consumer.addKeywordResult("typename");
4712      Consumer.addKeywordResult("wchar_t");
4713
4714      if (SemaRef.getLangOpts().CPlusPlus11) {
4715        Consumer.addKeywordResult("char16_t");
4716        Consumer.addKeywordResult("char32_t");
4717        Consumer.addKeywordResult("constexpr");
4718        Consumer.addKeywordResult("decltype");
4719        Consumer.addKeywordResult("thread_local");
4720      }
4721    }
4722
4723    if (SemaRef.getLangOpts().GNUKeywords)
4724      Consumer.addKeywordResult("typeof");
4725  } else if (CCC.WantFunctionLikeCasts) {
4726    static const char *const CastableTypeSpecs[] = {
4727      "char", "double", "float", "int", "long", "short",
4728      "signed", "unsigned", "void"
4729    };
4730    for (auto *kw : CastableTypeSpecs)
4731      Consumer.addKeywordResult(kw);
4732  }
4733
4734  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4735    Consumer.addKeywordResult("const_cast");
4736    Consumer.addKeywordResult("dynamic_cast");
4737    Consumer.addKeywordResult("reinterpret_cast");
4738    Consumer.addKeywordResult("static_cast");
4739  }
4740
4741  if (CCC.WantExpressionKeywords) {
4742    Consumer.addKeywordResult("sizeof");
4743    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4744      Consumer.addKeywordResult("false");
4745      Consumer.addKeywordResult("true");
4746    }
4747
4748    if (SemaRef.getLangOpts().CPlusPlus) {
4749      static const char *const CXXExprs[] = {
4750        "delete", "new", "operator", "throw", "typeid"
4751      };
4752      const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4753      for (unsigned I = 0; I != NumCXXExprs; ++I)
4754        Consumer.addKeywordResult(CXXExprs[I]);
4755
4756      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4757          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4758        Consumer.addKeywordResult("this");
4759
4760      if (SemaRef.getLangOpts().CPlusPlus11) {
4761        Consumer.addKeywordResult("alignof");
4762        Consumer.addKeywordResult("nullptr");
4763      }
4764    }
4765
4766    if (SemaRef.getLangOpts().C11) {
4767      // FIXME: We should not suggest _Alignof if the alignof macro
4768      // is present.
4769      Consumer.addKeywordResult("_Alignof");
4770    }
4771  }
4772
4773  if (CCC.WantRemainingKeywords) {
4774    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4775      // Statements.
4776      static const char *const CStmts[] = {
4777        "do", "else", "for", "goto", "if", "return", "switch", "while" };
4778      const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4779      for (unsigned I = 0; I != NumCStmts; ++I)
4780        Consumer.addKeywordResult(CStmts[I]);
4781
4782      if (SemaRef.getLangOpts().CPlusPlus) {
4783        Consumer.addKeywordResult("catch");
4784        Consumer.addKeywordResult("try");
4785      }
4786
4787      if (S && S->getBreakParent())
4788        Consumer.addKeywordResult("break");
4789
4790      if (S && S->getContinueParent())
4791        Consumer.addKeywordResult("continue");
4792
4793      if (SemaRef.getCurFunction() &&
4794          !SemaRef.getCurFunction()->SwitchStack.empty()) {
4795        Consumer.addKeywordResult("case");
4796        Consumer.addKeywordResult("default");
4797      }
4798    } else {
4799      if (SemaRef.getLangOpts().CPlusPlus) {
4800        Consumer.addKeywordResult("namespace");
4801        Consumer.addKeywordResult("template");
4802      }
4803
4804      if (S && S->isClassScope()) {
4805        Consumer.addKeywordResult("explicit");
4806        Consumer.addKeywordResult("friend");
4807        Consumer.addKeywordResult("mutable");
4808        Consumer.addKeywordResult("private");
4809        Consumer.addKeywordResult("protected");
4810        Consumer.addKeywordResult("public");
4811        Consumer.addKeywordResult("virtual");
4812      }
4813    }
4814
4815    if (SemaRef.getLangOpts().CPlusPlus) {
4816      Consumer.addKeywordResult("using");
4817
4818      if (SemaRef.getLangOpts().CPlusPlus11)
4819        Consumer.addKeywordResult("static_assert");
4820    }
4821  }
4822}
4823
4824std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4825    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4826    Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
4827    DeclContext *MemberContext, bool EnteringContext,
4828    const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4829
4830  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4831      DisableTypoCorrection)
4832    return nullptr;
4833
4834  // In Microsoft mode, don't perform typo correction in a template member
4835  // function dependent context because it interferes with the "lookup into
4836  // dependent bases of class templates" feature.
4837  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4838      isa<CXXMethodDecl>(CurContext))
4839    return nullptr;
4840
4841  // We only attempt to correct typos for identifiers.
4842  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4843  if (!Typo)
4844    return nullptr;
4845
4846  // If the scope specifier itself was invalid, don't try to correct
4847  // typos.
4848  if (SS && SS->isInvalid())
4849    return nullptr;
4850
4851  // Never try to correct typos during any kind of code synthesis.
4852  if (!CodeSynthesisContexts.empty())
4853    return nullptr;
4854
4855  // Don't try to correct 'super'.
4856  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4857    return nullptr;
4858
4859  // Abort if typo correction already failed for this specific typo.
4860  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4861  if (locs != TypoCorrectionFailures.end() &&
4862      locs->second.count(TypoName.getLoc()))
4863    return nullptr;
4864
4865  // Don't try to correct the identifier "vector" when in AltiVec mode.
4866  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4867  // remove this workaround.
4868  if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4869    return nullptr;
4870
4871  // Provide a stop gap for files that are just seriously broken.  Trying
4872  // to correct all typos can turn into a HUGE performance penalty, causing
4873  // some files to take minutes to get rejected by the parser.
4874  unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4875  if (Limit && TyposCorrected >= Limit)
4876    return nullptr;
4877  ++TyposCorrected;
4878
4879  // If we're handling a missing symbol error, using modules, and the
4880  // special search all modules option is used, look for a missing import.
4881  if (ErrorRecovery && getLangOpts().Modules &&
4882      getLangOpts().ModulesSearchAll) {
4883    // The following has the side effect of loading the missing module.
4884    getModuleLoader().lookupMissingImports(Typo->getName(),
4885                                           TypoName.getBeginLoc());
4886  }
4887
4888  // Extend the lifetime of the callback. We delayed this until here
4889  // to avoid allocations in the hot path (which is where no typo correction
4890  // occurs). Note that CorrectionCandidateCallback is polymorphic and
4891  // initially stack-allocated.
4892  std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
4893  auto Consumer = std::make_unique<TypoCorrectionConsumer>(
4894      *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
4895      EnteringContext);
4896
4897  // Perform name lookup to find visible, similarly-named entities.
4898  bool IsUnqualifiedLookup = false;
4899  DeclContext *QualifiedDC = MemberContext;
4900  if (MemberContext) {
4901    LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4902
4903    // Look in qualified interfaces.
4904    if (OPT) {
4905      for (auto *I : OPT->quals())
4906        LookupVisibleDecls(I, LookupKind, *Consumer);
4907    }
4908  } else if (SS && SS->isSet()) {
4909    QualifiedDC = computeDeclContext(*SS, EnteringContext);
4910    if (!QualifiedDC)
4911      return nullptr;
4912
4913    LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4914  } else {
4915    IsUnqualifiedLookup = true;
4916  }
4917
4918  // Determine whether we are going to search in the various namespaces for
4919  // corrections.
4920  bool SearchNamespaces
4921    = getLangOpts().CPlusPlus &&
4922      (IsUnqualifiedLookup || (SS && SS->isSet()));
4923
4924  if (IsUnqualifiedLookup || SearchNamespaces) {
4925    // For unqualified lookup, look through all of the names that we have
4926    // seen in this translation unit.
4927    // FIXME: Re-add the ability to skip very unlikely potential corrections.
4928    for (const auto &I : Context.Idents)
4929      Consumer->FoundName(I.getKey());
4930
4931    // Walk through identifiers in external identifier sources.
4932    // FIXME: Re-add the ability to skip very unlikely potential corrections.
4933    if (IdentifierInfoLookup *External
4934                            = Context.Idents.getExternalIdentifierLookup()) {
4935      std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4936      do {
4937        StringRef Name = Iter->Next();
4938        if (Name.empty())
4939          break;
4940
4941        Consumer->FoundName(Name);
4942      } while (true);
4943    }
4944  }
4945
4946  AddKeywordsToConsumer(*this, *Consumer, S,
4947                        *Consumer->getCorrectionValidator(),
4948                        SS && SS->isNotEmpty());
4949
4950  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4951  // to search those namespaces.
4952  if (SearchNamespaces) {
4953    // Load any externally-known namespaces.
4954    if (ExternalSource && !LoadedExternalKnownNamespaces) {
4955      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4956      LoadedExternalKnownNamespaces = true;
4957      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4958      for (auto *N : ExternalKnownNamespaces)
4959        KnownNamespaces[N] = true;
4960    }
4961
4962    Consumer->addNamespaces(KnownNamespaces);
4963  }
4964
4965  return Consumer;
4966}
4967
4968/// Try to "correct" a typo in the source code by finding
4969/// visible declarations whose names are similar to the name that was
4970/// present in the source code.
4971///
4972/// \param TypoName the \c DeclarationNameInfo structure that contains
4973/// the name that was present in the source code along with its location.
4974///
4975/// \param LookupKind the name-lookup criteria used to search for the name.
4976///
4977/// \param S the scope in which name lookup occurs.
4978///
4979/// \param SS the nested-name-specifier that precedes the name we're
4980/// looking for, if present.
4981///
4982/// \param CCC A CorrectionCandidateCallback object that provides further
4983/// validation of typo correction candidates. It also provides flags for
4984/// determining the set of keywords permitted.
4985///
4986/// \param MemberContext if non-NULL, the context in which to look for
4987/// a member access expression.
4988///
4989/// \param EnteringContext whether we're entering the context described by
4990/// the nested-name-specifier SS.
4991///
4992/// \param OPT when non-NULL, the search for visible declarations will
4993/// also walk the protocols in the qualified interfaces of \p OPT.
4994///
4995/// \returns a \c TypoCorrection containing the corrected name if the typo
4996/// along with information such as the \c NamedDecl where the corrected name
4997/// was declared, and any additional \c NestedNameSpecifier needed to access
4998/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4999TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5000                                 Sema::LookupNameKind LookupKind,
5001                                 Scope *S, CXXScopeSpec *SS,
5002                                 CorrectionCandidateCallback &CCC,
5003                                 CorrectTypoKind Mode,
5004                                 DeclContext *MemberContext,
5005                                 bool EnteringContext,
5006                                 const ObjCObjectPointerType *OPT,
5007                                 bool RecordFailure) {
5008  // Always let the ExternalSource have the first chance at correction, even
5009  // if we would otherwise have given up.
5010  if (ExternalSource) {
5011    if (TypoCorrection Correction =
5012            ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5013                                        MemberContext, EnteringContext, OPT))
5014      return Correction;
5015  }
5016
5017  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5018  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5019  // some instances of CTC_Unknown, while WantRemainingKeywords is true
5020  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5021  bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5022
5023  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5024  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5025                                             MemberContext, EnteringContext,
5026                                             OPT, Mode == CTK_ErrorRecovery);
5027
5028  if (!Consumer)
5029    return TypoCorrection();
5030
5031  // If we haven't found anything, we're done.
5032  if (Consumer->empty())
5033    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5034
5035  // Make sure the best edit distance (prior to adding any namespace qualifiers)
5036  // is not more that about a third of the length of the typo's identifier.
5037  unsigned ED = Consumer->getBestEditDistance(true);
5038  unsigned TypoLen = Typo->getName().size();
5039  if (ED > 0 && TypoLen / ED < 3)
5040    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5041
5042  TypoCorrection BestTC = Consumer->getNextCorrection();
5043  TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5044  if (!BestTC)
5045    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5046
5047  ED = BestTC.getEditDistance();
5048
5049  if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5050    // If this was an unqualified lookup and we believe the callback
5051    // object wouldn't have filtered out possible corrections, note
5052    // that no correction was found.
5053    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5054  }
5055
5056  // If only a single name remains, return that result.
5057  if (!SecondBestTC ||
5058      SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5059    const TypoCorrection &Result = BestTC;
5060
5061    // Don't correct to a keyword that's the same as the typo; the keyword
5062    // wasn't actually in scope.
5063    if (ED == 0 && Result.isKeyword())
5064      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5065
5066    TypoCorrection TC = Result;
5067    TC.setCorrectionRange(SS, TypoName);
5068    checkCorrectionVisibility(*this, TC);
5069    return TC;
5070  } else if (SecondBestTC && ObjCMessageReceiver) {
5071    // Prefer 'super' when we're completing in a message-receiver
5072    // context.
5073
5074    if (BestTC.getCorrection().getAsString() != "super") {
5075      if (SecondBestTC.getCorrection().getAsString() == "super")
5076        BestTC = SecondBestTC;
5077      else if ((*Consumer)["super"].front().isKeyword())
5078        BestTC = (*Consumer)["super"].front();
5079    }
5080    // Don't correct to a keyword that's the same as the typo; the keyword
5081    // wasn't actually in scope.
5082    if (BestTC.getEditDistance() == 0 ||
5083        BestTC.getCorrection().getAsString() != "super")
5084      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5085
5086    BestTC.setCorrectionRange(SS, TypoName);
5087    return BestTC;
5088  }
5089
5090  // Record the failure's location if needed and return an empty correction. If
5091  // this was an unqualified lookup and we believe the callback object did not
5092  // filter out possible corrections, also cache the failure for the typo.
5093  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5094}
5095
5096/// Try to "correct" a typo in the source code by finding
5097/// visible declarations whose names are similar to the name that was
5098/// present in the source code.
5099///
5100/// \param TypoName the \c DeclarationNameInfo structure that contains
5101/// the name that was present in the source code along with its location.
5102///
5103/// \param LookupKind the name-lookup criteria used to search for the name.
5104///
5105/// \param S the scope in which name lookup occurs.
5106///
5107/// \param SS the nested-name-specifier that precedes the name we're
5108/// looking for, if present.
5109///
5110/// \param CCC A CorrectionCandidateCallback object that provides further
5111/// validation of typo correction candidates. It also provides flags for
5112/// determining the set of keywords permitted.
5113///
5114/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5115/// diagnostics when the actual typo correction is attempted.
5116///
5117/// \param TRC A TypoRecoveryCallback functor that will be used to build an
5118/// Expr from a typo correction candidate.
5119///
5120/// \param MemberContext if non-NULL, the context in which to look for
5121/// a member access expression.
5122///
5123/// \param EnteringContext whether we're entering the context described by
5124/// the nested-name-specifier SS.
5125///
5126/// \param OPT when non-NULL, the search for visible declarations will
5127/// also walk the protocols in the qualified interfaces of \p OPT.
5128///
5129/// \returns a new \c TypoExpr that will later be replaced in the AST with an
5130/// Expr representing the result of performing typo correction, or nullptr if
5131/// typo correction is not possible. If nullptr is returned, no diagnostics will
5132/// be emitted and it is the responsibility of the caller to emit any that are
5133/// needed.
5134TypoExpr *Sema::CorrectTypoDelayed(
5135    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5136    Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5137    TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5138    DeclContext *MemberContext, bool EnteringContext,
5139    const ObjCObjectPointerType *OPT) {
5140  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5141                                             MemberContext, EnteringContext,
5142                                             OPT, Mode == CTK_ErrorRecovery);
5143
5144  // Give the external sema source a chance to correct the typo.
5145  TypoCorrection ExternalTypo;
5146  if (ExternalSource && Consumer) {
5147    ExternalTypo = ExternalSource->CorrectTypo(
5148        TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5149        MemberContext, EnteringContext, OPT);
5150    if (ExternalTypo)
5151      Consumer->addCorrection(ExternalTypo);
5152  }
5153
5154  if (!Consumer || Consumer->empty())
5155    return nullptr;
5156
5157  // Make sure the best edit distance (prior to adding any namespace qualifiers)
5158  // is not more that about a third of the length of the typo's identifier.
5159  unsigned ED = Consumer->getBestEditDistance(true);
5160  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5161  if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5162    return nullptr;
5163
5164  ExprEvalContexts.back().NumTypos++;
5165  return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
5166}
5167
5168void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5169  if (!CDecl) return;
5170
5171  if (isKeyword())
5172    CorrectionDecls.clear();
5173
5174  CorrectionDecls.push_back(CDecl);
5175
5176  if (!CorrectionName)
5177    CorrectionName = CDecl->getDeclName();
5178}
5179
5180std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5181  if (CorrectionNameSpec) {
5182    std::string tmpBuffer;
5183    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5184    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5185    PrefixOStream << CorrectionName;
5186    return PrefixOStream.str();
5187  }
5188
5189  return CorrectionName.getAsString();
5190}
5191
5192bool CorrectionCandidateCallback::ValidateCandidate(
5193    const TypoCorrection &candidate) {
5194  if (!candidate.isResolved())
5195    return true;
5196
5197  if (candidate.isKeyword())
5198    return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5199           WantRemainingKeywords || WantObjCSuper;
5200
5201  bool HasNonType = false;
5202  bool HasStaticMethod = false;
5203  bool HasNonStaticMethod = false;
5204  for (Decl *D : candidate) {
5205    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5206      D = FTD->getTemplatedDecl();
5207    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5208      if (Method->isStatic())
5209        HasStaticMethod = true;
5210      else
5211        HasNonStaticMethod = true;
5212    }
5213    if (!isa<TypeDecl>(D))
5214      HasNonType = true;
5215  }
5216
5217  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5218      !candidate.getCorrectionSpecifier())
5219    return false;
5220
5221  return WantTypeSpecifiers || HasNonType;
5222}
5223
5224FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5225                                             bool HasExplicitTemplateArgs,
5226                                             MemberExpr *ME)
5227    : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5228      CurContext(SemaRef.CurContext), MemberFn(ME) {
5229  WantTypeSpecifiers = false;
5230  WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5231                          !HasExplicitTemplateArgs && NumArgs == 1;
5232  WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5233  WantRemainingKeywords = false;
5234}
5235
5236bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5237  if (!candidate.getCorrectionDecl())
5238    return candidate.isKeyword();
5239
5240  for (auto *C : candidate) {
5241    FunctionDecl *FD = nullptr;
5242    NamedDecl *ND = C->getUnderlyingDecl();
5243    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5244      FD = FTD->getTemplatedDecl();
5245    if (!HasExplicitTemplateArgs && !FD) {
5246      if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5247        // If the Decl is neither a function nor a template function,
5248        // determine if it is a pointer or reference to a function. If so,
5249        // check against the number of arguments expected for the pointee.
5250        QualType ValType = cast<ValueDecl>(ND)->getType();
5251        if (ValType.isNull())
5252          continue;
5253        if (ValType->isAnyPointerType() || ValType->isReferenceType())
5254          ValType = ValType->getPointeeType();
5255        if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5256          if (FPT->getNumParams() == NumArgs)
5257            return true;
5258      }
5259    }
5260
5261    // A typo for a function-style cast can look like a function call in C++.
5262    if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5263                                 : isa<TypeDecl>(ND)) &&
5264        CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5265      // Only a class or class template can take two or more arguments.
5266      return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5267
5268    // Skip the current candidate if it is not a FunctionDecl or does not accept
5269    // the current number of arguments.
5270    if (!FD || !(FD->getNumParams() >= NumArgs &&
5271                 FD->getMinRequiredArguments() <= NumArgs))
5272      continue;
5273
5274    // If the current candidate is a non-static C++ method, skip the candidate
5275    // unless the method being corrected--or the current DeclContext, if the
5276    // function being corrected is not a method--is a method in the same class
5277    // or a descendent class of the candidate's parent class.
5278    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5279      if (MemberFn || !MD->isStatic()) {
5280        CXXMethodDecl *CurMD =
5281            MemberFn
5282                ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5283                : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5284        CXXRecordDecl *CurRD =
5285            CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5286        CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5287        if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5288          continue;
5289      }
5290    }
5291    return true;
5292  }
5293  return false;
5294}
5295
5296void Sema::diagnoseTypo(const TypoCorrection &Correction,
5297                        const PartialDiagnostic &TypoDiag,
5298                        bool ErrorRecovery) {
5299  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5300               ErrorRecovery);
5301}
5302
5303/// Find which declaration we should import to provide the definition of
5304/// the given declaration.
5305static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5306  if (VarDecl *VD = dyn_cast<VarDecl>(D))
5307    return VD->getDefinition();
5308  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5309    return FD->getDefinition();
5310  if (TagDecl *TD = dyn_cast<TagDecl>(D))
5311    return TD->getDefinition();
5312  // The first definition for this ObjCInterfaceDecl might be in the TU
5313  // and not associated with any module. Use the one we know to be complete
5314  // and have just seen in a module.
5315  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5316    return ID;
5317  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5318    return PD->getDefinition();
5319  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5320    if (NamedDecl *TTD = TD->getTemplatedDecl())
5321      return getDefinitionToImport(TTD);
5322  return nullptr;
5323}
5324
5325void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5326                                 MissingImportKind MIK, bool Recover) {
5327  // Suggest importing a module providing the definition of this entity, if
5328  // possible.
5329  NamedDecl *Def = getDefinitionToImport(Decl);
5330  if (!Def)
5331    Def = Decl;
5332
5333  Module *Owner = getOwningModule(Def);
5334  assert(Owner && "definition of hidden declaration is not in a module");
5335
5336  llvm::SmallVector<Module*, 8> OwningModules;
5337  OwningModules.push_back(Owner);
5338  auto Merged = Context.getModulesWithMergedDefinition(Def);
5339  OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5340
5341  diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5342                        Recover);
5343}
5344
5345/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5346/// suggesting the addition of a #include of the specified file.
5347static std::string getIncludeStringForHeader(Preprocessor &PP,
5348                                             const FileEntry *E,
5349                                             llvm::StringRef IncludingFile) {
5350  bool IsSystem = false;
5351  auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5352      E, IncludingFile, &IsSystem);
5353  return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5354}
5355
5356void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5357                                 SourceLocation DeclLoc,
5358                                 ArrayRef<Module *> Modules,
5359                                 MissingImportKind MIK, bool Recover) {
5360  assert(!Modules.empty());
5361
5362  auto NotePrevious = [&] {
5363    unsigned DiagID;
5364    switch (MIK) {
5365    case MissingImportKind::Declaration:
5366      DiagID = diag::note_previous_declaration;
5367      break;
5368    case MissingImportKind::Definition:
5369      DiagID = diag::note_previous_definition;
5370      break;
5371    case MissingImportKind::DefaultArgument:
5372      DiagID = diag::note_default_argument_declared_here;
5373      break;
5374    case MissingImportKind::ExplicitSpecialization:
5375      DiagID = diag::note_explicit_specialization_declared_here;
5376      break;
5377    case MissingImportKind::PartialSpecialization:
5378      DiagID = diag::note_partial_specialization_declared_here;
5379      break;
5380    }
5381    Diag(DeclLoc, DiagID);
5382  };
5383
5384  // Weed out duplicates from module list.
5385  llvm::SmallVector<Module*, 8> UniqueModules;
5386  llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5387  for (auto *M : Modules) {
5388    if (M->Kind == Module::GlobalModuleFragment)
5389      continue;
5390    if (UniqueModuleSet.insert(M).second)
5391      UniqueModules.push_back(M);
5392  }
5393
5394  llvm::StringRef IncludingFile;
5395  if (const FileEntry *FE =
5396          SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5397    IncludingFile = FE->tryGetRealPathName();
5398
5399  if (UniqueModules.empty()) {
5400    // All candidates were global module fragments. Try to suggest a #include.
5401    const FileEntry *E =
5402        PP.getModuleHeaderToIncludeForDiagnostics(UseLoc, Modules[0], DeclLoc);
5403    // FIXME: Find a smart place to suggest inserting a #include, and add
5404    // a FixItHint there.
5405    Diag(UseLoc, diag::err_module_unimported_use_global_module_fragment)
5406        << (int)MIK << Decl << !!E
5407        << (E ? getIncludeStringForHeader(PP, E, IncludingFile) : "");
5408    // Produce a "previous" note if it will point to a header rather than some
5409    // random global module fragment.
5410    // FIXME: Suppress the note backtrace even under
5411    // -fdiagnostics-show-note-include-stack.
5412    if (E)
5413      NotePrevious();
5414    if (Recover)
5415      createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5416    return;
5417  }
5418
5419  Modules = UniqueModules;
5420
5421  if (Modules.size() > 1) {
5422    std::string ModuleList;
5423    unsigned N = 0;
5424    for (Module *M : Modules) {
5425      ModuleList += "\n        ";
5426      if (++N == 5 && N != Modules.size()) {
5427        ModuleList += "[...]";
5428        break;
5429      }
5430      ModuleList += M->getFullModuleName();
5431    }
5432
5433    Diag(UseLoc, diag::err_module_unimported_use_multiple)
5434      << (int)MIK << Decl << ModuleList;
5435  } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5436                 UseLoc, Modules[0], DeclLoc)) {
5437    // The right way to make the declaration visible is to include a header;
5438    // suggest doing so.
5439    //
5440    // FIXME: Find a smart place to suggest inserting a #include, and add
5441    // a FixItHint there.
5442    Diag(UseLoc, diag::err_module_unimported_use_header)
5443        << (int)MIK << Decl << Modules[0]->getFullModuleName()
5444        << getIncludeStringForHeader(PP, E, IncludingFile);
5445  } else {
5446    // FIXME: Add a FixItHint that imports the corresponding module.
5447    Diag(UseLoc, diag::err_module_unimported_use)
5448      << (int)MIK << Decl << Modules[0]->getFullModuleName();
5449  }
5450
5451  NotePrevious();
5452
5453  // Try to recover by implicitly importing this module.
5454  if (Recover)
5455    createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5456}
5457
5458/// Diagnose a successfully-corrected typo. Separated from the correction
5459/// itself to allow external validation of the result, etc.
5460///
5461/// \param Correction The result of performing typo correction.
5462/// \param TypoDiag The diagnostic to produce. This will have the corrected
5463///        string added to it (and usually also a fixit).
5464/// \param PrevNote A note to use when indicating the location of the entity to
5465///        which we are correcting. Will have the correction string added to it.
5466/// \param ErrorRecovery If \c true (the default), the caller is going to
5467///        recover from the typo as if the corrected string had been typed.
5468///        In this case, \c PDiag must be an error, and we will attach a fixit
5469///        to it.
5470void Sema::diagnoseTypo(const TypoCorrection &Correction,
5471                        const PartialDiagnostic &TypoDiag,
5472                        const PartialDiagnostic &PrevNote,
5473                        bool ErrorRecovery) {
5474  std::string CorrectedStr = Correction.getAsString(getLangOpts());
5475  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5476  FixItHint FixTypo = FixItHint::CreateReplacement(
5477      Correction.getCorrectionRange(), CorrectedStr);
5478
5479  // Maybe we're just missing a module import.
5480  if (Correction.requiresImport()) {
5481    NamedDecl *Decl = Correction.getFoundDecl();
5482    assert(Decl && "import required but no declaration to import");
5483
5484    diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5485                          MissingImportKind::Declaration, ErrorRecovery);
5486    return;
5487  }
5488
5489  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5490    << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5491
5492  NamedDecl *ChosenDecl =
5493      Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5494  if (PrevNote.getDiagID() && ChosenDecl)
5495    Diag(ChosenDecl->getLocation(), PrevNote)
5496      << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5497
5498  // Add any extra diagnostics.
5499  for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5500    Diag(Correction.getCorrectionRange().getBegin(), PD);
5501}
5502
5503TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5504                                  TypoDiagnosticGenerator TDG,
5505                                  TypoRecoveryCallback TRC) {
5506  assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5507  auto TE = new (Context) TypoExpr(Context.DependentTy);
5508  auto &State = DelayedTypos[TE];
5509  State.Consumer = std::move(TCC);
5510  State.DiagHandler = std::move(TDG);
5511  State.RecoveryHandler = std::move(TRC);
5512  if (TE)
5513    TypoExprs.push_back(TE);
5514  return TE;
5515}
5516
5517const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5518  auto Entry = DelayedTypos.find(TE);
5519  assert(Entry != DelayedTypos.end() &&
5520         "Failed to get the state for a TypoExpr!");
5521  return Entry->second;
5522}
5523
5524void Sema::clearDelayedTypo(TypoExpr *TE) {
5525  DelayedTypos.erase(TE);
5526}
5527
5528void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5529  DeclarationNameInfo Name(II, IILoc);
5530  LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5531  R.suppressDiagnostics();
5532  R.setHideTags(false);
5533  LookupName(R, S);
5534  R.dump();
5535}
5536