SemaLambda.cpp revision 360784
1//===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements semantic analysis for C++ lambda expressions.
10//
11//===----------------------------------------------------------------------===//
12#include "clang/Sema/DeclSpec.h"
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTLambda.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/Basic/TargetInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/Scope.h"
20#include "clang/Sema/ScopeInfo.h"
21#include "clang/Sema/SemaInternal.h"
22#include "clang/Sema/SemaLambda.h"
23#include "llvm/ADT/STLExtras.h"
24using namespace clang;
25using namespace sema;
26
27/// Examines the FunctionScopeInfo stack to determine the nearest
28/// enclosing lambda (to the current lambda) that is 'capture-ready' for
29/// the variable referenced in the current lambda (i.e. \p VarToCapture).
30/// If successful, returns the index into Sema's FunctionScopeInfo stack
31/// of the capture-ready lambda's LambdaScopeInfo.
32///
33/// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34/// lambda - is on top) to determine the index of the nearest enclosing/outer
35/// lambda that is ready to capture the \p VarToCapture being referenced in
36/// the current lambda.
37/// As we climb down the stack, we want the index of the first such lambda -
38/// that is the lambda with the highest index that is 'capture-ready'.
39///
40/// A lambda 'L' is capture-ready for 'V' (var or this) if:
41///  - its enclosing context is non-dependent
42///  - and if the chain of lambdas between L and the lambda in which
43///    V is potentially used (i.e. the lambda at the top of the scope info
44///    stack), can all capture or have already captured V.
45/// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46///
47/// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48/// for whether it is 'capture-capable' (see
49/// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50/// capture.
51///
52/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
54///  is at the top of the stack and has the highest index.
55/// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
56///
57/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59/// which is capture-ready.  If the return value evaluates to 'false' then
60/// no lambda is capture-ready for \p VarToCapture.
61
62static inline Optional<unsigned>
63getStackIndexOfNearestEnclosingCaptureReadyLambda(
64    ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65    VarDecl *VarToCapture) {
66  // Label failure to capture.
67  const Optional<unsigned> NoLambdaIsCaptureReady;
68
69  // Ignore all inner captured regions.
70  unsigned CurScopeIndex = FunctionScopes.size() - 1;
71  while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72                                  FunctionScopes[CurScopeIndex]))
73    --CurScopeIndex;
74  assert(
75      isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76      "The function on the top of sema's function-info stack must be a lambda");
77
78  // If VarToCapture is null, we are attempting to capture 'this'.
79  const bool IsCapturingThis = !VarToCapture;
80  const bool IsCapturingVariable = !IsCapturingThis;
81
82  // Start with the current lambda at the top of the stack (highest index).
83  DeclContext *EnclosingDC =
84      cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85
86  do {
87    const clang::sema::LambdaScopeInfo *LSI =
88        cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89    // IF we have climbed down to an intervening enclosing lambda that contains
90    // the variable declaration - it obviously can/must not capture the
91    // variable.
92    // Since its enclosing DC is dependent, all the lambdas between it and the
93    // innermost nested lambda are dependent (otherwise we wouldn't have
94    // arrived here) - so we don't yet have a lambda that can capture the
95    // variable.
96    if (IsCapturingVariable &&
97        VarToCapture->getDeclContext()->Equals(EnclosingDC))
98      return NoLambdaIsCaptureReady;
99
100    // For an enclosing lambda to be capture ready for an entity, all
101    // intervening lambda's have to be able to capture that entity. If even
102    // one of the intervening lambda's is not capable of capturing the entity
103    // then no enclosing lambda can ever capture that entity.
104    // For e.g.
105    // const int x = 10;
106    // [=](auto a) {    #1
107    //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
108    //    [=](auto c) { #3
109    //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
110    //    }; }; };
111    // If they do not have a default implicit capture, check to see
112    // if the entity has already been explicitly captured.
113    // If even a single dependent enclosing lambda lacks the capability
114    // to ever capture this variable, there is no further enclosing
115    // non-dependent lambda that can capture this variable.
116    if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
117      if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118        return NoLambdaIsCaptureReady;
119      if (IsCapturingThis && !LSI->isCXXThisCaptured())
120        return NoLambdaIsCaptureReady;
121    }
122    EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123
124    assert(CurScopeIndex);
125    --CurScopeIndex;
126  } while (!EnclosingDC->isTranslationUnit() &&
127           EnclosingDC->isDependentContext() &&
128           isLambdaCallOperator(EnclosingDC));
129
130  assert(CurScopeIndex < (FunctionScopes.size() - 1));
131  // If the enclosingDC is not dependent, then the immediately nested lambda
132  // (one index above) is capture-ready.
133  if (!EnclosingDC->isDependentContext())
134    return CurScopeIndex + 1;
135  return NoLambdaIsCaptureReady;
136}
137
138/// Examines the FunctionScopeInfo stack to determine the nearest
139/// enclosing lambda (to the current lambda) that is 'capture-capable' for
140/// the variable referenced in the current lambda (i.e. \p VarToCapture).
141/// If successful, returns the index into Sema's FunctionScopeInfo stack
142/// of the capture-capable lambda's LambdaScopeInfo.
143///
144/// Given the current stack of lambdas being processed by Sema and
145/// the variable of interest, to identify the nearest enclosing lambda (to the
146/// current lambda at the top of the stack) that can truly capture
147/// a variable, it has to have the following two properties:
148///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149///     - climb down the stack (i.e. starting from the innermost and examining
150///       each outer lambda step by step) checking if each enclosing
151///       lambda can either implicitly or explicitly capture the variable.
152///       Record the first such lambda that is enclosed in a non-dependent
153///       context. If no such lambda currently exists return failure.
154///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155///  capture the variable by checking all its enclosing lambdas:
156///     - check if all outer lambdas enclosing the 'capture-ready' lambda
157///       identified above in 'a' can also capture the variable (this is done
158///       via tryCaptureVariable for variables and CheckCXXThisCapture for
159///       'this' by passing in the index of the Lambda identified in step 'a')
160///
161/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162/// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
163/// is at the top of the stack.
164///
165/// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
166///
167///
168/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170/// which is capture-capable.  If the return value evaluates to 'false' then
171/// no lambda is capture-capable for \p VarToCapture.
172
173Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
174    ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
175    VarDecl *VarToCapture, Sema &S) {
176
177  const Optional<unsigned> NoLambdaIsCaptureCapable;
178
179  const Optional<unsigned> OptionalStackIndex =
180      getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
181                                                        VarToCapture);
182  if (!OptionalStackIndex)
183    return NoLambdaIsCaptureCapable;
184
185  const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
186  assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187          S.getCurGenericLambda()) &&
188         "The capture ready lambda for a potential capture can only be the "
189         "current lambda if it is a generic lambda");
190
191  const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192      cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193
194  // If VarToCapture is null, we are attempting to capture 'this'
195  const bool IsCapturingThis = !VarToCapture;
196  const bool IsCapturingVariable = !IsCapturingThis;
197
198  if (IsCapturingVariable) {
199    // Check if the capture-ready lambda can truly capture the variable, by
200    // checking whether all enclosing lambdas of the capture-ready lambda allow
201    // the capture - i.e. make sure it is capture-capable.
202    QualType CaptureType, DeclRefType;
203    const bool CanCaptureVariable =
204        !S.tryCaptureVariable(VarToCapture,
205                              /*ExprVarIsUsedInLoc*/ SourceLocation(),
206                              clang::Sema::TryCapture_Implicit,
207                              /*EllipsisLoc*/ SourceLocation(),
208                              /*BuildAndDiagnose*/ false, CaptureType,
209                              DeclRefType, &IndexOfCaptureReadyLambda);
210    if (!CanCaptureVariable)
211      return NoLambdaIsCaptureCapable;
212  } else {
213    // Check if the capture-ready lambda can truly capture 'this' by checking
214    // whether all enclosing lambdas of the capture-ready lambda can capture
215    // 'this'.
216    const bool CanCaptureThis =
217        !S.CheckCXXThisCapture(
218             CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219             /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220             &IndexOfCaptureReadyLambda);
221    if (!CanCaptureThis)
222      return NoLambdaIsCaptureCapable;
223  }
224  return IndexOfCaptureReadyLambda;
225}
226
227static inline TemplateParameterList *
228getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
229  if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
230    LSI->GLTemplateParameterList = TemplateParameterList::Create(
231        SemaRef.Context,
232        /*Template kw loc*/ SourceLocation(),
233        /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
234        LSI->TemplateParams,
235        /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
236        nullptr);
237  }
238  return LSI->GLTemplateParameterList;
239}
240
241CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
242                                             TypeSourceInfo *Info,
243                                             bool KnownDependent,
244                                             LambdaCaptureDefault CaptureDefault) {
245  DeclContext *DC = CurContext;
246  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
247    DC = DC->getParent();
248  bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
249                                                               *this);
250  // Start constructing the lambda class.
251  CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
252                                                     IntroducerRange.getBegin(),
253                                                     KnownDependent,
254                                                     IsGenericLambda,
255                                                     CaptureDefault);
256  DC->addDecl(Class);
257
258  return Class;
259}
260
261/// Determine whether the given context is or is enclosed in an inline
262/// function.
263static bool isInInlineFunction(const DeclContext *DC) {
264  while (!DC->isFileContext()) {
265    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
266      if (FD->isInlined())
267        return true;
268
269    DC = DC->getLexicalParent();
270  }
271
272  return false;
273}
274
275std::tuple<MangleNumberingContext *, Decl *>
276Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
277  // Compute the context for allocating mangling numbers in the current
278  // expression, if the ABI requires them.
279  Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
280
281  enum ContextKind {
282    Normal,
283    DefaultArgument,
284    DataMember,
285    StaticDataMember,
286    InlineVariable,
287    VariableTemplate
288  } Kind = Normal;
289
290  // Default arguments of member function parameters that appear in a class
291  // definition, as well as the initializers of data members, receive special
292  // treatment. Identify them.
293  if (ManglingContextDecl) {
294    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295      if (const DeclContext *LexicalDC
296          = Param->getDeclContext()->getLexicalParent())
297        if (LexicalDC->isRecord())
298          Kind = DefaultArgument;
299    } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300      if (Var->getDeclContext()->isRecord())
301        Kind = StaticDataMember;
302      else if (Var->getMostRecentDecl()->isInline())
303        Kind = InlineVariable;
304      else if (Var->getDescribedVarTemplate())
305        Kind = VariableTemplate;
306      else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
307        if (!VTS->isExplicitSpecialization())
308          Kind = VariableTemplate;
309      }
310    } else if (isa<FieldDecl>(ManglingContextDecl)) {
311      Kind = DataMember;
312    }
313  }
314
315  // Itanium ABI [5.1.7]:
316  //   In the following contexts [...] the one-definition rule requires closure
317  //   types in different translation units to "correspond":
318  bool IsInNonspecializedTemplate =
319      inTemplateInstantiation() || CurContext->isDependentContext();
320  switch (Kind) {
321  case Normal: {
322    //  -- the bodies of non-exported nonspecialized template functions
323    //  -- the bodies of inline functions
324    if ((IsInNonspecializedTemplate &&
325         !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
326        isInInlineFunction(CurContext)) {
327      while (auto *CD = dyn_cast<CapturedDecl>(DC))
328        DC = CD->getParent();
329      return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
330    }
331
332    return std::make_tuple(nullptr, nullptr);
333  }
334
335  case StaticDataMember:
336    //  -- the initializers of nonspecialized static members of template classes
337    if (!IsInNonspecializedTemplate)
338      return std::make_tuple(nullptr, ManglingContextDecl);
339    // Fall through to get the current context.
340    LLVM_FALLTHROUGH;
341
342  case DataMember:
343    //  -- the in-class initializers of class members
344  case DefaultArgument:
345    //  -- default arguments appearing in class definitions
346  case InlineVariable:
347    //  -- the initializers of inline variables
348  case VariableTemplate:
349    //  -- the initializers of templated variables
350    return std::make_tuple(
351        &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
352                                          ManglingContextDecl),
353        ManglingContextDecl);
354  }
355
356  llvm_unreachable("unexpected context");
357}
358
359CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
360                                           SourceRange IntroducerRange,
361                                           TypeSourceInfo *MethodTypeInfo,
362                                           SourceLocation EndLoc,
363                                           ArrayRef<ParmVarDecl *> Params,
364                                           ConstexprSpecKind ConstexprKind,
365                                           Expr *TrailingRequiresClause) {
366  QualType MethodType = MethodTypeInfo->getType();
367  TemplateParameterList *TemplateParams =
368      getGenericLambdaTemplateParameterList(getCurLambda(), *this);
369  // If a lambda appears in a dependent context or is a generic lambda (has
370  // template parameters) and has an 'auto' return type, deduce it to a
371  // dependent type.
372  if (Class->isDependentContext() || TemplateParams) {
373    const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
374    QualType Result = FPT->getReturnType();
375    if (Result->isUndeducedType()) {
376      Result = SubstAutoType(Result, Context.DependentTy);
377      MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
378                                           FPT->getExtProtoInfo());
379    }
380  }
381
382  // C++11 [expr.prim.lambda]p5:
383  //   The closure type for a lambda-expression has a public inline function
384  //   call operator (13.5.4) whose parameters and return type are described by
385  //   the lambda-expression's parameter-declaration-clause and
386  //   trailing-return-type respectively.
387  DeclarationName MethodName
388    = Context.DeclarationNames.getCXXOperatorName(OO_Call);
389  DeclarationNameLoc MethodNameLoc;
390  MethodNameLoc.CXXOperatorName.BeginOpNameLoc
391    = IntroducerRange.getBegin().getRawEncoding();
392  MethodNameLoc.CXXOperatorName.EndOpNameLoc
393    = IntroducerRange.getEnd().getRawEncoding();
394  CXXMethodDecl *Method = CXXMethodDecl::Create(
395      Context, Class, EndLoc,
396      DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
397                          MethodNameLoc),
398      MethodType, MethodTypeInfo, SC_None,
399      /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
400  Method->setAccess(AS_public);
401  if (!TemplateParams)
402    Class->addDecl(Method);
403
404  // Temporarily set the lexical declaration context to the current
405  // context, so that the Scope stack matches the lexical nesting.
406  Method->setLexicalDeclContext(CurContext);
407  // Create a function template if we have a template parameter list
408  FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
409            FunctionTemplateDecl::Create(Context, Class,
410                                         Method->getLocation(), MethodName,
411                                         TemplateParams,
412                                         Method) : nullptr;
413  if (TemplateMethod) {
414    TemplateMethod->setAccess(AS_public);
415    Method->setDescribedFunctionTemplate(TemplateMethod);
416    Class->addDecl(TemplateMethod);
417    TemplateMethod->setLexicalDeclContext(CurContext);
418  }
419
420  // Add parameters.
421  if (!Params.empty()) {
422    Method->setParams(Params);
423    CheckParmsForFunctionDef(Params,
424                             /*CheckParameterNames=*/false);
425
426    for (auto P : Method->parameters())
427      P->setOwningFunction(Method);
428  }
429
430  return Method;
431}
432
433void Sema::handleLambdaNumbering(
434    CXXRecordDecl *Class, CXXMethodDecl *Method,
435    Optional<std::tuple<unsigned, bool, Decl *>> Mangling) {
436  if (Mangling) {
437    unsigned ManglingNumber;
438    bool HasKnownInternalLinkage;
439    Decl *ManglingContextDecl;
440    std::tie(ManglingNumber, HasKnownInternalLinkage, ManglingContextDecl) =
441        Mangling.getValue();
442    Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
443                             HasKnownInternalLinkage);
444    return;
445  }
446
447  auto getMangleNumberingContext =
448      [this](CXXRecordDecl *Class,
449             Decl *ManglingContextDecl) -> MangleNumberingContext * {
450    // Get mangle numbering context if there's any extra decl context.
451    if (ManglingContextDecl)
452      return &Context.getManglingNumberContext(
453          ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
454    // Otherwise, from that lambda's decl context.
455    auto DC = Class->getDeclContext();
456    while (auto *CD = dyn_cast<CapturedDecl>(DC))
457      DC = CD->getParent();
458    return &Context.getManglingNumberContext(DC);
459  };
460
461  MangleNumberingContext *MCtx;
462  Decl *ManglingContextDecl;
463  std::tie(MCtx, ManglingContextDecl) =
464      getCurrentMangleNumberContext(Class->getDeclContext());
465  bool HasKnownInternalLinkage = false;
466  if (!MCtx && getLangOpts().CUDA) {
467    // Force lambda numbering in CUDA/HIP as we need to name lambdas following
468    // ODR. Both device- and host-compilation need to have a consistent naming
469    // on kernel functions. As lambdas are potential part of these `__global__`
470    // function names, they needs numbering following ODR.
471    MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
472    assert(MCtx && "Retrieving mangle numbering context failed!");
473    HasKnownInternalLinkage = true;
474  }
475  if (MCtx) {
476    unsigned ManglingNumber = MCtx->getManglingNumber(Method);
477    Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
478                             HasKnownInternalLinkage);
479  }
480}
481
482void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
483                                        CXXMethodDecl *CallOperator,
484                                        SourceRange IntroducerRange,
485                                        LambdaCaptureDefault CaptureDefault,
486                                        SourceLocation CaptureDefaultLoc,
487                                        bool ExplicitParams,
488                                        bool ExplicitResultType,
489                                        bool Mutable) {
490  LSI->CallOperator = CallOperator;
491  CXXRecordDecl *LambdaClass = CallOperator->getParent();
492  LSI->Lambda = LambdaClass;
493  if (CaptureDefault == LCD_ByCopy)
494    LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
495  else if (CaptureDefault == LCD_ByRef)
496    LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
497  LSI->CaptureDefaultLoc = CaptureDefaultLoc;
498  LSI->IntroducerRange = IntroducerRange;
499  LSI->ExplicitParams = ExplicitParams;
500  LSI->Mutable = Mutable;
501
502  if (ExplicitResultType) {
503    LSI->ReturnType = CallOperator->getReturnType();
504
505    if (!LSI->ReturnType->isDependentType() &&
506        !LSI->ReturnType->isVoidType()) {
507      if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
508                              diag::err_lambda_incomplete_result)) {
509        // Do nothing.
510      }
511    }
512  } else {
513    LSI->HasImplicitReturnType = true;
514  }
515}
516
517void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
518  LSI->finishedExplicitCaptures();
519}
520
521void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
522                                                    ArrayRef<NamedDecl *> TParams,
523                                                    SourceLocation RAngleLoc) {
524  LambdaScopeInfo *LSI = getCurLambda();
525  assert(LSI && "Expected a lambda scope");
526  assert(LSI->NumExplicitTemplateParams == 0 &&
527         "Already acted on explicit template parameters");
528  assert(LSI->TemplateParams.empty() &&
529         "Explicit template parameters should come "
530         "before invented (auto) ones");
531  assert(!TParams.empty() &&
532         "No template parameters to act on");
533  LSI->TemplateParams.append(TParams.begin(), TParams.end());
534  LSI->NumExplicitTemplateParams = TParams.size();
535  LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
536}
537
538void Sema::addLambdaParameters(
539    ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
540    CXXMethodDecl *CallOperator, Scope *CurScope) {
541  // Introduce our parameters into the function scope
542  for (unsigned p = 0, NumParams = CallOperator->getNumParams();
543       p < NumParams; ++p) {
544    ParmVarDecl *Param = CallOperator->getParamDecl(p);
545
546    // If this has an identifier, add it to the scope stack.
547    if (CurScope && Param->getIdentifier()) {
548      bool Error = false;
549      // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
550      // retroactively apply it.
551      for (const auto &Capture : Captures) {
552        if (Capture.Id == Param->getIdentifier()) {
553          Error = true;
554          Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
555          Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
556              << Capture.Id << true;
557        }
558      }
559      if (!Error)
560        CheckShadow(CurScope, Param);
561
562      PushOnScopeChains(Param, CurScope);
563    }
564  }
565}
566
567/// If this expression is an enumerator-like expression of some type
568/// T, return the type T; otherwise, return null.
569///
570/// Pointer comparisons on the result here should always work because
571/// it's derived from either the parent of an EnumConstantDecl
572/// (i.e. the definition) or the declaration returned by
573/// EnumType::getDecl() (i.e. the definition).
574static EnumDecl *findEnumForBlockReturn(Expr *E) {
575  // An expression is an enumerator-like expression of type T if,
576  // ignoring parens and parens-like expressions:
577  E = E->IgnoreParens();
578
579  //  - it is an enumerator whose enum type is T or
580  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
581    if (EnumConstantDecl *D
582          = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
583      return cast<EnumDecl>(D->getDeclContext());
584    }
585    return nullptr;
586  }
587
588  //  - it is a comma expression whose RHS is an enumerator-like
589  //    expression of type T or
590  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
591    if (BO->getOpcode() == BO_Comma)
592      return findEnumForBlockReturn(BO->getRHS());
593    return nullptr;
594  }
595
596  //  - it is a statement-expression whose value expression is an
597  //    enumerator-like expression of type T or
598  if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
599    if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
600      return findEnumForBlockReturn(last);
601    return nullptr;
602  }
603
604  //   - it is a ternary conditional operator (not the GNU ?:
605  //     extension) whose second and third operands are
606  //     enumerator-like expressions of type T or
607  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
608    if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
609      if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
610        return ED;
611    return nullptr;
612  }
613
614  // (implicitly:)
615  //   - it is an implicit integral conversion applied to an
616  //     enumerator-like expression of type T or
617  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
618    // We can sometimes see integral conversions in valid
619    // enumerator-like expressions.
620    if (ICE->getCastKind() == CK_IntegralCast)
621      return findEnumForBlockReturn(ICE->getSubExpr());
622
623    // Otherwise, just rely on the type.
624  }
625
626  //   - it is an expression of that formal enum type.
627  if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
628    return ET->getDecl();
629  }
630
631  // Otherwise, nope.
632  return nullptr;
633}
634
635/// Attempt to find a type T for which the returned expression of the
636/// given statement is an enumerator-like expression of that type.
637static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
638  if (Expr *retValue = ret->getRetValue())
639    return findEnumForBlockReturn(retValue);
640  return nullptr;
641}
642
643/// Attempt to find a common type T for which all of the returned
644/// expressions in a block are enumerator-like expressions of that
645/// type.
646static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
647  ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
648
649  // Try to find one for the first return.
650  EnumDecl *ED = findEnumForBlockReturn(*i);
651  if (!ED) return nullptr;
652
653  // Check that the rest of the returns have the same enum.
654  for (++i; i != e; ++i) {
655    if (findEnumForBlockReturn(*i) != ED)
656      return nullptr;
657  }
658
659  // Never infer an anonymous enum type.
660  if (!ED->hasNameForLinkage()) return nullptr;
661
662  return ED;
663}
664
665/// Adjust the given return statements so that they formally return
666/// the given type.  It should require, at most, an IntegralCast.
667static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
668                                     QualType returnType) {
669  for (ArrayRef<ReturnStmt*>::iterator
670         i = returns.begin(), e = returns.end(); i != e; ++i) {
671    ReturnStmt *ret = *i;
672    Expr *retValue = ret->getRetValue();
673    if (S.Context.hasSameType(retValue->getType(), returnType))
674      continue;
675
676    // Right now we only support integral fixup casts.
677    assert(returnType->isIntegralOrUnscopedEnumerationType());
678    assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
679
680    ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
681
682    Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
683    E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
684                                 E, /*base path*/ nullptr, VK_RValue);
685    if (cleanups) {
686      cleanups->setSubExpr(E);
687    } else {
688      ret->setRetValue(E);
689    }
690  }
691}
692
693void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
694  assert(CSI.HasImplicitReturnType);
695  // If it was ever a placeholder, it had to been deduced to DependentTy.
696  assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
697  assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
698         "lambda expressions use auto deduction in C++14 onwards");
699
700  // C++ core issue 975:
701  //   If a lambda-expression does not include a trailing-return-type,
702  //   it is as if the trailing-return-type denotes the following type:
703  //     - if there are no return statements in the compound-statement,
704  //       or all return statements return either an expression of type
705  //       void or no expression or braced-init-list, the type void;
706  //     - otherwise, if all return statements return an expression
707  //       and the types of the returned expressions after
708  //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
709  //       array-to-pointer conversion (4.2 [conv.array]), and
710  //       function-to-pointer conversion (4.3 [conv.func]) are the
711  //       same, that common type;
712  //     - otherwise, the program is ill-formed.
713  //
714  // C++ core issue 1048 additionally removes top-level cv-qualifiers
715  // from the types of returned expressions to match the C++14 auto
716  // deduction rules.
717  //
718  // In addition, in blocks in non-C++ modes, if all of the return
719  // statements are enumerator-like expressions of some type T, where
720  // T has a name for linkage, then we infer the return type of the
721  // block to be that type.
722
723  // First case: no return statements, implicit void return type.
724  ASTContext &Ctx = getASTContext();
725  if (CSI.Returns.empty()) {
726    // It's possible there were simply no /valid/ return statements.
727    // In this case, the first one we found may have at least given us a type.
728    if (CSI.ReturnType.isNull())
729      CSI.ReturnType = Ctx.VoidTy;
730    return;
731  }
732
733  // Second case: at least one return statement has dependent type.
734  // Delay type checking until instantiation.
735  assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
736  if (CSI.ReturnType->isDependentType())
737    return;
738
739  // Try to apply the enum-fuzz rule.
740  if (!getLangOpts().CPlusPlus) {
741    assert(isa<BlockScopeInfo>(CSI));
742    const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
743    if (ED) {
744      CSI.ReturnType = Context.getTypeDeclType(ED);
745      adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
746      return;
747    }
748  }
749
750  // Third case: only one return statement. Don't bother doing extra work!
751  if (CSI.Returns.size() == 1)
752    return;
753
754  // General case: many return statements.
755  // Check that they all have compatible return types.
756
757  // We require the return types to strictly match here.
758  // Note that we've already done the required promotions as part of
759  // processing the return statement.
760  for (const ReturnStmt *RS : CSI.Returns) {
761    const Expr *RetE = RS->getRetValue();
762
763    QualType ReturnType =
764        (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
765    if (Context.getCanonicalFunctionResultType(ReturnType) ==
766          Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
767      // Use the return type with the strictest possible nullability annotation.
768      auto RetTyNullability = ReturnType->getNullability(Ctx);
769      auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
770      if (BlockNullability &&
771          (!RetTyNullability ||
772           hasWeakerNullability(*RetTyNullability, *BlockNullability)))
773        CSI.ReturnType = ReturnType;
774      continue;
775    }
776
777    // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
778    // TODO: It's possible that the *first* return is the divergent one.
779    Diag(RS->getBeginLoc(),
780         diag::err_typecheck_missing_return_type_incompatible)
781        << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
782    // Continue iterating so that we keep emitting diagnostics.
783  }
784}
785
786QualType Sema::buildLambdaInitCaptureInitialization(
787    SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
788    Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
789    Expr *&Init) {
790  // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
791  // deduce against.
792  QualType DeductType = Context.getAutoDeductType();
793  TypeLocBuilder TLB;
794  AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
795  TL.setNameLoc(Loc);
796  if (ByRef) {
797    DeductType = BuildReferenceType(DeductType, true, Loc, Id);
798    assert(!DeductType.isNull() && "can't build reference to auto");
799    TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
800  }
801  if (EllipsisLoc.isValid()) {
802    if (Init->containsUnexpandedParameterPack()) {
803      Diag(EllipsisLoc, getLangOpts().CPlusPlus2a
804                            ? diag::warn_cxx17_compat_init_capture_pack
805                            : diag::ext_init_capture_pack);
806      DeductType = Context.getPackExpansionType(DeductType, NumExpansions);
807      TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
808    } else {
809      // Just ignore the ellipsis for now and form a non-pack variable. We'll
810      // diagnose this later when we try to capture it.
811    }
812  }
813  TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
814
815  // Deduce the type of the init capture.
816  QualType DeducedType = deduceVarTypeFromInitializer(
817      /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
818      SourceRange(Loc, Loc), IsDirectInit, Init);
819  if (DeducedType.isNull())
820    return QualType();
821
822  // Are we a non-list direct initialization?
823  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
824
825  // Perform initialization analysis and ensure any implicit conversions
826  // (such as lvalue-to-rvalue) are enforced.
827  InitializedEntity Entity =
828      InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
829  InitializationKind Kind =
830      IsDirectInit
831          ? (CXXDirectInit ? InitializationKind::CreateDirect(
832                                 Loc, Init->getBeginLoc(), Init->getEndLoc())
833                           : InitializationKind::CreateDirectList(Loc))
834          : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
835
836  MultiExprArg Args = Init;
837  if (CXXDirectInit)
838    Args =
839        MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
840  QualType DclT;
841  InitializationSequence InitSeq(*this, Entity, Kind, Args);
842  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
843
844  if (Result.isInvalid())
845    return QualType();
846
847  Init = Result.getAs<Expr>();
848  return DeducedType;
849}
850
851VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
852                                              QualType InitCaptureType,
853                                              SourceLocation EllipsisLoc,
854                                              IdentifierInfo *Id,
855                                              unsigned InitStyle, Expr *Init) {
856  // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
857  // rather than reconstructing it here.
858  TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
859  if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
860    PETL.setEllipsisLoc(EllipsisLoc);
861
862  // Create a dummy variable representing the init-capture. This is not actually
863  // used as a variable, and only exists as a way to name and refer to the
864  // init-capture.
865  // FIXME: Pass in separate source locations for '&' and identifier.
866  VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
867                                   Loc, Id, InitCaptureType, TSI, SC_Auto);
868  NewVD->setInitCapture(true);
869  NewVD->setReferenced(true);
870  // FIXME: Pass in a VarDecl::InitializationStyle.
871  NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
872  NewVD->markUsed(Context);
873  NewVD->setInit(Init);
874  if (NewVD->isParameterPack())
875    getCurLambda()->LocalPacks.push_back(NewVD);
876  return NewVD;
877}
878
879void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) {
880  assert(Var->isInitCapture() && "init capture flag should be set");
881  LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
882                  /*isNested*/false, Var->getLocation(), SourceLocation(),
883                  Var->getType(), /*Invalid*/false);
884}
885
886void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
887                                        Declarator &ParamInfo,
888                                        Scope *CurScope) {
889  LambdaScopeInfo *const LSI = getCurLambda();
890  assert(LSI && "LambdaScopeInfo should be on stack!");
891
892  // Determine if we're within a context where we know that the lambda will
893  // be dependent, because there are template parameters in scope.
894  bool KnownDependent;
895  if (LSI->NumExplicitTemplateParams > 0) {
896    auto *TemplateParamScope = CurScope->getTemplateParamParent();
897    assert(TemplateParamScope &&
898           "Lambda with explicit template param list should establish a "
899           "template param scope");
900    assert(TemplateParamScope->getParent());
901    KnownDependent = TemplateParamScope->getParent()
902                                       ->getTemplateParamParent() != nullptr;
903  } else {
904    KnownDependent = CurScope->getTemplateParamParent() != nullptr;
905  }
906
907  // Determine the signature of the call operator.
908  TypeSourceInfo *MethodTyInfo;
909  bool ExplicitParams = true;
910  bool ExplicitResultType = true;
911  bool ContainsUnexpandedParameterPack = false;
912  SourceLocation EndLoc;
913  SmallVector<ParmVarDecl *, 8> Params;
914  if (ParamInfo.getNumTypeObjects() == 0) {
915    // C++11 [expr.prim.lambda]p4:
916    //   If a lambda-expression does not include a lambda-declarator, it is as
917    //   if the lambda-declarator were ().
918    FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
919        /*IsVariadic=*/false, /*IsCXXMethod=*/true));
920    EPI.HasTrailingReturn = true;
921    EPI.TypeQuals.addConst();
922    LangAS AS = getDefaultCXXMethodAddrSpace();
923    if (AS != LangAS::Default)
924      EPI.TypeQuals.addAddressSpace(AS);
925
926    // C++1y [expr.prim.lambda]:
927    //   The lambda return type is 'auto', which is replaced by the
928    //   trailing-return type if provided and/or deduced from 'return'
929    //   statements
930    // We don't do this before C++1y, because we don't support deduced return
931    // types there.
932    QualType DefaultTypeForNoTrailingReturn =
933        getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
934                                  : Context.DependentTy;
935    QualType MethodTy =
936        Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
937    MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
938    ExplicitParams = false;
939    ExplicitResultType = false;
940    EndLoc = Intro.Range.getEnd();
941  } else {
942    assert(ParamInfo.isFunctionDeclarator() &&
943           "lambda-declarator is a function");
944    DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
945
946    // C++11 [expr.prim.lambda]p5:
947    //   This function call operator is declared const (9.3.1) if and only if
948    //   the lambda-expression's parameter-declaration-clause is not followed
949    //   by mutable. It is neither virtual nor declared volatile. [...]
950    if (!FTI.hasMutableQualifier()) {
951      FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const,
952                                                    SourceLocation());
953    }
954
955    MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
956    assert(MethodTyInfo && "no type from lambda-declarator");
957    EndLoc = ParamInfo.getSourceRange().getEnd();
958
959    ExplicitResultType = FTI.hasTrailingReturnType();
960
961    if (FTIHasNonVoidParameters(FTI)) {
962      Params.reserve(FTI.NumParams);
963      for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
964        Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
965    }
966
967    // Check for unexpanded parameter packs in the method type.
968    if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
969      DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
970                                      UPPC_DeclarationType);
971  }
972
973  CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
974                                                 KnownDependent, Intro.Default);
975  CXXMethodDecl *Method =
976      startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
977                            ParamInfo.getDeclSpec().getConstexprSpecifier(),
978                            ParamInfo.getTrailingRequiresClause());
979  if (ExplicitParams)
980    CheckCXXDefaultArguments(Method);
981
982  // This represents the function body for the lambda function, check if we
983  // have to apply optnone due to a pragma.
984  AddRangeBasedOptnone(Method);
985
986  // code_seg attribute on lambda apply to the method.
987  if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
988    Method->addAttr(A);
989
990  // Attributes on the lambda apply to the method.
991  ProcessDeclAttributes(CurScope, Method, ParamInfo);
992
993  // CUDA lambdas get implicit attributes based on the scope in which they're
994  // declared.
995  if (getLangOpts().CUDA)
996    CUDASetLambdaAttrs(Method);
997
998  // Number the lambda for linkage purposes if necessary.
999  handleLambdaNumbering(Class, Method);
1000
1001  // Introduce the function call operator as the current declaration context.
1002  PushDeclContext(CurScope, Method);
1003
1004  // Build the lambda scope.
1005  buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
1006                   ExplicitParams, ExplicitResultType, !Method->isConst());
1007
1008  // C++11 [expr.prim.lambda]p9:
1009  //   A lambda-expression whose smallest enclosing scope is a block scope is a
1010  //   local lambda expression; any other lambda expression shall not have a
1011  //   capture-default or simple-capture in its lambda-introducer.
1012  //
1013  // For simple-captures, this is covered by the check below that any named
1014  // entity is a variable that can be captured.
1015  //
1016  // For DR1632, we also allow a capture-default in any context where we can
1017  // odr-use 'this' (in particular, in a default initializer for a non-static
1018  // data member).
1019  if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1020      (getCurrentThisType().isNull() ||
1021       CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1022                           /*BuildAndDiagnose*/false)))
1023    Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1024
1025  // Distinct capture names, for diagnostics.
1026  llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1027
1028  // Handle explicit captures.
1029  SourceLocation PrevCaptureLoc
1030    = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1031  for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1032       PrevCaptureLoc = C->Loc, ++C) {
1033    if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1034      if (C->Kind == LCK_StarThis)
1035        Diag(C->Loc, !getLangOpts().CPlusPlus17
1036                             ? diag::ext_star_this_lambda_capture_cxx17
1037                             : diag::warn_cxx14_compat_star_this_lambda_capture);
1038
1039      // C++11 [expr.prim.lambda]p8:
1040      //   An identifier or this shall not appear more than once in a
1041      //   lambda-capture.
1042      if (LSI->isCXXThisCaptured()) {
1043        Diag(C->Loc, diag::err_capture_more_than_once)
1044            << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1045            << FixItHint::CreateRemoval(
1046                   SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1047        continue;
1048      }
1049
1050      // C++2a [expr.prim.lambda]p8:
1051      //  If a lambda-capture includes a capture-default that is =,
1052      //  each simple-capture of that lambda-capture shall be of the form
1053      //  "&identifier", "this", or "* this". [ Note: The form [&,this] is
1054      //  redundant but accepted for compatibility with ISO C++14. --end note ]
1055      if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1056        Diag(C->Loc, !getLangOpts().CPlusPlus2a
1057                         ? diag::ext_equals_this_lambda_capture_cxx2a
1058                         : diag::warn_cxx17_compat_equals_this_lambda_capture);
1059
1060      // C++11 [expr.prim.lambda]p12:
1061      //   If this is captured by a local lambda expression, its nearest
1062      //   enclosing function shall be a non-static member function.
1063      QualType ThisCaptureType = getCurrentThisType();
1064      if (ThisCaptureType.isNull()) {
1065        Diag(C->Loc, diag::err_this_capture) << true;
1066        continue;
1067      }
1068
1069      CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1070                          /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1071                          C->Kind == LCK_StarThis);
1072      if (!LSI->Captures.empty())
1073        LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1074      continue;
1075    }
1076
1077    assert(C->Id && "missing identifier for capture");
1078
1079    if (C->Init.isInvalid())
1080      continue;
1081
1082    VarDecl *Var = nullptr;
1083    if (C->Init.isUsable()) {
1084      Diag(C->Loc, getLangOpts().CPlusPlus14
1085                       ? diag::warn_cxx11_compat_init_capture
1086                       : diag::ext_init_capture);
1087
1088      // If the initializer expression is usable, but the InitCaptureType
1089      // is not, then an error has occurred - so ignore the capture for now.
1090      // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1091      // FIXME: we should create the init capture variable and mark it invalid
1092      // in this case.
1093      if (C->InitCaptureType.get().isNull())
1094        continue;
1095
1096      if (C->Init.get()->containsUnexpandedParameterPack() &&
1097          !C->InitCaptureType.get()->getAs<PackExpansionType>())
1098        DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1099
1100      unsigned InitStyle;
1101      switch (C->InitKind) {
1102      case LambdaCaptureInitKind::NoInit:
1103        llvm_unreachable("not an init-capture?");
1104      case LambdaCaptureInitKind::CopyInit:
1105        InitStyle = VarDecl::CInit;
1106        break;
1107      case LambdaCaptureInitKind::DirectInit:
1108        InitStyle = VarDecl::CallInit;
1109        break;
1110      case LambdaCaptureInitKind::ListInit:
1111        InitStyle = VarDecl::ListInit;
1112        break;
1113      }
1114      Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1115                                           C->EllipsisLoc, C->Id, InitStyle,
1116                                           C->Init.get());
1117      // C++1y [expr.prim.lambda]p11:
1118      //   An init-capture behaves as if it declares and explicitly
1119      //   captures a variable [...] whose declarative region is the
1120      //   lambda-expression's compound-statement
1121      if (Var)
1122        PushOnScopeChains(Var, CurScope, false);
1123    } else {
1124      assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1125             "init capture has valid but null init?");
1126
1127      // C++11 [expr.prim.lambda]p8:
1128      //   If a lambda-capture includes a capture-default that is &, the
1129      //   identifiers in the lambda-capture shall not be preceded by &.
1130      //   If a lambda-capture includes a capture-default that is =, [...]
1131      //   each identifier it contains shall be preceded by &.
1132      if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1133        Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1134            << FixItHint::CreateRemoval(
1135                SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1136        continue;
1137      } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1138        Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1139            << FixItHint::CreateRemoval(
1140                SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1141        continue;
1142      }
1143
1144      // C++11 [expr.prim.lambda]p10:
1145      //   The identifiers in a capture-list are looked up using the usual
1146      //   rules for unqualified name lookup (3.4.1)
1147      DeclarationNameInfo Name(C->Id, C->Loc);
1148      LookupResult R(*this, Name, LookupOrdinaryName);
1149      LookupName(R, CurScope);
1150      if (R.isAmbiguous())
1151        continue;
1152      if (R.empty()) {
1153        // FIXME: Disable corrections that would add qualification?
1154        CXXScopeSpec ScopeSpec;
1155        DeclFilterCCC<VarDecl> Validator{};
1156        if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1157          continue;
1158      }
1159
1160      Var = R.getAsSingle<VarDecl>();
1161      if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1162        continue;
1163    }
1164
1165    // C++11 [expr.prim.lambda]p8:
1166    //   An identifier or this shall not appear more than once in a
1167    //   lambda-capture.
1168    if (!CaptureNames.insert(C->Id).second) {
1169      if (Var && LSI->isCaptured(Var)) {
1170        Diag(C->Loc, diag::err_capture_more_than_once)
1171            << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1172            << FixItHint::CreateRemoval(
1173                   SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1174      } else
1175        // Previous capture captured something different (one or both was
1176        // an init-cpature): no fixit.
1177        Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1178      continue;
1179    }
1180
1181    // C++11 [expr.prim.lambda]p10:
1182    //   [...] each such lookup shall find a variable with automatic storage
1183    //   duration declared in the reaching scope of the local lambda expression.
1184    // Note that the 'reaching scope' check happens in tryCaptureVariable().
1185    if (!Var) {
1186      Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1187      continue;
1188    }
1189
1190    // Ignore invalid decls; they'll just confuse the code later.
1191    if (Var->isInvalidDecl())
1192      continue;
1193
1194    if (!Var->hasLocalStorage()) {
1195      Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1196      Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1197      continue;
1198    }
1199
1200    // C++11 [expr.prim.lambda]p23:
1201    //   A capture followed by an ellipsis is a pack expansion (14.5.3).
1202    SourceLocation EllipsisLoc;
1203    if (C->EllipsisLoc.isValid()) {
1204      if (Var->isParameterPack()) {
1205        EllipsisLoc = C->EllipsisLoc;
1206      } else {
1207        Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1208            << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1209                                   : SourceRange(C->Loc));
1210
1211        // Just ignore the ellipsis.
1212      }
1213    } else if (Var->isParameterPack()) {
1214      ContainsUnexpandedParameterPack = true;
1215    }
1216
1217    if (C->Init.isUsable()) {
1218      addInitCapture(LSI, Var);
1219    } else {
1220      TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1221                                                   TryCapture_ExplicitByVal;
1222      tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1223    }
1224    if (!LSI->Captures.empty())
1225      LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1226  }
1227  finishLambdaExplicitCaptures(LSI);
1228
1229  LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1230
1231  // Add lambda parameters into scope.
1232  addLambdaParameters(Intro.Captures, Method, CurScope);
1233
1234  // Enter a new evaluation context to insulate the lambda from any
1235  // cleanups from the enclosing full-expression.
1236  PushExpressionEvaluationContext(
1237      ExpressionEvaluationContext::PotentiallyEvaluated);
1238}
1239
1240void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1241                            bool IsInstantiation) {
1242  LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1243
1244  // Leave the expression-evaluation context.
1245  DiscardCleanupsInEvaluationContext();
1246  PopExpressionEvaluationContext();
1247
1248  // Leave the context of the lambda.
1249  if (!IsInstantiation)
1250    PopDeclContext();
1251
1252  // Finalize the lambda.
1253  CXXRecordDecl *Class = LSI->Lambda;
1254  Class->setInvalidDecl();
1255  SmallVector<Decl*, 4> Fields(Class->fields());
1256  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1257              SourceLocation(), ParsedAttributesView());
1258  CheckCompletedCXXClass(nullptr, Class);
1259
1260  PopFunctionScopeInfo();
1261}
1262
1263QualType Sema::getLambdaConversionFunctionResultType(
1264    const FunctionProtoType *CallOpProto) {
1265  // The function type inside the pointer type is the same as the call
1266  // operator with some tweaks. The calling convention is the default free
1267  // function convention, and the type qualifications are lost.
1268  const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1269      CallOpProto->getExtProtoInfo();
1270  FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1271  CallingConv CC = Context.getDefaultCallingConvention(
1272      CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1273  InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1274  InvokerExtInfo.TypeQuals = Qualifiers();
1275  assert(InvokerExtInfo.RefQualifier == RQ_None &&
1276      "Lambda's call operator should not have a reference qualifier");
1277  return Context.getFunctionType(CallOpProto->getReturnType(),
1278                                 CallOpProto->getParamTypes(), InvokerExtInfo);
1279}
1280
1281/// Add a lambda's conversion to function pointer, as described in
1282/// C++11 [expr.prim.lambda]p6.
1283static void addFunctionPointerConversion(Sema &S,
1284                                         SourceRange IntroducerRange,
1285                                         CXXRecordDecl *Class,
1286                                         CXXMethodDecl *CallOperator) {
1287  // This conversion is explicitly disabled if the lambda's function has
1288  // pass_object_size attributes on any of its parameters.
1289  auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1290    return P->hasAttr<PassObjectSizeAttr>();
1291  };
1292  if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1293    return;
1294
1295  // Add the conversion to function pointer.
1296  QualType InvokerFunctionTy = S.getLambdaConversionFunctionResultType(
1297      CallOperator->getType()->castAs<FunctionProtoType>());
1298  QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1299
1300  // Create the type of the conversion function.
1301  FunctionProtoType::ExtProtoInfo ConvExtInfo(
1302      S.Context.getDefaultCallingConvention(
1303      /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1304  // The conversion function is always const and noexcept.
1305  ConvExtInfo.TypeQuals = Qualifiers();
1306  ConvExtInfo.TypeQuals.addConst();
1307  ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1308  QualType ConvTy =
1309      S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1310
1311  SourceLocation Loc = IntroducerRange.getBegin();
1312  DeclarationName ConversionName
1313    = S.Context.DeclarationNames.getCXXConversionFunctionName(
1314        S.Context.getCanonicalType(PtrToFunctionTy));
1315  DeclarationNameLoc ConvNameLoc;
1316  // Construct a TypeSourceInfo for the conversion function, and wire
1317  // all the parameters appropriately for the FunctionProtoTypeLoc
1318  // so that everything works during transformation/instantiation of
1319  // generic lambdas.
1320  // The main reason for wiring up the parameters of the conversion
1321  // function with that of the call operator is so that constructs
1322  // like the following work:
1323  // auto L = [](auto b) {                <-- 1
1324  //   return [](auto a) -> decltype(a) { <-- 2
1325  //      return a;
1326  //   };
1327  // };
1328  // int (*fp)(int) = L(5);
1329  // Because the trailing return type can contain DeclRefExprs that refer
1330  // to the original call operator's variables, we hijack the call
1331  // operators ParmVarDecls below.
1332  TypeSourceInfo *ConvNamePtrToFunctionTSI =
1333      S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1334  ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1335
1336  // The conversion function is a conversion to a pointer-to-function.
1337  TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1338  FunctionProtoTypeLoc ConvTL =
1339      ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1340  // Get the result of the conversion function which is a pointer-to-function.
1341  PointerTypeLoc PtrToFunctionTL =
1342      ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1343  // Do the same for the TypeSourceInfo that is used to name the conversion
1344  // operator.
1345  PointerTypeLoc ConvNamePtrToFunctionTL =
1346      ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1347
1348  // Get the underlying function types that the conversion function will
1349  // be converting to (should match the type of the call operator).
1350  FunctionProtoTypeLoc CallOpConvTL =
1351      PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1352  FunctionProtoTypeLoc CallOpConvNameTL =
1353    ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1354
1355  // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1356  // These parameter's are essentially used to transform the name and
1357  // the type of the conversion operator.  By using the same parameters
1358  // as the call operator's we don't have to fix any back references that
1359  // the trailing return type of the call operator's uses (such as
1360  // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1361  // - we can simply use the return type of the call operator, and
1362  // everything should work.
1363  SmallVector<ParmVarDecl *, 4> InvokerParams;
1364  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1365    ParmVarDecl *From = CallOperator->getParamDecl(I);
1366
1367    InvokerParams.push_back(ParmVarDecl::Create(
1368        S.Context,
1369        // Temporarily add to the TU. This is set to the invoker below.
1370        S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
1371        From->getLocation(), From->getIdentifier(), From->getType(),
1372        From->getTypeSourceInfo(), From->getStorageClass(),
1373        /*DefArg=*/nullptr));
1374    CallOpConvTL.setParam(I, From);
1375    CallOpConvNameTL.setParam(I, From);
1376  }
1377
1378  CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1379      S.Context, Class, Loc,
1380      DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1381      /*isInline=*/true, ExplicitSpecifier(),
1382      S.getLangOpts().CPlusPlus17 ? CSK_constexpr : CSK_unspecified,
1383      CallOperator->getBody()->getEndLoc());
1384  Conversion->setAccess(AS_public);
1385  Conversion->setImplicit(true);
1386
1387  if (Class->isGenericLambda()) {
1388    // Create a template version of the conversion operator, using the template
1389    // parameter list of the function call operator.
1390    FunctionTemplateDecl *TemplateCallOperator =
1391            CallOperator->getDescribedFunctionTemplate();
1392    FunctionTemplateDecl *ConversionTemplate =
1393                  FunctionTemplateDecl::Create(S.Context, Class,
1394                                      Loc, ConversionName,
1395                                      TemplateCallOperator->getTemplateParameters(),
1396                                      Conversion);
1397    ConversionTemplate->setAccess(AS_public);
1398    ConversionTemplate->setImplicit(true);
1399    Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1400    Class->addDecl(ConversionTemplate);
1401  } else
1402    Class->addDecl(Conversion);
1403  // Add a non-static member function that will be the result of
1404  // the conversion with a certain unique ID.
1405  DeclarationName InvokerName = &S.Context.Idents.get(
1406                                                 getLambdaStaticInvokerName());
1407  // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1408  // we should get a prebuilt TrivialTypeSourceInfo from Context
1409  // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1410  // then rewire the parameters accordingly, by hoisting up the InvokeParams
1411  // loop below and then use its Params to set Invoke->setParams(...) below.
1412  // This would avoid the 'const' qualifier of the calloperator from
1413  // contaminating the type of the invoker, which is currently adjusted
1414  // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
1415  // trailing return type of the invoker would require a visitor to rebuild
1416  // the trailing return type and adjusting all back DeclRefExpr's to refer
1417  // to the new static invoker parameters - not the call operator's.
1418  CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1419      S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1420      InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1421      /*isInline=*/true, CSK_unspecified, CallOperator->getBody()->getEndLoc());
1422  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1423    InvokerParams[I]->setOwningFunction(Invoke);
1424  Invoke->setParams(InvokerParams);
1425  Invoke->setAccess(AS_private);
1426  Invoke->setImplicit(true);
1427  if (Class->isGenericLambda()) {
1428    FunctionTemplateDecl *TemplateCallOperator =
1429            CallOperator->getDescribedFunctionTemplate();
1430    FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1431                          S.Context, Class, Loc, InvokerName,
1432                          TemplateCallOperator->getTemplateParameters(),
1433                          Invoke);
1434    StaticInvokerTemplate->setAccess(AS_private);
1435    StaticInvokerTemplate->setImplicit(true);
1436    Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1437    Class->addDecl(StaticInvokerTemplate);
1438  } else
1439    Class->addDecl(Invoke);
1440}
1441
1442/// Add a lambda's conversion to block pointer.
1443static void addBlockPointerConversion(Sema &S,
1444                                      SourceRange IntroducerRange,
1445                                      CXXRecordDecl *Class,
1446                                      CXXMethodDecl *CallOperator) {
1447  QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1448      CallOperator->getType()->castAs<FunctionProtoType>());
1449  QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1450
1451  FunctionProtoType::ExtProtoInfo ConversionEPI(
1452      S.Context.getDefaultCallingConvention(
1453          /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1454  ConversionEPI.TypeQuals = Qualifiers();
1455  ConversionEPI.TypeQuals.addConst();
1456  QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1457
1458  SourceLocation Loc = IntroducerRange.getBegin();
1459  DeclarationName Name
1460    = S.Context.DeclarationNames.getCXXConversionFunctionName(
1461        S.Context.getCanonicalType(BlockPtrTy));
1462  DeclarationNameLoc NameLoc;
1463  NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1464  CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1465      S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1466      S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1467      /*isInline=*/true, ExplicitSpecifier(), CSK_unspecified,
1468      CallOperator->getBody()->getEndLoc());
1469  Conversion->setAccess(AS_public);
1470  Conversion->setImplicit(true);
1471  Class->addDecl(Conversion);
1472}
1473
1474ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1475                                  SourceLocation ImplicitCaptureLoc,
1476                                  bool IsOpenMPMapping) {
1477  // VLA captures don't have a stored initialization expression.
1478  if (Cap.isVLATypeCapture())
1479    return ExprResult();
1480
1481  // An init-capture is initialized directly from its stored initializer.
1482  if (Cap.isInitCapture())
1483    return Cap.getVariable()->getInit();
1484
1485  // For anything else, build an initialization expression. For an implicit
1486  // capture, the capture notionally happens at the capture-default, so use
1487  // that location here.
1488  SourceLocation Loc =
1489      ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1490
1491  // C++11 [expr.prim.lambda]p21:
1492  //   When the lambda-expression is evaluated, the entities that
1493  //   are captured by copy are used to direct-initialize each
1494  //   corresponding non-static data member of the resulting closure
1495  //   object. (For array members, the array elements are
1496  //   direct-initialized in increasing subscript order.) These
1497  //   initializations are performed in the (unspecified) order in
1498  //   which the non-static data members are declared.
1499
1500  // C++ [expr.prim.lambda]p12:
1501  //   An entity captured by a lambda-expression is odr-used (3.2) in
1502  //   the scope containing the lambda-expression.
1503  ExprResult Init;
1504  IdentifierInfo *Name = nullptr;
1505  if (Cap.isThisCapture()) {
1506    QualType ThisTy = getCurrentThisType();
1507    Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1508    if (Cap.isCopyCapture())
1509      Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1510    else
1511      Init = This;
1512  } else {
1513    assert(Cap.isVariableCapture() && "unknown kind of capture");
1514    VarDecl *Var = Cap.getVariable();
1515    Name = Var->getIdentifier();
1516    Init = BuildDeclarationNameExpr(
1517      CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1518  }
1519
1520  // In OpenMP, the capture kind doesn't actually describe how to capture:
1521  // variables are "mapped" onto the device in a process that does not formally
1522  // make a copy, even for a "copy capture".
1523  if (IsOpenMPMapping)
1524    return Init;
1525
1526  if (Init.isInvalid())
1527    return ExprError();
1528
1529  Expr *InitExpr = Init.get();
1530  InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1531      Name, Cap.getCaptureType(), Loc);
1532  InitializationKind InitKind =
1533      InitializationKind::CreateDirect(Loc, Loc, Loc);
1534  InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1535  return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1536}
1537
1538ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1539                                 Scope *CurScope) {
1540  LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1541  ActOnFinishFunctionBody(LSI.CallOperator, Body);
1542  return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1543}
1544
1545static LambdaCaptureDefault
1546mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1547  switch (ICS) {
1548  case CapturingScopeInfo::ImpCap_None:
1549    return LCD_None;
1550  case CapturingScopeInfo::ImpCap_LambdaByval:
1551    return LCD_ByCopy;
1552  case CapturingScopeInfo::ImpCap_CapturedRegion:
1553  case CapturingScopeInfo::ImpCap_LambdaByref:
1554    return LCD_ByRef;
1555  case CapturingScopeInfo::ImpCap_Block:
1556    llvm_unreachable("block capture in lambda");
1557  }
1558  llvm_unreachable("Unknown implicit capture style");
1559}
1560
1561bool Sema::CaptureHasSideEffects(const Capture &From) {
1562  if (From.isInitCapture()) {
1563    Expr *Init = From.getVariable()->getInit();
1564    if (Init && Init->HasSideEffects(Context))
1565      return true;
1566  }
1567
1568  if (!From.isCopyCapture())
1569    return false;
1570
1571  const QualType T = From.isThisCapture()
1572                         ? getCurrentThisType()->getPointeeType()
1573                         : From.getCaptureType();
1574
1575  if (T.isVolatileQualified())
1576    return true;
1577
1578  const Type *BaseT = T->getBaseElementTypeUnsafe();
1579  if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1580    return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1581           !RD->hasTrivialDestructor();
1582
1583  return false;
1584}
1585
1586bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1587                                       const Capture &From) {
1588  if (CaptureHasSideEffects(From))
1589    return false;
1590
1591  if (From.isVLATypeCapture())
1592    return false;
1593
1594  auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1595  if (From.isThisCapture())
1596    diag << "'this'";
1597  else
1598    diag << From.getVariable();
1599  diag << From.isNonODRUsed();
1600  diag << FixItHint::CreateRemoval(CaptureRange);
1601  return true;
1602}
1603
1604/// Create a field within the lambda class or captured statement record for the
1605/// given capture.
1606FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
1607                                   const sema::Capture &Capture) {
1608  SourceLocation Loc = Capture.getLocation();
1609  QualType FieldType = Capture.getCaptureType();
1610
1611  TypeSourceInfo *TSI = nullptr;
1612  if (Capture.isVariableCapture()) {
1613    auto *Var = Capture.getVariable();
1614    if (Var->isInitCapture())
1615      TSI = Capture.getVariable()->getTypeSourceInfo();
1616  }
1617
1618  // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1619  // appropriate, at least for an implicit capture.
1620  if (!TSI)
1621    TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1622
1623  // Build the non-static data member.
1624  FieldDecl *Field =
1625      FieldDecl::Create(Context, RD, Loc, Loc, nullptr, FieldType, TSI, nullptr,
1626                        false, ICIS_NoInit);
1627  // If the variable being captured has an invalid type, mark the class as
1628  // invalid as well.
1629  if (!FieldType->isDependentType()) {
1630    if (RequireCompleteType(Loc, FieldType, diag::err_field_incomplete)) {
1631      RD->setInvalidDecl();
1632      Field->setInvalidDecl();
1633    } else {
1634      NamedDecl *Def;
1635      FieldType->isIncompleteType(&Def);
1636      if (Def && Def->isInvalidDecl()) {
1637        RD->setInvalidDecl();
1638        Field->setInvalidDecl();
1639      }
1640    }
1641  }
1642  Field->setImplicit(true);
1643  Field->setAccess(AS_private);
1644  RD->addDecl(Field);
1645
1646  if (Capture.isVLATypeCapture())
1647    Field->setCapturedVLAType(Capture.getCapturedVLAType());
1648
1649  return Field;
1650}
1651
1652ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1653                                 LambdaScopeInfo *LSI) {
1654  // Collect information from the lambda scope.
1655  SmallVector<LambdaCapture, 4> Captures;
1656  SmallVector<Expr *, 4> CaptureInits;
1657  SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1658  LambdaCaptureDefault CaptureDefault =
1659      mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1660  CXXRecordDecl *Class;
1661  CXXMethodDecl *CallOperator;
1662  SourceRange IntroducerRange;
1663  bool ExplicitParams;
1664  bool ExplicitResultType;
1665  CleanupInfo LambdaCleanup;
1666  bool ContainsUnexpandedParameterPack;
1667  bool IsGenericLambda;
1668  {
1669    CallOperator = LSI->CallOperator;
1670    Class = LSI->Lambda;
1671    IntroducerRange = LSI->IntroducerRange;
1672    ExplicitParams = LSI->ExplicitParams;
1673    ExplicitResultType = !LSI->HasImplicitReturnType;
1674    LambdaCleanup = LSI->Cleanup;
1675    ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1676    IsGenericLambda = Class->isGenericLambda();
1677
1678    CallOperator->setLexicalDeclContext(Class);
1679    Decl *TemplateOrNonTemplateCallOperatorDecl =
1680        CallOperator->getDescribedFunctionTemplate()
1681        ? CallOperator->getDescribedFunctionTemplate()
1682        : cast<Decl>(CallOperator);
1683
1684    // FIXME: Is this really the best choice? Keeping the lexical decl context
1685    // set as CurContext seems more faithful to the source.
1686    TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1687
1688    PopExpressionEvaluationContext();
1689
1690    // True if the current capture has a used capture or default before it.
1691    bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1692    SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1693        CaptureDefaultLoc : IntroducerRange.getBegin();
1694
1695    for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1696      const Capture &From = LSI->Captures[I];
1697
1698      if (From.isInvalid())
1699        return ExprError();
1700
1701      assert(!From.isBlockCapture() && "Cannot capture __block variables");
1702      bool IsImplicit = I >= LSI->NumExplicitCaptures;
1703      SourceLocation ImplicitCaptureLoc =
1704          IsImplicit ? CaptureDefaultLoc : SourceLocation();
1705
1706      // Use source ranges of explicit captures for fixits where available.
1707      SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1708
1709      // Warn about unused explicit captures.
1710      bool IsCaptureUsed = true;
1711      if (!CurContext->isDependentContext() && !IsImplicit &&
1712          !From.isODRUsed()) {
1713        // Initialized captures that are non-ODR used may not be eliminated.
1714        // FIXME: Where did the IsGenericLambda here come from?
1715        bool NonODRUsedInitCapture =
1716            IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1717        if (!NonODRUsedInitCapture) {
1718          bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1719          SourceRange FixItRange;
1720          if (CaptureRange.isValid()) {
1721            if (!CurHasPreviousCapture && !IsLast) {
1722              // If there are no captures preceding this capture, remove the
1723              // following comma.
1724              FixItRange = SourceRange(CaptureRange.getBegin(),
1725                                       getLocForEndOfToken(CaptureRange.getEnd()));
1726            } else {
1727              // Otherwise, remove the comma since the last used capture.
1728              FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1729                                       CaptureRange.getEnd());
1730            }
1731          }
1732
1733          IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1734        }
1735      }
1736
1737      if (CaptureRange.isValid()) {
1738        CurHasPreviousCapture |= IsCaptureUsed;
1739        PrevCaptureLoc = CaptureRange.getEnd();
1740      }
1741
1742      // Map the capture to our AST representation.
1743      LambdaCapture Capture = [&] {
1744        if (From.isThisCapture()) {
1745          // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1746          // because it results in a reference capture. Don't warn prior to
1747          // C++2a; there's nothing that can be done about it before then.
1748          if (getLangOpts().CPlusPlus2a && IsImplicit &&
1749              CaptureDefault == LCD_ByCopy) {
1750            Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1751            Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1752                << FixItHint::CreateInsertion(
1753                       getLocForEndOfToken(CaptureDefaultLoc), ", this");
1754          }
1755          return LambdaCapture(From.getLocation(), IsImplicit,
1756                               From.isCopyCapture() ? LCK_StarThis : LCK_This);
1757        } else if (From.isVLATypeCapture()) {
1758          return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1759        } else {
1760          assert(From.isVariableCapture() && "unknown kind of capture");
1761          VarDecl *Var = From.getVariable();
1762          LambdaCaptureKind Kind =
1763              From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1764          return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1765                               From.getEllipsisLoc());
1766        }
1767      }();
1768
1769      // Form the initializer for the capture field.
1770      ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1771
1772      // FIXME: Skip this capture if the capture is not used, the initializer
1773      // has no side-effects, the type of the capture is trivial, and the
1774      // lambda is not externally visible.
1775
1776      // Add a FieldDecl for the capture and form its initializer.
1777      BuildCaptureField(Class, From);
1778      Captures.push_back(Capture);
1779      CaptureInits.push_back(Init.get());
1780    }
1781
1782    // C++11 [expr.prim.lambda]p6:
1783    //   The closure type for a lambda-expression with no lambda-capture
1784    //   has a public non-virtual non-explicit const conversion function
1785    //   to pointer to function having the same parameter and return
1786    //   types as the closure type's function call operator.
1787    if (Captures.empty() && CaptureDefault == LCD_None)
1788      addFunctionPointerConversion(*this, IntroducerRange, Class,
1789                                   CallOperator);
1790
1791    // Objective-C++:
1792    //   The closure type for a lambda-expression has a public non-virtual
1793    //   non-explicit const conversion function to a block pointer having the
1794    //   same parameter and return types as the closure type's function call
1795    //   operator.
1796    // FIXME: Fix generic lambda to block conversions.
1797    if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1798      addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1799
1800    // Finalize the lambda class.
1801    SmallVector<Decl*, 4> Fields(Class->fields());
1802    ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1803                SourceLocation(), ParsedAttributesView());
1804    CheckCompletedCXXClass(nullptr, Class);
1805  }
1806
1807  Cleanup.mergeFrom(LambdaCleanup);
1808
1809  LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1810                                          CaptureDefault, CaptureDefaultLoc,
1811                                          Captures,
1812                                          ExplicitParams, ExplicitResultType,
1813                                          CaptureInits, EndLoc,
1814                                          ContainsUnexpandedParameterPack);
1815  // If the lambda expression's call operator is not explicitly marked constexpr
1816  // and we are not in a dependent context, analyze the call operator to infer
1817  // its constexpr-ness, suppressing diagnostics while doing so.
1818  if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1819      !CallOperator->isConstexpr() &&
1820      !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1821      !Class->getDeclContext()->isDependentContext()) {
1822    CallOperator->setConstexprKind(
1823        CheckConstexprFunctionDefinition(CallOperator,
1824                                         CheckConstexprKind::CheckValid)
1825            ? CSK_constexpr
1826            : CSK_unspecified);
1827  }
1828
1829  // Emit delayed shadowing warnings now that the full capture list is known.
1830  DiagnoseShadowingLambdaDecls(LSI);
1831
1832  if (!CurContext->isDependentContext()) {
1833    switch (ExprEvalContexts.back().Context) {
1834    // C++11 [expr.prim.lambda]p2:
1835    //   A lambda-expression shall not appear in an unevaluated operand
1836    //   (Clause 5).
1837    case ExpressionEvaluationContext::Unevaluated:
1838    case ExpressionEvaluationContext::UnevaluatedList:
1839    case ExpressionEvaluationContext::UnevaluatedAbstract:
1840    // C++1y [expr.const]p2:
1841    //   A conditional-expression e is a core constant expression unless the
1842    //   evaluation of e, following the rules of the abstract machine, would
1843    //   evaluate [...] a lambda-expression.
1844    //
1845    // This is technically incorrect, there are some constant evaluated contexts
1846    // where this should be allowed.  We should probably fix this when DR1607 is
1847    // ratified, it lays out the exact set of conditions where we shouldn't
1848    // allow a lambda-expression.
1849    case ExpressionEvaluationContext::ConstantEvaluated:
1850      // We don't actually diagnose this case immediately, because we
1851      // could be within a context where we might find out later that
1852      // the expression is potentially evaluated (e.g., for typeid).
1853      ExprEvalContexts.back().Lambdas.push_back(Lambda);
1854      break;
1855
1856    case ExpressionEvaluationContext::DiscardedStatement:
1857    case ExpressionEvaluationContext::PotentiallyEvaluated:
1858    case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1859      break;
1860    }
1861  }
1862
1863  return MaybeBindToTemporary(Lambda);
1864}
1865
1866ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1867                                               SourceLocation ConvLocation,
1868                                               CXXConversionDecl *Conv,
1869                                               Expr *Src) {
1870  // Make sure that the lambda call operator is marked used.
1871  CXXRecordDecl *Lambda = Conv->getParent();
1872  CXXMethodDecl *CallOperator
1873    = cast<CXXMethodDecl>(
1874        Lambda->lookup(
1875          Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1876  CallOperator->setReferenced();
1877  CallOperator->markUsed(Context);
1878
1879  ExprResult Init = PerformCopyInitialization(
1880      InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(),
1881                                                 /*NRVO=*/false),
1882      CurrentLocation, Src);
1883  if (!Init.isInvalid())
1884    Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
1885
1886  if (Init.isInvalid())
1887    return ExprError();
1888
1889  // Create the new block to be returned.
1890  BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1891
1892  // Set the type information.
1893  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1894  Block->setIsVariadic(CallOperator->isVariadic());
1895  Block->setBlockMissingReturnType(false);
1896
1897  // Add parameters.
1898  SmallVector<ParmVarDecl *, 4> BlockParams;
1899  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1900    ParmVarDecl *From = CallOperator->getParamDecl(I);
1901    BlockParams.push_back(ParmVarDecl::Create(
1902        Context, Block, From->getBeginLoc(), From->getLocation(),
1903        From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
1904        From->getStorageClass(),
1905        /*DefArg=*/nullptr));
1906  }
1907  Block->setParams(BlockParams);
1908
1909  Block->setIsConversionFromLambda(true);
1910
1911  // Add capture. The capture uses a fake variable, which doesn't correspond
1912  // to any actual memory location. However, the initializer copy-initializes
1913  // the lambda object.
1914  TypeSourceInfo *CapVarTSI =
1915      Context.getTrivialTypeSourceInfo(Src->getType());
1916  VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1917                                    ConvLocation, nullptr,
1918                                    Src->getType(), CapVarTSI,
1919                                    SC_None);
1920  BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
1921                             /*nested=*/false, /*copy=*/Init.get());
1922  Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
1923
1924  // Add a fake function body to the block. IR generation is responsible
1925  // for filling in the actual body, which cannot be expressed as an AST.
1926  Block->setBody(new (Context) CompoundStmt(ConvLocation));
1927
1928  // Create the block literal expression.
1929  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1930  ExprCleanupObjects.push_back(Block);
1931  Cleanup.setExprNeedsCleanups(true);
1932
1933  return BuildBlock;
1934}
1935