SemaDecl.cpp revision 360784
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements semantic analysis for declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TreeTransform.h"
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/NonTrivialTypeVisitor.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36#include "clang/Sema/CXXFieldCollector.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/DelayedDiagnostic.h"
39#include "clang/Sema/Initialization.h"
40#include "clang/Sema/Lookup.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/Scope.h"
43#include "clang/Sema/ScopeInfo.h"
44#include "clang/Sema/SemaInternal.h"
45#include "clang/Sema/Template.h"
46#include "llvm/ADT/SmallString.h"
47#include "llvm/ADT/Triple.h"
48#include <algorithm>
49#include <cstring>
50#include <functional>
51
52using namespace clang;
53using namespace sema;
54
55Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
56  if (OwnedType) {
57    Decl *Group[2] = { OwnedType, Ptr };
58    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
59  }
60
61  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
62}
63
64namespace {
65
66class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
67 public:
68   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
69                        bool AllowTemplates = false,
70                        bool AllowNonTemplates = true)
71       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
72         AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
73     WantExpressionKeywords = false;
74     WantCXXNamedCasts = false;
75     WantRemainingKeywords = false;
76  }
77
78  bool ValidateCandidate(const TypoCorrection &candidate) override {
79    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
80      if (!AllowInvalidDecl && ND->isInvalidDecl())
81        return false;
82
83      if (getAsTypeTemplateDecl(ND))
84        return AllowTemplates;
85
86      bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
87      if (!IsType)
88        return false;
89
90      if (AllowNonTemplates)
91        return true;
92
93      // An injected-class-name of a class template (specialization) is valid
94      // as a template or as a non-template.
95      if (AllowTemplates) {
96        auto *RD = dyn_cast<CXXRecordDecl>(ND);
97        if (!RD || !RD->isInjectedClassName())
98          return false;
99        RD = cast<CXXRecordDecl>(RD->getDeclContext());
100        return RD->getDescribedClassTemplate() ||
101               isa<ClassTemplateSpecializationDecl>(RD);
102      }
103
104      return false;
105    }
106
107    return !WantClassName && candidate.isKeyword();
108  }
109
110  std::unique_ptr<CorrectionCandidateCallback> clone() override {
111    return std::make_unique<TypeNameValidatorCCC>(*this);
112  }
113
114 private:
115  bool AllowInvalidDecl;
116  bool WantClassName;
117  bool AllowTemplates;
118  bool AllowNonTemplates;
119};
120
121} // end anonymous namespace
122
123/// Determine whether the token kind starts a simple-type-specifier.
124bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
125  switch (Kind) {
126  // FIXME: Take into account the current language when deciding whether a
127  // token kind is a valid type specifier
128  case tok::kw_short:
129  case tok::kw_long:
130  case tok::kw___int64:
131  case tok::kw___int128:
132  case tok::kw_signed:
133  case tok::kw_unsigned:
134  case tok::kw_void:
135  case tok::kw_char:
136  case tok::kw_int:
137  case tok::kw_half:
138  case tok::kw_float:
139  case tok::kw_double:
140  case tok::kw__Float16:
141  case tok::kw___float128:
142  case tok::kw_wchar_t:
143  case tok::kw_bool:
144  case tok::kw___underlying_type:
145  case tok::kw___auto_type:
146    return true;
147
148  case tok::annot_typename:
149  case tok::kw_char16_t:
150  case tok::kw_char32_t:
151  case tok::kw_typeof:
152  case tok::annot_decltype:
153  case tok::kw_decltype:
154    return getLangOpts().CPlusPlus;
155
156  case tok::kw_char8_t:
157    return getLangOpts().Char8;
158
159  default:
160    break;
161  }
162
163  return false;
164}
165
166namespace {
167enum class UnqualifiedTypeNameLookupResult {
168  NotFound,
169  FoundNonType,
170  FoundType
171};
172} // end anonymous namespace
173
174/// Tries to perform unqualified lookup of the type decls in bases for
175/// dependent class.
176/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
177/// type decl, \a FoundType if only type decls are found.
178static UnqualifiedTypeNameLookupResult
179lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
180                                SourceLocation NameLoc,
181                                const CXXRecordDecl *RD) {
182  if (!RD->hasDefinition())
183    return UnqualifiedTypeNameLookupResult::NotFound;
184  // Look for type decls in base classes.
185  UnqualifiedTypeNameLookupResult FoundTypeDecl =
186      UnqualifiedTypeNameLookupResult::NotFound;
187  for (const auto &Base : RD->bases()) {
188    const CXXRecordDecl *BaseRD = nullptr;
189    if (auto *BaseTT = Base.getType()->getAs<TagType>())
190      BaseRD = BaseTT->getAsCXXRecordDecl();
191    else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
192      // Look for type decls in dependent base classes that have known primary
193      // templates.
194      if (!TST || !TST->isDependentType())
195        continue;
196      auto *TD = TST->getTemplateName().getAsTemplateDecl();
197      if (!TD)
198        continue;
199      if (auto *BasePrimaryTemplate =
200          dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
201        if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
202          BaseRD = BasePrimaryTemplate;
203        else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
204          if (const ClassTemplatePartialSpecializationDecl *PS =
205                  CTD->findPartialSpecialization(Base.getType()))
206            if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
207              BaseRD = PS;
208        }
209      }
210    }
211    if (BaseRD) {
212      for (NamedDecl *ND : BaseRD->lookup(&II)) {
213        if (!isa<TypeDecl>(ND))
214          return UnqualifiedTypeNameLookupResult::FoundNonType;
215        FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
216      }
217      if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
218        switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
219        case UnqualifiedTypeNameLookupResult::FoundNonType:
220          return UnqualifiedTypeNameLookupResult::FoundNonType;
221        case UnqualifiedTypeNameLookupResult::FoundType:
222          FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
223          break;
224        case UnqualifiedTypeNameLookupResult::NotFound:
225          break;
226        }
227      }
228    }
229  }
230
231  return FoundTypeDecl;
232}
233
234static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
235                                                      const IdentifierInfo &II,
236                                                      SourceLocation NameLoc) {
237  // Lookup in the parent class template context, if any.
238  const CXXRecordDecl *RD = nullptr;
239  UnqualifiedTypeNameLookupResult FoundTypeDecl =
240      UnqualifiedTypeNameLookupResult::NotFound;
241  for (DeclContext *DC = S.CurContext;
242       DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
243       DC = DC->getParent()) {
244    // Look for type decls in dependent base classes that have known primary
245    // templates.
246    RD = dyn_cast<CXXRecordDecl>(DC);
247    if (RD && RD->getDescribedClassTemplate())
248      FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
249  }
250  if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
251    return nullptr;
252
253  // We found some types in dependent base classes.  Recover as if the user
254  // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
255  // lookup during template instantiation.
256  S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
257
258  ASTContext &Context = S.Context;
259  auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
260                                          cast<Type>(Context.getRecordType(RD)));
261  QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
262
263  CXXScopeSpec SS;
264  SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
265
266  TypeLocBuilder Builder;
267  DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
268  DepTL.setNameLoc(NameLoc);
269  DepTL.setElaboratedKeywordLoc(SourceLocation());
270  DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
271  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
272}
273
274/// If the identifier refers to a type name within this scope,
275/// return the declaration of that type.
276///
277/// This routine performs ordinary name lookup of the identifier II
278/// within the given scope, with optional C++ scope specifier SS, to
279/// determine whether the name refers to a type. If so, returns an
280/// opaque pointer (actually a QualType) corresponding to that
281/// type. Otherwise, returns NULL.
282ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
283                             Scope *S, CXXScopeSpec *SS,
284                             bool isClassName, bool HasTrailingDot,
285                             ParsedType ObjectTypePtr,
286                             bool IsCtorOrDtorName,
287                             bool WantNontrivialTypeSourceInfo,
288                             bool IsClassTemplateDeductionContext,
289                             IdentifierInfo **CorrectedII) {
290  // FIXME: Consider allowing this outside C++1z mode as an extension.
291  bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
292                              getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
293                              !isClassName && !HasTrailingDot;
294
295  // Determine where we will perform name lookup.
296  DeclContext *LookupCtx = nullptr;
297  if (ObjectTypePtr) {
298    QualType ObjectType = ObjectTypePtr.get();
299    if (ObjectType->isRecordType())
300      LookupCtx = computeDeclContext(ObjectType);
301  } else if (SS && SS->isNotEmpty()) {
302    LookupCtx = computeDeclContext(*SS, false);
303
304    if (!LookupCtx) {
305      if (isDependentScopeSpecifier(*SS)) {
306        // C++ [temp.res]p3:
307        //   A qualified-id that refers to a type and in which the
308        //   nested-name-specifier depends on a template-parameter (14.6.2)
309        //   shall be prefixed by the keyword typename to indicate that the
310        //   qualified-id denotes a type, forming an
311        //   elaborated-type-specifier (7.1.5.3).
312        //
313        // We therefore do not perform any name lookup if the result would
314        // refer to a member of an unknown specialization.
315        if (!isClassName && !IsCtorOrDtorName)
316          return nullptr;
317
318        // We know from the grammar that this name refers to a type,
319        // so build a dependent node to describe the type.
320        if (WantNontrivialTypeSourceInfo)
321          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
322
323        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
324        QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
325                                       II, NameLoc);
326        return ParsedType::make(T);
327      }
328
329      return nullptr;
330    }
331
332    if (!LookupCtx->isDependentContext() &&
333        RequireCompleteDeclContext(*SS, LookupCtx))
334      return nullptr;
335  }
336
337  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
338  // lookup for class-names.
339  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
340                                      LookupOrdinaryName;
341  LookupResult Result(*this, &II, NameLoc, Kind);
342  if (LookupCtx) {
343    // Perform "qualified" name lookup into the declaration context we
344    // computed, which is either the type of the base of a member access
345    // expression or the declaration context associated with a prior
346    // nested-name-specifier.
347    LookupQualifiedName(Result, LookupCtx);
348
349    if (ObjectTypePtr && Result.empty()) {
350      // C++ [basic.lookup.classref]p3:
351      //   If the unqualified-id is ~type-name, the type-name is looked up
352      //   in the context of the entire postfix-expression. If the type T of
353      //   the object expression is of a class type C, the type-name is also
354      //   looked up in the scope of class C. At least one of the lookups shall
355      //   find a name that refers to (possibly cv-qualified) T.
356      LookupName(Result, S);
357    }
358  } else {
359    // Perform unqualified name lookup.
360    LookupName(Result, S);
361
362    // For unqualified lookup in a class template in MSVC mode, look into
363    // dependent base classes where the primary class template is known.
364    if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
365      if (ParsedType TypeInBase =
366              recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
367        return TypeInBase;
368    }
369  }
370
371  NamedDecl *IIDecl = nullptr;
372  switch (Result.getResultKind()) {
373  case LookupResult::NotFound:
374  case LookupResult::NotFoundInCurrentInstantiation:
375    if (CorrectedII) {
376      TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
377                               AllowDeducedTemplate);
378      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
379                                              S, SS, CCC, CTK_ErrorRecovery);
380      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
381      TemplateTy Template;
382      bool MemberOfUnknownSpecialization;
383      UnqualifiedId TemplateName;
384      TemplateName.setIdentifier(NewII, NameLoc);
385      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
386      CXXScopeSpec NewSS, *NewSSPtr = SS;
387      if (SS && NNS) {
388        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
389        NewSSPtr = &NewSS;
390      }
391      if (Correction && (NNS || NewII != &II) &&
392          // Ignore a correction to a template type as the to-be-corrected
393          // identifier is not a template (typo correction for template names
394          // is handled elsewhere).
395          !(getLangOpts().CPlusPlus && NewSSPtr &&
396            isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
397                           Template, MemberOfUnknownSpecialization))) {
398        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
399                                    isClassName, HasTrailingDot, ObjectTypePtr,
400                                    IsCtorOrDtorName,
401                                    WantNontrivialTypeSourceInfo,
402                                    IsClassTemplateDeductionContext);
403        if (Ty) {
404          diagnoseTypo(Correction,
405                       PDiag(diag::err_unknown_type_or_class_name_suggest)
406                         << Result.getLookupName() << isClassName);
407          if (SS && NNS)
408            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
409          *CorrectedII = NewII;
410          return Ty;
411        }
412      }
413    }
414    // If typo correction failed or was not performed, fall through
415    LLVM_FALLTHROUGH;
416  case LookupResult::FoundOverloaded:
417  case LookupResult::FoundUnresolvedValue:
418    Result.suppressDiagnostics();
419    return nullptr;
420
421  case LookupResult::Ambiguous:
422    // Recover from type-hiding ambiguities by hiding the type.  We'll
423    // do the lookup again when looking for an object, and we can
424    // diagnose the error then.  If we don't do this, then the error
425    // about hiding the type will be immediately followed by an error
426    // that only makes sense if the identifier was treated like a type.
427    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
428      Result.suppressDiagnostics();
429      return nullptr;
430    }
431
432    // Look to see if we have a type anywhere in the list of results.
433    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
434         Res != ResEnd; ++Res) {
435      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
436          (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
437        if (!IIDecl ||
438            (*Res)->getLocation().getRawEncoding() <
439              IIDecl->getLocation().getRawEncoding())
440          IIDecl = *Res;
441      }
442    }
443
444    if (!IIDecl) {
445      // None of the entities we found is a type, so there is no way
446      // to even assume that the result is a type. In this case, don't
447      // complain about the ambiguity. The parser will either try to
448      // perform this lookup again (e.g., as an object name), which
449      // will produce the ambiguity, or will complain that it expected
450      // a type name.
451      Result.suppressDiagnostics();
452      return nullptr;
453    }
454
455    // We found a type within the ambiguous lookup; diagnose the
456    // ambiguity and then return that type. This might be the right
457    // answer, or it might not be, but it suppresses any attempt to
458    // perform the name lookup again.
459    break;
460
461  case LookupResult::Found:
462    IIDecl = Result.getFoundDecl();
463    break;
464  }
465
466  assert(IIDecl && "Didn't find decl");
467
468  QualType T;
469  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
470    // C++ [class.qual]p2: A lookup that would find the injected-class-name
471    // instead names the constructors of the class, except when naming a class.
472    // This is ill-formed when we're not actually forming a ctor or dtor name.
473    auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
474    auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
475    if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
476        FoundRD->isInjectedClassName() &&
477        declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
478      Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
479          << &II << /*Type*/1;
480
481    DiagnoseUseOfDecl(IIDecl, NameLoc);
482
483    T = Context.getTypeDeclType(TD);
484    MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
485  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
486    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
487    if (!HasTrailingDot)
488      T = Context.getObjCInterfaceType(IDecl);
489  } else if (AllowDeducedTemplate) {
490    if (auto *TD = getAsTypeTemplateDecl(IIDecl))
491      T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
492                                                       QualType(), false);
493  }
494
495  if (T.isNull()) {
496    // If it's not plausibly a type, suppress diagnostics.
497    Result.suppressDiagnostics();
498    return nullptr;
499  }
500
501  // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
502  // constructor or destructor name (in such a case, the scope specifier
503  // will be attached to the enclosing Expr or Decl node).
504  if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
505      !isa<ObjCInterfaceDecl>(IIDecl)) {
506    if (WantNontrivialTypeSourceInfo) {
507      // Construct a type with type-source information.
508      TypeLocBuilder Builder;
509      Builder.pushTypeSpec(T).setNameLoc(NameLoc);
510
511      T = getElaboratedType(ETK_None, *SS, T);
512      ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
513      ElabTL.setElaboratedKeywordLoc(SourceLocation());
514      ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
515      return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
516    } else {
517      T = getElaboratedType(ETK_None, *SS, T);
518    }
519  }
520
521  return ParsedType::make(T);
522}
523
524// Builds a fake NNS for the given decl context.
525static NestedNameSpecifier *
526synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
527  for (;; DC = DC->getLookupParent()) {
528    DC = DC->getPrimaryContext();
529    auto *ND = dyn_cast<NamespaceDecl>(DC);
530    if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
531      return NestedNameSpecifier::Create(Context, nullptr, ND);
532    else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
533      return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
534                                         RD->getTypeForDecl());
535    else if (isa<TranslationUnitDecl>(DC))
536      return NestedNameSpecifier::GlobalSpecifier(Context);
537  }
538  llvm_unreachable("something isn't in TU scope?");
539}
540
541/// Find the parent class with dependent bases of the innermost enclosing method
542/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
543/// up allowing unqualified dependent type names at class-level, which MSVC
544/// correctly rejects.
545static const CXXRecordDecl *
546findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
547  for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
548    DC = DC->getPrimaryContext();
549    if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
550      if (MD->getParent()->hasAnyDependentBases())
551        return MD->getParent();
552  }
553  return nullptr;
554}
555
556ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
557                                          SourceLocation NameLoc,
558                                          bool IsTemplateTypeArg) {
559  assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
560
561  NestedNameSpecifier *NNS = nullptr;
562  if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
563    // If we weren't able to parse a default template argument, delay lookup
564    // until instantiation time by making a non-dependent DependentTypeName. We
565    // pretend we saw a NestedNameSpecifier referring to the current scope, and
566    // lookup is retried.
567    // FIXME: This hurts our diagnostic quality, since we get errors like "no
568    // type named 'Foo' in 'current_namespace'" when the user didn't write any
569    // name specifiers.
570    NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
571    Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
572  } else if (const CXXRecordDecl *RD =
573                 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
574    // Build a DependentNameType that will perform lookup into RD at
575    // instantiation time.
576    NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
577                                      RD->getTypeForDecl());
578
579    // Diagnose that this identifier was undeclared, and retry the lookup during
580    // template instantiation.
581    Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
582                                                                      << RD;
583  } else {
584    // This is not a situation that we should recover from.
585    return ParsedType();
586  }
587
588  QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
589
590  // Build type location information.  We synthesized the qualifier, so we have
591  // to build a fake NestedNameSpecifierLoc.
592  NestedNameSpecifierLocBuilder NNSLocBuilder;
593  NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
594  NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
595
596  TypeLocBuilder Builder;
597  DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
598  DepTL.setNameLoc(NameLoc);
599  DepTL.setElaboratedKeywordLoc(SourceLocation());
600  DepTL.setQualifierLoc(QualifierLoc);
601  return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
602}
603
604/// isTagName() - This method is called *for error recovery purposes only*
605/// to determine if the specified name is a valid tag name ("struct foo").  If
606/// so, this returns the TST for the tag corresponding to it (TST_enum,
607/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
608/// cases in C where the user forgot to specify the tag.
609DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
610  // Do a tag name lookup in this scope.
611  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
612  LookupName(R, S, false);
613  R.suppressDiagnostics();
614  if (R.getResultKind() == LookupResult::Found)
615    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
616      switch (TD->getTagKind()) {
617      case TTK_Struct: return DeclSpec::TST_struct;
618      case TTK_Interface: return DeclSpec::TST_interface;
619      case TTK_Union:  return DeclSpec::TST_union;
620      case TTK_Class:  return DeclSpec::TST_class;
621      case TTK_Enum:   return DeclSpec::TST_enum;
622      }
623    }
624
625  return DeclSpec::TST_unspecified;
626}
627
628/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
629/// if a CXXScopeSpec's type is equal to the type of one of the base classes
630/// then downgrade the missing typename error to a warning.
631/// This is needed for MSVC compatibility; Example:
632/// @code
633/// template<class T> class A {
634/// public:
635///   typedef int TYPE;
636/// };
637/// template<class T> class B : public A<T> {
638/// public:
639///   A<T>::TYPE a; // no typename required because A<T> is a base class.
640/// };
641/// @endcode
642bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
643  if (CurContext->isRecord()) {
644    if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
645      return true;
646
647    const Type *Ty = SS->getScopeRep()->getAsType();
648
649    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
650    for (const auto &Base : RD->bases())
651      if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
652        return true;
653    return S->isFunctionPrototypeScope();
654  }
655  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
656}
657
658void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
659                                   SourceLocation IILoc,
660                                   Scope *S,
661                                   CXXScopeSpec *SS,
662                                   ParsedType &SuggestedType,
663                                   bool IsTemplateName) {
664  // Don't report typename errors for editor placeholders.
665  if (II->isEditorPlaceholder())
666    return;
667  // We don't have anything to suggest (yet).
668  SuggestedType = nullptr;
669
670  // There may have been a typo in the name of the type. Look up typo
671  // results, in case we have something that we can suggest.
672  TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
673                           /*AllowTemplates=*/IsTemplateName,
674                           /*AllowNonTemplates=*/!IsTemplateName);
675  if (TypoCorrection Corrected =
676          CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
677                      CCC, CTK_ErrorRecovery)) {
678    // FIXME: Support error recovery for the template-name case.
679    bool CanRecover = !IsTemplateName;
680    if (Corrected.isKeyword()) {
681      // We corrected to a keyword.
682      diagnoseTypo(Corrected,
683                   PDiag(IsTemplateName ? diag::err_no_template_suggest
684                                        : diag::err_unknown_typename_suggest)
685                       << II);
686      II = Corrected.getCorrectionAsIdentifierInfo();
687    } else {
688      // We found a similarly-named type or interface; suggest that.
689      if (!SS || !SS->isSet()) {
690        diagnoseTypo(Corrected,
691                     PDiag(IsTemplateName ? diag::err_no_template_suggest
692                                          : diag::err_unknown_typename_suggest)
693                         << II, CanRecover);
694      } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
695        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
696        bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
697                                II->getName().equals(CorrectedStr);
698        diagnoseTypo(Corrected,
699                     PDiag(IsTemplateName
700                               ? diag::err_no_member_template_suggest
701                               : diag::err_unknown_nested_typename_suggest)
702                         << II << DC << DroppedSpecifier << SS->getRange(),
703                     CanRecover);
704      } else {
705        llvm_unreachable("could not have corrected a typo here");
706      }
707
708      if (!CanRecover)
709        return;
710
711      CXXScopeSpec tmpSS;
712      if (Corrected.getCorrectionSpecifier())
713        tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
714                          SourceRange(IILoc));
715      // FIXME: Support class template argument deduction here.
716      SuggestedType =
717          getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
718                      tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
719                      /*IsCtorOrDtorName=*/false,
720                      /*WantNontrivialTypeSourceInfo=*/true);
721    }
722    return;
723  }
724
725  if (getLangOpts().CPlusPlus && !IsTemplateName) {
726    // See if II is a class template that the user forgot to pass arguments to.
727    UnqualifiedId Name;
728    Name.setIdentifier(II, IILoc);
729    CXXScopeSpec EmptySS;
730    TemplateTy TemplateResult;
731    bool MemberOfUnknownSpecialization;
732    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
733                       Name, nullptr, true, TemplateResult,
734                       MemberOfUnknownSpecialization) == TNK_Type_template) {
735      diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
736      return;
737    }
738  }
739
740  // FIXME: Should we move the logic that tries to recover from a missing tag
741  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
742
743  if (!SS || (!SS->isSet() && !SS->isInvalid()))
744    Diag(IILoc, IsTemplateName ? diag::err_no_template
745                               : diag::err_unknown_typename)
746        << II;
747  else if (DeclContext *DC = computeDeclContext(*SS, false))
748    Diag(IILoc, IsTemplateName ? diag::err_no_member_template
749                               : diag::err_typename_nested_not_found)
750        << II << DC << SS->getRange();
751  else if (isDependentScopeSpecifier(*SS)) {
752    unsigned DiagID = diag::err_typename_missing;
753    if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
754      DiagID = diag::ext_typename_missing;
755
756    Diag(SS->getRange().getBegin(), DiagID)
757      << SS->getScopeRep() << II->getName()
758      << SourceRange(SS->getRange().getBegin(), IILoc)
759      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
760    SuggestedType = ActOnTypenameType(S, SourceLocation(),
761                                      *SS, *II, IILoc).get();
762  } else {
763    assert(SS && SS->isInvalid() &&
764           "Invalid scope specifier has already been diagnosed");
765  }
766}
767
768/// Determine whether the given result set contains either a type name
769/// or
770static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
771  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
772                       NextToken.is(tok::less);
773
774  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
775    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
776      return true;
777
778    if (CheckTemplate && isa<TemplateDecl>(*I))
779      return true;
780  }
781
782  return false;
783}
784
785static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
786                                    Scope *S, CXXScopeSpec &SS,
787                                    IdentifierInfo *&Name,
788                                    SourceLocation NameLoc) {
789  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
790  SemaRef.LookupParsedName(R, S, &SS);
791  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
792    StringRef FixItTagName;
793    switch (Tag->getTagKind()) {
794      case TTK_Class:
795        FixItTagName = "class ";
796        break;
797
798      case TTK_Enum:
799        FixItTagName = "enum ";
800        break;
801
802      case TTK_Struct:
803        FixItTagName = "struct ";
804        break;
805
806      case TTK_Interface:
807        FixItTagName = "__interface ";
808        break;
809
810      case TTK_Union:
811        FixItTagName = "union ";
812        break;
813    }
814
815    StringRef TagName = FixItTagName.drop_back();
816    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
817      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
818      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
819
820    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
821         I != IEnd; ++I)
822      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
823        << Name << TagName;
824
825    // Replace lookup results with just the tag decl.
826    Result.clear(Sema::LookupTagName);
827    SemaRef.LookupParsedName(Result, S, &SS);
828    return true;
829  }
830
831  return false;
832}
833
834/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
835static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
836                                  QualType T, SourceLocation NameLoc) {
837  ASTContext &Context = S.Context;
838
839  TypeLocBuilder Builder;
840  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
841
842  T = S.getElaboratedType(ETK_None, SS, T);
843  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
844  ElabTL.setElaboratedKeywordLoc(SourceLocation());
845  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
846  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
847}
848
849Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
850                                            IdentifierInfo *&Name,
851                                            SourceLocation NameLoc,
852                                            const Token &NextToken,
853                                            CorrectionCandidateCallback *CCC) {
854  DeclarationNameInfo NameInfo(Name, NameLoc);
855  ObjCMethodDecl *CurMethod = getCurMethodDecl();
856
857  assert(NextToken.isNot(tok::coloncolon) &&
858         "parse nested name specifiers before calling ClassifyName");
859  if (getLangOpts().CPlusPlus && SS.isSet() &&
860      isCurrentClassName(*Name, S, &SS)) {
861    // Per [class.qual]p2, this names the constructors of SS, not the
862    // injected-class-name. We don't have a classification for that.
863    // There's not much point caching this result, since the parser
864    // will reject it later.
865    return NameClassification::Unknown();
866  }
867
868  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
869  LookupParsedName(Result, S, &SS, !CurMethod);
870
871  if (SS.isInvalid())
872    return NameClassification::Error();
873
874  // For unqualified lookup in a class template in MSVC mode, look into
875  // dependent base classes where the primary class template is known.
876  if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
877    if (ParsedType TypeInBase =
878            recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
879      return TypeInBase;
880  }
881
882  // Perform lookup for Objective-C instance variables (including automatically
883  // synthesized instance variables), if we're in an Objective-C method.
884  // FIXME: This lookup really, really needs to be folded in to the normal
885  // unqualified lookup mechanism.
886  if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
887    DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
888    if (Ivar.isInvalid())
889      return NameClassification::Error();
890    if (Ivar.isUsable())
891      return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
892
893    // We defer builtin creation until after ivar lookup inside ObjC methods.
894    if (Result.empty())
895      LookupBuiltin(Result);
896  }
897
898  bool SecondTry = false;
899  bool IsFilteredTemplateName = false;
900
901Corrected:
902  switch (Result.getResultKind()) {
903  case LookupResult::NotFound:
904    // If an unqualified-id is followed by a '(', then we have a function
905    // call.
906    if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
907      // In C++, this is an ADL-only call.
908      // FIXME: Reference?
909      if (getLangOpts().CPlusPlus)
910        return NameClassification::UndeclaredNonType();
911
912      // C90 6.3.2.2:
913      //   If the expression that precedes the parenthesized argument list in a
914      //   function call consists solely of an identifier, and if no
915      //   declaration is visible for this identifier, the identifier is
916      //   implicitly declared exactly as if, in the innermost block containing
917      //   the function call, the declaration
918      //
919      //     extern int identifier ();
920      //
921      //   appeared.
922      //
923      // We also allow this in C99 as an extension.
924      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
925        return NameClassification::NonType(D);
926    }
927
928    if (getLangOpts().CPlusPlus2a && SS.isEmpty() && NextToken.is(tok::less)) {
929      // In C++20 onwards, this could be an ADL-only call to a function
930      // template, and we're required to assume that this is a template name.
931      //
932      // FIXME: Find a way to still do typo correction in this case.
933      TemplateName Template =
934          Context.getAssumedTemplateName(NameInfo.getName());
935      return NameClassification::UndeclaredTemplate(Template);
936    }
937
938    // In C, we first see whether there is a tag type by the same name, in
939    // which case it's likely that the user just forgot to write "enum",
940    // "struct", or "union".
941    if (!getLangOpts().CPlusPlus && !SecondTry &&
942        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
943      break;
944    }
945
946    // Perform typo correction to determine if there is another name that is
947    // close to this name.
948    if (!SecondTry && CCC) {
949      SecondTry = true;
950      if (TypoCorrection Corrected =
951              CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
952                          &SS, *CCC, CTK_ErrorRecovery)) {
953        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
954        unsigned QualifiedDiag = diag::err_no_member_suggest;
955
956        NamedDecl *FirstDecl = Corrected.getFoundDecl();
957        NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
958        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
959            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
960          UnqualifiedDiag = diag::err_no_template_suggest;
961          QualifiedDiag = diag::err_no_member_template_suggest;
962        } else if (UnderlyingFirstDecl &&
963                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
964                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
965                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
966          UnqualifiedDiag = diag::err_unknown_typename_suggest;
967          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
968        }
969
970        if (SS.isEmpty()) {
971          diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
972        } else {// FIXME: is this even reachable? Test it.
973          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
974          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
975                                  Name->getName().equals(CorrectedStr);
976          diagnoseTypo(Corrected, PDiag(QualifiedDiag)
977                                    << Name << computeDeclContext(SS, false)
978                                    << DroppedSpecifier << SS.getRange());
979        }
980
981        // Update the name, so that the caller has the new name.
982        Name = Corrected.getCorrectionAsIdentifierInfo();
983
984        // Typo correction corrected to a keyword.
985        if (Corrected.isKeyword())
986          return Name;
987
988        // Also update the LookupResult...
989        // FIXME: This should probably go away at some point
990        Result.clear();
991        Result.setLookupName(Corrected.getCorrection());
992        if (FirstDecl)
993          Result.addDecl(FirstDecl);
994
995        // If we found an Objective-C instance variable, let
996        // LookupInObjCMethod build the appropriate expression to
997        // reference the ivar.
998        // FIXME: This is a gross hack.
999        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1000          DeclResult R =
1001              LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1002          if (R.isInvalid())
1003            return NameClassification::Error();
1004          if (R.isUsable())
1005            return NameClassification::NonType(Ivar);
1006        }
1007
1008        goto Corrected;
1009      }
1010    }
1011
1012    // We failed to correct; just fall through and let the parser deal with it.
1013    Result.suppressDiagnostics();
1014    return NameClassification::Unknown();
1015
1016  case LookupResult::NotFoundInCurrentInstantiation: {
1017    // We performed name lookup into the current instantiation, and there were
1018    // dependent bases, so we treat this result the same way as any other
1019    // dependent nested-name-specifier.
1020
1021    // C++ [temp.res]p2:
1022    //   A name used in a template declaration or definition and that is
1023    //   dependent on a template-parameter is assumed not to name a type
1024    //   unless the applicable name lookup finds a type name or the name is
1025    //   qualified by the keyword typename.
1026    //
1027    // FIXME: If the next token is '<', we might want to ask the parser to
1028    // perform some heroics to see if we actually have a
1029    // template-argument-list, which would indicate a missing 'template'
1030    // keyword here.
1031    return NameClassification::DependentNonType();
1032  }
1033
1034  case LookupResult::Found:
1035  case LookupResult::FoundOverloaded:
1036  case LookupResult::FoundUnresolvedValue:
1037    break;
1038
1039  case LookupResult::Ambiguous:
1040    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1041        hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1042                                      /*AllowDependent=*/false)) {
1043      // C++ [temp.local]p3:
1044      //   A lookup that finds an injected-class-name (10.2) can result in an
1045      //   ambiguity in certain cases (for example, if it is found in more than
1046      //   one base class). If all of the injected-class-names that are found
1047      //   refer to specializations of the same class template, and if the name
1048      //   is followed by a template-argument-list, the reference refers to the
1049      //   class template itself and not a specialization thereof, and is not
1050      //   ambiguous.
1051      //
1052      // This filtering can make an ambiguous result into an unambiguous one,
1053      // so try again after filtering out template names.
1054      FilterAcceptableTemplateNames(Result);
1055      if (!Result.isAmbiguous()) {
1056        IsFilteredTemplateName = true;
1057        break;
1058      }
1059    }
1060
1061    // Diagnose the ambiguity and return an error.
1062    return NameClassification::Error();
1063  }
1064
1065  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1066      (IsFilteredTemplateName ||
1067       hasAnyAcceptableTemplateNames(
1068           Result, /*AllowFunctionTemplates=*/true,
1069           /*AllowDependent=*/false,
1070           /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1071               getLangOpts().CPlusPlus2a))) {
1072    // C++ [temp.names]p3:
1073    //   After name lookup (3.4) finds that a name is a template-name or that
1074    //   an operator-function-id or a literal- operator-id refers to a set of
1075    //   overloaded functions any member of which is a function template if
1076    //   this is followed by a <, the < is always taken as the delimiter of a
1077    //   template-argument-list and never as the less-than operator.
1078    // C++2a [temp.names]p2:
1079    //   A name is also considered to refer to a template if it is an
1080    //   unqualified-id followed by a < and name lookup finds either one
1081    //   or more functions or finds nothing.
1082    if (!IsFilteredTemplateName)
1083      FilterAcceptableTemplateNames(Result);
1084
1085    bool IsFunctionTemplate;
1086    bool IsVarTemplate;
1087    TemplateName Template;
1088    if (Result.end() - Result.begin() > 1) {
1089      IsFunctionTemplate = true;
1090      Template = Context.getOverloadedTemplateName(Result.begin(),
1091                                                   Result.end());
1092    } else if (!Result.empty()) {
1093      auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1094          *Result.begin(), /*AllowFunctionTemplates=*/true,
1095          /*AllowDependent=*/false));
1096      IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1097      IsVarTemplate = isa<VarTemplateDecl>(TD);
1098
1099      if (SS.isNotEmpty())
1100        Template =
1101            Context.getQualifiedTemplateName(SS.getScopeRep(),
1102                                             /*TemplateKeyword=*/false, TD);
1103      else
1104        Template = TemplateName(TD);
1105    } else {
1106      // All results were non-template functions. This is a function template
1107      // name.
1108      IsFunctionTemplate = true;
1109      Template = Context.getAssumedTemplateName(NameInfo.getName());
1110    }
1111
1112    if (IsFunctionTemplate) {
1113      // Function templates always go through overload resolution, at which
1114      // point we'll perform the various checks (e.g., accessibility) we need
1115      // to based on which function we selected.
1116      Result.suppressDiagnostics();
1117
1118      return NameClassification::FunctionTemplate(Template);
1119    }
1120
1121    return IsVarTemplate ? NameClassification::VarTemplate(Template)
1122                         : NameClassification::TypeTemplate(Template);
1123  }
1124
1125  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1126  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1127    DiagnoseUseOfDecl(Type, NameLoc);
1128    MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1129    QualType T = Context.getTypeDeclType(Type);
1130    if (SS.isNotEmpty())
1131      return buildNestedType(*this, SS, T, NameLoc);
1132    return ParsedType::make(T);
1133  }
1134
1135  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1136  if (!Class) {
1137    // FIXME: It's unfortunate that we don't have a Type node for handling this.
1138    if (ObjCCompatibleAliasDecl *Alias =
1139            dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1140      Class = Alias->getClassInterface();
1141  }
1142
1143  if (Class) {
1144    DiagnoseUseOfDecl(Class, NameLoc);
1145
1146    if (NextToken.is(tok::period)) {
1147      // Interface. <something> is parsed as a property reference expression.
1148      // Just return "unknown" as a fall-through for now.
1149      Result.suppressDiagnostics();
1150      return NameClassification::Unknown();
1151    }
1152
1153    QualType T = Context.getObjCInterfaceType(Class);
1154    return ParsedType::make(T);
1155  }
1156
1157  if (isa<ConceptDecl>(FirstDecl))
1158    return NameClassification::Concept(
1159        TemplateName(cast<TemplateDecl>(FirstDecl)));
1160
1161  // We can have a type template here if we're classifying a template argument.
1162  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1163      !isa<VarTemplateDecl>(FirstDecl))
1164    return NameClassification::TypeTemplate(
1165        TemplateName(cast<TemplateDecl>(FirstDecl)));
1166
1167  // Check for a tag type hidden by a non-type decl in a few cases where it
1168  // seems likely a type is wanted instead of the non-type that was found.
1169  bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1170  if ((NextToken.is(tok::identifier) ||
1171       (NextIsOp &&
1172        FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1173      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1174    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1175    DiagnoseUseOfDecl(Type, NameLoc);
1176    QualType T = Context.getTypeDeclType(Type);
1177    if (SS.isNotEmpty())
1178      return buildNestedType(*this, SS, T, NameLoc);
1179    return ParsedType::make(T);
1180  }
1181
1182  // FIXME: This is context-dependent. We need to defer building the member
1183  // expression until the classification is consumed.
1184  if (FirstDecl->isCXXClassMember())
1185    return NameClassification::ContextIndependentExpr(
1186        BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, nullptr,
1187                                        S));
1188
1189  // If we already know which single declaration is referenced, just annotate
1190  // that declaration directly.
1191  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1192  if (Result.isSingleResult() && !ADL)
1193    return NameClassification::NonType(Result.getRepresentativeDecl());
1194
1195  // Build an UnresolvedLookupExpr. Note that this doesn't depend on the
1196  // context in which we performed classification, so it's safe to do now.
1197  return NameClassification::ContextIndependentExpr(
1198      BuildDeclarationNameExpr(SS, Result, ADL));
1199}
1200
1201ExprResult
1202Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1203                                             SourceLocation NameLoc) {
1204  assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1205  CXXScopeSpec SS;
1206  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1207  return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1208}
1209
1210ExprResult
1211Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1212                                            IdentifierInfo *Name,
1213                                            SourceLocation NameLoc,
1214                                            bool IsAddressOfOperand) {
1215  DeclarationNameInfo NameInfo(Name, NameLoc);
1216  return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1217                                    NameInfo, IsAddressOfOperand,
1218                                    /*TemplateArgs=*/nullptr);
1219}
1220
1221ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1222                                              NamedDecl *Found,
1223                                              SourceLocation NameLoc,
1224                                              const Token &NextToken) {
1225  if (getCurMethodDecl() && SS.isEmpty())
1226    if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1227      return BuildIvarRefExpr(S, NameLoc, Ivar);
1228
1229  // Reconstruct the lookup result.
1230  LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1231  Result.addDecl(Found);
1232  Result.resolveKind();
1233
1234  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1235  return BuildDeclarationNameExpr(SS, Result, ADL);
1236}
1237
1238Sema::TemplateNameKindForDiagnostics
1239Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1240  auto *TD = Name.getAsTemplateDecl();
1241  if (!TD)
1242    return TemplateNameKindForDiagnostics::DependentTemplate;
1243  if (isa<ClassTemplateDecl>(TD))
1244    return TemplateNameKindForDiagnostics::ClassTemplate;
1245  if (isa<FunctionTemplateDecl>(TD))
1246    return TemplateNameKindForDiagnostics::FunctionTemplate;
1247  if (isa<VarTemplateDecl>(TD))
1248    return TemplateNameKindForDiagnostics::VarTemplate;
1249  if (isa<TypeAliasTemplateDecl>(TD))
1250    return TemplateNameKindForDiagnostics::AliasTemplate;
1251  if (isa<TemplateTemplateParmDecl>(TD))
1252    return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1253  if (isa<ConceptDecl>(TD))
1254    return TemplateNameKindForDiagnostics::Concept;
1255  return TemplateNameKindForDiagnostics::DependentTemplate;
1256}
1257
1258// Determines the context to return to after temporarily entering a
1259// context.  This depends in an unnecessarily complicated way on the
1260// exact ordering of callbacks from the parser.
1261DeclContext *Sema::getContainingDC(DeclContext *DC) {
1262
1263  // Functions defined inline within classes aren't parsed until we've
1264  // finished parsing the top-level class, so the top-level class is
1265  // the context we'll need to return to.
1266  // A Lambda call operator whose parent is a class must not be treated
1267  // as an inline member function.  A Lambda can be used legally
1268  // either as an in-class member initializer or a default argument.  These
1269  // are parsed once the class has been marked complete and so the containing
1270  // context would be the nested class (when the lambda is defined in one);
1271  // If the class is not complete, then the lambda is being used in an
1272  // ill-formed fashion (such as to specify the width of a bit-field, or
1273  // in an array-bound) - in which case we still want to return the
1274  // lexically containing DC (which could be a nested class).
1275  if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1276    DC = DC->getLexicalParent();
1277
1278    // A function not defined within a class will always return to its
1279    // lexical context.
1280    if (!isa<CXXRecordDecl>(DC))
1281      return DC;
1282
1283    // A C++ inline method/friend is parsed *after* the topmost class
1284    // it was declared in is fully parsed ("complete");  the topmost
1285    // class is the context we need to return to.
1286    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1287      DC = RD;
1288
1289    // Return the declaration context of the topmost class the inline method is
1290    // declared in.
1291    return DC;
1292  }
1293
1294  return DC->getLexicalParent();
1295}
1296
1297void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1298  assert(getContainingDC(DC) == CurContext &&
1299      "The next DeclContext should be lexically contained in the current one.");
1300  CurContext = DC;
1301  S->setEntity(DC);
1302}
1303
1304void Sema::PopDeclContext() {
1305  assert(CurContext && "DeclContext imbalance!");
1306
1307  CurContext = getContainingDC(CurContext);
1308  assert(CurContext && "Popped translation unit!");
1309}
1310
1311Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1312                                                                    Decl *D) {
1313  // Unlike PushDeclContext, the context to which we return is not necessarily
1314  // the containing DC of TD, because the new context will be some pre-existing
1315  // TagDecl definition instead of a fresh one.
1316  auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1317  CurContext = cast<TagDecl>(D)->getDefinition();
1318  assert(CurContext && "skipping definition of undefined tag");
1319  // Start lookups from the parent of the current context; we don't want to look
1320  // into the pre-existing complete definition.
1321  S->setEntity(CurContext->getLookupParent());
1322  return Result;
1323}
1324
1325void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1326  CurContext = static_cast<decltype(CurContext)>(Context);
1327}
1328
1329/// EnterDeclaratorContext - Used when we must lookup names in the context
1330/// of a declarator's nested name specifier.
1331///
1332void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1333  // C++0x [basic.lookup.unqual]p13:
1334  //   A name used in the definition of a static data member of class
1335  //   X (after the qualified-id of the static member) is looked up as
1336  //   if the name was used in a member function of X.
1337  // C++0x [basic.lookup.unqual]p14:
1338  //   If a variable member of a namespace is defined outside of the
1339  //   scope of its namespace then any name used in the definition of
1340  //   the variable member (after the declarator-id) is looked up as
1341  //   if the definition of the variable member occurred in its
1342  //   namespace.
1343  // Both of these imply that we should push a scope whose context
1344  // is the semantic context of the declaration.  We can't use
1345  // PushDeclContext here because that context is not necessarily
1346  // lexically contained in the current context.  Fortunately,
1347  // the containing scope should have the appropriate information.
1348
1349  assert(!S->getEntity() && "scope already has entity");
1350
1351#ifndef NDEBUG
1352  Scope *Ancestor = S->getParent();
1353  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1354  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1355#endif
1356
1357  CurContext = DC;
1358  S->setEntity(DC);
1359}
1360
1361void Sema::ExitDeclaratorContext(Scope *S) {
1362  assert(S->getEntity() == CurContext && "Context imbalance!");
1363
1364  // Switch back to the lexical context.  The safety of this is
1365  // enforced by an assert in EnterDeclaratorContext.
1366  Scope *Ancestor = S->getParent();
1367  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1368  CurContext = Ancestor->getEntity();
1369
1370  // We don't need to do anything with the scope, which is going to
1371  // disappear.
1372}
1373
1374void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1375  // We assume that the caller has already called
1376  // ActOnReenterTemplateScope so getTemplatedDecl() works.
1377  FunctionDecl *FD = D->getAsFunction();
1378  if (!FD)
1379    return;
1380
1381  // Same implementation as PushDeclContext, but enters the context
1382  // from the lexical parent, rather than the top-level class.
1383  assert(CurContext == FD->getLexicalParent() &&
1384    "The next DeclContext should be lexically contained in the current one.");
1385  CurContext = FD;
1386  S->setEntity(CurContext);
1387
1388  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1389    ParmVarDecl *Param = FD->getParamDecl(P);
1390    // If the parameter has an identifier, then add it to the scope
1391    if (Param->getIdentifier()) {
1392      S->AddDecl(Param);
1393      IdResolver.AddDecl(Param);
1394    }
1395  }
1396}
1397
1398void Sema::ActOnExitFunctionContext() {
1399  // Same implementation as PopDeclContext, but returns to the lexical parent,
1400  // rather than the top-level class.
1401  assert(CurContext && "DeclContext imbalance!");
1402  CurContext = CurContext->getLexicalParent();
1403  assert(CurContext && "Popped translation unit!");
1404}
1405
1406/// Determine whether we allow overloading of the function
1407/// PrevDecl with another declaration.
1408///
1409/// This routine determines whether overloading is possible, not
1410/// whether some new function is actually an overload. It will return
1411/// true in C++ (where we can always provide overloads) or, as an
1412/// extension, in C when the previous function is already an
1413/// overloaded function declaration or has the "overloadable"
1414/// attribute.
1415static bool AllowOverloadingOfFunction(LookupResult &Previous,
1416                                       ASTContext &Context,
1417                                       const FunctionDecl *New) {
1418  if (Context.getLangOpts().CPlusPlus)
1419    return true;
1420
1421  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1422    return true;
1423
1424  return Previous.getResultKind() == LookupResult::Found &&
1425         (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1426          New->hasAttr<OverloadableAttr>());
1427}
1428
1429/// Add this decl to the scope shadowed decl chains.
1430void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1431  // Move up the scope chain until we find the nearest enclosing
1432  // non-transparent context. The declaration will be introduced into this
1433  // scope.
1434  while (S->getEntity() && S->getEntity()->isTransparentContext())
1435    S = S->getParent();
1436
1437  // Add scoped declarations into their context, so that they can be
1438  // found later. Declarations without a context won't be inserted
1439  // into any context.
1440  if (AddToContext)
1441    CurContext->addDecl(D);
1442
1443  // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1444  // are function-local declarations.
1445  if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1446      !D->getDeclContext()->getRedeclContext()->Equals(
1447        D->getLexicalDeclContext()->getRedeclContext()) &&
1448      !D->getLexicalDeclContext()->isFunctionOrMethod())
1449    return;
1450
1451  // Template instantiations should also not be pushed into scope.
1452  if (isa<FunctionDecl>(D) &&
1453      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1454    return;
1455
1456  // If this replaces anything in the current scope,
1457  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1458                               IEnd = IdResolver.end();
1459  for (; I != IEnd; ++I) {
1460    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1461      S->RemoveDecl(*I);
1462      IdResolver.RemoveDecl(*I);
1463
1464      // Should only need to replace one decl.
1465      break;
1466    }
1467  }
1468
1469  S->AddDecl(D);
1470
1471  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1472    // Implicitly-generated labels may end up getting generated in an order that
1473    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1474    // the label at the appropriate place in the identifier chain.
1475    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1476      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1477      if (IDC == CurContext) {
1478        if (!S->isDeclScope(*I))
1479          continue;
1480      } else if (IDC->Encloses(CurContext))
1481        break;
1482    }
1483
1484    IdResolver.InsertDeclAfter(I, D);
1485  } else {
1486    IdResolver.AddDecl(D);
1487  }
1488}
1489
1490bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1491                         bool AllowInlineNamespace) {
1492  return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1493}
1494
1495Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1496  DeclContext *TargetDC = DC->getPrimaryContext();
1497  do {
1498    if (DeclContext *ScopeDC = S->getEntity())
1499      if (ScopeDC->getPrimaryContext() == TargetDC)
1500        return S;
1501  } while ((S = S->getParent()));
1502
1503  return nullptr;
1504}
1505
1506static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1507                                            DeclContext*,
1508                                            ASTContext&);
1509
1510/// Filters out lookup results that don't fall within the given scope
1511/// as determined by isDeclInScope.
1512void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1513                                bool ConsiderLinkage,
1514                                bool AllowInlineNamespace) {
1515  LookupResult::Filter F = R.makeFilter();
1516  while (F.hasNext()) {
1517    NamedDecl *D = F.next();
1518
1519    if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1520      continue;
1521
1522    if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1523      continue;
1524
1525    F.erase();
1526  }
1527
1528  F.done();
1529}
1530
1531/// We've determined that \p New is a redeclaration of \p Old. Check that they
1532/// have compatible owning modules.
1533bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1534  // FIXME: The Modules TS is not clear about how friend declarations are
1535  // to be treated. It's not meaningful to have different owning modules for
1536  // linkage in redeclarations of the same entity, so for now allow the
1537  // redeclaration and change the owning modules to match.
1538  if (New->getFriendObjectKind() &&
1539      Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1540    New->setLocalOwningModule(Old->getOwningModule());
1541    makeMergedDefinitionVisible(New);
1542    return false;
1543  }
1544
1545  Module *NewM = New->getOwningModule();
1546  Module *OldM = Old->getOwningModule();
1547
1548  if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1549    NewM = NewM->Parent;
1550  if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1551    OldM = OldM->Parent;
1552
1553  if (NewM == OldM)
1554    return false;
1555
1556  bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1557  bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1558  if (NewIsModuleInterface || OldIsModuleInterface) {
1559    // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1560    //   if a declaration of D [...] appears in the purview of a module, all
1561    //   other such declarations shall appear in the purview of the same module
1562    Diag(New->getLocation(), diag::err_mismatched_owning_module)
1563      << New
1564      << NewIsModuleInterface
1565      << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1566      << OldIsModuleInterface
1567      << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1568    Diag(Old->getLocation(), diag::note_previous_declaration);
1569    New->setInvalidDecl();
1570    return true;
1571  }
1572
1573  return false;
1574}
1575
1576static bool isUsingDecl(NamedDecl *D) {
1577  return isa<UsingShadowDecl>(D) ||
1578         isa<UnresolvedUsingTypenameDecl>(D) ||
1579         isa<UnresolvedUsingValueDecl>(D);
1580}
1581
1582/// Removes using shadow declarations from the lookup results.
1583static void RemoveUsingDecls(LookupResult &R) {
1584  LookupResult::Filter F = R.makeFilter();
1585  while (F.hasNext())
1586    if (isUsingDecl(F.next()))
1587      F.erase();
1588
1589  F.done();
1590}
1591
1592/// Check for this common pattern:
1593/// @code
1594/// class S {
1595///   S(const S&); // DO NOT IMPLEMENT
1596///   void operator=(const S&); // DO NOT IMPLEMENT
1597/// };
1598/// @endcode
1599static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1600  // FIXME: Should check for private access too but access is set after we get
1601  // the decl here.
1602  if (D->doesThisDeclarationHaveABody())
1603    return false;
1604
1605  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1606    return CD->isCopyConstructor();
1607  return D->isCopyAssignmentOperator();
1608}
1609
1610// We need this to handle
1611//
1612// typedef struct {
1613//   void *foo() { return 0; }
1614// } A;
1615//
1616// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1617// for example. If 'A', foo will have external linkage. If we have '*A',
1618// foo will have no linkage. Since we can't know until we get to the end
1619// of the typedef, this function finds out if D might have non-external linkage.
1620// Callers should verify at the end of the TU if it D has external linkage or
1621// not.
1622bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1623  const DeclContext *DC = D->getDeclContext();
1624  while (!DC->isTranslationUnit()) {
1625    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1626      if (!RD->hasNameForLinkage())
1627        return true;
1628    }
1629    DC = DC->getParent();
1630  }
1631
1632  return !D->isExternallyVisible();
1633}
1634
1635// FIXME: This needs to be refactored; some other isInMainFile users want
1636// these semantics.
1637static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1638  if (S.TUKind != TU_Complete)
1639    return false;
1640  return S.SourceMgr.isInMainFile(Loc);
1641}
1642
1643bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1644  assert(D);
1645
1646  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1647    return false;
1648
1649  // Ignore all entities declared within templates, and out-of-line definitions
1650  // of members of class templates.
1651  if (D->getDeclContext()->isDependentContext() ||
1652      D->getLexicalDeclContext()->isDependentContext())
1653    return false;
1654
1655  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1656    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1657      return false;
1658    // A non-out-of-line declaration of a member specialization was implicitly
1659    // instantiated; it's the out-of-line declaration that we're interested in.
1660    if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1661        FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1662      return false;
1663
1664    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1665      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1666        return false;
1667    } else {
1668      // 'static inline' functions are defined in headers; don't warn.
1669      if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1670        return false;
1671    }
1672
1673    if (FD->doesThisDeclarationHaveABody() &&
1674        Context.DeclMustBeEmitted(FD))
1675      return false;
1676  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1677    // Constants and utility variables are defined in headers with internal
1678    // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1679    // like "inline".)
1680    if (!isMainFileLoc(*this, VD->getLocation()))
1681      return false;
1682
1683    if (Context.DeclMustBeEmitted(VD))
1684      return false;
1685
1686    if (VD->isStaticDataMember() &&
1687        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1688      return false;
1689    if (VD->isStaticDataMember() &&
1690        VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1691        VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1692      return false;
1693
1694    if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1695      return false;
1696  } else {
1697    return false;
1698  }
1699
1700  // Only warn for unused decls internal to the translation unit.
1701  // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1702  // for inline functions defined in the main source file, for instance.
1703  return mightHaveNonExternalLinkage(D);
1704}
1705
1706void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1707  if (!D)
1708    return;
1709
1710  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1711    const FunctionDecl *First = FD->getFirstDecl();
1712    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1713      return; // First should already be in the vector.
1714  }
1715
1716  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1717    const VarDecl *First = VD->getFirstDecl();
1718    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1719      return; // First should already be in the vector.
1720  }
1721
1722  if (ShouldWarnIfUnusedFileScopedDecl(D))
1723    UnusedFileScopedDecls.push_back(D);
1724}
1725
1726static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1727  if (D->isInvalidDecl())
1728    return false;
1729
1730  bool Referenced = false;
1731  if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1732    // For a decomposition declaration, warn if none of the bindings are
1733    // referenced, instead of if the variable itself is referenced (which
1734    // it is, by the bindings' expressions).
1735    for (auto *BD : DD->bindings()) {
1736      if (BD->isReferenced()) {
1737        Referenced = true;
1738        break;
1739      }
1740    }
1741  } else if (!D->getDeclName()) {
1742    return false;
1743  } else if (D->isReferenced() || D->isUsed()) {
1744    Referenced = true;
1745  }
1746
1747  if (Referenced || D->hasAttr<UnusedAttr>() ||
1748      D->hasAttr<ObjCPreciseLifetimeAttr>())
1749    return false;
1750
1751  if (isa<LabelDecl>(D))
1752    return true;
1753
1754  // Except for labels, we only care about unused decls that are local to
1755  // functions.
1756  bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1757  if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1758    // For dependent types, the diagnostic is deferred.
1759    WithinFunction =
1760        WithinFunction || (R->isLocalClass() && !R->isDependentType());
1761  if (!WithinFunction)
1762    return false;
1763
1764  if (isa<TypedefNameDecl>(D))
1765    return true;
1766
1767  // White-list anything that isn't a local variable.
1768  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1769    return false;
1770
1771  // Types of valid local variables should be complete, so this should succeed.
1772  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1773
1774    // White-list anything with an __attribute__((unused)) type.
1775    const auto *Ty = VD->getType().getTypePtr();
1776
1777    // Only look at the outermost level of typedef.
1778    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1779      if (TT->getDecl()->hasAttr<UnusedAttr>())
1780        return false;
1781    }
1782
1783    // If we failed to complete the type for some reason, or if the type is
1784    // dependent, don't diagnose the variable.
1785    if (Ty->isIncompleteType() || Ty->isDependentType())
1786      return false;
1787
1788    // Look at the element type to ensure that the warning behaviour is
1789    // consistent for both scalars and arrays.
1790    Ty = Ty->getBaseElementTypeUnsafe();
1791
1792    if (const TagType *TT = Ty->getAs<TagType>()) {
1793      const TagDecl *Tag = TT->getDecl();
1794      if (Tag->hasAttr<UnusedAttr>())
1795        return false;
1796
1797      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1798        if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1799          return false;
1800
1801        if (const Expr *Init = VD->getInit()) {
1802          if (const ExprWithCleanups *Cleanups =
1803                  dyn_cast<ExprWithCleanups>(Init))
1804            Init = Cleanups->getSubExpr();
1805          const CXXConstructExpr *Construct =
1806            dyn_cast<CXXConstructExpr>(Init);
1807          if (Construct && !Construct->isElidable()) {
1808            CXXConstructorDecl *CD = Construct->getConstructor();
1809            if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1810                (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1811              return false;
1812          }
1813
1814          // Suppress the warning if we don't know how this is constructed, and
1815          // it could possibly be non-trivial constructor.
1816          if (Init->isTypeDependent())
1817            for (const CXXConstructorDecl *Ctor : RD->ctors())
1818              if (!Ctor->isTrivial())
1819                return false;
1820        }
1821      }
1822    }
1823
1824    // TODO: __attribute__((unused)) templates?
1825  }
1826
1827  return true;
1828}
1829
1830static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1831                                     FixItHint &Hint) {
1832  if (isa<LabelDecl>(D)) {
1833    SourceLocation AfterColon = Lexer::findLocationAfterToken(
1834        D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1835        true);
1836    if (AfterColon.isInvalid())
1837      return;
1838    Hint = FixItHint::CreateRemoval(
1839        CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1840  }
1841}
1842
1843void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1844  if (D->getTypeForDecl()->isDependentType())
1845    return;
1846
1847  for (auto *TmpD : D->decls()) {
1848    if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1849      DiagnoseUnusedDecl(T);
1850    else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1851      DiagnoseUnusedNestedTypedefs(R);
1852  }
1853}
1854
1855/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1856/// unless they are marked attr(unused).
1857void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1858  if (!ShouldDiagnoseUnusedDecl(D))
1859    return;
1860
1861  if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1862    // typedefs can be referenced later on, so the diagnostics are emitted
1863    // at end-of-translation-unit.
1864    UnusedLocalTypedefNameCandidates.insert(TD);
1865    return;
1866  }
1867
1868  FixItHint Hint;
1869  GenerateFixForUnusedDecl(D, Context, Hint);
1870
1871  unsigned DiagID;
1872  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1873    DiagID = diag::warn_unused_exception_param;
1874  else if (isa<LabelDecl>(D))
1875    DiagID = diag::warn_unused_label;
1876  else
1877    DiagID = diag::warn_unused_variable;
1878
1879  Diag(D->getLocation(), DiagID) << D << Hint;
1880}
1881
1882static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1883  // Verify that we have no forward references left.  If so, there was a goto
1884  // or address of a label taken, but no definition of it.  Label fwd
1885  // definitions are indicated with a null substmt which is also not a resolved
1886  // MS inline assembly label name.
1887  bool Diagnose = false;
1888  if (L->isMSAsmLabel())
1889    Diagnose = !L->isResolvedMSAsmLabel();
1890  else
1891    Diagnose = L->getStmt() == nullptr;
1892  if (Diagnose)
1893    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1894}
1895
1896void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1897  S->mergeNRVOIntoParent();
1898
1899  if (S->decl_empty()) return;
1900  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1901         "Scope shouldn't contain decls!");
1902
1903  for (auto *TmpD : S->decls()) {
1904    assert(TmpD && "This decl didn't get pushed??");
1905
1906    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1907    NamedDecl *D = cast<NamedDecl>(TmpD);
1908
1909    // Diagnose unused variables in this scope.
1910    if (!S->hasUnrecoverableErrorOccurred()) {
1911      DiagnoseUnusedDecl(D);
1912      if (const auto *RD = dyn_cast<RecordDecl>(D))
1913        DiagnoseUnusedNestedTypedefs(RD);
1914    }
1915
1916    if (!D->getDeclName()) continue;
1917
1918    // If this was a forward reference to a label, verify it was defined.
1919    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1920      CheckPoppedLabel(LD, *this);
1921
1922    // Remove this name from our lexical scope, and warn on it if we haven't
1923    // already.
1924    IdResolver.RemoveDecl(D);
1925    auto ShadowI = ShadowingDecls.find(D);
1926    if (ShadowI != ShadowingDecls.end()) {
1927      if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1928        Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1929            << D << FD << FD->getParent();
1930        Diag(FD->getLocation(), diag::note_previous_declaration);
1931      }
1932      ShadowingDecls.erase(ShadowI);
1933    }
1934  }
1935}
1936
1937/// Look for an Objective-C class in the translation unit.
1938///
1939/// \param Id The name of the Objective-C class we're looking for. If
1940/// typo-correction fixes this name, the Id will be updated
1941/// to the fixed name.
1942///
1943/// \param IdLoc The location of the name in the translation unit.
1944///
1945/// \param DoTypoCorrection If true, this routine will attempt typo correction
1946/// if there is no class with the given name.
1947///
1948/// \returns The declaration of the named Objective-C class, or NULL if the
1949/// class could not be found.
1950ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1951                                              SourceLocation IdLoc,
1952                                              bool DoTypoCorrection) {
1953  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1954  // creation from this context.
1955  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1956
1957  if (!IDecl && DoTypoCorrection) {
1958    // Perform typo correction at the given location, but only if we
1959    // find an Objective-C class name.
1960    DeclFilterCCC<ObjCInterfaceDecl> CCC{};
1961    if (TypoCorrection C =
1962            CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1963                        TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
1964      diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1965      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1966      Id = IDecl->getIdentifier();
1967    }
1968  }
1969  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1970  // This routine must always return a class definition, if any.
1971  if (Def && Def->getDefinition())
1972      Def = Def->getDefinition();
1973  return Def;
1974}
1975
1976/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1977/// from S, where a non-field would be declared. This routine copes
1978/// with the difference between C and C++ scoping rules in structs and
1979/// unions. For example, the following code is well-formed in C but
1980/// ill-formed in C++:
1981/// @code
1982/// struct S6 {
1983///   enum { BAR } e;
1984/// };
1985///
1986/// void test_S6() {
1987///   struct S6 a;
1988///   a.e = BAR;
1989/// }
1990/// @endcode
1991/// For the declaration of BAR, this routine will return a different
1992/// scope. The scope S will be the scope of the unnamed enumeration
1993/// within S6. In C++, this routine will return the scope associated
1994/// with S6, because the enumeration's scope is a transparent
1995/// context but structures can contain non-field names. In C, this
1996/// routine will return the translation unit scope, since the
1997/// enumeration's scope is a transparent context and structures cannot
1998/// contain non-field names.
1999Scope *Sema::getNonFieldDeclScope(Scope *S) {
2000  while (((S->getFlags() & Scope::DeclScope) == 0) ||
2001         (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2002         (S->isClassScope() && !getLangOpts().CPlusPlus))
2003    S = S->getParent();
2004  return S;
2005}
2006
2007/// Looks up the declaration of "struct objc_super" and
2008/// saves it for later use in building builtin declaration of
2009/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
2010/// pre-existing declaration exists no action takes place.
2011static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
2012                                        IdentifierInfo *II) {
2013  if (!II->isStr("objc_msgSendSuper"))
2014    return;
2015  ASTContext &Context = ThisSema.Context;
2016
2017  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
2018                      SourceLocation(), Sema::LookupTagName);
2019  ThisSema.LookupName(Result, S);
2020  if (Result.getResultKind() == LookupResult::Found)
2021    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
2022      Context.setObjCSuperType(Context.getTagDeclType(TD));
2023}
2024
2025static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2026                               ASTContext::GetBuiltinTypeError Error) {
2027  switch (Error) {
2028  case ASTContext::GE_None:
2029    return "";
2030  case ASTContext::GE_Missing_type:
2031    return BuiltinInfo.getHeaderName(ID);
2032  case ASTContext::GE_Missing_stdio:
2033    return "stdio.h";
2034  case ASTContext::GE_Missing_setjmp:
2035    return "setjmp.h";
2036  case ASTContext::GE_Missing_ucontext:
2037    return "ucontext.h";
2038  }
2039  llvm_unreachable("unhandled error kind");
2040}
2041
2042/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2043/// file scope.  lazily create a decl for it. ForRedeclaration is true
2044/// if we're creating this built-in in anticipation of redeclaring the
2045/// built-in.
2046NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2047                                     Scope *S, bool ForRedeclaration,
2048                                     SourceLocation Loc) {
2049  LookupPredefedObjCSuperType(*this, S, II);
2050
2051  ASTContext::GetBuiltinTypeError Error;
2052  QualType R = Context.GetBuiltinType(ID, Error);
2053  if (Error) {
2054    if (!ForRedeclaration)
2055      return nullptr;
2056
2057    // If we have a builtin without an associated type we should not emit a
2058    // warning when we were not able to find a type for it.
2059    if (Error == ASTContext::GE_Missing_type)
2060      return nullptr;
2061
2062    // If we could not find a type for setjmp it is because the jmp_buf type was
2063    // not defined prior to the setjmp declaration.
2064    if (Error == ASTContext::GE_Missing_setjmp) {
2065      Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2066          << Context.BuiltinInfo.getName(ID);
2067      return nullptr;
2068    }
2069
2070    // Generally, we emit a warning that the declaration requires the
2071    // appropriate header.
2072    Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2073        << getHeaderName(Context.BuiltinInfo, ID, Error)
2074        << Context.BuiltinInfo.getName(ID);
2075    return nullptr;
2076  }
2077
2078  if (!ForRedeclaration &&
2079      (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2080       Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2081    Diag(Loc, diag::ext_implicit_lib_function_decl)
2082        << Context.BuiltinInfo.getName(ID) << R;
2083    if (Context.BuiltinInfo.getHeaderName(ID) &&
2084        !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
2085      Diag(Loc, diag::note_include_header_or_declare)
2086          << Context.BuiltinInfo.getHeaderName(ID)
2087          << Context.BuiltinInfo.getName(ID);
2088  }
2089
2090  if (R.isNull())
2091    return nullptr;
2092
2093  DeclContext *Parent = Context.getTranslationUnitDecl();
2094  if (getLangOpts().CPlusPlus) {
2095    LinkageSpecDecl *CLinkageDecl =
2096        LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
2097                                LinkageSpecDecl::lang_c, false);
2098    CLinkageDecl->setImplicit();
2099    Parent->addDecl(CLinkageDecl);
2100    Parent = CLinkageDecl;
2101  }
2102
2103  FunctionDecl *New = FunctionDecl::Create(Context,
2104                                           Parent,
2105                                           Loc, Loc, II, R, /*TInfo=*/nullptr,
2106                                           SC_Extern,
2107                                           false,
2108                                           R->isFunctionProtoType());
2109  New->setImplicit();
2110
2111  // Create Decl objects for each parameter, adding them to the
2112  // FunctionDecl.
2113  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
2114    SmallVector<ParmVarDecl*, 16> Params;
2115    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2116      ParmVarDecl *parm =
2117          ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2118                              nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2119                              SC_None, nullptr);
2120      parm->setScopeInfo(0, i);
2121      Params.push_back(parm);
2122    }
2123    New->setParams(Params);
2124  }
2125
2126  AddKnownFunctionAttributes(New);
2127  RegisterLocallyScopedExternCDecl(New, S);
2128
2129  // TUScope is the translation-unit scope to insert this function into.
2130  // FIXME: This is hideous. We need to teach PushOnScopeChains to
2131  // relate Scopes to DeclContexts, and probably eliminate CurContext
2132  // entirely, but we're not there yet.
2133  DeclContext *SavedContext = CurContext;
2134  CurContext = Parent;
2135  PushOnScopeChains(New, TUScope);
2136  CurContext = SavedContext;
2137  return New;
2138}
2139
2140/// Typedef declarations don't have linkage, but they still denote the same
2141/// entity if their types are the same.
2142/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2143/// isSameEntity.
2144static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2145                                                     TypedefNameDecl *Decl,
2146                                                     LookupResult &Previous) {
2147  // This is only interesting when modules are enabled.
2148  if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2149    return;
2150
2151  // Empty sets are uninteresting.
2152  if (Previous.empty())
2153    return;
2154
2155  LookupResult::Filter Filter = Previous.makeFilter();
2156  while (Filter.hasNext()) {
2157    NamedDecl *Old = Filter.next();
2158
2159    // Non-hidden declarations are never ignored.
2160    if (S.isVisible(Old))
2161      continue;
2162
2163    // Declarations of the same entity are not ignored, even if they have
2164    // different linkages.
2165    if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2166      if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2167                                Decl->getUnderlyingType()))
2168        continue;
2169
2170      // If both declarations give a tag declaration a typedef name for linkage
2171      // purposes, then they declare the same entity.
2172      if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2173          Decl->getAnonDeclWithTypedefName())
2174        continue;
2175    }
2176
2177    Filter.erase();
2178  }
2179
2180  Filter.done();
2181}
2182
2183bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2184  QualType OldType;
2185  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2186    OldType = OldTypedef->getUnderlyingType();
2187  else
2188    OldType = Context.getTypeDeclType(Old);
2189  QualType NewType = New->getUnderlyingType();
2190
2191  if (NewType->isVariablyModifiedType()) {
2192    // Must not redefine a typedef with a variably-modified type.
2193    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2194    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2195      << Kind << NewType;
2196    if (Old->getLocation().isValid())
2197      notePreviousDefinition(Old, New->getLocation());
2198    New->setInvalidDecl();
2199    return true;
2200  }
2201
2202  if (OldType != NewType &&
2203      !OldType->isDependentType() &&
2204      !NewType->isDependentType() &&
2205      !Context.hasSameType(OldType, NewType)) {
2206    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2207    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2208      << Kind << NewType << OldType;
2209    if (Old->getLocation().isValid())
2210      notePreviousDefinition(Old, New->getLocation());
2211    New->setInvalidDecl();
2212    return true;
2213  }
2214  return false;
2215}
2216
2217/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2218/// same name and scope as a previous declaration 'Old'.  Figure out
2219/// how to resolve this situation, merging decls or emitting
2220/// diagnostics as appropriate. If there was an error, set New to be invalid.
2221///
2222void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2223                                LookupResult &OldDecls) {
2224  // If the new decl is known invalid already, don't bother doing any
2225  // merging checks.
2226  if (New->isInvalidDecl()) return;
2227
2228  // Allow multiple definitions for ObjC built-in typedefs.
2229  // FIXME: Verify the underlying types are equivalent!
2230  if (getLangOpts().ObjC) {
2231    const IdentifierInfo *TypeID = New->getIdentifier();
2232    switch (TypeID->getLength()) {
2233    default: break;
2234    case 2:
2235      {
2236        if (!TypeID->isStr("id"))
2237          break;
2238        QualType T = New->getUnderlyingType();
2239        if (!T->isPointerType())
2240          break;
2241        if (!T->isVoidPointerType()) {
2242          QualType PT = T->castAs<PointerType>()->getPointeeType();
2243          if (!PT->isStructureType())
2244            break;
2245        }
2246        Context.setObjCIdRedefinitionType(T);
2247        // Install the built-in type for 'id', ignoring the current definition.
2248        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2249        return;
2250      }
2251    case 5:
2252      if (!TypeID->isStr("Class"))
2253        break;
2254      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2255      // Install the built-in type for 'Class', ignoring the current definition.
2256      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2257      return;
2258    case 3:
2259      if (!TypeID->isStr("SEL"))
2260        break;
2261      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2262      // Install the built-in type for 'SEL', ignoring the current definition.
2263      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2264      return;
2265    }
2266    // Fall through - the typedef name was not a builtin type.
2267  }
2268
2269  // Verify the old decl was also a type.
2270  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2271  if (!Old) {
2272    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2273      << New->getDeclName();
2274
2275    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2276    if (OldD->getLocation().isValid())
2277      notePreviousDefinition(OldD, New->getLocation());
2278
2279    return New->setInvalidDecl();
2280  }
2281
2282  // If the old declaration is invalid, just give up here.
2283  if (Old->isInvalidDecl())
2284    return New->setInvalidDecl();
2285
2286  if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2287    auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2288    auto *NewTag = New->getAnonDeclWithTypedefName();
2289    NamedDecl *Hidden = nullptr;
2290    if (OldTag && NewTag &&
2291        OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2292        !hasVisibleDefinition(OldTag, &Hidden)) {
2293      // There is a definition of this tag, but it is not visible. Use it
2294      // instead of our tag.
2295      New->setTypeForDecl(OldTD->getTypeForDecl());
2296      if (OldTD->isModed())
2297        New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2298                                    OldTD->getUnderlyingType());
2299      else
2300        New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2301
2302      // Make the old tag definition visible.
2303      makeMergedDefinitionVisible(Hidden);
2304
2305      // If this was an unscoped enumeration, yank all of its enumerators
2306      // out of the scope.
2307      if (isa<EnumDecl>(NewTag)) {
2308        Scope *EnumScope = getNonFieldDeclScope(S);
2309        for (auto *D : NewTag->decls()) {
2310          auto *ED = cast<EnumConstantDecl>(D);
2311          assert(EnumScope->isDeclScope(ED));
2312          EnumScope->RemoveDecl(ED);
2313          IdResolver.RemoveDecl(ED);
2314          ED->getLexicalDeclContext()->removeDecl(ED);
2315        }
2316      }
2317    }
2318  }
2319
2320  // If the typedef types are not identical, reject them in all languages and
2321  // with any extensions enabled.
2322  if (isIncompatibleTypedef(Old, New))
2323    return;
2324
2325  // The types match.  Link up the redeclaration chain and merge attributes if
2326  // the old declaration was a typedef.
2327  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2328    New->setPreviousDecl(Typedef);
2329    mergeDeclAttributes(New, Old);
2330  }
2331
2332  if (getLangOpts().MicrosoftExt)
2333    return;
2334
2335  if (getLangOpts().CPlusPlus) {
2336    // C++ [dcl.typedef]p2:
2337    //   In a given non-class scope, a typedef specifier can be used to
2338    //   redefine the name of any type declared in that scope to refer
2339    //   to the type to which it already refers.
2340    if (!isa<CXXRecordDecl>(CurContext))
2341      return;
2342
2343    // C++0x [dcl.typedef]p4:
2344    //   In a given class scope, a typedef specifier can be used to redefine
2345    //   any class-name declared in that scope that is not also a typedef-name
2346    //   to refer to the type to which it already refers.
2347    //
2348    // This wording came in via DR424, which was a correction to the
2349    // wording in DR56, which accidentally banned code like:
2350    //
2351    //   struct S {
2352    //     typedef struct A { } A;
2353    //   };
2354    //
2355    // in the C++03 standard. We implement the C++0x semantics, which
2356    // allow the above but disallow
2357    //
2358    //   struct S {
2359    //     typedef int I;
2360    //     typedef int I;
2361    //   };
2362    //
2363    // since that was the intent of DR56.
2364    if (!isa<TypedefNameDecl>(Old))
2365      return;
2366
2367    Diag(New->getLocation(), diag::err_redefinition)
2368      << New->getDeclName();
2369    notePreviousDefinition(Old, New->getLocation());
2370    return New->setInvalidDecl();
2371  }
2372
2373  // Modules always permit redefinition of typedefs, as does C11.
2374  if (getLangOpts().Modules || getLangOpts().C11)
2375    return;
2376
2377  // If we have a redefinition of a typedef in C, emit a warning.  This warning
2378  // is normally mapped to an error, but can be controlled with
2379  // -Wtypedef-redefinition.  If either the original or the redefinition is
2380  // in a system header, don't emit this for compatibility with GCC.
2381  if (getDiagnostics().getSuppressSystemWarnings() &&
2382      // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2383      (Old->isImplicit() ||
2384       Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2385       Context.getSourceManager().isInSystemHeader(New->getLocation())))
2386    return;
2387
2388  Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2389    << New->getDeclName();
2390  notePreviousDefinition(Old, New->getLocation());
2391}
2392
2393/// DeclhasAttr - returns true if decl Declaration already has the target
2394/// attribute.
2395static bool DeclHasAttr(const Decl *D, const Attr *A) {
2396  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2397  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2398  for (const auto *i : D->attrs())
2399    if (i->getKind() == A->getKind()) {
2400      if (Ann) {
2401        if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2402          return true;
2403        continue;
2404      }
2405      // FIXME: Don't hardcode this check
2406      if (OA && isa<OwnershipAttr>(i))
2407        return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2408      return true;
2409    }
2410
2411  return false;
2412}
2413
2414static bool isAttributeTargetADefinition(Decl *D) {
2415  if (VarDecl *VD = dyn_cast<VarDecl>(D))
2416    return VD->isThisDeclarationADefinition();
2417  if (TagDecl *TD = dyn_cast<TagDecl>(D))
2418    return TD->isCompleteDefinition() || TD->isBeingDefined();
2419  return true;
2420}
2421
2422/// Merge alignment attributes from \p Old to \p New, taking into account the
2423/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2424///
2425/// \return \c true if any attributes were added to \p New.
2426static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2427  // Look for alignas attributes on Old, and pick out whichever attribute
2428  // specifies the strictest alignment requirement.
2429  AlignedAttr *OldAlignasAttr = nullptr;
2430  AlignedAttr *OldStrictestAlignAttr = nullptr;
2431  unsigned OldAlign = 0;
2432  for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2433    // FIXME: We have no way of representing inherited dependent alignments
2434    // in a case like:
2435    //   template<int A, int B> struct alignas(A) X;
2436    //   template<int A, int B> struct alignas(B) X {};
2437    // For now, we just ignore any alignas attributes which are not on the
2438    // definition in such a case.
2439    if (I->isAlignmentDependent())
2440      return false;
2441
2442    if (I->isAlignas())
2443      OldAlignasAttr = I;
2444
2445    unsigned Align = I->getAlignment(S.Context);
2446    if (Align > OldAlign) {
2447      OldAlign = Align;
2448      OldStrictestAlignAttr = I;
2449    }
2450  }
2451
2452  // Look for alignas attributes on New.
2453  AlignedAttr *NewAlignasAttr = nullptr;
2454  unsigned NewAlign = 0;
2455  for (auto *I : New->specific_attrs<AlignedAttr>()) {
2456    if (I->isAlignmentDependent())
2457      return false;
2458
2459    if (I->isAlignas())
2460      NewAlignasAttr = I;
2461
2462    unsigned Align = I->getAlignment(S.Context);
2463    if (Align > NewAlign)
2464      NewAlign = Align;
2465  }
2466
2467  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2468    // Both declarations have 'alignas' attributes. We require them to match.
2469    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2470    // fall short. (If two declarations both have alignas, they must both match
2471    // every definition, and so must match each other if there is a definition.)
2472
2473    // If either declaration only contains 'alignas(0)' specifiers, then it
2474    // specifies the natural alignment for the type.
2475    if (OldAlign == 0 || NewAlign == 0) {
2476      QualType Ty;
2477      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2478        Ty = VD->getType();
2479      else
2480        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2481
2482      if (OldAlign == 0)
2483        OldAlign = S.Context.getTypeAlign(Ty);
2484      if (NewAlign == 0)
2485        NewAlign = S.Context.getTypeAlign(Ty);
2486    }
2487
2488    if (OldAlign != NewAlign) {
2489      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2490        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2491        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2492      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2493    }
2494  }
2495
2496  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2497    // C++11 [dcl.align]p6:
2498    //   if any declaration of an entity has an alignment-specifier,
2499    //   every defining declaration of that entity shall specify an
2500    //   equivalent alignment.
2501    // C11 6.7.5/7:
2502    //   If the definition of an object does not have an alignment
2503    //   specifier, any other declaration of that object shall also
2504    //   have no alignment specifier.
2505    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2506      << OldAlignasAttr;
2507    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2508      << OldAlignasAttr;
2509  }
2510
2511  bool AnyAdded = false;
2512
2513  // Ensure we have an attribute representing the strictest alignment.
2514  if (OldAlign > NewAlign) {
2515    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2516    Clone->setInherited(true);
2517    New->addAttr(Clone);
2518    AnyAdded = true;
2519  }
2520
2521  // Ensure we have an alignas attribute if the old declaration had one.
2522  if (OldAlignasAttr && !NewAlignasAttr &&
2523      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2524    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2525    Clone->setInherited(true);
2526    New->addAttr(Clone);
2527    AnyAdded = true;
2528  }
2529
2530  return AnyAdded;
2531}
2532
2533static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2534                               const InheritableAttr *Attr,
2535                               Sema::AvailabilityMergeKind AMK) {
2536  // This function copies an attribute Attr from a previous declaration to the
2537  // new declaration D if the new declaration doesn't itself have that attribute
2538  // yet or if that attribute allows duplicates.
2539  // If you're adding a new attribute that requires logic different from
2540  // "use explicit attribute on decl if present, else use attribute from
2541  // previous decl", for example if the attribute needs to be consistent
2542  // between redeclarations, you need to call a custom merge function here.
2543  InheritableAttr *NewAttr = nullptr;
2544  if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2545    NewAttr = S.mergeAvailabilityAttr(
2546        D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2547        AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2548        AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2549        AA->getPriority());
2550  else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2551    NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2552  else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2553    NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2554  else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2555    NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2556  else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2557    NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2558  else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2559    NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2560                                FA->getFirstArg());
2561  else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2562    NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2563  else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2564    NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2565  else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2566    NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2567                                       IA->getInheritanceModel());
2568  else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2569    NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2570                                      &S.Context.Idents.get(AA->getSpelling()));
2571  else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2572           (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2573            isa<CUDAGlobalAttr>(Attr))) {
2574    // CUDA target attributes are part of function signature for
2575    // overloading purposes and must not be merged.
2576    return false;
2577  } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2578    NewAttr = S.mergeMinSizeAttr(D, *MA);
2579  else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2580    NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2581  else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2582    NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2583  else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2584    NewAttr = S.mergeCommonAttr(D, *CommonA);
2585  else if (isa<AlignedAttr>(Attr))
2586    // AlignedAttrs are handled separately, because we need to handle all
2587    // such attributes on a declaration at the same time.
2588    NewAttr = nullptr;
2589  else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2590           (AMK == Sema::AMK_Override ||
2591            AMK == Sema::AMK_ProtocolImplementation))
2592    NewAttr = nullptr;
2593  else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2594    NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid());
2595  else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
2596    NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
2597  else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
2598    NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
2599  else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2600    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2601
2602  if (NewAttr) {
2603    NewAttr->setInherited(true);
2604    D->addAttr(NewAttr);
2605    if (isa<MSInheritanceAttr>(NewAttr))
2606      S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2607    return true;
2608  }
2609
2610  return false;
2611}
2612
2613static const NamedDecl *getDefinition(const Decl *D) {
2614  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2615    return TD->getDefinition();
2616  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2617    const VarDecl *Def = VD->getDefinition();
2618    if (Def)
2619      return Def;
2620    return VD->getActingDefinition();
2621  }
2622  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2623    return FD->getDefinition();
2624  return nullptr;
2625}
2626
2627static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2628  for (const auto *Attribute : D->attrs())
2629    if (Attribute->getKind() == Kind)
2630      return true;
2631  return false;
2632}
2633
2634/// checkNewAttributesAfterDef - If we already have a definition, check that
2635/// there are no new attributes in this declaration.
2636static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2637  if (!New->hasAttrs())
2638    return;
2639
2640  const NamedDecl *Def = getDefinition(Old);
2641  if (!Def || Def == New)
2642    return;
2643
2644  AttrVec &NewAttributes = New->getAttrs();
2645  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2646    const Attr *NewAttribute = NewAttributes[I];
2647
2648    if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2649      if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2650        Sema::SkipBodyInfo SkipBody;
2651        S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2652
2653        // If we're skipping this definition, drop the "alias" attribute.
2654        if (SkipBody.ShouldSkip) {
2655          NewAttributes.erase(NewAttributes.begin() + I);
2656          --E;
2657          continue;
2658        }
2659      } else {
2660        VarDecl *VD = cast<VarDecl>(New);
2661        unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2662                                VarDecl::TentativeDefinition
2663                            ? diag::err_alias_after_tentative
2664                            : diag::err_redefinition;
2665        S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2666        if (Diag == diag::err_redefinition)
2667          S.notePreviousDefinition(Def, VD->getLocation());
2668        else
2669          S.Diag(Def->getLocation(), diag::note_previous_definition);
2670        VD->setInvalidDecl();
2671      }
2672      ++I;
2673      continue;
2674    }
2675
2676    if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2677      // Tentative definitions are only interesting for the alias check above.
2678      if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2679        ++I;
2680        continue;
2681      }
2682    }
2683
2684    if (hasAttribute(Def, NewAttribute->getKind())) {
2685      ++I;
2686      continue; // regular attr merging will take care of validating this.
2687    }
2688
2689    if (isa<C11NoReturnAttr>(NewAttribute)) {
2690      // C's _Noreturn is allowed to be added to a function after it is defined.
2691      ++I;
2692      continue;
2693    } else if (isa<UuidAttr>(NewAttribute)) {
2694      // msvc will allow a subsequent definition to add an uuid to a class
2695      ++I;
2696      continue;
2697    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2698      if (AA->isAlignas()) {
2699        // C++11 [dcl.align]p6:
2700        //   if any declaration of an entity has an alignment-specifier,
2701        //   every defining declaration of that entity shall specify an
2702        //   equivalent alignment.
2703        // C11 6.7.5/7:
2704        //   If the definition of an object does not have an alignment
2705        //   specifier, any other declaration of that object shall also
2706        //   have no alignment specifier.
2707        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2708          << AA;
2709        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2710          << AA;
2711        NewAttributes.erase(NewAttributes.begin() + I);
2712        --E;
2713        continue;
2714      }
2715    } else if (isa<SelectAnyAttr>(NewAttribute) &&
2716               cast<VarDecl>(New)->isInline() &&
2717               !cast<VarDecl>(New)->isInlineSpecified()) {
2718      // Don't warn about applying selectany to implicitly inline variables.
2719      // Older compilers and language modes would require the use of selectany
2720      // to make such variables inline, and it would have no effect if we
2721      // honored it.
2722      ++I;
2723      continue;
2724    }
2725
2726    S.Diag(NewAttribute->getLocation(),
2727           diag::warn_attribute_precede_definition);
2728    S.Diag(Def->getLocation(), diag::note_previous_definition);
2729    NewAttributes.erase(NewAttributes.begin() + I);
2730    --E;
2731  }
2732}
2733
2734static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
2735                                     const ConstInitAttr *CIAttr,
2736                                     bool AttrBeforeInit) {
2737  SourceLocation InsertLoc = InitDecl->getInnerLocStart();
2738
2739  // Figure out a good way to write this specifier on the old declaration.
2740  // FIXME: We should just use the spelling of CIAttr, but we don't preserve
2741  // enough of the attribute list spelling information to extract that without
2742  // heroics.
2743  std::string SuitableSpelling;
2744  if (S.getLangOpts().CPlusPlus2a)
2745    SuitableSpelling =
2746        S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit});
2747  if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2748    SuitableSpelling = S.PP.getLastMacroWithSpelling(
2749        InsertLoc,
2750        {tok::l_square, tok::l_square, S.PP.getIdentifierInfo("clang"),
2751         tok::coloncolon,
2752         S.PP.getIdentifierInfo("require_constant_initialization"),
2753         tok::r_square, tok::r_square});
2754  if (SuitableSpelling.empty())
2755    SuitableSpelling = S.PP.getLastMacroWithSpelling(
2756        InsertLoc,
2757        {tok::kw___attribute, tok::l_paren, tok::r_paren,
2758         S.PP.getIdentifierInfo("require_constant_initialization"),
2759         tok::r_paren, tok::r_paren});
2760  if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus2a)
2761    SuitableSpelling = "constinit";
2762  if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2763    SuitableSpelling = "[[clang::require_constant_initialization]]";
2764  if (SuitableSpelling.empty())
2765    SuitableSpelling = "__attribute__((require_constant_initialization))";
2766  SuitableSpelling += " ";
2767
2768  if (AttrBeforeInit) {
2769    // extern constinit int a;
2770    // int a = 0; // error (missing 'constinit'), accepted as extension
2771    assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
2772    S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
2773        << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2774    S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
2775  } else {
2776    // int a = 0;
2777    // constinit extern int a; // error (missing 'constinit')
2778    S.Diag(CIAttr->getLocation(),
2779           CIAttr->isConstinit() ? diag::err_constinit_added_too_late
2780                                 : diag::warn_require_const_init_added_too_late)
2781        << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
2782    S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
2783        << CIAttr->isConstinit()
2784        << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2785  }
2786}
2787
2788/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2789void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2790                               AvailabilityMergeKind AMK) {
2791  if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2792    UsedAttr *NewAttr = OldAttr->clone(Context);
2793    NewAttr->setInherited(true);
2794    New->addAttr(NewAttr);
2795  }
2796
2797  if (!Old->hasAttrs() && !New->hasAttrs())
2798    return;
2799
2800  // [dcl.constinit]p1:
2801  //   If the [constinit] specifier is applied to any declaration of a
2802  //   variable, it shall be applied to the initializing declaration.
2803  const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
2804  const auto *NewConstInit = New->getAttr<ConstInitAttr>();
2805  if (bool(OldConstInit) != bool(NewConstInit)) {
2806    const auto *OldVD = cast<VarDecl>(Old);
2807    auto *NewVD = cast<VarDecl>(New);
2808
2809    // Find the initializing declaration. Note that we might not have linked
2810    // the new declaration into the redeclaration chain yet.
2811    const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
2812    if (!InitDecl &&
2813        (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
2814      InitDecl = NewVD;
2815
2816    if (InitDecl == NewVD) {
2817      // This is the initializing declaration. If it would inherit 'constinit',
2818      // that's ill-formed. (Note that we do not apply this to the attribute
2819      // form).
2820      if (OldConstInit && OldConstInit->isConstinit())
2821        diagnoseMissingConstinit(*this, NewVD, OldConstInit,
2822                                 /*AttrBeforeInit=*/true);
2823    } else if (NewConstInit) {
2824      // This is the first time we've been told that this declaration should
2825      // have a constant initializer. If we already saw the initializing
2826      // declaration, this is too late.
2827      if (InitDecl && InitDecl != NewVD) {
2828        diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
2829                                 /*AttrBeforeInit=*/false);
2830        NewVD->dropAttr<ConstInitAttr>();
2831      }
2832    }
2833  }
2834
2835  // Attributes declared post-definition are currently ignored.
2836  checkNewAttributesAfterDef(*this, New, Old);
2837
2838  if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2839    if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2840      if (!OldA->isEquivalent(NewA)) {
2841        // This redeclaration changes __asm__ label.
2842        Diag(New->getLocation(), diag::err_different_asm_label);
2843        Diag(OldA->getLocation(), diag::note_previous_declaration);
2844      }
2845    } else if (Old->isUsed()) {
2846      // This redeclaration adds an __asm__ label to a declaration that has
2847      // already been ODR-used.
2848      Diag(New->getLocation(), diag::err_late_asm_label_name)
2849        << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2850    }
2851  }
2852
2853  // Re-declaration cannot add abi_tag's.
2854  if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2855    if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2856      for (const auto &NewTag : NewAbiTagAttr->tags()) {
2857        if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2858                      NewTag) == OldAbiTagAttr->tags_end()) {
2859          Diag(NewAbiTagAttr->getLocation(),
2860               diag::err_new_abi_tag_on_redeclaration)
2861              << NewTag;
2862          Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2863        }
2864      }
2865    } else {
2866      Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2867      Diag(Old->getLocation(), diag::note_previous_declaration);
2868    }
2869  }
2870
2871  // This redeclaration adds a section attribute.
2872  if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2873    if (auto *VD = dyn_cast<VarDecl>(New)) {
2874      if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2875        Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2876        Diag(Old->getLocation(), diag::note_previous_declaration);
2877      }
2878    }
2879  }
2880
2881  // Redeclaration adds code-seg attribute.
2882  const auto *NewCSA = New->getAttr<CodeSegAttr>();
2883  if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2884      !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2885    Diag(New->getLocation(), diag::warn_mismatched_section)
2886         << 0 /*codeseg*/;
2887    Diag(Old->getLocation(), diag::note_previous_declaration);
2888  }
2889
2890  if (!Old->hasAttrs())
2891    return;
2892
2893  bool foundAny = New->hasAttrs();
2894
2895  // Ensure that any moving of objects within the allocated map is done before
2896  // we process them.
2897  if (!foundAny) New->setAttrs(AttrVec());
2898
2899  for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2900    // Ignore deprecated/unavailable/availability attributes if requested.
2901    AvailabilityMergeKind LocalAMK = AMK_None;
2902    if (isa<DeprecatedAttr>(I) ||
2903        isa<UnavailableAttr>(I) ||
2904        isa<AvailabilityAttr>(I)) {
2905      switch (AMK) {
2906      case AMK_None:
2907        continue;
2908
2909      case AMK_Redeclaration:
2910      case AMK_Override:
2911      case AMK_ProtocolImplementation:
2912        LocalAMK = AMK;
2913        break;
2914      }
2915    }
2916
2917    // Already handled.
2918    if (isa<UsedAttr>(I))
2919      continue;
2920
2921    if (mergeDeclAttribute(*this, New, I, LocalAMK))
2922      foundAny = true;
2923  }
2924
2925  if (mergeAlignedAttrs(*this, New, Old))
2926    foundAny = true;
2927
2928  if (!foundAny) New->dropAttrs();
2929}
2930
2931/// mergeParamDeclAttributes - Copy attributes from the old parameter
2932/// to the new one.
2933static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2934                                     const ParmVarDecl *oldDecl,
2935                                     Sema &S) {
2936  // C++11 [dcl.attr.depend]p2:
2937  //   The first declaration of a function shall specify the
2938  //   carries_dependency attribute for its declarator-id if any declaration
2939  //   of the function specifies the carries_dependency attribute.
2940  const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2941  if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2942    S.Diag(CDA->getLocation(),
2943           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2944    // Find the first declaration of the parameter.
2945    // FIXME: Should we build redeclaration chains for function parameters?
2946    const FunctionDecl *FirstFD =
2947      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2948    const ParmVarDecl *FirstVD =
2949      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2950    S.Diag(FirstVD->getLocation(),
2951           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2952  }
2953
2954  if (!oldDecl->hasAttrs())
2955    return;
2956
2957  bool foundAny = newDecl->hasAttrs();
2958
2959  // Ensure that any moving of objects within the allocated map is
2960  // done before we process them.
2961  if (!foundAny) newDecl->setAttrs(AttrVec());
2962
2963  for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2964    if (!DeclHasAttr(newDecl, I)) {
2965      InheritableAttr *newAttr =
2966        cast<InheritableParamAttr>(I->clone(S.Context));
2967      newAttr->setInherited(true);
2968      newDecl->addAttr(newAttr);
2969      foundAny = true;
2970    }
2971  }
2972
2973  if (!foundAny) newDecl->dropAttrs();
2974}
2975
2976static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2977                                const ParmVarDecl *OldParam,
2978                                Sema &S) {
2979  if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2980    if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2981      if (*Oldnullability != *Newnullability) {
2982        S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2983          << DiagNullabilityKind(
2984               *Newnullability,
2985               ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2986                != 0))
2987          << DiagNullabilityKind(
2988               *Oldnullability,
2989               ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2990                != 0));
2991        S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2992      }
2993    } else {
2994      QualType NewT = NewParam->getType();
2995      NewT = S.Context.getAttributedType(
2996                         AttributedType::getNullabilityAttrKind(*Oldnullability),
2997                         NewT, NewT);
2998      NewParam->setType(NewT);
2999    }
3000  }
3001}
3002
3003namespace {
3004
3005/// Used in MergeFunctionDecl to keep track of function parameters in
3006/// C.
3007struct GNUCompatibleParamWarning {
3008  ParmVarDecl *OldParm;
3009  ParmVarDecl *NewParm;
3010  QualType PromotedType;
3011};
3012
3013} // end anonymous namespace
3014
3015// Determine whether the previous declaration was a definition, implicit
3016// declaration, or a declaration.
3017template <typename T>
3018static std::pair<diag::kind, SourceLocation>
3019getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3020  diag::kind PrevDiag;
3021  SourceLocation OldLocation = Old->getLocation();
3022  if (Old->isThisDeclarationADefinition())
3023    PrevDiag = diag::note_previous_definition;
3024  else if (Old->isImplicit()) {
3025    PrevDiag = diag::note_previous_implicit_declaration;
3026    if (OldLocation.isInvalid())
3027      OldLocation = New->getLocation();
3028  } else
3029    PrevDiag = diag::note_previous_declaration;
3030  return std::make_pair(PrevDiag, OldLocation);
3031}
3032
3033/// canRedefineFunction - checks if a function can be redefined. Currently,
3034/// only extern inline functions can be redefined, and even then only in
3035/// GNU89 mode.
3036static bool canRedefineFunction(const FunctionDecl *FD,
3037                                const LangOptions& LangOpts) {
3038  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3039          !LangOpts.CPlusPlus &&
3040          FD->isInlineSpecified() &&
3041          FD->getStorageClass() == SC_Extern);
3042}
3043
3044const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3045  const AttributedType *AT = T->getAs<AttributedType>();
3046  while (AT && !AT->isCallingConv())
3047    AT = AT->getModifiedType()->getAs<AttributedType>();
3048  return AT;
3049}
3050
3051template <typename T>
3052static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3053  const DeclContext *DC = Old->getDeclContext();
3054  if (DC->isRecord())
3055    return false;
3056
3057  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3058  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3059    return true;
3060  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3061    return true;
3062  return false;
3063}
3064
3065template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3066static bool isExternC(VarTemplateDecl *) { return false; }
3067
3068/// Check whether a redeclaration of an entity introduced by a
3069/// using-declaration is valid, given that we know it's not an overload
3070/// (nor a hidden tag declaration).
3071template<typename ExpectedDecl>
3072static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3073                                   ExpectedDecl *New) {
3074  // C++11 [basic.scope.declarative]p4:
3075  //   Given a set of declarations in a single declarative region, each of
3076  //   which specifies the same unqualified name,
3077  //   -- they shall all refer to the same entity, or all refer to functions
3078  //      and function templates; or
3079  //   -- exactly one declaration shall declare a class name or enumeration
3080  //      name that is not a typedef name and the other declarations shall all
3081  //      refer to the same variable or enumerator, or all refer to functions
3082  //      and function templates; in this case the class name or enumeration
3083  //      name is hidden (3.3.10).
3084
3085  // C++11 [namespace.udecl]p14:
3086  //   If a function declaration in namespace scope or block scope has the
3087  //   same name and the same parameter-type-list as a function introduced
3088  //   by a using-declaration, and the declarations do not declare the same
3089  //   function, the program is ill-formed.
3090
3091  auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3092  if (Old &&
3093      !Old->getDeclContext()->getRedeclContext()->Equals(
3094          New->getDeclContext()->getRedeclContext()) &&
3095      !(isExternC(Old) && isExternC(New)))
3096    Old = nullptr;
3097
3098  if (!Old) {
3099    S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3100    S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3101    S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
3102    return true;
3103  }
3104  return false;
3105}
3106
3107static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3108                                            const FunctionDecl *B) {
3109  assert(A->getNumParams() == B->getNumParams());
3110
3111  auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3112    const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3113    const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3114    if (AttrA == AttrB)
3115      return true;
3116    return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3117           AttrA->isDynamic() == AttrB->isDynamic();
3118  };
3119
3120  return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3121}
3122
3123/// If necessary, adjust the semantic declaration context for a qualified
3124/// declaration to name the correct inline namespace within the qualifier.
3125static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3126                                               DeclaratorDecl *OldD) {
3127  // The only case where we need to update the DeclContext is when
3128  // redeclaration lookup for a qualified name finds a declaration
3129  // in an inline namespace within the context named by the qualifier:
3130  //
3131  //   inline namespace N { int f(); }
3132  //   int ::f(); // Sema DC needs adjusting from :: to N::.
3133  //
3134  // For unqualified declarations, the semantic context *can* change
3135  // along the redeclaration chain (for local extern declarations,
3136  // extern "C" declarations, and friend declarations in particular).
3137  if (!NewD->getQualifier())
3138    return;
3139
3140  // NewD is probably already in the right context.
3141  auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3142  auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3143  if (NamedDC->Equals(SemaDC))
3144    return;
3145
3146  assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3147          NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3148         "unexpected context for redeclaration");
3149
3150  auto *LexDC = NewD->getLexicalDeclContext();
3151  auto FixSemaDC = [=](NamedDecl *D) {
3152    if (!D)
3153      return;
3154    D->setDeclContext(SemaDC);
3155    D->setLexicalDeclContext(LexDC);
3156  };
3157
3158  FixSemaDC(NewD);
3159  if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3160    FixSemaDC(FD->getDescribedFunctionTemplate());
3161  else if (auto *VD = dyn_cast<VarDecl>(NewD))
3162    FixSemaDC(VD->getDescribedVarTemplate());
3163}
3164
3165/// MergeFunctionDecl - We just parsed a function 'New' from
3166/// declarator D which has the same name and scope as a previous
3167/// declaration 'Old'.  Figure out how to resolve this situation,
3168/// merging decls or emitting diagnostics as appropriate.
3169///
3170/// In C++, New and Old must be declarations that are not
3171/// overloaded. Use IsOverload to determine whether New and Old are
3172/// overloaded, and to select the Old declaration that New should be
3173/// merged with.
3174///
3175/// Returns true if there was an error, false otherwise.
3176bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3177                             Scope *S, bool MergeTypeWithOld) {
3178  // Verify the old decl was also a function.
3179  FunctionDecl *Old = OldD->getAsFunction();
3180  if (!Old) {
3181    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3182      if (New->getFriendObjectKind()) {
3183        Diag(New->getLocation(), diag::err_using_decl_friend);
3184        Diag(Shadow->getTargetDecl()->getLocation(),
3185             diag::note_using_decl_target);
3186        Diag(Shadow->getUsingDecl()->getLocation(),
3187             diag::note_using_decl) << 0;
3188        return true;
3189      }
3190
3191      // Check whether the two declarations might declare the same function.
3192      if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3193        return true;
3194      OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3195    } else {
3196      Diag(New->getLocation(), diag::err_redefinition_different_kind)
3197        << New->getDeclName();
3198      notePreviousDefinition(OldD, New->getLocation());
3199      return true;
3200    }
3201  }
3202
3203  // If the old declaration is invalid, just give up here.
3204  if (Old->isInvalidDecl())
3205    return true;
3206
3207  // Disallow redeclaration of some builtins.
3208  if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3209    Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3210    Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3211        << Old << Old->getType();
3212    return true;
3213  }
3214
3215  diag::kind PrevDiag;
3216  SourceLocation OldLocation;
3217  std::tie(PrevDiag, OldLocation) =
3218      getNoteDiagForInvalidRedeclaration(Old, New);
3219
3220  // Don't complain about this if we're in GNU89 mode and the old function
3221  // is an extern inline function.
3222  // Don't complain about specializations. They are not supposed to have
3223  // storage classes.
3224  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3225      New->getStorageClass() == SC_Static &&
3226      Old->hasExternalFormalLinkage() &&
3227      !New->getTemplateSpecializationInfo() &&
3228      !canRedefineFunction(Old, getLangOpts())) {
3229    if (getLangOpts().MicrosoftExt) {
3230      Diag(New->getLocation(), diag::ext_static_non_static) << New;
3231      Diag(OldLocation, PrevDiag);
3232    } else {
3233      Diag(New->getLocation(), diag::err_static_non_static) << New;
3234      Diag(OldLocation, PrevDiag);
3235      return true;
3236    }
3237  }
3238
3239  if (New->hasAttr<InternalLinkageAttr>() &&
3240      !Old->hasAttr<InternalLinkageAttr>()) {
3241    Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3242        << New->getDeclName();
3243    notePreviousDefinition(Old, New->getLocation());
3244    New->dropAttr<InternalLinkageAttr>();
3245  }
3246
3247  if (CheckRedeclarationModuleOwnership(New, Old))
3248    return true;
3249
3250  if (!getLangOpts().CPlusPlus) {
3251    bool OldOvl = Old->hasAttr<OverloadableAttr>();
3252    if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3253      Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3254        << New << OldOvl;
3255
3256      // Try our best to find a decl that actually has the overloadable
3257      // attribute for the note. In most cases (e.g. programs with only one
3258      // broken declaration/definition), this won't matter.
3259      //
3260      // FIXME: We could do this if we juggled some extra state in
3261      // OverloadableAttr, rather than just removing it.
3262      const Decl *DiagOld = Old;
3263      if (OldOvl) {
3264        auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3265          const auto *A = D->getAttr<OverloadableAttr>();
3266          return A && !A->isImplicit();
3267        });
3268        // If we've implicitly added *all* of the overloadable attrs to this
3269        // chain, emitting a "previous redecl" note is pointless.
3270        DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3271      }
3272
3273      if (DiagOld)
3274        Diag(DiagOld->getLocation(),
3275             diag::note_attribute_overloadable_prev_overload)
3276          << OldOvl;
3277
3278      if (OldOvl)
3279        New->addAttr(OverloadableAttr::CreateImplicit(Context));
3280      else
3281        New->dropAttr<OverloadableAttr>();
3282    }
3283  }
3284
3285  // If a function is first declared with a calling convention, but is later
3286  // declared or defined without one, all following decls assume the calling
3287  // convention of the first.
3288  //
3289  // It's OK if a function is first declared without a calling convention,
3290  // but is later declared or defined with the default calling convention.
3291  //
3292  // To test if either decl has an explicit calling convention, we look for
3293  // AttributedType sugar nodes on the type as written.  If they are missing or
3294  // were canonicalized away, we assume the calling convention was implicit.
3295  //
3296  // Note also that we DO NOT return at this point, because we still have
3297  // other tests to run.
3298  QualType OldQType = Context.getCanonicalType(Old->getType());
3299  QualType NewQType = Context.getCanonicalType(New->getType());
3300  const FunctionType *OldType = cast<FunctionType>(OldQType);
3301  const FunctionType *NewType = cast<FunctionType>(NewQType);
3302  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3303  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3304  bool RequiresAdjustment = false;
3305
3306  if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3307    FunctionDecl *First = Old->getFirstDecl();
3308    const FunctionType *FT =
3309        First->getType().getCanonicalType()->castAs<FunctionType>();
3310    FunctionType::ExtInfo FI = FT->getExtInfo();
3311    bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3312    if (!NewCCExplicit) {
3313      // Inherit the CC from the previous declaration if it was specified
3314      // there but not here.
3315      NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3316      RequiresAdjustment = true;
3317    } else if (New->getBuiltinID()) {
3318      // Calling Conventions on a Builtin aren't really useful and setting a
3319      // default calling convention and cdecl'ing some builtin redeclarations is
3320      // common, so warn and ignore the calling convention on the redeclaration.
3321      Diag(New->getLocation(), diag::warn_cconv_unsupported)
3322          << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3323          << (int)CallingConventionIgnoredReason::BuiltinFunction;
3324      NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3325      RequiresAdjustment = true;
3326    } else {
3327      // Calling conventions aren't compatible, so complain.
3328      bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3329      Diag(New->getLocation(), diag::err_cconv_change)
3330        << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3331        << !FirstCCExplicit
3332        << (!FirstCCExplicit ? "" :
3333            FunctionType::getNameForCallConv(FI.getCC()));
3334
3335      // Put the note on the first decl, since it is the one that matters.
3336      Diag(First->getLocation(), diag::note_previous_declaration);
3337      return true;
3338    }
3339  }
3340
3341  // FIXME: diagnose the other way around?
3342  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3343    NewTypeInfo = NewTypeInfo.withNoReturn(true);
3344    RequiresAdjustment = true;
3345  }
3346
3347  // Merge regparm attribute.
3348  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3349      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3350    if (NewTypeInfo.getHasRegParm()) {
3351      Diag(New->getLocation(), diag::err_regparm_mismatch)
3352        << NewType->getRegParmType()
3353        << OldType->getRegParmType();
3354      Diag(OldLocation, diag::note_previous_declaration);
3355      return true;
3356    }
3357
3358    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3359    RequiresAdjustment = true;
3360  }
3361
3362  // Merge ns_returns_retained attribute.
3363  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3364    if (NewTypeInfo.getProducesResult()) {
3365      Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3366          << "'ns_returns_retained'";
3367      Diag(OldLocation, diag::note_previous_declaration);
3368      return true;
3369    }
3370
3371    NewTypeInfo = NewTypeInfo.withProducesResult(true);
3372    RequiresAdjustment = true;
3373  }
3374
3375  if (OldTypeInfo.getNoCallerSavedRegs() !=
3376      NewTypeInfo.getNoCallerSavedRegs()) {
3377    if (NewTypeInfo.getNoCallerSavedRegs()) {
3378      AnyX86NoCallerSavedRegistersAttr *Attr =
3379        New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3380      Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3381      Diag(OldLocation, diag::note_previous_declaration);
3382      return true;
3383    }
3384
3385    NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3386    RequiresAdjustment = true;
3387  }
3388
3389  if (RequiresAdjustment) {
3390    const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3391    AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3392    New->setType(QualType(AdjustedType, 0));
3393    NewQType = Context.getCanonicalType(New->getType());
3394  }
3395
3396  // If this redeclaration makes the function inline, we may need to add it to
3397  // UndefinedButUsed.
3398  if (!Old->isInlined() && New->isInlined() &&
3399      !New->hasAttr<GNUInlineAttr>() &&
3400      !getLangOpts().GNUInline &&
3401      Old->isUsed(false) &&
3402      !Old->isDefined() && !New->isThisDeclarationADefinition())
3403    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3404                                           SourceLocation()));
3405
3406  // If this redeclaration makes it newly gnu_inline, we don't want to warn
3407  // about it.
3408  if (New->hasAttr<GNUInlineAttr>() &&
3409      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3410    UndefinedButUsed.erase(Old->getCanonicalDecl());
3411  }
3412
3413  // If pass_object_size params don't match up perfectly, this isn't a valid
3414  // redeclaration.
3415  if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3416      !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3417    Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3418        << New->getDeclName();
3419    Diag(OldLocation, PrevDiag) << Old << Old->getType();
3420    return true;
3421  }
3422
3423  if (getLangOpts().CPlusPlus) {
3424    // C++1z [over.load]p2
3425    //   Certain function declarations cannot be overloaded:
3426    //     -- Function declarations that differ only in the return type,
3427    //        the exception specification, or both cannot be overloaded.
3428
3429    // Check the exception specifications match. This may recompute the type of
3430    // both Old and New if it resolved exception specifications, so grab the
3431    // types again after this. Because this updates the type, we do this before
3432    // any of the other checks below, which may update the "de facto" NewQType
3433    // but do not necessarily update the type of New.
3434    if (CheckEquivalentExceptionSpec(Old, New))
3435      return true;
3436    OldQType = Context.getCanonicalType(Old->getType());
3437    NewQType = Context.getCanonicalType(New->getType());
3438
3439    // Go back to the type source info to compare the declared return types,
3440    // per C++1y [dcl.type.auto]p13:
3441    //   Redeclarations or specializations of a function or function template
3442    //   with a declared return type that uses a placeholder type shall also
3443    //   use that placeholder, not a deduced type.
3444    QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3445    QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3446    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3447        canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3448                                       OldDeclaredReturnType)) {
3449      QualType ResQT;
3450      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3451          OldDeclaredReturnType->isObjCObjectPointerType())
3452        // FIXME: This does the wrong thing for a deduced return type.
3453        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3454      if (ResQT.isNull()) {
3455        if (New->isCXXClassMember() && New->isOutOfLine())
3456          Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3457              << New << New->getReturnTypeSourceRange();
3458        else
3459          Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3460              << New->getReturnTypeSourceRange();
3461        Diag(OldLocation, PrevDiag) << Old << Old->getType()
3462                                    << Old->getReturnTypeSourceRange();
3463        return true;
3464      }
3465      else
3466        NewQType = ResQT;
3467    }
3468
3469    QualType OldReturnType = OldType->getReturnType();
3470    QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3471    if (OldReturnType != NewReturnType) {
3472      // If this function has a deduced return type and has already been
3473      // defined, copy the deduced value from the old declaration.
3474      AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3475      if (OldAT && OldAT->isDeduced()) {
3476        New->setType(
3477            SubstAutoType(New->getType(),
3478                          OldAT->isDependentType() ? Context.DependentTy
3479                                                   : OldAT->getDeducedType()));
3480        NewQType = Context.getCanonicalType(
3481            SubstAutoType(NewQType,
3482                          OldAT->isDependentType() ? Context.DependentTy
3483                                                   : OldAT->getDeducedType()));
3484      }
3485    }
3486
3487    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3488    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3489    if (OldMethod && NewMethod) {
3490      // Preserve triviality.
3491      NewMethod->setTrivial(OldMethod->isTrivial());
3492
3493      // MSVC allows explicit template specialization at class scope:
3494      // 2 CXXMethodDecls referring to the same function will be injected.
3495      // We don't want a redeclaration error.
3496      bool IsClassScopeExplicitSpecialization =
3497                              OldMethod->isFunctionTemplateSpecialization() &&
3498                              NewMethod->isFunctionTemplateSpecialization();
3499      bool isFriend = NewMethod->getFriendObjectKind();
3500
3501      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3502          !IsClassScopeExplicitSpecialization) {
3503        //    -- Member function declarations with the same name and the
3504        //       same parameter types cannot be overloaded if any of them
3505        //       is a static member function declaration.
3506        if (OldMethod->isStatic() != NewMethod->isStatic()) {
3507          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3508          Diag(OldLocation, PrevDiag) << Old << Old->getType();
3509          return true;
3510        }
3511
3512        // C++ [class.mem]p1:
3513        //   [...] A member shall not be declared twice in the
3514        //   member-specification, except that a nested class or member
3515        //   class template can be declared and then later defined.
3516        if (!inTemplateInstantiation()) {
3517          unsigned NewDiag;
3518          if (isa<CXXConstructorDecl>(OldMethod))
3519            NewDiag = diag::err_constructor_redeclared;
3520          else if (isa<CXXDestructorDecl>(NewMethod))
3521            NewDiag = diag::err_destructor_redeclared;
3522          else if (isa<CXXConversionDecl>(NewMethod))
3523            NewDiag = diag::err_conv_function_redeclared;
3524          else
3525            NewDiag = diag::err_member_redeclared;
3526
3527          Diag(New->getLocation(), NewDiag);
3528        } else {
3529          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3530            << New << New->getType();
3531        }
3532        Diag(OldLocation, PrevDiag) << Old << Old->getType();
3533        return true;
3534
3535      // Complain if this is an explicit declaration of a special
3536      // member that was initially declared implicitly.
3537      //
3538      // As an exception, it's okay to befriend such methods in order
3539      // to permit the implicit constructor/destructor/operator calls.
3540      } else if (OldMethod->isImplicit()) {
3541        if (isFriend) {
3542          NewMethod->setImplicit();
3543        } else {
3544          Diag(NewMethod->getLocation(),
3545               diag::err_definition_of_implicitly_declared_member)
3546            << New << getSpecialMember(OldMethod);
3547          return true;
3548        }
3549      } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3550        Diag(NewMethod->getLocation(),
3551             diag::err_definition_of_explicitly_defaulted_member)
3552          << getSpecialMember(OldMethod);
3553        return true;
3554      }
3555    }
3556
3557    // C++11 [dcl.attr.noreturn]p1:
3558    //   The first declaration of a function shall specify the noreturn
3559    //   attribute if any declaration of that function specifies the noreturn
3560    //   attribute.
3561    const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3562    if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3563      Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3564      Diag(Old->getFirstDecl()->getLocation(),
3565           diag::note_noreturn_missing_first_decl);
3566    }
3567
3568    // C++11 [dcl.attr.depend]p2:
3569    //   The first declaration of a function shall specify the
3570    //   carries_dependency attribute for its declarator-id if any declaration
3571    //   of the function specifies the carries_dependency attribute.
3572    const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3573    if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3574      Diag(CDA->getLocation(),
3575           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3576      Diag(Old->getFirstDecl()->getLocation(),
3577           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3578    }
3579
3580    // (C++98 8.3.5p3):
3581    //   All declarations for a function shall agree exactly in both the
3582    //   return type and the parameter-type-list.
3583    // We also want to respect all the extended bits except noreturn.
3584
3585    // noreturn should now match unless the old type info didn't have it.
3586    QualType OldQTypeForComparison = OldQType;
3587    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3588      auto *OldType = OldQType->castAs<FunctionProtoType>();
3589      const FunctionType *OldTypeForComparison
3590        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3591      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3592      assert(OldQTypeForComparison.isCanonical());
3593    }
3594
3595    if (haveIncompatibleLanguageLinkages(Old, New)) {
3596      // As a special case, retain the language linkage from previous
3597      // declarations of a friend function as an extension.
3598      //
3599      // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3600      // and is useful because there's otherwise no way to specify language
3601      // linkage within class scope.
3602      //
3603      // Check cautiously as the friend object kind isn't yet complete.
3604      if (New->getFriendObjectKind() != Decl::FOK_None) {
3605        Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3606        Diag(OldLocation, PrevDiag);
3607      } else {
3608        Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3609        Diag(OldLocation, PrevDiag);
3610        return true;
3611      }
3612    }
3613
3614    // If the function types are compatible, merge the declarations. Ignore the
3615    // exception specifier because it was already checked above in
3616    // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
3617    // about incompatible types under -fms-compatibility.
3618    if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
3619                                                         NewQType))
3620      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3621
3622    // If the types are imprecise (due to dependent constructs in friends or
3623    // local extern declarations), it's OK if they differ. We'll check again
3624    // during instantiation.
3625    if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3626      return false;
3627
3628    // Fall through for conflicting redeclarations and redefinitions.
3629  }
3630
3631  // C: Function types need to be compatible, not identical. This handles
3632  // duplicate function decls like "void f(int); void f(enum X);" properly.
3633  if (!getLangOpts().CPlusPlus &&
3634      Context.typesAreCompatible(OldQType, NewQType)) {
3635    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3636    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3637    const FunctionProtoType *OldProto = nullptr;
3638    if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3639        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3640      // The old declaration provided a function prototype, but the
3641      // new declaration does not. Merge in the prototype.
3642      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3643      SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3644      NewQType =
3645          Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3646                                  OldProto->getExtProtoInfo());
3647      New->setType(NewQType);
3648      New->setHasInheritedPrototype();
3649
3650      // Synthesize parameters with the same types.
3651      SmallVector<ParmVarDecl*, 16> Params;
3652      for (const auto &ParamType : OldProto->param_types()) {
3653        ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3654                                                 SourceLocation(), nullptr,
3655                                                 ParamType, /*TInfo=*/nullptr,
3656                                                 SC_None, nullptr);
3657        Param->setScopeInfo(0, Params.size());
3658        Param->setImplicit();
3659        Params.push_back(Param);
3660      }
3661
3662      New->setParams(Params);
3663    }
3664
3665    return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3666  }
3667
3668  // Check if the function types are compatible when pointer size address
3669  // spaces are ignored.
3670  if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
3671    return false;
3672
3673  // GNU C permits a K&R definition to follow a prototype declaration
3674  // if the declared types of the parameters in the K&R definition
3675  // match the types in the prototype declaration, even when the
3676  // promoted types of the parameters from the K&R definition differ
3677  // from the types in the prototype. GCC then keeps the types from
3678  // the prototype.
3679  //
3680  // If a variadic prototype is followed by a non-variadic K&R definition,
3681  // the K&R definition becomes variadic.  This is sort of an edge case, but
3682  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3683  // C99 6.9.1p8.
3684  if (!getLangOpts().CPlusPlus &&
3685      Old->hasPrototype() && !New->hasPrototype() &&
3686      New->getType()->getAs<FunctionProtoType>() &&
3687      Old->getNumParams() == New->getNumParams()) {
3688    SmallVector<QualType, 16> ArgTypes;
3689    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3690    const FunctionProtoType *OldProto
3691      = Old->getType()->getAs<FunctionProtoType>();
3692    const FunctionProtoType *NewProto
3693      = New->getType()->getAs<FunctionProtoType>();
3694
3695    // Determine whether this is the GNU C extension.
3696    QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3697                                               NewProto->getReturnType());
3698    bool LooseCompatible = !MergedReturn.isNull();
3699    for (unsigned Idx = 0, End = Old->getNumParams();
3700         LooseCompatible && Idx != End; ++Idx) {
3701      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3702      ParmVarDecl *NewParm = New->getParamDecl(Idx);
3703      if (Context.typesAreCompatible(OldParm->getType(),
3704                                     NewProto->getParamType(Idx))) {
3705        ArgTypes.push_back(NewParm->getType());
3706      } else if (Context.typesAreCompatible(OldParm->getType(),
3707                                            NewParm->getType(),
3708                                            /*CompareUnqualified=*/true)) {
3709        GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3710                                           NewProto->getParamType(Idx) };
3711        Warnings.push_back(Warn);
3712        ArgTypes.push_back(NewParm->getType());
3713      } else
3714        LooseCompatible = false;
3715    }
3716
3717    if (LooseCompatible) {
3718      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3719        Diag(Warnings[Warn].NewParm->getLocation(),
3720             diag::ext_param_promoted_not_compatible_with_prototype)
3721          << Warnings[Warn].PromotedType
3722          << Warnings[Warn].OldParm->getType();
3723        if (Warnings[Warn].OldParm->getLocation().isValid())
3724          Diag(Warnings[Warn].OldParm->getLocation(),
3725               diag::note_previous_declaration);
3726      }
3727
3728      if (MergeTypeWithOld)
3729        New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3730                                             OldProto->getExtProtoInfo()));
3731      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3732    }
3733
3734    // Fall through to diagnose conflicting types.
3735  }
3736
3737  // A function that has already been declared has been redeclared or
3738  // defined with a different type; show an appropriate diagnostic.
3739
3740  // If the previous declaration was an implicitly-generated builtin
3741  // declaration, then at the very least we should use a specialized note.
3742  unsigned BuiltinID;
3743  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3744    // If it's actually a library-defined builtin function like 'malloc'
3745    // or 'printf', just warn about the incompatible redeclaration.
3746    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3747      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3748      Diag(OldLocation, diag::note_previous_builtin_declaration)
3749        << Old << Old->getType();
3750
3751      // If this is a global redeclaration, just forget hereafter
3752      // about the "builtin-ness" of the function.
3753      //
3754      // Doing this for local extern declarations is problematic.  If
3755      // the builtin declaration remains visible, a second invalid
3756      // local declaration will produce a hard error; if it doesn't
3757      // remain visible, a single bogus local redeclaration (which is
3758      // actually only a warning) could break all the downstream code.
3759      if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3760        New->getIdentifier()->revertBuiltin();
3761
3762      return false;
3763    }
3764
3765    PrevDiag = diag::note_previous_builtin_declaration;
3766  }
3767
3768  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3769  Diag(OldLocation, PrevDiag) << Old << Old->getType();
3770  return true;
3771}
3772
3773/// Completes the merge of two function declarations that are
3774/// known to be compatible.
3775///
3776/// This routine handles the merging of attributes and other
3777/// properties of function declarations from the old declaration to
3778/// the new declaration, once we know that New is in fact a
3779/// redeclaration of Old.
3780///
3781/// \returns false
3782bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3783                                        Scope *S, bool MergeTypeWithOld) {
3784  // Merge the attributes
3785  mergeDeclAttributes(New, Old);
3786
3787  // Merge "pure" flag.
3788  if (Old->isPure())
3789    New->setPure();
3790
3791  // Merge "used" flag.
3792  if (Old->getMostRecentDecl()->isUsed(false))
3793    New->setIsUsed();
3794
3795  // Merge attributes from the parameters.  These can mismatch with K&R
3796  // declarations.
3797  if (New->getNumParams() == Old->getNumParams())
3798      for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3799        ParmVarDecl *NewParam = New->getParamDecl(i);
3800        ParmVarDecl *OldParam = Old->getParamDecl(i);
3801        mergeParamDeclAttributes(NewParam, OldParam, *this);
3802        mergeParamDeclTypes(NewParam, OldParam, *this);
3803      }
3804
3805  if (getLangOpts().CPlusPlus)
3806    return MergeCXXFunctionDecl(New, Old, S);
3807
3808  // Merge the function types so the we get the composite types for the return
3809  // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3810  // was visible.
3811  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3812  if (!Merged.isNull() && MergeTypeWithOld)
3813    New->setType(Merged);
3814
3815  return false;
3816}
3817
3818void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3819                                ObjCMethodDecl *oldMethod) {
3820  // Merge the attributes, including deprecated/unavailable
3821  AvailabilityMergeKind MergeKind =
3822    isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3823      ? AMK_ProtocolImplementation
3824      : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3825                                                       : AMK_Override;
3826
3827  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3828
3829  // Merge attributes from the parameters.
3830  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3831                                       oe = oldMethod->param_end();
3832  for (ObjCMethodDecl::param_iterator
3833         ni = newMethod->param_begin(), ne = newMethod->param_end();
3834       ni != ne && oi != oe; ++ni, ++oi)
3835    mergeParamDeclAttributes(*ni, *oi, *this);
3836
3837  CheckObjCMethodOverride(newMethod, oldMethod);
3838}
3839
3840static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3841  assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3842
3843  S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3844         ? diag::err_redefinition_different_type
3845         : diag::err_redeclaration_different_type)
3846    << New->getDeclName() << New->getType() << Old->getType();
3847
3848  diag::kind PrevDiag;
3849  SourceLocation OldLocation;
3850  std::tie(PrevDiag, OldLocation)
3851    = getNoteDiagForInvalidRedeclaration(Old, New);
3852  S.Diag(OldLocation, PrevDiag);
3853  New->setInvalidDecl();
3854}
3855
3856/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3857/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3858/// emitting diagnostics as appropriate.
3859///
3860/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3861/// to here in AddInitializerToDecl. We can't check them before the initializer
3862/// is attached.
3863void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3864                             bool MergeTypeWithOld) {
3865  if (New->isInvalidDecl() || Old->isInvalidDecl())
3866    return;
3867
3868  QualType MergedT;
3869  if (getLangOpts().CPlusPlus) {
3870    if (New->getType()->isUndeducedType()) {
3871      // We don't know what the new type is until the initializer is attached.
3872      return;
3873    } else if (Context.hasSameType(New->getType(), Old->getType())) {
3874      // These could still be something that needs exception specs checked.
3875      return MergeVarDeclExceptionSpecs(New, Old);
3876    }
3877    // C++ [basic.link]p10:
3878    //   [...] the types specified by all declarations referring to a given
3879    //   object or function shall be identical, except that declarations for an
3880    //   array object can specify array types that differ by the presence or
3881    //   absence of a major array bound (8.3.4).
3882    else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3883      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3884      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3885
3886      // We are merging a variable declaration New into Old. If it has an array
3887      // bound, and that bound differs from Old's bound, we should diagnose the
3888      // mismatch.
3889      if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3890        for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3891             PrevVD = PrevVD->getPreviousDecl()) {
3892          const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3893          if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3894            continue;
3895
3896          if (!Context.hasSameType(NewArray, PrevVDTy))
3897            return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3898        }
3899      }
3900
3901      if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3902        if (Context.hasSameType(OldArray->getElementType(),
3903                                NewArray->getElementType()))
3904          MergedT = New->getType();
3905      }
3906      // FIXME: Check visibility. New is hidden but has a complete type. If New
3907      // has no array bound, it should not inherit one from Old, if Old is not
3908      // visible.
3909      else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3910        if (Context.hasSameType(OldArray->getElementType(),
3911                                NewArray->getElementType()))
3912          MergedT = Old->getType();
3913      }
3914    }
3915    else if (New->getType()->isObjCObjectPointerType() &&
3916               Old->getType()->isObjCObjectPointerType()) {
3917      MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3918                                              Old->getType());
3919    }
3920  } else {
3921    // C 6.2.7p2:
3922    //   All declarations that refer to the same object or function shall have
3923    //   compatible type.
3924    MergedT = Context.mergeTypes(New->getType(), Old->getType());
3925  }
3926  if (MergedT.isNull()) {
3927    // It's OK if we couldn't merge types if either type is dependent, for a
3928    // block-scope variable. In other cases (static data members of class
3929    // templates, variable templates, ...), we require the types to be
3930    // equivalent.
3931    // FIXME: The C++ standard doesn't say anything about this.
3932    if ((New->getType()->isDependentType() ||
3933         Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3934      // If the old type was dependent, we can't merge with it, so the new type
3935      // becomes dependent for now. We'll reproduce the original type when we
3936      // instantiate the TypeSourceInfo for the variable.
3937      if (!New->getType()->isDependentType() && MergeTypeWithOld)
3938        New->setType(Context.DependentTy);
3939      return;
3940    }
3941    return diagnoseVarDeclTypeMismatch(*this, New, Old);
3942  }
3943
3944  // Don't actually update the type on the new declaration if the old
3945  // declaration was an extern declaration in a different scope.
3946  if (MergeTypeWithOld)
3947    New->setType(MergedT);
3948}
3949
3950static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3951                                  LookupResult &Previous) {
3952  // C11 6.2.7p4:
3953  //   For an identifier with internal or external linkage declared
3954  //   in a scope in which a prior declaration of that identifier is
3955  //   visible, if the prior declaration specifies internal or
3956  //   external linkage, the type of the identifier at the later
3957  //   declaration becomes the composite type.
3958  //
3959  // If the variable isn't visible, we do not merge with its type.
3960  if (Previous.isShadowed())
3961    return false;
3962
3963  if (S.getLangOpts().CPlusPlus) {
3964    // C++11 [dcl.array]p3:
3965    //   If there is a preceding declaration of the entity in the same
3966    //   scope in which the bound was specified, an omitted array bound
3967    //   is taken to be the same as in that earlier declaration.
3968    return NewVD->isPreviousDeclInSameBlockScope() ||
3969           (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3970            !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3971  } else {
3972    // If the old declaration was function-local, don't merge with its
3973    // type unless we're in the same function.
3974    return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3975           OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3976  }
3977}
3978
3979/// MergeVarDecl - We just parsed a variable 'New' which has the same name
3980/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3981/// situation, merging decls or emitting diagnostics as appropriate.
3982///
3983/// Tentative definition rules (C99 6.9.2p2) are checked by
3984/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3985/// definitions here, since the initializer hasn't been attached.
3986///
3987void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3988  // If the new decl is already invalid, don't do any other checking.
3989  if (New->isInvalidDecl())
3990    return;
3991
3992  if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3993    return;
3994
3995  VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3996
3997  // Verify the old decl was also a variable or variable template.
3998  VarDecl *Old = nullptr;
3999  VarTemplateDecl *OldTemplate = nullptr;
4000  if (Previous.isSingleResult()) {
4001    if (NewTemplate) {
4002      OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4003      Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4004
4005      if (auto *Shadow =
4006              dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4007        if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4008          return New->setInvalidDecl();
4009    } else {
4010      Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4011
4012      if (auto *Shadow =
4013              dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4014        if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4015          return New->setInvalidDecl();
4016    }
4017  }
4018  if (!Old) {
4019    Diag(New->getLocation(), diag::err_redefinition_different_kind)
4020        << New->getDeclName();
4021    notePreviousDefinition(Previous.getRepresentativeDecl(),
4022                           New->getLocation());
4023    return New->setInvalidDecl();
4024  }
4025
4026  // Ensure the template parameters are compatible.
4027  if (NewTemplate &&
4028      !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4029                                      OldTemplate->getTemplateParameters(),
4030                                      /*Complain=*/true, TPL_TemplateMatch))
4031    return New->setInvalidDecl();
4032
4033  // C++ [class.mem]p1:
4034  //   A member shall not be declared twice in the member-specification [...]
4035  //
4036  // Here, we need only consider static data members.
4037  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4038    Diag(New->getLocation(), diag::err_duplicate_member)
4039      << New->getIdentifier();
4040    Diag(Old->getLocation(), diag::note_previous_declaration);
4041    New->setInvalidDecl();
4042  }
4043
4044  mergeDeclAttributes(New, Old);
4045  // Warn if an already-declared variable is made a weak_import in a subsequent
4046  // declaration
4047  if (New->hasAttr<WeakImportAttr>() &&
4048      Old->getStorageClass() == SC_None &&
4049      !Old->hasAttr<WeakImportAttr>()) {
4050    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4051    notePreviousDefinition(Old, New->getLocation());
4052    // Remove weak_import attribute on new declaration.
4053    New->dropAttr<WeakImportAttr>();
4054  }
4055
4056  if (New->hasAttr<InternalLinkageAttr>() &&
4057      !Old->hasAttr<InternalLinkageAttr>()) {
4058    Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
4059        << New->getDeclName();
4060    notePreviousDefinition(Old, New->getLocation());
4061    New->dropAttr<InternalLinkageAttr>();
4062  }
4063
4064  // Merge the types.
4065  VarDecl *MostRecent = Old->getMostRecentDecl();
4066  if (MostRecent != Old) {
4067    MergeVarDeclTypes(New, MostRecent,
4068                      mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4069    if (New->isInvalidDecl())
4070      return;
4071  }
4072
4073  MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4074  if (New->isInvalidDecl())
4075    return;
4076
4077  diag::kind PrevDiag;
4078  SourceLocation OldLocation;
4079  std::tie(PrevDiag, OldLocation) =
4080      getNoteDiagForInvalidRedeclaration(Old, New);
4081
4082  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4083  if (New->getStorageClass() == SC_Static &&
4084      !New->isStaticDataMember() &&
4085      Old->hasExternalFormalLinkage()) {
4086    if (getLangOpts().MicrosoftExt) {
4087      Diag(New->getLocation(), diag::ext_static_non_static)
4088          << New->getDeclName();
4089      Diag(OldLocation, PrevDiag);
4090    } else {
4091      Diag(New->getLocation(), diag::err_static_non_static)
4092          << New->getDeclName();
4093      Diag(OldLocation, PrevDiag);
4094      return New->setInvalidDecl();
4095    }
4096  }
4097  // C99 6.2.2p4:
4098  //   For an identifier declared with the storage-class specifier
4099  //   extern in a scope in which a prior declaration of that
4100  //   identifier is visible,23) if the prior declaration specifies
4101  //   internal or external linkage, the linkage of the identifier at
4102  //   the later declaration is the same as the linkage specified at
4103  //   the prior declaration. If no prior declaration is visible, or
4104  //   if the prior declaration specifies no linkage, then the
4105  //   identifier has external linkage.
4106  if (New->hasExternalStorage() && Old->hasLinkage())
4107    /* Okay */;
4108  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4109           !New->isStaticDataMember() &&
4110           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4111    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4112    Diag(OldLocation, PrevDiag);
4113    return New->setInvalidDecl();
4114  }
4115
4116  // Check if extern is followed by non-extern and vice-versa.
4117  if (New->hasExternalStorage() &&
4118      !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4119    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4120    Diag(OldLocation, PrevDiag);
4121    return New->setInvalidDecl();
4122  }
4123  if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4124      !New->hasExternalStorage()) {
4125    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4126    Diag(OldLocation, PrevDiag);
4127    return New->setInvalidDecl();
4128  }
4129
4130  if (CheckRedeclarationModuleOwnership(New, Old))
4131    return;
4132
4133  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4134
4135  // FIXME: The test for external storage here seems wrong? We still
4136  // need to check for mismatches.
4137  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4138      // Don't complain about out-of-line definitions of static members.
4139      !(Old->getLexicalDeclContext()->isRecord() &&
4140        !New->getLexicalDeclContext()->isRecord())) {
4141    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4142    Diag(OldLocation, PrevDiag);
4143    return New->setInvalidDecl();
4144  }
4145
4146  if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4147    if (VarDecl *Def = Old->getDefinition()) {
4148      // C++1z [dcl.fcn.spec]p4:
4149      //   If the definition of a variable appears in a translation unit before
4150      //   its first declaration as inline, the program is ill-formed.
4151      Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4152      Diag(Def->getLocation(), diag::note_previous_definition);
4153    }
4154  }
4155
4156  // If this redeclaration makes the variable inline, we may need to add it to
4157  // UndefinedButUsed.
4158  if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4159      !Old->getDefinition() && !New->isThisDeclarationADefinition())
4160    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4161                                           SourceLocation()));
4162
4163  if (New->getTLSKind() != Old->getTLSKind()) {
4164    if (!Old->getTLSKind()) {
4165      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4166      Diag(OldLocation, PrevDiag);
4167    } else if (!New->getTLSKind()) {
4168      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4169      Diag(OldLocation, PrevDiag);
4170    } else {
4171      // Do not allow redeclaration to change the variable between requiring
4172      // static and dynamic initialization.
4173      // FIXME: GCC allows this, but uses the TLS keyword on the first
4174      // declaration to determine the kind. Do we need to be compatible here?
4175      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4176        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4177      Diag(OldLocation, PrevDiag);
4178    }
4179  }
4180
4181  // C++ doesn't have tentative definitions, so go right ahead and check here.
4182  if (getLangOpts().CPlusPlus &&
4183      New->isThisDeclarationADefinition() == VarDecl::Definition) {
4184    if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4185        Old->getCanonicalDecl()->isConstexpr()) {
4186      // This definition won't be a definition any more once it's been merged.
4187      Diag(New->getLocation(),
4188           diag::warn_deprecated_redundant_constexpr_static_def);
4189    } else if (VarDecl *Def = Old->getDefinition()) {
4190      if (checkVarDeclRedefinition(Def, New))
4191        return;
4192    }
4193  }
4194
4195  if (haveIncompatibleLanguageLinkages(Old, New)) {
4196    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4197    Diag(OldLocation, PrevDiag);
4198    New->setInvalidDecl();
4199    return;
4200  }
4201
4202  // Merge "used" flag.
4203  if (Old->getMostRecentDecl()->isUsed(false))
4204    New->setIsUsed();
4205
4206  // Keep a chain of previous declarations.
4207  New->setPreviousDecl(Old);
4208  if (NewTemplate)
4209    NewTemplate->setPreviousDecl(OldTemplate);
4210  adjustDeclContextForDeclaratorDecl(New, Old);
4211
4212  // Inherit access appropriately.
4213  New->setAccess(Old->getAccess());
4214  if (NewTemplate)
4215    NewTemplate->setAccess(New->getAccess());
4216
4217  if (Old->isInline())
4218    New->setImplicitlyInline();
4219}
4220
4221void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4222  SourceManager &SrcMgr = getSourceManager();
4223  auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4224  auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4225  auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4226  auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4227  auto &HSI = PP.getHeaderSearchInfo();
4228  StringRef HdrFilename =
4229      SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4230
4231  auto noteFromModuleOrInclude = [&](Module *Mod,
4232                                     SourceLocation IncLoc) -> bool {
4233    // Redefinition errors with modules are common with non modular mapped
4234    // headers, example: a non-modular header H in module A that also gets
4235    // included directly in a TU. Pointing twice to the same header/definition
4236    // is confusing, try to get better diagnostics when modules is on.
4237    if (IncLoc.isValid()) {
4238      if (Mod) {
4239        Diag(IncLoc, diag::note_redefinition_modules_same_file)
4240            << HdrFilename.str() << Mod->getFullModuleName();
4241        if (!Mod->DefinitionLoc.isInvalid())
4242          Diag(Mod->DefinitionLoc, diag::note_defined_here)
4243              << Mod->getFullModuleName();
4244      } else {
4245        Diag(IncLoc, diag::note_redefinition_include_same_file)
4246            << HdrFilename.str();
4247      }
4248      return true;
4249    }
4250
4251    return false;
4252  };
4253
4254  // Is it the same file and same offset? Provide more information on why
4255  // this leads to a redefinition error.
4256  if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4257    SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4258    SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4259    bool EmittedDiag =
4260        noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4261    EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4262
4263    // If the header has no guards, emit a note suggesting one.
4264    if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4265      Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4266
4267    if (EmittedDiag)
4268      return;
4269  }
4270
4271  // Redefinition coming from different files or couldn't do better above.
4272  if (Old->getLocation().isValid())
4273    Diag(Old->getLocation(), diag::note_previous_definition);
4274}
4275
4276/// We've just determined that \p Old and \p New both appear to be definitions
4277/// of the same variable. Either diagnose or fix the problem.
4278bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4279  if (!hasVisibleDefinition(Old) &&
4280      (New->getFormalLinkage() == InternalLinkage ||
4281       New->isInline() ||
4282       New->getDescribedVarTemplate() ||
4283       New->getNumTemplateParameterLists() ||
4284       New->getDeclContext()->isDependentContext())) {
4285    // The previous definition is hidden, and multiple definitions are
4286    // permitted (in separate TUs). Demote this to a declaration.
4287    New->demoteThisDefinitionToDeclaration();
4288
4289    // Make the canonical definition visible.
4290    if (auto *OldTD = Old->getDescribedVarTemplate())
4291      makeMergedDefinitionVisible(OldTD);
4292    makeMergedDefinitionVisible(Old);
4293    return false;
4294  } else {
4295    Diag(New->getLocation(), diag::err_redefinition) << New;
4296    notePreviousDefinition(Old, New->getLocation());
4297    New->setInvalidDecl();
4298    return true;
4299  }
4300}
4301
4302/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4303/// no declarator (e.g. "struct foo;") is parsed.
4304Decl *
4305Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4306                                 RecordDecl *&AnonRecord) {
4307  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4308                                    AnonRecord);
4309}
4310
4311// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4312// disambiguate entities defined in different scopes.
4313// While the VS2015 ABI fixes potential miscompiles, it is also breaks
4314// compatibility.
4315// We will pick our mangling number depending on which version of MSVC is being
4316// targeted.
4317static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4318  return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4319             ? S->getMSCurManglingNumber()
4320             : S->getMSLastManglingNumber();
4321}
4322
4323void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4324  if (!Context.getLangOpts().CPlusPlus)
4325    return;
4326
4327  if (isa<CXXRecordDecl>(Tag->getParent())) {
4328    // If this tag is the direct child of a class, number it if
4329    // it is anonymous.
4330    if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4331      return;
4332    MangleNumberingContext &MCtx =
4333        Context.getManglingNumberContext(Tag->getParent());
4334    Context.setManglingNumber(
4335        Tag, MCtx.getManglingNumber(
4336                 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4337    return;
4338  }
4339
4340  // If this tag isn't a direct child of a class, number it if it is local.
4341  MangleNumberingContext *MCtx;
4342  Decl *ManglingContextDecl;
4343  std::tie(MCtx, ManglingContextDecl) =
4344      getCurrentMangleNumberContext(Tag->getDeclContext());
4345  if (MCtx) {
4346    Context.setManglingNumber(
4347        Tag, MCtx->getManglingNumber(
4348                 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4349  }
4350}
4351
4352void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4353                                        TypedefNameDecl *NewTD) {
4354  if (TagFromDeclSpec->isInvalidDecl())
4355    return;
4356
4357  // Do nothing if the tag already has a name for linkage purposes.
4358  if (TagFromDeclSpec->hasNameForLinkage())
4359    return;
4360
4361  // A well-formed anonymous tag must always be a TUK_Definition.
4362  assert(TagFromDeclSpec->isThisDeclarationADefinition());
4363
4364  // The type must match the tag exactly;  no qualifiers allowed.
4365  if (!Context.hasSameType(NewTD->getUnderlyingType(),
4366                           Context.getTagDeclType(TagFromDeclSpec))) {
4367    if (getLangOpts().CPlusPlus)
4368      Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4369    return;
4370  }
4371
4372  // If we've already computed linkage for the anonymous tag, then
4373  // adding a typedef name for the anonymous decl can change that
4374  // linkage, which might be a serious problem.  Diagnose this as
4375  // unsupported and ignore the typedef name.  TODO: we should
4376  // pursue this as a language defect and establish a formal rule
4377  // for how to handle it.
4378  if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4379    Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4380
4381    SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4382    tagLoc = getLocForEndOfToken(tagLoc);
4383
4384    llvm::SmallString<40> textToInsert;
4385    textToInsert += ' ';
4386    textToInsert += NewTD->getIdentifier()->getName();
4387    Diag(tagLoc, diag::note_typedef_changes_linkage)
4388        << FixItHint::CreateInsertion(tagLoc, textToInsert);
4389    return;
4390  }
4391
4392  // Otherwise, set this is the anon-decl typedef for the tag.
4393  TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4394}
4395
4396static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4397  switch (T) {
4398  case DeclSpec::TST_class:
4399    return 0;
4400  case DeclSpec::TST_struct:
4401    return 1;
4402  case DeclSpec::TST_interface:
4403    return 2;
4404  case DeclSpec::TST_union:
4405    return 3;
4406  case DeclSpec::TST_enum:
4407    return 4;
4408  default:
4409    llvm_unreachable("unexpected type specifier");
4410  }
4411}
4412
4413/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4414/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4415/// parameters to cope with template friend declarations.
4416Decl *
4417Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4418                                 MultiTemplateParamsArg TemplateParams,
4419                                 bool IsExplicitInstantiation,
4420                                 RecordDecl *&AnonRecord) {
4421  Decl *TagD = nullptr;
4422  TagDecl *Tag = nullptr;
4423  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4424      DS.getTypeSpecType() == DeclSpec::TST_struct ||
4425      DS.getTypeSpecType() == DeclSpec::TST_interface ||
4426      DS.getTypeSpecType() == DeclSpec::TST_union ||
4427      DS.getTypeSpecType() == DeclSpec::TST_enum) {
4428    TagD = DS.getRepAsDecl();
4429
4430    if (!TagD) // We probably had an error
4431      return nullptr;
4432
4433    // Note that the above type specs guarantee that the
4434    // type rep is a Decl, whereas in many of the others
4435    // it's a Type.
4436    if (isa<TagDecl>(TagD))
4437      Tag = cast<TagDecl>(TagD);
4438    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4439      Tag = CTD->getTemplatedDecl();
4440  }
4441
4442  if (Tag) {
4443    handleTagNumbering(Tag, S);
4444    Tag->setFreeStanding();
4445    if (Tag->isInvalidDecl())
4446      return Tag;
4447  }
4448
4449  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4450    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4451    // or incomplete types shall not be restrict-qualified."
4452    if (TypeQuals & DeclSpec::TQ_restrict)
4453      Diag(DS.getRestrictSpecLoc(),
4454           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4455           << DS.getSourceRange();
4456  }
4457
4458  if (DS.isInlineSpecified())
4459    Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4460        << getLangOpts().CPlusPlus17;
4461
4462  if (DS.hasConstexprSpecifier()) {
4463    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4464    // and definitions of functions and variables.
4465    // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4466    // the declaration of a function or function template
4467    if (Tag)
4468      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4469          << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
4470          << DS.getConstexprSpecifier();
4471    else
4472      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4473          << DS.getConstexprSpecifier();
4474    // Don't emit warnings after this error.
4475    return TagD;
4476  }
4477
4478  DiagnoseFunctionSpecifiers(DS);
4479
4480  if (DS.isFriendSpecified()) {
4481    // If we're dealing with a decl but not a TagDecl, assume that
4482    // whatever routines created it handled the friendship aspect.
4483    if (TagD && !Tag)
4484      return nullptr;
4485    return ActOnFriendTypeDecl(S, DS, TemplateParams);
4486  }
4487
4488  const CXXScopeSpec &SS = DS.getTypeSpecScope();
4489  bool IsExplicitSpecialization =
4490    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4491  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4492      !IsExplicitInstantiation && !IsExplicitSpecialization &&
4493      !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4494    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4495    // nested-name-specifier unless it is an explicit instantiation
4496    // or an explicit specialization.
4497    //
4498    // FIXME: We allow class template partial specializations here too, per the
4499    // obvious intent of DR1819.
4500    //
4501    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4502    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4503        << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4504    return nullptr;
4505  }
4506
4507  // Track whether this decl-specifier declares anything.
4508  bool DeclaresAnything = true;
4509
4510  // Handle anonymous struct definitions.
4511  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4512    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4513        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4514      if (getLangOpts().CPlusPlus ||
4515          Record->getDeclContext()->isRecord()) {
4516        // If CurContext is a DeclContext that can contain statements,
4517        // RecursiveASTVisitor won't visit the decls that
4518        // BuildAnonymousStructOrUnion() will put into CurContext.
4519        // Also store them here so that they can be part of the
4520        // DeclStmt that gets created in this case.
4521        // FIXME: Also return the IndirectFieldDecls created by
4522        // BuildAnonymousStructOr union, for the same reason?
4523        if (CurContext->isFunctionOrMethod())
4524          AnonRecord = Record;
4525        return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4526                                           Context.getPrintingPolicy());
4527      }
4528
4529      DeclaresAnything = false;
4530    }
4531  }
4532
4533  // C11 6.7.2.1p2:
4534  //   A struct-declaration that does not declare an anonymous structure or
4535  //   anonymous union shall contain a struct-declarator-list.
4536  //
4537  // This rule also existed in C89 and C99; the grammar for struct-declaration
4538  // did not permit a struct-declaration without a struct-declarator-list.
4539  if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4540      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4541    // Check for Microsoft C extension: anonymous struct/union member.
4542    // Handle 2 kinds of anonymous struct/union:
4543    //   struct STRUCT;
4544    //   union UNION;
4545    // and
4546    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
4547    //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
4548    if ((Tag && Tag->getDeclName()) ||
4549        DS.getTypeSpecType() == DeclSpec::TST_typename) {
4550      RecordDecl *Record = nullptr;
4551      if (Tag)
4552        Record = dyn_cast<RecordDecl>(Tag);
4553      else if (const RecordType *RT =
4554                   DS.getRepAsType().get()->getAsStructureType())
4555        Record = RT->getDecl();
4556      else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4557        Record = UT->getDecl();
4558
4559      if (Record && getLangOpts().MicrosoftExt) {
4560        Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4561            << Record->isUnion() << DS.getSourceRange();
4562        return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4563      }
4564
4565      DeclaresAnything = false;
4566    }
4567  }
4568
4569  // Skip all the checks below if we have a type error.
4570  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4571      (TagD && TagD->isInvalidDecl()))
4572    return TagD;
4573
4574  if (getLangOpts().CPlusPlus &&
4575      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4576    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4577      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4578          !Enum->getIdentifier() && !Enum->isInvalidDecl())
4579        DeclaresAnything = false;
4580
4581  if (!DS.isMissingDeclaratorOk()) {
4582    // Customize diagnostic for a typedef missing a name.
4583    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4584      Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4585          << DS.getSourceRange();
4586    else
4587      DeclaresAnything = false;
4588  }
4589
4590  if (DS.isModulePrivateSpecified() &&
4591      Tag && Tag->getDeclContext()->isFunctionOrMethod())
4592    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4593      << Tag->getTagKind()
4594      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4595
4596  ActOnDocumentableDecl(TagD);
4597
4598  // C 6.7/2:
4599  //   A declaration [...] shall declare at least a declarator [...], a tag,
4600  //   or the members of an enumeration.
4601  // C++ [dcl.dcl]p3:
4602  //   [If there are no declarators], and except for the declaration of an
4603  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4604  //   names into the program, or shall redeclare a name introduced by a
4605  //   previous declaration.
4606  if (!DeclaresAnything) {
4607    // In C, we allow this as a (popular) extension / bug. Don't bother
4608    // producing further diagnostics for redundant qualifiers after this.
4609    Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4610    return TagD;
4611  }
4612
4613  // C++ [dcl.stc]p1:
4614  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4615  //   init-declarator-list of the declaration shall not be empty.
4616  // C++ [dcl.fct.spec]p1:
4617  //   If a cv-qualifier appears in a decl-specifier-seq, the
4618  //   init-declarator-list of the declaration shall not be empty.
4619  //
4620  // Spurious qualifiers here appear to be valid in C.
4621  unsigned DiagID = diag::warn_standalone_specifier;
4622  if (getLangOpts().CPlusPlus)
4623    DiagID = diag::ext_standalone_specifier;
4624
4625  // Note that a linkage-specification sets a storage class, but
4626  // 'extern "C" struct foo;' is actually valid and not theoretically
4627  // useless.
4628  if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4629    if (SCS == DeclSpec::SCS_mutable)
4630      // Since mutable is not a viable storage class specifier in C, there is
4631      // no reason to treat it as an extension. Instead, diagnose as an error.
4632      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4633    else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4634      Diag(DS.getStorageClassSpecLoc(), DiagID)
4635        << DeclSpec::getSpecifierName(SCS);
4636  }
4637
4638  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4639    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4640      << DeclSpec::getSpecifierName(TSCS);
4641  if (DS.getTypeQualifiers()) {
4642    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4643      Diag(DS.getConstSpecLoc(), DiagID) << "const";
4644    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4645      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4646    // Restrict is covered above.
4647    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4648      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4649    if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4650      Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4651  }
4652
4653  // Warn about ignored type attributes, for example:
4654  // __attribute__((aligned)) struct A;
4655  // Attributes should be placed after tag to apply to type declaration.
4656  if (!DS.getAttributes().empty()) {
4657    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4658    if (TypeSpecType == DeclSpec::TST_class ||
4659        TypeSpecType == DeclSpec::TST_struct ||
4660        TypeSpecType == DeclSpec::TST_interface ||
4661        TypeSpecType == DeclSpec::TST_union ||
4662        TypeSpecType == DeclSpec::TST_enum) {
4663      for (const ParsedAttr &AL : DS.getAttributes())
4664        Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4665            << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
4666    }
4667  }
4668
4669  return TagD;
4670}
4671
4672/// We are trying to inject an anonymous member into the given scope;
4673/// check if there's an existing declaration that can't be overloaded.
4674///
4675/// \return true if this is a forbidden redeclaration
4676static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4677                                         Scope *S,
4678                                         DeclContext *Owner,
4679                                         DeclarationName Name,
4680                                         SourceLocation NameLoc,
4681                                         bool IsUnion) {
4682  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4683                 Sema::ForVisibleRedeclaration);
4684  if (!SemaRef.LookupName(R, S)) return false;
4685
4686  // Pick a representative declaration.
4687  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4688  assert(PrevDecl && "Expected a non-null Decl");
4689
4690  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4691    return false;
4692
4693  SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4694    << IsUnion << Name;
4695  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4696
4697  return true;
4698}
4699
4700/// InjectAnonymousStructOrUnionMembers - Inject the members of the
4701/// anonymous struct or union AnonRecord into the owning context Owner
4702/// and scope S. This routine will be invoked just after we realize
4703/// that an unnamed union or struct is actually an anonymous union or
4704/// struct, e.g.,
4705///
4706/// @code
4707/// union {
4708///   int i;
4709///   float f;
4710/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4711///    // f into the surrounding scope.x
4712/// @endcode
4713///
4714/// This routine is recursive, injecting the names of nested anonymous
4715/// structs/unions into the owning context and scope as well.
4716static bool
4717InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4718                                    RecordDecl *AnonRecord, AccessSpecifier AS,
4719                                    SmallVectorImpl<NamedDecl *> &Chaining) {
4720  bool Invalid = false;
4721
4722  // Look every FieldDecl and IndirectFieldDecl with a name.
4723  for (auto *D : AnonRecord->decls()) {
4724    if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4725        cast<NamedDecl>(D)->getDeclName()) {
4726      ValueDecl *VD = cast<ValueDecl>(D);
4727      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4728                                       VD->getLocation(),
4729                                       AnonRecord->isUnion())) {
4730        // C++ [class.union]p2:
4731        //   The names of the members of an anonymous union shall be
4732        //   distinct from the names of any other entity in the
4733        //   scope in which the anonymous union is declared.
4734        Invalid = true;
4735      } else {
4736        // C++ [class.union]p2:
4737        //   For the purpose of name lookup, after the anonymous union
4738        //   definition, the members of the anonymous union are
4739        //   considered to have been defined in the scope in which the
4740        //   anonymous union is declared.
4741        unsigned OldChainingSize = Chaining.size();
4742        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4743          Chaining.append(IF->chain_begin(), IF->chain_end());
4744        else
4745          Chaining.push_back(VD);
4746
4747        assert(Chaining.size() >= 2);
4748        NamedDecl **NamedChain =
4749          new (SemaRef.Context)NamedDecl*[Chaining.size()];
4750        for (unsigned i = 0; i < Chaining.size(); i++)
4751          NamedChain[i] = Chaining[i];
4752
4753        IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4754            SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4755            VD->getType(), {NamedChain, Chaining.size()});
4756
4757        for (const auto *Attr : VD->attrs())
4758          IndirectField->addAttr(Attr->clone(SemaRef.Context));
4759
4760        IndirectField->setAccess(AS);
4761        IndirectField->setImplicit();
4762        SemaRef.PushOnScopeChains(IndirectField, S);
4763
4764        // That includes picking up the appropriate access specifier.
4765        if (AS != AS_none) IndirectField->setAccess(AS);
4766
4767        Chaining.resize(OldChainingSize);
4768      }
4769    }
4770  }
4771
4772  return Invalid;
4773}
4774
4775/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4776/// a VarDecl::StorageClass. Any error reporting is up to the caller:
4777/// illegal input values are mapped to SC_None.
4778static StorageClass
4779StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4780  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4781  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4782         "Parser allowed 'typedef' as storage class VarDecl.");
4783  switch (StorageClassSpec) {
4784  case DeclSpec::SCS_unspecified:    return SC_None;
4785  case DeclSpec::SCS_extern:
4786    if (DS.isExternInLinkageSpec())
4787      return SC_None;
4788    return SC_Extern;
4789  case DeclSpec::SCS_static:         return SC_Static;
4790  case DeclSpec::SCS_auto:           return SC_Auto;
4791  case DeclSpec::SCS_register:       return SC_Register;
4792  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4793    // Illegal SCSs map to None: error reporting is up to the caller.
4794  case DeclSpec::SCS_mutable:        // Fall through.
4795  case DeclSpec::SCS_typedef:        return SC_None;
4796  }
4797  llvm_unreachable("unknown storage class specifier");
4798}
4799
4800static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4801  assert(Record->hasInClassInitializer());
4802
4803  for (const auto *I : Record->decls()) {
4804    const auto *FD = dyn_cast<FieldDecl>(I);
4805    if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4806      FD = IFD->getAnonField();
4807    if (FD && FD->hasInClassInitializer())
4808      return FD->getLocation();
4809  }
4810
4811  llvm_unreachable("couldn't find in-class initializer");
4812}
4813
4814static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4815                                      SourceLocation DefaultInitLoc) {
4816  if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4817    return;
4818
4819  S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4820  S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4821}
4822
4823static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4824                                      CXXRecordDecl *AnonUnion) {
4825  if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4826    return;
4827
4828  checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4829}
4830
4831/// BuildAnonymousStructOrUnion - Handle the declaration of an
4832/// anonymous structure or union. Anonymous unions are a C++ feature
4833/// (C++ [class.union]) and a C11 feature; anonymous structures
4834/// are a C11 feature and GNU C++ extension.
4835Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4836                                        AccessSpecifier AS,
4837                                        RecordDecl *Record,
4838                                        const PrintingPolicy &Policy) {
4839  DeclContext *Owner = Record->getDeclContext();
4840
4841  // Diagnose whether this anonymous struct/union is an extension.
4842  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4843    Diag(Record->getLocation(), diag::ext_anonymous_union);
4844  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4845    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4846  else if (!Record->isUnion() && !getLangOpts().C11)
4847    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4848
4849  // C and C++ require different kinds of checks for anonymous
4850  // structs/unions.
4851  bool Invalid = false;
4852  if (getLangOpts().CPlusPlus) {
4853    const char *PrevSpec = nullptr;
4854    if (Record->isUnion()) {
4855      // C++ [class.union]p6:
4856      // C++17 [class.union.anon]p2:
4857      //   Anonymous unions declared in a named namespace or in the
4858      //   global namespace shall be declared static.
4859      unsigned DiagID;
4860      DeclContext *OwnerScope = Owner->getRedeclContext();
4861      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4862          (OwnerScope->isTranslationUnit() ||
4863           (OwnerScope->isNamespace() &&
4864            !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
4865        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4866          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4867
4868        // Recover by adding 'static'.
4869        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4870                               PrevSpec, DiagID, Policy);
4871      }
4872      // C++ [class.union]p6:
4873      //   A storage class is not allowed in a declaration of an
4874      //   anonymous union in a class scope.
4875      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4876               isa<RecordDecl>(Owner)) {
4877        Diag(DS.getStorageClassSpecLoc(),
4878             diag::err_anonymous_union_with_storage_spec)
4879          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4880
4881        // Recover by removing the storage specifier.
4882        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4883                               SourceLocation(),
4884                               PrevSpec, DiagID, Context.getPrintingPolicy());
4885      }
4886    }
4887
4888    // Ignore const/volatile/restrict qualifiers.
4889    if (DS.getTypeQualifiers()) {
4890      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4891        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4892          << Record->isUnion() << "const"
4893          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4894      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4895        Diag(DS.getVolatileSpecLoc(),
4896             diag::ext_anonymous_struct_union_qualified)
4897          << Record->isUnion() << "volatile"
4898          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4899      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4900        Diag(DS.getRestrictSpecLoc(),
4901             diag::ext_anonymous_struct_union_qualified)
4902          << Record->isUnion() << "restrict"
4903          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4904      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4905        Diag(DS.getAtomicSpecLoc(),
4906             diag::ext_anonymous_struct_union_qualified)
4907          << Record->isUnion() << "_Atomic"
4908          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4909      if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4910        Diag(DS.getUnalignedSpecLoc(),
4911             diag::ext_anonymous_struct_union_qualified)
4912          << Record->isUnion() << "__unaligned"
4913          << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
4914
4915      DS.ClearTypeQualifiers();
4916    }
4917
4918    // C++ [class.union]p2:
4919    //   The member-specification of an anonymous union shall only
4920    //   define non-static data members. [Note: nested types and
4921    //   functions cannot be declared within an anonymous union. ]
4922    for (auto *Mem : Record->decls()) {
4923      if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4924        // C++ [class.union]p3:
4925        //   An anonymous union shall not have private or protected
4926        //   members (clause 11).
4927        assert(FD->getAccess() != AS_none);
4928        if (FD->getAccess() != AS_public) {
4929          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4930            << Record->isUnion() << (FD->getAccess() == AS_protected);
4931          Invalid = true;
4932        }
4933
4934        // C++ [class.union]p1
4935        //   An object of a class with a non-trivial constructor, a non-trivial
4936        //   copy constructor, a non-trivial destructor, or a non-trivial copy
4937        //   assignment operator cannot be a member of a union, nor can an
4938        //   array of such objects.
4939        if (CheckNontrivialField(FD))
4940          Invalid = true;
4941      } else if (Mem->isImplicit()) {
4942        // Any implicit members are fine.
4943      } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4944        // This is a type that showed up in an
4945        // elaborated-type-specifier inside the anonymous struct or
4946        // union, but which actually declares a type outside of the
4947        // anonymous struct or union. It's okay.
4948      } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4949        if (!MemRecord->isAnonymousStructOrUnion() &&
4950            MemRecord->getDeclName()) {
4951          // Visual C++ allows type definition in anonymous struct or union.
4952          if (getLangOpts().MicrosoftExt)
4953            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4954              << Record->isUnion();
4955          else {
4956            // This is a nested type declaration.
4957            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4958              << Record->isUnion();
4959            Invalid = true;
4960          }
4961        } else {
4962          // This is an anonymous type definition within another anonymous type.
4963          // This is a popular extension, provided by Plan9, MSVC and GCC, but
4964          // not part of standard C++.
4965          Diag(MemRecord->getLocation(),
4966               diag::ext_anonymous_record_with_anonymous_type)
4967            << Record->isUnion();
4968        }
4969      } else if (isa<AccessSpecDecl>(Mem)) {
4970        // Any access specifier is fine.
4971      } else if (isa<StaticAssertDecl>(Mem)) {
4972        // In C++1z, static_assert declarations are also fine.
4973      } else {
4974        // We have something that isn't a non-static data
4975        // member. Complain about it.
4976        unsigned DK = diag::err_anonymous_record_bad_member;
4977        if (isa<TypeDecl>(Mem))
4978          DK = diag::err_anonymous_record_with_type;
4979        else if (isa<FunctionDecl>(Mem))
4980          DK = diag::err_anonymous_record_with_function;
4981        else if (isa<VarDecl>(Mem))
4982          DK = diag::err_anonymous_record_with_static;
4983
4984        // Visual C++ allows type definition in anonymous struct or union.
4985        if (getLangOpts().MicrosoftExt &&
4986            DK == diag::err_anonymous_record_with_type)
4987          Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4988            << Record->isUnion();
4989        else {
4990          Diag(Mem->getLocation(), DK) << Record->isUnion();
4991          Invalid = true;
4992        }
4993      }
4994    }
4995
4996    // C++11 [class.union]p8 (DR1460):
4997    //   At most one variant member of a union may have a
4998    //   brace-or-equal-initializer.
4999    if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5000        Owner->isRecord())
5001      checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5002                                cast<CXXRecordDecl>(Record));
5003  }
5004
5005  if (!Record->isUnion() && !Owner->isRecord()) {
5006    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5007      << getLangOpts().CPlusPlus;
5008    Invalid = true;
5009  }
5010
5011  // C++ [dcl.dcl]p3:
5012  //   [If there are no declarators], and except for the declaration of an
5013  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5014  //   names into the program
5015  // C++ [class.mem]p2:
5016  //   each such member-declaration shall either declare at least one member
5017  //   name of the class or declare at least one unnamed bit-field
5018  //
5019  // For C this is an error even for a named struct, and is diagnosed elsewhere.
5020  if (getLangOpts().CPlusPlus && Record->field_empty())
5021    Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5022
5023  // Mock up a declarator.
5024  Declarator Dc(DS, DeclaratorContext::MemberContext);
5025  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5026  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5027
5028  // Create a declaration for this anonymous struct/union.
5029  NamedDecl *Anon = nullptr;
5030  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5031    Anon = FieldDecl::Create(
5032        Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5033        /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5034        /*BitWidth=*/nullptr, /*Mutable=*/false,
5035        /*InitStyle=*/ICIS_NoInit);
5036    Anon->setAccess(AS);
5037    ProcessDeclAttributes(S, Anon, Dc);
5038
5039    if (getLangOpts().CPlusPlus)
5040      FieldCollector->Add(cast<FieldDecl>(Anon));
5041  } else {
5042    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5043    StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5044    if (SCSpec == DeclSpec::SCS_mutable) {
5045      // mutable can only appear on non-static class members, so it's always
5046      // an error here
5047      Diag(Record->getLocation(), diag::err_mutable_nonmember);
5048      Invalid = true;
5049      SC = SC_None;
5050    }
5051
5052    assert(DS.getAttributes().empty() && "No attribute expected");
5053    Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5054                           Record->getLocation(), /*IdentifierInfo=*/nullptr,
5055                           Context.getTypeDeclType(Record), TInfo, SC);
5056
5057    // Default-initialize the implicit variable. This initialization will be
5058    // trivial in almost all cases, except if a union member has an in-class
5059    // initializer:
5060    //   union { int n = 0; };
5061    ActOnUninitializedDecl(Anon);
5062  }
5063  Anon->setImplicit();
5064
5065  // Mark this as an anonymous struct/union type.
5066  Record->setAnonymousStructOrUnion(true);
5067
5068  // Add the anonymous struct/union object to the current
5069  // context. We'll be referencing this object when we refer to one of
5070  // its members.
5071  Owner->addDecl(Anon);
5072
5073  // Inject the members of the anonymous struct/union into the owning
5074  // context and into the identifier resolver chain for name lookup
5075  // purposes.
5076  SmallVector<NamedDecl*, 2> Chain;
5077  Chain.push_back(Anon);
5078
5079  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5080    Invalid = true;
5081
5082  if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5083    if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5084      MangleNumberingContext *MCtx;
5085      Decl *ManglingContextDecl;
5086      std::tie(MCtx, ManglingContextDecl) =
5087          getCurrentMangleNumberContext(NewVD->getDeclContext());
5088      if (MCtx) {
5089        Context.setManglingNumber(
5090            NewVD, MCtx->getManglingNumber(
5091                       NewVD, getMSManglingNumber(getLangOpts(), S)));
5092        Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5093      }
5094    }
5095  }
5096
5097  if (Invalid)
5098    Anon->setInvalidDecl();
5099
5100  return Anon;
5101}
5102
5103/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5104/// Microsoft C anonymous structure.
5105/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5106/// Example:
5107///
5108/// struct A { int a; };
5109/// struct B { struct A; int b; };
5110///
5111/// void foo() {
5112///   B var;
5113///   var.a = 3;
5114/// }
5115///
5116Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5117                                           RecordDecl *Record) {
5118  assert(Record && "expected a record!");
5119
5120  // Mock up a declarator.
5121  Declarator Dc(DS, DeclaratorContext::TypeNameContext);
5122  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5123  assert(TInfo && "couldn't build declarator info for anonymous struct");
5124
5125  auto *ParentDecl = cast<RecordDecl>(CurContext);
5126  QualType RecTy = Context.getTypeDeclType(Record);
5127
5128  // Create a declaration for this anonymous struct.
5129  NamedDecl *Anon =
5130      FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5131                        /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5132                        /*BitWidth=*/nullptr, /*Mutable=*/false,
5133                        /*InitStyle=*/ICIS_NoInit);
5134  Anon->setImplicit();
5135
5136  // Add the anonymous struct object to the current context.
5137  CurContext->addDecl(Anon);
5138
5139  // Inject the members of the anonymous struct into the current
5140  // context and into the identifier resolver chain for name lookup
5141  // purposes.
5142  SmallVector<NamedDecl*, 2> Chain;
5143  Chain.push_back(Anon);
5144
5145  RecordDecl *RecordDef = Record->getDefinition();
5146  if (RequireCompleteType(Anon->getLocation(), RecTy,
5147                          diag::err_field_incomplete) ||
5148      InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5149                                          AS_none, Chain)) {
5150    Anon->setInvalidDecl();
5151    ParentDecl->setInvalidDecl();
5152  }
5153
5154  return Anon;
5155}
5156
5157/// GetNameForDeclarator - Determine the full declaration name for the
5158/// given Declarator.
5159DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5160  return GetNameFromUnqualifiedId(D.getName());
5161}
5162
5163/// Retrieves the declaration name from a parsed unqualified-id.
5164DeclarationNameInfo
5165Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5166  DeclarationNameInfo NameInfo;
5167  NameInfo.setLoc(Name.StartLocation);
5168
5169  switch (Name.getKind()) {
5170
5171  case UnqualifiedIdKind::IK_ImplicitSelfParam:
5172  case UnqualifiedIdKind::IK_Identifier:
5173    NameInfo.setName(Name.Identifier);
5174    return NameInfo;
5175
5176  case UnqualifiedIdKind::IK_DeductionGuideName: {
5177    // C++ [temp.deduct.guide]p3:
5178    //   The simple-template-id shall name a class template specialization.
5179    //   The template-name shall be the same identifier as the template-name
5180    //   of the simple-template-id.
5181    // These together intend to imply that the template-name shall name a
5182    // class template.
5183    // FIXME: template<typename T> struct X {};
5184    //        template<typename T> using Y = X<T>;
5185    //        Y(int) -> Y<int>;
5186    //   satisfies these rules but does not name a class template.
5187    TemplateName TN = Name.TemplateName.get().get();
5188    auto *Template = TN.getAsTemplateDecl();
5189    if (!Template || !isa<ClassTemplateDecl>(Template)) {
5190      Diag(Name.StartLocation,
5191           diag::err_deduction_guide_name_not_class_template)
5192        << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5193      if (Template)
5194        Diag(Template->getLocation(), diag::note_template_decl_here);
5195      return DeclarationNameInfo();
5196    }
5197
5198    NameInfo.setName(
5199        Context.DeclarationNames.getCXXDeductionGuideName(Template));
5200    return NameInfo;
5201  }
5202
5203  case UnqualifiedIdKind::IK_OperatorFunctionId:
5204    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5205                                           Name.OperatorFunctionId.Operator));
5206    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
5207      = Name.OperatorFunctionId.SymbolLocations[0];
5208    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
5209      = Name.EndLocation.getRawEncoding();
5210    return NameInfo;
5211
5212  case UnqualifiedIdKind::IK_LiteralOperatorId:
5213    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5214                                                           Name.Identifier));
5215    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5216    return NameInfo;
5217
5218  case UnqualifiedIdKind::IK_ConversionFunctionId: {
5219    TypeSourceInfo *TInfo;
5220    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5221    if (Ty.isNull())
5222      return DeclarationNameInfo();
5223    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5224                                               Context.getCanonicalType(Ty)));
5225    NameInfo.setNamedTypeInfo(TInfo);
5226    return NameInfo;
5227  }
5228
5229  case UnqualifiedIdKind::IK_ConstructorName: {
5230    TypeSourceInfo *TInfo;
5231    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5232    if (Ty.isNull())
5233      return DeclarationNameInfo();
5234    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5235                                              Context.getCanonicalType(Ty)));
5236    NameInfo.setNamedTypeInfo(TInfo);
5237    return NameInfo;
5238  }
5239
5240  case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5241    // In well-formed code, we can only have a constructor
5242    // template-id that refers to the current context, so go there
5243    // to find the actual type being constructed.
5244    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5245    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5246      return DeclarationNameInfo();
5247
5248    // Determine the type of the class being constructed.
5249    QualType CurClassType = Context.getTypeDeclType(CurClass);
5250
5251    // FIXME: Check two things: that the template-id names the same type as
5252    // CurClassType, and that the template-id does not occur when the name
5253    // was qualified.
5254
5255    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5256                                    Context.getCanonicalType(CurClassType)));
5257    // FIXME: should we retrieve TypeSourceInfo?
5258    NameInfo.setNamedTypeInfo(nullptr);
5259    return NameInfo;
5260  }
5261
5262  case UnqualifiedIdKind::IK_DestructorName: {
5263    TypeSourceInfo *TInfo;
5264    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5265    if (Ty.isNull())
5266      return DeclarationNameInfo();
5267    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5268                                              Context.getCanonicalType(Ty)));
5269    NameInfo.setNamedTypeInfo(TInfo);
5270    return NameInfo;
5271  }
5272
5273  case UnqualifiedIdKind::IK_TemplateId: {
5274    TemplateName TName = Name.TemplateId->Template.get();
5275    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5276    return Context.getNameForTemplate(TName, TNameLoc);
5277  }
5278
5279  } // switch (Name.getKind())
5280
5281  llvm_unreachable("Unknown name kind");
5282}
5283
5284static QualType getCoreType(QualType Ty) {
5285  do {
5286    if (Ty->isPointerType() || Ty->isReferenceType())
5287      Ty = Ty->getPointeeType();
5288    else if (Ty->isArrayType())
5289      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5290    else
5291      return Ty.withoutLocalFastQualifiers();
5292  } while (true);
5293}
5294
5295/// hasSimilarParameters - Determine whether the C++ functions Declaration
5296/// and Definition have "nearly" matching parameters. This heuristic is
5297/// used to improve diagnostics in the case where an out-of-line function
5298/// definition doesn't match any declaration within the class or namespace.
5299/// Also sets Params to the list of indices to the parameters that differ
5300/// between the declaration and the definition. If hasSimilarParameters
5301/// returns true and Params is empty, then all of the parameters match.
5302static bool hasSimilarParameters(ASTContext &Context,
5303                                     FunctionDecl *Declaration,
5304                                     FunctionDecl *Definition,
5305                                     SmallVectorImpl<unsigned> &Params) {
5306  Params.clear();
5307  if (Declaration->param_size() != Definition->param_size())
5308    return false;
5309  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5310    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5311    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5312
5313    // The parameter types are identical
5314    if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5315      continue;
5316
5317    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5318    QualType DefParamBaseTy = getCoreType(DefParamTy);
5319    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5320    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5321
5322    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5323        (DeclTyName && DeclTyName == DefTyName))
5324      Params.push_back(Idx);
5325    else  // The two parameters aren't even close
5326      return false;
5327  }
5328
5329  return true;
5330}
5331
5332/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5333/// declarator needs to be rebuilt in the current instantiation.
5334/// Any bits of declarator which appear before the name are valid for
5335/// consideration here.  That's specifically the type in the decl spec
5336/// and the base type in any member-pointer chunks.
5337static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5338                                                    DeclarationName Name) {
5339  // The types we specifically need to rebuild are:
5340  //   - typenames, typeofs, and decltypes
5341  //   - types which will become injected class names
5342  // Of course, we also need to rebuild any type referencing such a
5343  // type.  It's safest to just say "dependent", but we call out a
5344  // few cases here.
5345
5346  DeclSpec &DS = D.getMutableDeclSpec();
5347  switch (DS.getTypeSpecType()) {
5348  case DeclSpec::TST_typename:
5349  case DeclSpec::TST_typeofType:
5350  case DeclSpec::TST_underlyingType:
5351  case DeclSpec::TST_atomic: {
5352    // Grab the type from the parser.
5353    TypeSourceInfo *TSI = nullptr;
5354    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5355    if (T.isNull() || !T->isDependentType()) break;
5356
5357    // Make sure there's a type source info.  This isn't really much
5358    // of a waste; most dependent types should have type source info
5359    // attached already.
5360    if (!TSI)
5361      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5362
5363    // Rebuild the type in the current instantiation.
5364    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5365    if (!TSI) return true;
5366
5367    // Store the new type back in the decl spec.
5368    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5369    DS.UpdateTypeRep(LocType);
5370    break;
5371  }
5372
5373  case DeclSpec::TST_decltype:
5374  case DeclSpec::TST_typeofExpr: {
5375    Expr *E = DS.getRepAsExpr();
5376    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5377    if (Result.isInvalid()) return true;
5378    DS.UpdateExprRep(Result.get());
5379    break;
5380  }
5381
5382  default:
5383    // Nothing to do for these decl specs.
5384    break;
5385  }
5386
5387  // It doesn't matter what order we do this in.
5388  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5389    DeclaratorChunk &Chunk = D.getTypeObject(I);
5390
5391    // The only type information in the declarator which can come
5392    // before the declaration name is the base type of a member
5393    // pointer.
5394    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5395      continue;
5396
5397    // Rebuild the scope specifier in-place.
5398    CXXScopeSpec &SS = Chunk.Mem.Scope();
5399    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5400      return true;
5401  }
5402
5403  return false;
5404}
5405
5406Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5407  D.setFunctionDefinitionKind(FDK_Declaration);
5408  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5409
5410  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5411      Dcl && Dcl->getDeclContext()->isFileContext())
5412    Dcl->setTopLevelDeclInObjCContainer();
5413
5414  if (getLangOpts().OpenCL)
5415    setCurrentOpenCLExtensionForDecl(Dcl);
5416
5417  return Dcl;
5418}
5419
5420/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5421///   If T is the name of a class, then each of the following shall have a
5422///   name different from T:
5423///     - every static data member of class T;
5424///     - every member function of class T
5425///     - every member of class T that is itself a type;
5426/// \returns true if the declaration name violates these rules.
5427bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5428                                   DeclarationNameInfo NameInfo) {
5429  DeclarationName Name = NameInfo.getName();
5430
5431  CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5432  while (Record && Record->isAnonymousStructOrUnion())
5433    Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5434  if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5435    Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5436    return true;
5437  }
5438
5439  return false;
5440}
5441
5442/// Diagnose a declaration whose declarator-id has the given
5443/// nested-name-specifier.
5444///
5445/// \param SS The nested-name-specifier of the declarator-id.
5446///
5447/// \param DC The declaration context to which the nested-name-specifier
5448/// resolves.
5449///
5450/// \param Name The name of the entity being declared.
5451///
5452/// \param Loc The location of the name of the entity being declared.
5453///
5454/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5455/// we're declaring an explicit / partial specialization / instantiation.
5456///
5457/// \returns true if we cannot safely recover from this error, false otherwise.
5458bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5459                                        DeclarationName Name,
5460                                        SourceLocation Loc, bool IsTemplateId) {
5461  DeclContext *Cur = CurContext;
5462  while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5463    Cur = Cur->getParent();
5464
5465  // If the user provided a superfluous scope specifier that refers back to the
5466  // class in which the entity is already declared, diagnose and ignore it.
5467  //
5468  // class X {
5469  //   void X::f();
5470  // };
5471  //
5472  // Note, it was once ill-formed to give redundant qualification in all
5473  // contexts, but that rule was removed by DR482.
5474  if (Cur->Equals(DC)) {
5475    if (Cur->isRecord()) {
5476      Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5477                                      : diag::err_member_extra_qualification)
5478        << Name << FixItHint::CreateRemoval(SS.getRange());
5479      SS.clear();
5480    } else {
5481      Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5482    }
5483    return false;
5484  }
5485
5486  // Check whether the qualifying scope encloses the scope of the original
5487  // declaration. For a template-id, we perform the checks in
5488  // CheckTemplateSpecializationScope.
5489  if (!Cur->Encloses(DC) && !IsTemplateId) {
5490    if (Cur->isRecord())
5491      Diag(Loc, diag::err_member_qualification)
5492        << Name << SS.getRange();
5493    else if (isa<TranslationUnitDecl>(DC))
5494      Diag(Loc, diag::err_invalid_declarator_global_scope)
5495        << Name << SS.getRange();
5496    else if (isa<FunctionDecl>(Cur))
5497      Diag(Loc, diag::err_invalid_declarator_in_function)
5498        << Name << SS.getRange();
5499    else if (isa<BlockDecl>(Cur))
5500      Diag(Loc, diag::err_invalid_declarator_in_block)
5501        << Name << SS.getRange();
5502    else
5503      Diag(Loc, diag::err_invalid_declarator_scope)
5504      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5505
5506    return true;
5507  }
5508
5509  if (Cur->isRecord()) {
5510    // Cannot qualify members within a class.
5511    Diag(Loc, diag::err_member_qualification)
5512      << Name << SS.getRange();
5513    SS.clear();
5514
5515    // C++ constructors and destructors with incorrect scopes can break
5516    // our AST invariants by having the wrong underlying types. If
5517    // that's the case, then drop this declaration entirely.
5518    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5519         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5520        !Context.hasSameType(Name.getCXXNameType(),
5521                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5522      return true;
5523
5524    return false;
5525  }
5526
5527  // C++11 [dcl.meaning]p1:
5528  //   [...] "The nested-name-specifier of the qualified declarator-id shall
5529  //   not begin with a decltype-specifer"
5530  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5531  while (SpecLoc.getPrefix())
5532    SpecLoc = SpecLoc.getPrefix();
5533  if (dyn_cast_or_null<DecltypeType>(
5534        SpecLoc.getNestedNameSpecifier()->getAsType()))
5535    Diag(Loc, diag::err_decltype_in_declarator)
5536      << SpecLoc.getTypeLoc().getSourceRange();
5537
5538  return false;
5539}
5540
5541NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5542                                  MultiTemplateParamsArg TemplateParamLists) {
5543  // TODO: consider using NameInfo for diagnostic.
5544  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5545  DeclarationName Name = NameInfo.getName();
5546
5547  // All of these full declarators require an identifier.  If it doesn't have
5548  // one, the ParsedFreeStandingDeclSpec action should be used.
5549  if (D.isDecompositionDeclarator()) {
5550    return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5551  } else if (!Name) {
5552    if (!D.isInvalidType())  // Reject this if we think it is valid.
5553      Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5554          << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5555    return nullptr;
5556  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5557    return nullptr;
5558
5559  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5560  // we find one that is.
5561  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5562         (S->getFlags() & Scope::TemplateParamScope) != 0)
5563    S = S->getParent();
5564
5565  DeclContext *DC = CurContext;
5566  if (D.getCXXScopeSpec().isInvalid())
5567    D.setInvalidType();
5568  else if (D.getCXXScopeSpec().isSet()) {
5569    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5570                                        UPPC_DeclarationQualifier))
5571      return nullptr;
5572
5573    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5574    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5575    if (!DC || isa<EnumDecl>(DC)) {
5576      // If we could not compute the declaration context, it's because the
5577      // declaration context is dependent but does not refer to a class,
5578      // class template, or class template partial specialization. Complain
5579      // and return early, to avoid the coming semantic disaster.
5580      Diag(D.getIdentifierLoc(),
5581           diag::err_template_qualified_declarator_no_match)
5582        << D.getCXXScopeSpec().getScopeRep()
5583        << D.getCXXScopeSpec().getRange();
5584      return nullptr;
5585    }
5586    bool IsDependentContext = DC->isDependentContext();
5587
5588    if (!IsDependentContext &&
5589        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5590      return nullptr;
5591
5592    // If a class is incomplete, do not parse entities inside it.
5593    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5594      Diag(D.getIdentifierLoc(),
5595           diag::err_member_def_undefined_record)
5596        << Name << DC << D.getCXXScopeSpec().getRange();
5597      return nullptr;
5598    }
5599    if (!D.getDeclSpec().isFriendSpecified()) {
5600      if (diagnoseQualifiedDeclaration(
5601              D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5602              D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5603        if (DC->isRecord())
5604          return nullptr;
5605
5606        D.setInvalidType();
5607      }
5608    }
5609
5610    // Check whether we need to rebuild the type of the given
5611    // declaration in the current instantiation.
5612    if (EnteringContext && IsDependentContext &&
5613        TemplateParamLists.size() != 0) {
5614      ContextRAII SavedContext(*this, DC);
5615      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5616        D.setInvalidType();
5617    }
5618  }
5619
5620  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5621  QualType R = TInfo->getType();
5622
5623  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5624                                      UPPC_DeclarationType))
5625    D.setInvalidType();
5626
5627  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5628                        forRedeclarationInCurContext());
5629
5630  // See if this is a redefinition of a variable in the same scope.
5631  if (!D.getCXXScopeSpec().isSet()) {
5632    bool IsLinkageLookup = false;
5633    bool CreateBuiltins = false;
5634
5635    // If the declaration we're planning to build will be a function
5636    // or object with linkage, then look for another declaration with
5637    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5638    //
5639    // If the declaration we're planning to build will be declared with
5640    // external linkage in the translation unit, create any builtin with
5641    // the same name.
5642    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5643      /* Do nothing*/;
5644    else if (CurContext->isFunctionOrMethod() &&
5645             (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5646              R->isFunctionType())) {
5647      IsLinkageLookup = true;
5648      CreateBuiltins =
5649          CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5650    } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5651               D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5652      CreateBuiltins = true;
5653
5654    if (IsLinkageLookup) {
5655      Previous.clear(LookupRedeclarationWithLinkage);
5656      Previous.setRedeclarationKind(ForExternalRedeclaration);
5657    }
5658
5659    LookupName(Previous, S, CreateBuiltins);
5660  } else { // Something like "int foo::x;"
5661    LookupQualifiedName(Previous, DC);
5662
5663    // C++ [dcl.meaning]p1:
5664    //   When the declarator-id is qualified, the declaration shall refer to a
5665    //  previously declared member of the class or namespace to which the
5666    //  qualifier refers (or, in the case of a namespace, of an element of the
5667    //  inline namespace set of that namespace (7.3.1)) or to a specialization
5668    //  thereof; [...]
5669    //
5670    // Note that we already checked the context above, and that we do not have
5671    // enough information to make sure that Previous contains the declaration
5672    // we want to match. For example, given:
5673    //
5674    //   class X {
5675    //     void f();
5676    //     void f(float);
5677    //   };
5678    //
5679    //   void X::f(int) { } // ill-formed
5680    //
5681    // In this case, Previous will point to the overload set
5682    // containing the two f's declared in X, but neither of them
5683    // matches.
5684
5685    // C++ [dcl.meaning]p1:
5686    //   [...] the member shall not merely have been introduced by a
5687    //   using-declaration in the scope of the class or namespace nominated by
5688    //   the nested-name-specifier of the declarator-id.
5689    RemoveUsingDecls(Previous);
5690  }
5691
5692  if (Previous.isSingleResult() &&
5693      Previous.getFoundDecl()->isTemplateParameter()) {
5694    // Maybe we will complain about the shadowed template parameter.
5695    if (!D.isInvalidType())
5696      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5697                                      Previous.getFoundDecl());
5698
5699    // Just pretend that we didn't see the previous declaration.
5700    Previous.clear();
5701  }
5702
5703  if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5704    // Forget that the previous declaration is the injected-class-name.
5705    Previous.clear();
5706
5707  // In C++, the previous declaration we find might be a tag type
5708  // (class or enum). In this case, the new declaration will hide the
5709  // tag type. Note that this applies to functions, function templates, and
5710  // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5711  if (Previous.isSingleTagDecl() &&
5712      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5713      (TemplateParamLists.size() == 0 || R->isFunctionType()))
5714    Previous.clear();
5715
5716  // Check that there are no default arguments other than in the parameters
5717  // of a function declaration (C++ only).
5718  if (getLangOpts().CPlusPlus)
5719    CheckExtraCXXDefaultArguments(D);
5720
5721  NamedDecl *New;
5722
5723  bool AddToScope = true;
5724  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5725    if (TemplateParamLists.size()) {
5726      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5727      return nullptr;
5728    }
5729
5730    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5731  } else if (R->isFunctionType()) {
5732    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5733                                  TemplateParamLists,
5734                                  AddToScope);
5735  } else {
5736    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5737                                  AddToScope);
5738  }
5739
5740  if (!New)
5741    return nullptr;
5742
5743  // If this has an identifier and is not a function template specialization,
5744  // add it to the scope stack.
5745  if (New->getDeclName() && AddToScope)
5746    PushOnScopeChains(New, S);
5747
5748  if (isInOpenMPDeclareTargetContext())
5749    checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5750
5751  return New;
5752}
5753
5754/// Helper method to turn variable array types into constant array
5755/// types in certain situations which would otherwise be errors (for
5756/// GCC compatibility).
5757static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5758                                                    ASTContext &Context,
5759                                                    bool &SizeIsNegative,
5760                                                    llvm::APSInt &Oversized) {
5761  // This method tries to turn a variable array into a constant
5762  // array even when the size isn't an ICE.  This is necessary
5763  // for compatibility with code that depends on gcc's buggy
5764  // constant expression folding, like struct {char x[(int)(char*)2];}
5765  SizeIsNegative = false;
5766  Oversized = 0;
5767
5768  if (T->isDependentType())
5769    return QualType();
5770
5771  QualifierCollector Qs;
5772  const Type *Ty = Qs.strip(T);
5773
5774  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5775    QualType Pointee = PTy->getPointeeType();
5776    QualType FixedType =
5777        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5778                                            Oversized);
5779    if (FixedType.isNull()) return FixedType;
5780    FixedType = Context.getPointerType(FixedType);
5781    return Qs.apply(Context, FixedType);
5782  }
5783  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5784    QualType Inner = PTy->getInnerType();
5785    QualType FixedType =
5786        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5787                                            Oversized);
5788    if (FixedType.isNull()) return FixedType;
5789    FixedType = Context.getParenType(FixedType);
5790    return Qs.apply(Context, FixedType);
5791  }
5792
5793  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5794  if (!VLATy)
5795    return QualType();
5796  // FIXME: We should probably handle this case
5797  if (VLATy->getElementType()->isVariablyModifiedType())
5798    return QualType();
5799
5800  Expr::EvalResult Result;
5801  if (!VLATy->getSizeExpr() ||
5802      !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5803    return QualType();
5804
5805  llvm::APSInt Res = Result.Val.getInt();
5806
5807  // Check whether the array size is negative.
5808  if (Res.isSigned() && Res.isNegative()) {
5809    SizeIsNegative = true;
5810    return QualType();
5811  }
5812
5813  // Check whether the array is too large to be addressed.
5814  unsigned ActiveSizeBits
5815    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5816                                              Res);
5817  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5818    Oversized = Res;
5819    return QualType();
5820  }
5821
5822  return Context.getConstantArrayType(
5823      VLATy->getElementType(), Res, VLATy->getSizeExpr(), ArrayType::Normal, 0);
5824}
5825
5826static void
5827FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5828  SrcTL = SrcTL.getUnqualifiedLoc();
5829  DstTL = DstTL.getUnqualifiedLoc();
5830  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5831    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5832    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5833                                      DstPTL.getPointeeLoc());
5834    DstPTL.setStarLoc(SrcPTL.getStarLoc());
5835    return;
5836  }
5837  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5838    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5839    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5840                                      DstPTL.getInnerLoc());
5841    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5842    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5843    return;
5844  }
5845  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5846  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5847  TypeLoc SrcElemTL = SrcATL.getElementLoc();
5848  TypeLoc DstElemTL = DstATL.getElementLoc();
5849  DstElemTL.initializeFullCopy(SrcElemTL);
5850  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5851  DstATL.setSizeExpr(SrcATL.getSizeExpr());
5852  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5853}
5854
5855/// Helper method to turn variable array types into constant array
5856/// types in certain situations which would otherwise be errors (for
5857/// GCC compatibility).
5858static TypeSourceInfo*
5859TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5860                                              ASTContext &Context,
5861                                              bool &SizeIsNegative,
5862                                              llvm::APSInt &Oversized) {
5863  QualType FixedTy
5864    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5865                                          SizeIsNegative, Oversized);
5866  if (FixedTy.isNull())
5867    return nullptr;
5868  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5869  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5870                                    FixedTInfo->getTypeLoc());
5871  return FixedTInfo;
5872}
5873
5874/// Register the given locally-scoped extern "C" declaration so
5875/// that it can be found later for redeclarations. We include any extern "C"
5876/// declaration that is not visible in the translation unit here, not just
5877/// function-scope declarations.
5878void
5879Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5880  if (!getLangOpts().CPlusPlus &&
5881      ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5882    // Don't need to track declarations in the TU in C.
5883    return;
5884
5885  // Note that we have a locally-scoped external with this name.
5886  Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5887}
5888
5889NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5890  // FIXME: We can have multiple results via __attribute__((overloadable)).
5891  auto Result = Context.getExternCContextDecl()->lookup(Name);
5892  return Result.empty() ? nullptr : *Result.begin();
5893}
5894
5895/// Diagnose function specifiers on a declaration of an identifier that
5896/// does not identify a function.
5897void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5898  // FIXME: We should probably indicate the identifier in question to avoid
5899  // confusion for constructs like "virtual int a(), b;"
5900  if (DS.isVirtualSpecified())
5901    Diag(DS.getVirtualSpecLoc(),
5902         diag::err_virtual_non_function);
5903
5904  if (DS.hasExplicitSpecifier())
5905    Diag(DS.getExplicitSpecLoc(),
5906         diag::err_explicit_non_function);
5907
5908  if (DS.isNoreturnSpecified())
5909    Diag(DS.getNoreturnSpecLoc(),
5910         diag::err_noreturn_non_function);
5911}
5912
5913NamedDecl*
5914Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5915                             TypeSourceInfo *TInfo, LookupResult &Previous) {
5916  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5917  if (D.getCXXScopeSpec().isSet()) {
5918    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5919      << D.getCXXScopeSpec().getRange();
5920    D.setInvalidType();
5921    // Pretend we didn't see the scope specifier.
5922    DC = CurContext;
5923    Previous.clear();
5924  }
5925
5926  DiagnoseFunctionSpecifiers(D.getDeclSpec());
5927
5928  if (D.getDeclSpec().isInlineSpecified())
5929    Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5930        << getLangOpts().CPlusPlus17;
5931  if (D.getDeclSpec().hasConstexprSpecifier())
5932    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5933        << 1 << D.getDeclSpec().getConstexprSpecifier();
5934
5935  if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
5936    if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
5937      Diag(D.getName().StartLocation,
5938           diag::err_deduction_guide_invalid_specifier)
5939          << "typedef";
5940    else
5941      Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5942          << D.getName().getSourceRange();
5943    return nullptr;
5944  }
5945
5946  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5947  if (!NewTD) return nullptr;
5948
5949  // Handle attributes prior to checking for duplicates in MergeVarDecl
5950  ProcessDeclAttributes(S, NewTD, D);
5951
5952  CheckTypedefForVariablyModifiedType(S, NewTD);
5953
5954  bool Redeclaration = D.isRedeclaration();
5955  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5956  D.setRedeclaration(Redeclaration);
5957  return ND;
5958}
5959
5960void
5961Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5962  // C99 6.7.7p2: If a typedef name specifies a variably modified type
5963  // then it shall have block scope.
5964  // Note that variably modified types must be fixed before merging the decl so
5965  // that redeclarations will match.
5966  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5967  QualType T = TInfo->getType();
5968  if (T->isVariablyModifiedType()) {
5969    setFunctionHasBranchProtectedScope();
5970
5971    if (S->getFnParent() == nullptr) {
5972      bool SizeIsNegative;
5973      llvm::APSInt Oversized;
5974      TypeSourceInfo *FixedTInfo =
5975        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5976                                                      SizeIsNegative,
5977                                                      Oversized);
5978      if (FixedTInfo) {
5979        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5980        NewTD->setTypeSourceInfo(FixedTInfo);
5981      } else {
5982        if (SizeIsNegative)
5983          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5984        else if (T->isVariableArrayType())
5985          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5986        else if (Oversized.getBoolValue())
5987          Diag(NewTD->getLocation(), diag::err_array_too_large)
5988            << Oversized.toString(10);
5989        else
5990          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5991        NewTD->setInvalidDecl();
5992      }
5993    }
5994  }
5995}
5996
5997/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5998/// declares a typedef-name, either using the 'typedef' type specifier or via
5999/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6000NamedDecl*
6001Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6002                           LookupResult &Previous, bool &Redeclaration) {
6003
6004  // Find the shadowed declaration before filtering for scope.
6005  NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6006
6007  // Merge the decl with the existing one if appropriate. If the decl is
6008  // in an outer scope, it isn't the same thing.
6009  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6010                       /*AllowInlineNamespace*/false);
6011  filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6012  if (!Previous.empty()) {
6013    Redeclaration = true;
6014    MergeTypedefNameDecl(S, NewTD, Previous);
6015  } else {
6016    inferGslPointerAttribute(NewTD);
6017  }
6018
6019  if (ShadowedDecl && !Redeclaration)
6020    CheckShadow(NewTD, ShadowedDecl, Previous);
6021
6022  // If this is the C FILE type, notify the AST context.
6023  if (IdentifierInfo *II = NewTD->getIdentifier())
6024    if (!NewTD->isInvalidDecl() &&
6025        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6026      if (II->isStr("FILE"))
6027        Context.setFILEDecl(NewTD);
6028      else if (II->isStr("jmp_buf"))
6029        Context.setjmp_bufDecl(NewTD);
6030      else if (II->isStr("sigjmp_buf"))
6031        Context.setsigjmp_bufDecl(NewTD);
6032      else if (II->isStr("ucontext_t"))
6033        Context.setucontext_tDecl(NewTD);
6034    }
6035
6036  return NewTD;
6037}
6038
6039/// Determines whether the given declaration is an out-of-scope
6040/// previous declaration.
6041///
6042/// This routine should be invoked when name lookup has found a
6043/// previous declaration (PrevDecl) that is not in the scope where a
6044/// new declaration by the same name is being introduced. If the new
6045/// declaration occurs in a local scope, previous declarations with
6046/// linkage may still be considered previous declarations (C99
6047/// 6.2.2p4-5, C++ [basic.link]p6).
6048///
6049/// \param PrevDecl the previous declaration found by name
6050/// lookup
6051///
6052/// \param DC the context in which the new declaration is being
6053/// declared.
6054///
6055/// \returns true if PrevDecl is an out-of-scope previous declaration
6056/// for a new delcaration with the same name.
6057static bool
6058isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6059                                ASTContext &Context) {
6060  if (!PrevDecl)
6061    return false;
6062
6063  if (!PrevDecl->hasLinkage())
6064    return false;
6065
6066  if (Context.getLangOpts().CPlusPlus) {
6067    // C++ [basic.link]p6:
6068    //   If there is a visible declaration of an entity with linkage
6069    //   having the same name and type, ignoring entities declared
6070    //   outside the innermost enclosing namespace scope, the block
6071    //   scope declaration declares that same entity and receives the
6072    //   linkage of the previous declaration.
6073    DeclContext *OuterContext = DC->getRedeclContext();
6074    if (!OuterContext->isFunctionOrMethod())
6075      // This rule only applies to block-scope declarations.
6076      return false;
6077
6078    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6079    if (PrevOuterContext->isRecord())
6080      // We found a member function: ignore it.
6081      return false;
6082
6083    // Find the innermost enclosing namespace for the new and
6084    // previous declarations.
6085    OuterContext = OuterContext->getEnclosingNamespaceContext();
6086    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6087
6088    // The previous declaration is in a different namespace, so it
6089    // isn't the same function.
6090    if (!OuterContext->Equals(PrevOuterContext))
6091      return false;
6092  }
6093
6094  return true;
6095}
6096
6097static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6098  CXXScopeSpec &SS = D.getCXXScopeSpec();
6099  if (!SS.isSet()) return;
6100  DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6101}
6102
6103bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6104  QualType type = decl->getType();
6105  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6106  if (lifetime == Qualifiers::OCL_Autoreleasing) {
6107    // Various kinds of declaration aren't allowed to be __autoreleasing.
6108    unsigned kind = -1U;
6109    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6110      if (var->hasAttr<BlocksAttr>())
6111        kind = 0; // __block
6112      else if (!var->hasLocalStorage())
6113        kind = 1; // global
6114    } else if (isa<ObjCIvarDecl>(decl)) {
6115      kind = 3; // ivar
6116    } else if (isa<FieldDecl>(decl)) {
6117      kind = 2; // field
6118    }
6119
6120    if (kind != -1U) {
6121      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6122        << kind;
6123    }
6124  } else if (lifetime == Qualifiers::OCL_None) {
6125    // Try to infer lifetime.
6126    if (!type->isObjCLifetimeType())
6127      return false;
6128
6129    lifetime = type->getObjCARCImplicitLifetime();
6130    type = Context.getLifetimeQualifiedType(type, lifetime);
6131    decl->setType(type);
6132  }
6133
6134  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6135    // Thread-local variables cannot have lifetime.
6136    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6137        var->getTLSKind()) {
6138      Diag(var->getLocation(), diag::err_arc_thread_ownership)
6139        << var->getType();
6140      return true;
6141    }
6142  }
6143
6144  return false;
6145}
6146
6147void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6148  if (Decl->getType().hasAddressSpace())
6149    return;
6150  if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6151    QualType Type = Var->getType();
6152    if (Type->isSamplerT() || Type->isVoidType())
6153      return;
6154    LangAS ImplAS = LangAS::opencl_private;
6155    if ((getLangOpts().OpenCLCPlusPlus || getLangOpts().OpenCLVersion >= 200) &&
6156        Var->hasGlobalStorage())
6157      ImplAS = LangAS::opencl_global;
6158    // If the original type from a decayed type is an array type and that array
6159    // type has no address space yet, deduce it now.
6160    if (auto DT = dyn_cast<DecayedType>(Type)) {
6161      auto OrigTy = DT->getOriginalType();
6162      if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6163        // Add the address space to the original array type and then propagate
6164        // that to the element type through `getAsArrayType`.
6165        OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6166        OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6167        // Re-generate the decayed type.
6168        Type = Context.getDecayedType(OrigTy);
6169      }
6170    }
6171    Type = Context.getAddrSpaceQualType(Type, ImplAS);
6172    // Apply any qualifiers (including address space) from the array type to
6173    // the element type. This implements C99 6.7.3p8: "If the specification of
6174    // an array type includes any type qualifiers, the element type is so
6175    // qualified, not the array type."
6176    if (Type->isArrayType())
6177      Type = QualType(Context.getAsArrayType(Type), 0);
6178    Decl->setType(Type);
6179  }
6180}
6181
6182static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
6183  // Ensure that an auto decl is deduced otherwise the checks below might cache
6184  // the wrong linkage.
6185  assert(S.ParsingInitForAutoVars.count(&ND) == 0);
6186
6187  // 'weak' only applies to declarations with external linkage.
6188  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6189    if (!ND.isExternallyVisible()) {
6190      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6191      ND.dropAttr<WeakAttr>();
6192    }
6193  }
6194  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6195    if (ND.isExternallyVisible()) {
6196      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6197      ND.dropAttr<WeakRefAttr>();
6198      ND.dropAttr<AliasAttr>();
6199    }
6200  }
6201
6202  if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6203    if (VD->hasInit()) {
6204      if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6205        assert(VD->isThisDeclarationADefinition() &&
6206               !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
6207        S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6208        VD->dropAttr<AliasAttr>();
6209      }
6210    }
6211  }
6212
6213  // 'selectany' only applies to externally visible variable declarations.
6214  // It does not apply to functions.
6215  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6216    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6217      S.Diag(Attr->getLocation(),
6218             diag::err_attribute_selectany_non_extern_data);
6219      ND.dropAttr<SelectAnyAttr>();
6220    }
6221  }
6222
6223  if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6224    auto *VD = dyn_cast<VarDecl>(&ND);
6225    bool IsAnonymousNS = false;
6226    bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6227    if (VD) {
6228      const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6229      while (NS && !IsAnonymousNS) {
6230        IsAnonymousNS = NS->isAnonymousNamespace();
6231        NS = dyn_cast<NamespaceDecl>(NS->getParent());
6232      }
6233    }
6234    // dll attributes require external linkage. Static locals may have external
6235    // linkage but still cannot be explicitly imported or exported.
6236    // In Microsoft mode, a variable defined in anonymous namespace must have
6237    // external linkage in order to be exported.
6238    bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6239    if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6240        (!AnonNSInMicrosoftMode &&
6241         (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6242      S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6243        << &ND << Attr;
6244      ND.setInvalidDecl();
6245    }
6246  }
6247
6248  // Virtual functions cannot be marked as 'notail'.
6249  if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
6250    if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
6251      if (MD->isVirtual()) {
6252        S.Diag(ND.getLocation(),
6253               diag::err_invalid_attribute_on_virtual_function)
6254            << Attr;
6255        ND.dropAttr<NotTailCalledAttr>();
6256      }
6257
6258  // Check the attributes on the function type, if any.
6259  if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6260    // Don't declare this variable in the second operand of the for-statement;
6261    // GCC miscompiles that by ending its lifetime before evaluating the
6262    // third operand. See gcc.gnu.org/PR86769.
6263    AttributedTypeLoc ATL;
6264    for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6265         (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6266         TL = ATL.getModifiedLoc()) {
6267      // The [[lifetimebound]] attribute can be applied to the implicit object
6268      // parameter of a non-static member function (other than a ctor or dtor)
6269      // by applying it to the function type.
6270      if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6271        const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6272        if (!MD || MD->isStatic()) {
6273          S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6274              << !MD << A->getRange();
6275        } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6276          S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6277              << isa<CXXDestructorDecl>(MD) << A->getRange();
6278        }
6279      }
6280    }
6281  }
6282}
6283
6284static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6285                                           NamedDecl *NewDecl,
6286                                           bool IsSpecialization,
6287                                           bool IsDefinition) {
6288  if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6289    return;
6290
6291  bool IsTemplate = false;
6292  if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6293    OldDecl = OldTD->getTemplatedDecl();
6294    IsTemplate = true;
6295    if (!IsSpecialization)
6296      IsDefinition = false;
6297  }
6298  if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6299    NewDecl = NewTD->getTemplatedDecl();
6300    IsTemplate = true;
6301  }
6302
6303  if (!OldDecl || !NewDecl)
6304    return;
6305
6306  const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6307  const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6308  const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6309  const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6310
6311  // dllimport and dllexport are inheritable attributes so we have to exclude
6312  // inherited attribute instances.
6313  bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6314                    (NewExportAttr && !NewExportAttr->isInherited());
6315
6316  // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6317  // the only exception being explicit specializations.
6318  // Implicitly generated declarations are also excluded for now because there
6319  // is no other way to switch these to use dllimport or dllexport.
6320  bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6321
6322  if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6323    // Allow with a warning for free functions and global variables.
6324    bool JustWarn = false;
6325    if (!OldDecl->isCXXClassMember()) {
6326      auto *VD = dyn_cast<VarDecl>(OldDecl);
6327      if (VD && !VD->getDescribedVarTemplate())
6328        JustWarn = true;
6329      auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6330      if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6331        JustWarn = true;
6332    }
6333
6334    // We cannot change a declaration that's been used because IR has already
6335    // been emitted. Dllimported functions will still work though (modulo
6336    // address equality) as they can use the thunk.
6337    if (OldDecl->isUsed())
6338      if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6339        JustWarn = false;
6340
6341    unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6342                               : diag::err_attribute_dll_redeclaration;
6343    S.Diag(NewDecl->getLocation(), DiagID)
6344        << NewDecl
6345        << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6346    S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6347    if (!JustWarn) {
6348      NewDecl->setInvalidDecl();
6349      return;
6350    }
6351  }
6352
6353  // A redeclaration is not allowed to drop a dllimport attribute, the only
6354  // exceptions being inline function definitions (except for function
6355  // templates), local extern declarations, qualified friend declarations or
6356  // special MSVC extension: in the last case, the declaration is treated as if
6357  // it were marked dllexport.
6358  bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6359  bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6360  if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6361    // Ignore static data because out-of-line definitions are diagnosed
6362    // separately.
6363    IsStaticDataMember = VD->isStaticDataMember();
6364    IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6365                   VarDecl::DeclarationOnly;
6366  } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6367    IsInline = FD->isInlined();
6368    IsQualifiedFriend = FD->getQualifier() &&
6369                        FD->getFriendObjectKind() == Decl::FOK_Declared;
6370  }
6371
6372  if (OldImportAttr && !HasNewAttr &&
6373      (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
6374      !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6375    if (IsMicrosoft && IsDefinition) {
6376      S.Diag(NewDecl->getLocation(),
6377             diag::warn_redeclaration_without_import_attribute)
6378          << NewDecl;
6379      S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6380      NewDecl->dropAttr<DLLImportAttr>();
6381      NewDecl->addAttr(
6382          DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
6383    } else {
6384      S.Diag(NewDecl->getLocation(),
6385             diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6386          << NewDecl << OldImportAttr;
6387      S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6388      S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6389      OldDecl->dropAttr<DLLImportAttr>();
6390      NewDecl->dropAttr<DLLImportAttr>();
6391    }
6392  } else if (IsInline && OldImportAttr && !IsMicrosoft) {
6393    // In MinGW, seeing a function declared inline drops the dllimport
6394    // attribute.
6395    OldDecl->dropAttr<DLLImportAttr>();
6396    NewDecl->dropAttr<DLLImportAttr>();
6397    S.Diag(NewDecl->getLocation(),
6398           diag::warn_dllimport_dropped_from_inline_function)
6399        << NewDecl << OldImportAttr;
6400  }
6401
6402  // A specialization of a class template member function is processed here
6403  // since it's a redeclaration. If the parent class is dllexport, the
6404  // specialization inherits that attribute. This doesn't happen automatically
6405  // since the parent class isn't instantiated until later.
6406  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6407    if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6408        !NewImportAttr && !NewExportAttr) {
6409      if (const DLLExportAttr *ParentExportAttr =
6410              MD->getParent()->getAttr<DLLExportAttr>()) {
6411        DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6412        NewAttr->setInherited(true);
6413        NewDecl->addAttr(NewAttr);
6414      }
6415    }
6416  }
6417}
6418
6419/// Given that we are within the definition of the given function,
6420/// will that definition behave like C99's 'inline', where the
6421/// definition is discarded except for optimization purposes?
6422static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6423  // Try to avoid calling GetGVALinkageForFunction.
6424
6425  // All cases of this require the 'inline' keyword.
6426  if (!FD->isInlined()) return false;
6427
6428  // This is only possible in C++ with the gnu_inline attribute.
6429  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6430    return false;
6431
6432  // Okay, go ahead and call the relatively-more-expensive function.
6433  return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6434}
6435
6436/// Determine whether a variable is extern "C" prior to attaching
6437/// an initializer. We can't just call isExternC() here, because that
6438/// will also compute and cache whether the declaration is externally
6439/// visible, which might change when we attach the initializer.
6440///
6441/// This can only be used if the declaration is known to not be a
6442/// redeclaration of an internal linkage declaration.
6443///
6444/// For instance:
6445///
6446///   auto x = []{};
6447///
6448/// Attaching the initializer here makes this declaration not externally
6449/// visible, because its type has internal linkage.
6450///
6451/// FIXME: This is a hack.
6452template<typename T>
6453static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6454  if (S.getLangOpts().CPlusPlus) {
6455    // In C++, the overloadable attribute negates the effects of extern "C".
6456    if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6457      return false;
6458
6459    // So do CUDA's host/device attributes.
6460    if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6461                                 D->template hasAttr<CUDAHostAttr>()))
6462      return false;
6463  }
6464  return D->isExternC();
6465}
6466
6467static bool shouldConsiderLinkage(const VarDecl *VD) {
6468  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6469  if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6470      isa<OMPDeclareMapperDecl>(DC))
6471    return VD->hasExternalStorage();
6472  if (DC->isFileContext())
6473    return true;
6474  if (DC->isRecord())
6475    return false;
6476  if (isa<RequiresExprBodyDecl>(DC))
6477    return false;
6478  llvm_unreachable("Unexpected context");
6479}
6480
6481static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6482  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6483  if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6484      isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6485    return true;
6486  if (DC->isRecord())
6487    return false;
6488  llvm_unreachable("Unexpected context");
6489}
6490
6491static bool hasParsedAttr(Scope *S, const Declarator &PD,
6492                          ParsedAttr::Kind Kind) {
6493  // Check decl attributes on the DeclSpec.
6494  if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6495    return true;
6496
6497  // Walk the declarator structure, checking decl attributes that were in a type
6498  // position to the decl itself.
6499  for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6500    if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6501      return true;
6502  }
6503
6504  // Finally, check attributes on the decl itself.
6505  return PD.getAttributes().hasAttribute(Kind);
6506}
6507
6508/// Adjust the \c DeclContext for a function or variable that might be a
6509/// function-local external declaration.
6510bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6511  if (!DC->isFunctionOrMethod())
6512    return false;
6513
6514  // If this is a local extern function or variable declared within a function
6515  // template, don't add it into the enclosing namespace scope until it is
6516  // instantiated; it might have a dependent type right now.
6517  if (DC->isDependentContext())
6518    return true;
6519
6520  // C++11 [basic.link]p7:
6521  //   When a block scope declaration of an entity with linkage is not found to
6522  //   refer to some other declaration, then that entity is a member of the
6523  //   innermost enclosing namespace.
6524  //
6525  // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6526  // semantically-enclosing namespace, not a lexically-enclosing one.
6527  while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6528    DC = DC->getParent();
6529  return true;
6530}
6531
6532/// Returns true if given declaration has external C language linkage.
6533static bool isDeclExternC(const Decl *D) {
6534  if (const auto *FD = dyn_cast<FunctionDecl>(D))
6535    return FD->isExternC();
6536  if (const auto *VD = dyn_cast<VarDecl>(D))
6537    return VD->isExternC();
6538
6539  llvm_unreachable("Unknown type of decl!");
6540}
6541/// Returns true if there hasn't been any invalid type diagnosed.
6542static bool diagnoseOpenCLTypes(Scope *S, Sema &Se, Declarator &D,
6543                                DeclContext *DC, QualType R) {
6544  // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6545  // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6546  // argument.
6547  if (R->isImageType() || R->isPipeType()) {
6548    Se.Diag(D.getIdentifierLoc(),
6549            diag::err_opencl_type_can_only_be_used_as_function_parameter)
6550        << R;
6551    D.setInvalidType();
6552    return false;
6553  }
6554
6555  // OpenCL v1.2 s6.9.r:
6556  // The event type cannot be used to declare a program scope variable.
6557  // OpenCL v2.0 s6.9.q:
6558  // The clk_event_t and reserve_id_t types cannot be declared in program
6559  // scope.
6560  if (NULL == S->getParent()) {
6561    if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6562      Se.Diag(D.getIdentifierLoc(),
6563              diag::err_invalid_type_for_program_scope_var)
6564          << R;
6565      D.setInvalidType();
6566      return false;
6567    }
6568  }
6569
6570  // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6571  QualType NR = R;
6572  while (NR->isPointerType()) {
6573    if (NR->isFunctionPointerType()) {
6574      Se.Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6575      D.setInvalidType();
6576      return false;
6577    }
6578    NR = NR->getPointeeType();
6579  }
6580
6581  if (!Se.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6582    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6583    // half array type (unless the cl_khr_fp16 extension is enabled).
6584    if (Se.Context.getBaseElementType(R)->isHalfType()) {
6585      Se.Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6586      D.setInvalidType();
6587      return false;
6588    }
6589  }
6590
6591  // OpenCL v1.2 s6.9.r:
6592  // The event type cannot be used with the __local, __constant and __global
6593  // address space qualifiers.
6594  if (R->isEventT()) {
6595    if (R.getAddressSpace() != LangAS::opencl_private) {
6596      Se.Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6597      D.setInvalidType();
6598      return false;
6599    }
6600  }
6601
6602  // C++ for OpenCL does not allow the thread_local storage qualifier.
6603  // OpenCL C does not support thread_local either, and
6604  // also reject all other thread storage class specifiers.
6605  DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6606  if (TSC != TSCS_unspecified) {
6607    bool IsCXX = Se.getLangOpts().OpenCLCPlusPlus;
6608    Se.Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6609            diag::err_opencl_unknown_type_specifier)
6610        << IsCXX << Se.getLangOpts().getOpenCLVersionTuple().getAsString()
6611        << DeclSpec::getSpecifierName(TSC) << 1;
6612    D.setInvalidType();
6613    return false;
6614  }
6615
6616  if (R->isSamplerT()) {
6617    // OpenCL v1.2 s6.9.b p4:
6618    // The sampler type cannot be used with the __local and __global address
6619    // space qualifiers.
6620    if (R.getAddressSpace() == LangAS::opencl_local ||
6621        R.getAddressSpace() == LangAS::opencl_global) {
6622      Se.Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6623      D.setInvalidType();
6624    }
6625
6626    // OpenCL v1.2 s6.12.14.1:
6627    // A global sampler must be declared with either the constant address
6628    // space qualifier or with the const qualifier.
6629    if (DC->isTranslationUnit() &&
6630        !(R.getAddressSpace() == LangAS::opencl_constant ||
6631          R.isConstQualified())) {
6632      Se.Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6633      D.setInvalidType();
6634    }
6635    if (D.isInvalidType())
6636      return false;
6637  }
6638  return true;
6639}
6640
6641NamedDecl *Sema::ActOnVariableDeclarator(
6642    Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6643    LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6644    bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6645  QualType R = TInfo->getType();
6646  DeclarationName Name = GetNameForDeclarator(D).getName();
6647
6648  IdentifierInfo *II = Name.getAsIdentifierInfo();
6649
6650  if (D.isDecompositionDeclarator()) {
6651    // Take the name of the first declarator as our name for diagnostic
6652    // purposes.
6653    auto &Decomp = D.getDecompositionDeclarator();
6654    if (!Decomp.bindings().empty()) {
6655      II = Decomp.bindings()[0].Name;
6656      Name = II;
6657    }
6658  } else if (!II) {
6659    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6660    return nullptr;
6661  }
6662
6663
6664  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6665  StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6666
6667  // dllimport globals without explicit storage class are treated as extern. We
6668  // have to change the storage class this early to get the right DeclContext.
6669  if (SC == SC_None && !DC->isRecord() &&
6670      hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6671      !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6672    SC = SC_Extern;
6673
6674  DeclContext *OriginalDC = DC;
6675  bool IsLocalExternDecl = SC == SC_Extern &&
6676                           adjustContextForLocalExternDecl(DC);
6677
6678  if (SCSpec == DeclSpec::SCS_mutable) {
6679    // mutable can only appear on non-static class members, so it's always
6680    // an error here
6681    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6682    D.setInvalidType();
6683    SC = SC_None;
6684  }
6685
6686  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6687      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6688                              D.getDeclSpec().getStorageClassSpecLoc())) {
6689    // In C++11, the 'register' storage class specifier is deprecated.
6690    // Suppress the warning in system macros, it's used in macros in some
6691    // popular C system headers, such as in glibc's htonl() macro.
6692    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6693         getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6694                                   : diag::warn_deprecated_register)
6695      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6696  }
6697
6698  DiagnoseFunctionSpecifiers(D.getDeclSpec());
6699
6700  if (!DC->isRecord() && S->getFnParent() == nullptr) {
6701    // C99 6.9p2: The storage-class specifiers auto and register shall not
6702    // appear in the declaration specifiers in an external declaration.
6703    // Global Register+Asm is a GNU extension we support.
6704    if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6705      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6706      D.setInvalidType();
6707    }
6708  }
6709
6710  bool IsMemberSpecialization = false;
6711  bool IsVariableTemplateSpecialization = false;
6712  bool IsPartialSpecialization = false;
6713  bool IsVariableTemplate = false;
6714  VarDecl *NewVD = nullptr;
6715  VarTemplateDecl *NewTemplate = nullptr;
6716  TemplateParameterList *TemplateParams = nullptr;
6717  if (!getLangOpts().CPlusPlus) {
6718    NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6719                            II, R, TInfo, SC);
6720
6721    if (R->getContainedDeducedType())
6722      ParsingInitForAutoVars.insert(NewVD);
6723
6724    if (D.isInvalidType())
6725      NewVD->setInvalidDecl();
6726
6727    if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
6728        NewVD->hasLocalStorage())
6729      checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
6730                            NTCUC_AutoVar, NTCUK_Destruct);
6731  } else {
6732    bool Invalid = false;
6733
6734    if (DC->isRecord() && !CurContext->isRecord()) {
6735      // This is an out-of-line definition of a static data member.
6736      switch (SC) {
6737      case SC_None:
6738        break;
6739      case SC_Static:
6740        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6741             diag::err_static_out_of_line)
6742          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6743        break;
6744      case SC_Auto:
6745      case SC_Register:
6746      case SC_Extern:
6747        // [dcl.stc] p2: The auto or register specifiers shall be applied only
6748        // to names of variables declared in a block or to function parameters.
6749        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6750        // of class members
6751
6752        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6753             diag::err_storage_class_for_static_member)
6754          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6755        break;
6756      case SC_PrivateExtern:
6757        llvm_unreachable("C storage class in c++!");
6758      }
6759    }
6760
6761    if (SC == SC_Static && CurContext->isRecord()) {
6762      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6763        if (RD->isLocalClass())
6764          Diag(D.getIdentifierLoc(),
6765               diag::err_static_data_member_not_allowed_in_local_class)
6766            << Name << RD->getDeclName();
6767
6768        // C++98 [class.union]p1: If a union contains a static data member,
6769        // the program is ill-formed. C++11 drops this restriction.
6770        if (RD->isUnion())
6771          Diag(D.getIdentifierLoc(),
6772               getLangOpts().CPlusPlus11
6773                 ? diag::warn_cxx98_compat_static_data_member_in_union
6774                 : diag::ext_static_data_member_in_union) << Name;
6775        // We conservatively disallow static data members in anonymous structs.
6776        else if (!RD->getDeclName())
6777          Diag(D.getIdentifierLoc(),
6778               diag::err_static_data_member_not_allowed_in_anon_struct)
6779            << Name << RD->isUnion();
6780      }
6781    }
6782
6783    // Match up the template parameter lists with the scope specifier, then
6784    // determine whether we have a template or a template specialization.
6785    TemplateParams = MatchTemplateParametersToScopeSpecifier(
6786        D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
6787        D.getCXXScopeSpec(),
6788        D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6789            ? D.getName().TemplateId
6790            : nullptr,
6791        TemplateParamLists,
6792        /*never a friend*/ false, IsMemberSpecialization, Invalid);
6793
6794    if (TemplateParams) {
6795      if (!TemplateParams->size() &&
6796          D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
6797        // There is an extraneous 'template<>' for this variable. Complain
6798        // about it, but allow the declaration of the variable.
6799        Diag(TemplateParams->getTemplateLoc(),
6800             diag::err_template_variable_noparams)
6801          << II
6802          << SourceRange(TemplateParams->getTemplateLoc(),
6803                         TemplateParams->getRAngleLoc());
6804        TemplateParams = nullptr;
6805      } else {
6806        if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
6807          // This is an explicit specialization or a partial specialization.
6808          // FIXME: Check that we can declare a specialization here.
6809          IsVariableTemplateSpecialization = true;
6810          IsPartialSpecialization = TemplateParams->size() > 0;
6811        } else { // if (TemplateParams->size() > 0)
6812          // This is a template declaration.
6813          IsVariableTemplate = true;
6814
6815          // Check that we can declare a template here.
6816          if (CheckTemplateDeclScope(S, TemplateParams))
6817            return nullptr;
6818
6819          // Only C++1y supports variable templates (N3651).
6820          Diag(D.getIdentifierLoc(),
6821               getLangOpts().CPlusPlus14
6822                   ? diag::warn_cxx11_compat_variable_template
6823                   : diag::ext_variable_template);
6824        }
6825      }
6826    } else {
6827      assert((Invalid ||
6828              D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
6829             "should have a 'template<>' for this decl");
6830    }
6831
6832    if (IsVariableTemplateSpecialization) {
6833      SourceLocation TemplateKWLoc =
6834          TemplateParamLists.size() > 0
6835              ? TemplateParamLists[0]->getTemplateLoc()
6836              : SourceLocation();
6837      DeclResult Res = ActOnVarTemplateSpecialization(
6838          S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
6839          IsPartialSpecialization);
6840      if (Res.isInvalid())
6841        return nullptr;
6842      NewVD = cast<VarDecl>(Res.get());
6843      AddToScope = false;
6844    } else if (D.isDecompositionDeclarator()) {
6845      NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
6846                                        D.getIdentifierLoc(), R, TInfo, SC,
6847                                        Bindings);
6848    } else
6849      NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
6850                              D.getIdentifierLoc(), II, R, TInfo, SC);
6851
6852    // If this is supposed to be a variable template, create it as such.
6853    if (IsVariableTemplate) {
6854      NewTemplate =
6855          VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
6856                                  TemplateParams, NewVD);
6857      NewVD->setDescribedVarTemplate(NewTemplate);
6858    }
6859
6860    // If this decl has an auto type in need of deduction, make a note of the
6861    // Decl so we can diagnose uses of it in its own initializer.
6862    if (R->getContainedDeducedType())
6863      ParsingInitForAutoVars.insert(NewVD);
6864
6865    if (D.isInvalidType() || Invalid) {
6866      NewVD->setInvalidDecl();
6867      if (NewTemplate)
6868        NewTemplate->setInvalidDecl();
6869    }
6870
6871    SetNestedNameSpecifier(*this, NewVD, D);
6872
6873    // If we have any template parameter lists that don't directly belong to
6874    // the variable (matching the scope specifier), store them.
6875    unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
6876    if (TemplateParamLists.size() > VDTemplateParamLists)
6877      NewVD->setTemplateParameterListsInfo(
6878          Context, TemplateParamLists.drop_back(VDTemplateParamLists));
6879  }
6880
6881  if (D.getDeclSpec().isInlineSpecified()) {
6882    if (!getLangOpts().CPlusPlus) {
6883      Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6884          << 0;
6885    } else if (CurContext->isFunctionOrMethod()) {
6886      // 'inline' is not allowed on block scope variable declaration.
6887      Diag(D.getDeclSpec().getInlineSpecLoc(),
6888           diag::err_inline_declaration_block_scope) << Name
6889        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6890    } else {
6891      Diag(D.getDeclSpec().getInlineSpecLoc(),
6892           getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
6893                                     : diag::ext_inline_variable);
6894      NewVD->setInlineSpecified();
6895    }
6896  }
6897
6898  // Set the lexical context. If the declarator has a C++ scope specifier, the
6899  // lexical context will be different from the semantic context.
6900  NewVD->setLexicalDeclContext(CurContext);
6901  if (NewTemplate)
6902    NewTemplate->setLexicalDeclContext(CurContext);
6903
6904  if (IsLocalExternDecl) {
6905    if (D.isDecompositionDeclarator())
6906      for (auto *B : Bindings)
6907        B->setLocalExternDecl();
6908    else
6909      NewVD->setLocalExternDecl();
6910  }
6911
6912  bool EmitTLSUnsupportedError = false;
6913  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6914    // C++11 [dcl.stc]p4:
6915    //   When thread_local is applied to a variable of block scope the
6916    //   storage-class-specifier static is implied if it does not appear
6917    //   explicitly.
6918    // Core issue: 'static' is not implied if the variable is declared
6919    //   'extern'.
6920    if (NewVD->hasLocalStorage() &&
6921        (SCSpec != DeclSpec::SCS_unspecified ||
6922         TSCS != DeclSpec::TSCS_thread_local ||
6923         !DC->isFunctionOrMethod()))
6924      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6925           diag::err_thread_non_global)
6926        << DeclSpec::getSpecifierName(TSCS);
6927    else if (!Context.getTargetInfo().isTLSSupported()) {
6928      if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6929        // Postpone error emission until we've collected attributes required to
6930        // figure out whether it's a host or device variable and whether the
6931        // error should be ignored.
6932        EmitTLSUnsupportedError = true;
6933        // We still need to mark the variable as TLS so it shows up in AST with
6934        // proper storage class for other tools to use even if we're not going
6935        // to emit any code for it.
6936        NewVD->setTSCSpec(TSCS);
6937      } else
6938        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6939             diag::err_thread_unsupported);
6940    } else
6941      NewVD->setTSCSpec(TSCS);
6942  }
6943
6944  switch (D.getDeclSpec().getConstexprSpecifier()) {
6945  case CSK_unspecified:
6946    break;
6947
6948  case CSK_consteval:
6949    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6950        diag::err_constexpr_wrong_decl_kind)
6951      << D.getDeclSpec().getConstexprSpecifier();
6952    LLVM_FALLTHROUGH;
6953
6954  case CSK_constexpr:
6955    NewVD->setConstexpr(true);
6956    // C++1z [dcl.spec.constexpr]p1:
6957    //   A static data member declared with the constexpr specifier is
6958    //   implicitly an inline variable.
6959    if (NewVD->isStaticDataMember() &&
6960        (getLangOpts().CPlusPlus17 ||
6961         Context.getTargetInfo().getCXXABI().isMicrosoft()))
6962      NewVD->setImplicitlyInline();
6963    break;
6964
6965  case CSK_constinit:
6966    if (!NewVD->hasGlobalStorage())
6967      Diag(D.getDeclSpec().getConstexprSpecLoc(),
6968           diag::err_constinit_local_variable);
6969    else
6970      NewVD->addAttr(ConstInitAttr::Create(
6971          Context, D.getDeclSpec().getConstexprSpecLoc(),
6972          AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
6973    break;
6974  }
6975
6976  // C99 6.7.4p3
6977  //   An inline definition of a function with external linkage shall
6978  //   not contain a definition of a modifiable object with static or
6979  //   thread storage duration...
6980  // We only apply this when the function is required to be defined
6981  // elsewhere, i.e. when the function is not 'extern inline'.  Note
6982  // that a local variable with thread storage duration still has to
6983  // be marked 'static'.  Also note that it's possible to get these
6984  // semantics in C++ using __attribute__((gnu_inline)).
6985  if (SC == SC_Static && S->getFnParent() != nullptr &&
6986      !NewVD->getType().isConstQualified()) {
6987    FunctionDecl *CurFD = getCurFunctionDecl();
6988    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6989      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6990           diag::warn_static_local_in_extern_inline);
6991      MaybeSuggestAddingStaticToDecl(CurFD);
6992    }
6993  }
6994
6995  if (D.getDeclSpec().isModulePrivateSpecified()) {
6996    if (IsVariableTemplateSpecialization)
6997      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6998          << (IsPartialSpecialization ? 1 : 0)
6999          << FixItHint::CreateRemoval(
7000                 D.getDeclSpec().getModulePrivateSpecLoc());
7001    else if (IsMemberSpecialization)
7002      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7003        << 2
7004        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7005    else if (NewVD->hasLocalStorage())
7006      Diag(NewVD->getLocation(), diag::err_module_private_local)
7007        << 0 << NewVD->getDeclName()
7008        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7009        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7010    else {
7011      NewVD->setModulePrivate();
7012      if (NewTemplate)
7013        NewTemplate->setModulePrivate();
7014      for (auto *B : Bindings)
7015        B->setModulePrivate();
7016    }
7017  }
7018
7019  if (getLangOpts().OpenCL) {
7020
7021    deduceOpenCLAddressSpace(NewVD);
7022
7023    diagnoseOpenCLTypes(S, *this, D, DC, NewVD->getType());
7024  }
7025
7026  // Handle attributes prior to checking for duplicates in MergeVarDecl
7027  ProcessDeclAttributes(S, NewVD, D);
7028
7029  if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
7030    if (EmitTLSUnsupportedError &&
7031        ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7032         (getLangOpts().OpenMPIsDevice &&
7033          OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7034      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7035           diag::err_thread_unsupported);
7036    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7037    // storage [duration]."
7038    if (SC == SC_None && S->getFnParent() != nullptr &&
7039        (NewVD->hasAttr<CUDASharedAttr>() ||
7040         NewVD->hasAttr<CUDAConstantAttr>())) {
7041      NewVD->setStorageClass(SC_Static);
7042    }
7043  }
7044
7045  // Ensure that dllimport globals without explicit storage class are treated as
7046  // extern. The storage class is set above using parsed attributes. Now we can
7047  // check the VarDecl itself.
7048  assert(!NewVD->hasAttr<DLLImportAttr>() ||
7049         NewVD->getAttr<DLLImportAttr>()->isInherited() ||
7050         NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
7051
7052  // In auto-retain/release, infer strong retension for variables of
7053  // retainable type.
7054  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
7055    NewVD->setInvalidDecl();
7056
7057  // Handle GNU asm-label extension (encoded as an attribute).
7058  if (Expr *E = (Expr*)D.getAsmLabel()) {
7059    // The parser guarantees this is a string.
7060    StringLiteral *SE = cast<StringLiteral>(E);
7061    StringRef Label = SE->getString();
7062    if (S->getFnParent() != nullptr) {
7063      switch (SC) {
7064      case SC_None:
7065      case SC_Auto:
7066        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
7067        break;
7068      case SC_Register:
7069        // Local Named register
7070        if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
7071            DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
7072          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7073        break;
7074      case SC_Static:
7075      case SC_Extern:
7076      case SC_PrivateExtern:
7077        break;
7078      }
7079    } else if (SC == SC_Register) {
7080      // Global Named register
7081      if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
7082        const auto &TI = Context.getTargetInfo();
7083        bool HasSizeMismatch;
7084
7085        if (!TI.isValidGCCRegisterName(Label))
7086          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7087        else if (!TI.validateGlobalRegisterVariable(Label,
7088                                                    Context.getTypeSize(R),
7089                                                    HasSizeMismatch))
7090          Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
7091        else if (HasSizeMismatch)
7092          Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
7093      }
7094
7095      if (!R->isIntegralType(Context) && !R->isPointerType()) {
7096        Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
7097        NewVD->setInvalidDecl(true);
7098      }
7099    }
7100
7101    NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
7102                                        /*IsLiteralLabel=*/true,
7103                                        SE->getStrTokenLoc(0)));
7104  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7105    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7106      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
7107    if (I != ExtnameUndeclaredIdentifiers.end()) {
7108      if (isDeclExternC(NewVD)) {
7109        NewVD->addAttr(I->second);
7110        ExtnameUndeclaredIdentifiers.erase(I);
7111      } else
7112        Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
7113            << /*Variable*/1 << NewVD;
7114    }
7115  }
7116
7117  // Find the shadowed declaration before filtering for scope.
7118  NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
7119                                ? getShadowedDeclaration(NewVD, Previous)
7120                                : nullptr;
7121
7122  // Don't consider existing declarations that are in a different
7123  // scope and are out-of-semantic-context declarations (if the new
7124  // declaration has linkage).
7125  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
7126                       D.getCXXScopeSpec().isNotEmpty() ||
7127                       IsMemberSpecialization ||
7128                       IsVariableTemplateSpecialization);
7129
7130  // Check whether the previous declaration is in the same block scope. This
7131  // affects whether we merge types with it, per C++11 [dcl.array]p3.
7132  if (getLangOpts().CPlusPlus &&
7133      NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
7134    NewVD->setPreviousDeclInSameBlockScope(
7135        Previous.isSingleResult() && !Previous.isShadowed() &&
7136        isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
7137
7138  if (!getLangOpts().CPlusPlus) {
7139    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7140  } else {
7141    // If this is an explicit specialization of a static data member, check it.
7142    if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
7143        CheckMemberSpecialization(NewVD, Previous))
7144      NewVD->setInvalidDecl();
7145
7146    // Merge the decl with the existing one if appropriate.
7147    if (!Previous.empty()) {
7148      if (Previous.isSingleResult() &&
7149          isa<FieldDecl>(Previous.getFoundDecl()) &&
7150          D.getCXXScopeSpec().isSet()) {
7151        // The user tried to define a non-static data member
7152        // out-of-line (C++ [dcl.meaning]p1).
7153        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
7154          << D.getCXXScopeSpec().getRange();
7155        Previous.clear();
7156        NewVD->setInvalidDecl();
7157      }
7158    } else if (D.getCXXScopeSpec().isSet()) {
7159      // No previous declaration in the qualifying scope.
7160      Diag(D.getIdentifierLoc(), diag::err_no_member)
7161        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
7162        << D.getCXXScopeSpec().getRange();
7163      NewVD->setInvalidDecl();
7164    }
7165
7166    if (!IsVariableTemplateSpecialization)
7167      D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7168
7169    if (NewTemplate) {
7170      VarTemplateDecl *PrevVarTemplate =
7171          NewVD->getPreviousDecl()
7172              ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
7173              : nullptr;
7174
7175      // Check the template parameter list of this declaration, possibly
7176      // merging in the template parameter list from the previous variable
7177      // template declaration.
7178      if (CheckTemplateParameterList(
7179              TemplateParams,
7180              PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
7181                              : nullptr,
7182              (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
7183               DC->isDependentContext())
7184                  ? TPC_ClassTemplateMember
7185                  : TPC_VarTemplate))
7186        NewVD->setInvalidDecl();
7187
7188      // If we are providing an explicit specialization of a static variable
7189      // template, make a note of that.
7190      if (PrevVarTemplate &&
7191          PrevVarTemplate->getInstantiatedFromMemberTemplate())
7192        PrevVarTemplate->setMemberSpecialization();
7193    }
7194  }
7195
7196  // Diagnose shadowed variables iff this isn't a redeclaration.
7197  if (ShadowedDecl && !D.isRedeclaration())
7198    CheckShadow(NewVD, ShadowedDecl, Previous);
7199
7200  ProcessPragmaWeak(S, NewVD);
7201
7202  // If this is the first declaration of an extern C variable, update
7203  // the map of such variables.
7204  if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
7205      isIncompleteDeclExternC(*this, NewVD))
7206    RegisterLocallyScopedExternCDecl(NewVD, S);
7207
7208  if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
7209    MangleNumberingContext *MCtx;
7210    Decl *ManglingContextDecl;
7211    std::tie(MCtx, ManglingContextDecl) =
7212        getCurrentMangleNumberContext(NewVD->getDeclContext());
7213    if (MCtx) {
7214      Context.setManglingNumber(
7215          NewVD, MCtx->getManglingNumber(
7216                     NewVD, getMSManglingNumber(getLangOpts(), S)));
7217      Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
7218    }
7219  }
7220
7221  // Special handling of variable named 'main'.
7222  if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
7223      NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7224      !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
7225
7226    // C++ [basic.start.main]p3
7227    // A program that declares a variable main at global scope is ill-formed.
7228    if (getLangOpts().CPlusPlus)
7229      Diag(D.getBeginLoc(), diag::err_main_global_variable);
7230
7231    // In C, and external-linkage variable named main results in undefined
7232    // behavior.
7233    else if (NewVD->hasExternalFormalLinkage())
7234      Diag(D.getBeginLoc(), diag::warn_main_redefined);
7235  }
7236
7237  if (D.isRedeclaration() && !Previous.empty()) {
7238    NamedDecl *Prev = Previous.getRepresentativeDecl();
7239    checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7240                                   D.isFunctionDefinition());
7241  }
7242
7243  if (NewTemplate) {
7244    if (NewVD->isInvalidDecl())
7245      NewTemplate->setInvalidDecl();
7246    ActOnDocumentableDecl(NewTemplate);
7247    return NewTemplate;
7248  }
7249
7250  if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7251    CompleteMemberSpecialization(NewVD, Previous);
7252
7253  return NewVD;
7254}
7255
7256/// Enum describing the %select options in diag::warn_decl_shadow.
7257enum ShadowedDeclKind {
7258  SDK_Local,
7259  SDK_Global,
7260  SDK_StaticMember,
7261  SDK_Field,
7262  SDK_Typedef,
7263  SDK_Using
7264};
7265
7266/// Determine what kind of declaration we're shadowing.
7267static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7268                                                const DeclContext *OldDC) {
7269  if (isa<TypeAliasDecl>(ShadowedDecl))
7270    return SDK_Using;
7271  else if (isa<TypedefDecl>(ShadowedDecl))
7272    return SDK_Typedef;
7273  else if (isa<RecordDecl>(OldDC))
7274    return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7275
7276  return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7277}
7278
7279/// Return the location of the capture if the given lambda captures the given
7280/// variable \p VD, or an invalid source location otherwise.
7281static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7282                                         const VarDecl *VD) {
7283  for (const Capture &Capture : LSI->Captures) {
7284    if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7285      return Capture.getLocation();
7286  }
7287  return SourceLocation();
7288}
7289
7290static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7291                                     const LookupResult &R) {
7292  // Only diagnose if we're shadowing an unambiguous field or variable.
7293  if (R.getResultKind() != LookupResult::Found)
7294    return false;
7295
7296  // Return false if warning is ignored.
7297  return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7298}
7299
7300/// Return the declaration shadowed by the given variable \p D, or null
7301/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7302NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7303                                        const LookupResult &R) {
7304  if (!shouldWarnIfShadowedDecl(Diags, R))
7305    return nullptr;
7306
7307  // Don't diagnose declarations at file scope.
7308  if (D->hasGlobalStorage())
7309    return nullptr;
7310
7311  NamedDecl *ShadowedDecl = R.getFoundDecl();
7312  return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
7313             ? ShadowedDecl
7314             : nullptr;
7315}
7316
7317/// Return the declaration shadowed by the given typedef \p D, or null
7318/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7319NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7320                                        const LookupResult &R) {
7321  // Don't warn if typedef declaration is part of a class
7322  if (D->getDeclContext()->isRecord())
7323    return nullptr;
7324
7325  if (!shouldWarnIfShadowedDecl(Diags, R))
7326    return nullptr;
7327
7328  NamedDecl *ShadowedDecl = R.getFoundDecl();
7329  return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7330}
7331
7332/// Diagnose variable or built-in function shadowing.  Implements
7333/// -Wshadow.
7334///
7335/// This method is called whenever a VarDecl is added to a "useful"
7336/// scope.
7337///
7338/// \param ShadowedDecl the declaration that is shadowed by the given variable
7339/// \param R the lookup of the name
7340///
7341void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7342                       const LookupResult &R) {
7343  DeclContext *NewDC = D->getDeclContext();
7344
7345  if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7346    // Fields are not shadowed by variables in C++ static methods.
7347    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7348      if (MD->isStatic())
7349        return;
7350
7351    // Fields shadowed by constructor parameters are a special case. Usually
7352    // the constructor initializes the field with the parameter.
7353    if (isa<CXXConstructorDecl>(NewDC))
7354      if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7355        // Remember that this was shadowed so we can either warn about its
7356        // modification or its existence depending on warning settings.
7357        ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7358        return;
7359      }
7360  }
7361
7362  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7363    if (shadowedVar->isExternC()) {
7364      // For shadowing external vars, make sure that we point to the global
7365      // declaration, not a locally scoped extern declaration.
7366      for (auto I : shadowedVar->redecls())
7367        if (I->isFileVarDecl()) {
7368          ShadowedDecl = I;
7369          break;
7370        }
7371    }
7372
7373  DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7374
7375  unsigned WarningDiag = diag::warn_decl_shadow;
7376  SourceLocation CaptureLoc;
7377  if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7378      isa<CXXMethodDecl>(NewDC)) {
7379    if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7380      if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7381        if (RD->getLambdaCaptureDefault() == LCD_None) {
7382          // Try to avoid warnings for lambdas with an explicit capture list.
7383          const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7384          // Warn only when the lambda captures the shadowed decl explicitly.
7385          CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7386          if (CaptureLoc.isInvalid())
7387            WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7388        } else {
7389          // Remember that this was shadowed so we can avoid the warning if the
7390          // shadowed decl isn't captured and the warning settings allow it.
7391          cast<LambdaScopeInfo>(getCurFunction())
7392              ->ShadowingDecls.push_back(
7393                  {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7394          return;
7395        }
7396      }
7397
7398      if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7399        // A variable can't shadow a local variable in an enclosing scope, if
7400        // they are separated by a non-capturing declaration context.
7401        for (DeclContext *ParentDC = NewDC;
7402             ParentDC && !ParentDC->Equals(OldDC);
7403             ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7404          // Only block literals, captured statements, and lambda expressions
7405          // can capture; other scopes don't.
7406          if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7407              !isLambdaCallOperator(ParentDC)) {
7408            return;
7409          }
7410        }
7411      }
7412    }
7413  }
7414
7415  // Only warn about certain kinds of shadowing for class members.
7416  if (NewDC && NewDC->isRecord()) {
7417    // In particular, don't warn about shadowing non-class members.
7418    if (!OldDC->isRecord())
7419      return;
7420
7421    // TODO: should we warn about static data members shadowing
7422    // static data members from base classes?
7423
7424    // TODO: don't diagnose for inaccessible shadowed members.
7425    // This is hard to do perfectly because we might friend the
7426    // shadowing context, but that's just a false negative.
7427  }
7428
7429
7430  DeclarationName Name = R.getLookupName();
7431
7432  // Emit warning and note.
7433  if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7434    return;
7435  ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7436  Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7437  if (!CaptureLoc.isInvalid())
7438    Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7439        << Name << /*explicitly*/ 1;
7440  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7441}
7442
7443/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7444/// when these variables are captured by the lambda.
7445void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7446  for (const auto &Shadow : LSI->ShadowingDecls) {
7447    const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7448    // Try to avoid the warning when the shadowed decl isn't captured.
7449    SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7450    const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7451    Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7452                                       ? diag::warn_decl_shadow_uncaptured_local
7453                                       : diag::warn_decl_shadow)
7454        << Shadow.VD->getDeclName()
7455        << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7456    if (!CaptureLoc.isInvalid())
7457      Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7458          << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7459    Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7460  }
7461}
7462
7463/// Check -Wshadow without the advantage of a previous lookup.
7464void Sema::CheckShadow(Scope *S, VarDecl *D) {
7465  if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7466    return;
7467
7468  LookupResult R(*this, D->getDeclName(), D->getLocation(),
7469                 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7470  LookupName(R, S);
7471  if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7472    CheckShadow(D, ShadowedDecl, R);
7473}
7474
7475/// Check if 'E', which is an expression that is about to be modified, refers
7476/// to a constructor parameter that shadows a field.
7477void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7478  // Quickly ignore expressions that can't be shadowing ctor parameters.
7479  if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7480    return;
7481  E = E->IgnoreParenImpCasts();
7482  auto *DRE = dyn_cast<DeclRefExpr>(E);
7483  if (!DRE)
7484    return;
7485  const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7486  auto I = ShadowingDecls.find(D);
7487  if (I == ShadowingDecls.end())
7488    return;
7489  const NamedDecl *ShadowedDecl = I->second;
7490  const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7491  Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7492  Diag(D->getLocation(), diag::note_var_declared_here) << D;
7493  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7494
7495  // Avoid issuing multiple warnings about the same decl.
7496  ShadowingDecls.erase(I);
7497}
7498
7499/// Check for conflict between this global or extern "C" declaration and
7500/// previous global or extern "C" declarations. This is only used in C++.
7501template<typename T>
7502static bool checkGlobalOrExternCConflict(
7503    Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7504  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7505  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7506
7507  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7508    // The common case: this global doesn't conflict with any extern "C"
7509    // declaration.
7510    return false;
7511  }
7512
7513  if (Prev) {
7514    if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7515      // Both the old and new declarations have C language linkage. This is a
7516      // redeclaration.
7517      Previous.clear();
7518      Previous.addDecl(Prev);
7519      return true;
7520    }
7521
7522    // This is a global, non-extern "C" declaration, and there is a previous
7523    // non-global extern "C" declaration. Diagnose if this is a variable
7524    // declaration.
7525    if (!isa<VarDecl>(ND))
7526      return false;
7527  } else {
7528    // The declaration is extern "C". Check for any declaration in the
7529    // translation unit which might conflict.
7530    if (IsGlobal) {
7531      // We have already performed the lookup into the translation unit.
7532      IsGlobal = false;
7533      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7534           I != E; ++I) {
7535        if (isa<VarDecl>(*I)) {
7536          Prev = *I;
7537          break;
7538        }
7539      }
7540    } else {
7541      DeclContext::lookup_result R =
7542          S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7543      for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7544           I != E; ++I) {
7545        if (isa<VarDecl>(*I)) {
7546          Prev = *I;
7547          break;
7548        }
7549        // FIXME: If we have any other entity with this name in global scope,
7550        // the declaration is ill-formed, but that is a defect: it breaks the
7551        // 'stat' hack, for instance. Only variables can have mangled name
7552        // clashes with extern "C" declarations, so only they deserve a
7553        // diagnostic.
7554      }
7555    }
7556
7557    if (!Prev)
7558      return false;
7559  }
7560
7561  // Use the first declaration's location to ensure we point at something which
7562  // is lexically inside an extern "C" linkage-spec.
7563  assert(Prev && "should have found a previous declaration to diagnose");
7564  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7565    Prev = FD->getFirstDecl();
7566  else
7567    Prev = cast<VarDecl>(Prev)->getFirstDecl();
7568
7569  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7570    << IsGlobal << ND;
7571  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7572    << IsGlobal;
7573  return false;
7574}
7575
7576/// Apply special rules for handling extern "C" declarations. Returns \c true
7577/// if we have found that this is a redeclaration of some prior entity.
7578///
7579/// Per C++ [dcl.link]p6:
7580///   Two declarations [for a function or variable] with C language linkage
7581///   with the same name that appear in different scopes refer to the same
7582///   [entity]. An entity with C language linkage shall not be declared with
7583///   the same name as an entity in global scope.
7584template<typename T>
7585static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7586                                                  LookupResult &Previous) {
7587  if (!S.getLangOpts().CPlusPlus) {
7588    // In C, when declaring a global variable, look for a corresponding 'extern'
7589    // variable declared in function scope. We don't need this in C++, because
7590    // we find local extern decls in the surrounding file-scope DeclContext.
7591    if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7592      if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7593        Previous.clear();
7594        Previous.addDecl(Prev);
7595        return true;
7596      }
7597    }
7598    return false;
7599  }
7600
7601  // A declaration in the translation unit can conflict with an extern "C"
7602  // declaration.
7603  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7604    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7605
7606  // An extern "C" declaration can conflict with a declaration in the
7607  // translation unit or can be a redeclaration of an extern "C" declaration
7608  // in another scope.
7609  if (isIncompleteDeclExternC(S,ND))
7610    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7611
7612  // Neither global nor extern "C": nothing to do.
7613  return false;
7614}
7615
7616void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7617  // If the decl is already known invalid, don't check it.
7618  if (NewVD->isInvalidDecl())
7619    return;
7620
7621  QualType T = NewVD->getType();
7622
7623  // Defer checking an 'auto' type until its initializer is attached.
7624  if (T->isUndeducedType())
7625    return;
7626
7627  if (NewVD->hasAttrs())
7628    CheckAlignasUnderalignment(NewVD);
7629
7630  if (T->isObjCObjectType()) {
7631    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7632      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7633    T = Context.getObjCObjectPointerType(T);
7634    NewVD->setType(T);
7635  }
7636
7637  // Emit an error if an address space was applied to decl with local storage.
7638  // This includes arrays of objects with address space qualifiers, but not
7639  // automatic variables that point to other address spaces.
7640  // ISO/IEC TR 18037 S5.1.2
7641  if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7642      T.getAddressSpace() != LangAS::Default) {
7643    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7644    NewVD->setInvalidDecl();
7645    return;
7646  }
7647
7648  // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7649  // scope.
7650  if (getLangOpts().OpenCLVersion == 120 &&
7651      !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7652      NewVD->isStaticLocal()) {
7653    Diag(NewVD->getLocation(), diag::err_static_function_scope);
7654    NewVD->setInvalidDecl();
7655    return;
7656  }
7657
7658  if (getLangOpts().OpenCL) {
7659    // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7660    if (NewVD->hasAttr<BlocksAttr>()) {
7661      Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7662      return;
7663    }
7664
7665    if (T->isBlockPointerType()) {
7666      // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7667      // can't use 'extern' storage class.
7668      if (!T.isConstQualified()) {
7669        Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7670            << 0 /*const*/;
7671        NewVD->setInvalidDecl();
7672        return;
7673      }
7674      if (NewVD->hasExternalStorage()) {
7675        Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7676        NewVD->setInvalidDecl();
7677        return;
7678      }
7679    }
7680    // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7681    // __constant address space.
7682    // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7683    // variables inside a function can also be declared in the global
7684    // address space.
7685    // C++ for OpenCL inherits rule from OpenCL C v2.0.
7686    // FIXME: Adding local AS in C++ for OpenCL might make sense.
7687    if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7688        NewVD->hasExternalStorage()) {
7689      if (!T->isSamplerT() &&
7690          !(T.getAddressSpace() == LangAS::opencl_constant ||
7691            (T.getAddressSpace() == LangAS::opencl_global &&
7692             (getLangOpts().OpenCLVersion == 200 ||
7693              getLangOpts().OpenCLCPlusPlus)))) {
7694        int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7695        if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7696          Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7697              << Scope << "global or constant";
7698        else
7699          Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7700              << Scope << "constant";
7701        NewVD->setInvalidDecl();
7702        return;
7703      }
7704    } else {
7705      if (T.getAddressSpace() == LangAS::opencl_global) {
7706        Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7707            << 1 /*is any function*/ << "global";
7708        NewVD->setInvalidDecl();
7709        return;
7710      }
7711      if (T.getAddressSpace() == LangAS::opencl_constant ||
7712          T.getAddressSpace() == LangAS::opencl_local) {
7713        FunctionDecl *FD = getCurFunctionDecl();
7714        // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7715        // in functions.
7716        if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7717          if (T.getAddressSpace() == LangAS::opencl_constant)
7718            Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7719                << 0 /*non-kernel only*/ << "constant";
7720          else
7721            Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7722                << 0 /*non-kernel only*/ << "local";
7723          NewVD->setInvalidDecl();
7724          return;
7725        }
7726        // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7727        // in the outermost scope of a kernel function.
7728        if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7729          if (!getCurScope()->isFunctionScope()) {
7730            if (T.getAddressSpace() == LangAS::opencl_constant)
7731              Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7732                  << "constant";
7733            else
7734              Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7735                  << "local";
7736            NewVD->setInvalidDecl();
7737            return;
7738          }
7739        }
7740      } else if (T.getAddressSpace() != LangAS::opencl_private &&
7741                 // If we are parsing a template we didn't deduce an addr
7742                 // space yet.
7743                 T.getAddressSpace() != LangAS::Default) {
7744        // Do not allow other address spaces on automatic variable.
7745        Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7746        NewVD->setInvalidDecl();
7747        return;
7748      }
7749    }
7750  }
7751
7752  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7753      && !NewVD->hasAttr<BlocksAttr>()) {
7754    if (getLangOpts().getGC() != LangOptions::NonGC)
7755      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7756    else {
7757      assert(!getLangOpts().ObjCAutoRefCount);
7758      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7759    }
7760  }
7761
7762  bool isVM = T->isVariablyModifiedType();
7763  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7764      NewVD->hasAttr<BlocksAttr>())
7765    setFunctionHasBranchProtectedScope();
7766
7767  if ((isVM && NewVD->hasLinkage()) ||
7768      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7769    bool SizeIsNegative;
7770    llvm::APSInt Oversized;
7771    TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
7772        NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7773    QualType FixedT;
7774    if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
7775      FixedT = FixedTInfo->getType();
7776    else if (FixedTInfo) {
7777      // Type and type-as-written are canonically different. We need to fix up
7778      // both types separately.
7779      FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
7780                                                   Oversized);
7781    }
7782    if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
7783      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
7784      // FIXME: This won't give the correct result for
7785      // int a[10][n];
7786      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
7787
7788      if (NewVD->isFileVarDecl())
7789        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
7790        << SizeRange;
7791      else if (NewVD->isStaticLocal())
7792        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
7793        << SizeRange;
7794      else
7795        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
7796        << SizeRange;
7797      NewVD->setInvalidDecl();
7798      return;
7799    }
7800
7801    if (!FixedTInfo) {
7802      if (NewVD->isFileVarDecl())
7803        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
7804      else
7805        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
7806      NewVD->setInvalidDecl();
7807      return;
7808    }
7809
7810    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
7811    NewVD->setType(FixedT);
7812    NewVD->setTypeSourceInfo(FixedTInfo);
7813  }
7814
7815  if (T->isVoidType()) {
7816    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
7817    //                    of objects and functions.
7818    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
7819      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
7820        << T;
7821      NewVD->setInvalidDecl();
7822      return;
7823    }
7824  }
7825
7826  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
7827    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
7828    NewVD->setInvalidDecl();
7829    return;
7830  }
7831
7832  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
7833    Diag(NewVD->getLocation(), diag::err_block_on_vm);
7834    NewVD->setInvalidDecl();
7835    return;
7836  }
7837
7838  if (NewVD->isConstexpr() && !T->isDependentType() &&
7839      RequireLiteralType(NewVD->getLocation(), T,
7840                         diag::err_constexpr_var_non_literal)) {
7841    NewVD->setInvalidDecl();
7842    return;
7843  }
7844}
7845
7846/// Perform semantic checking on a newly-created variable
7847/// declaration.
7848///
7849/// This routine performs all of the type-checking required for a
7850/// variable declaration once it has been built. It is used both to
7851/// check variables after they have been parsed and their declarators
7852/// have been translated into a declaration, and to check variables
7853/// that have been instantiated from a template.
7854///
7855/// Sets NewVD->isInvalidDecl() if an error was encountered.
7856///
7857/// Returns true if the variable declaration is a redeclaration.
7858bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
7859  CheckVariableDeclarationType(NewVD);
7860
7861  // If the decl is already known invalid, don't check it.
7862  if (NewVD->isInvalidDecl())
7863    return false;
7864
7865  // If we did not find anything by this name, look for a non-visible
7866  // extern "C" declaration with the same name.
7867  if (Previous.empty() &&
7868      checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
7869    Previous.setShadowed();
7870
7871  if (!Previous.empty()) {
7872    MergeVarDecl(NewVD, Previous);
7873    return true;
7874  }
7875  return false;
7876}
7877
7878namespace {
7879struct FindOverriddenMethod {
7880  Sema *S;
7881  CXXMethodDecl *Method;
7882
7883  /// Member lookup function that determines whether a given C++
7884  /// method overrides a method in a base class, to be used with
7885  /// CXXRecordDecl::lookupInBases().
7886  bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7887    RecordDecl *BaseRecord =
7888        Specifier->getType()->castAs<RecordType>()->getDecl();
7889
7890    DeclarationName Name = Method->getDeclName();
7891
7892    // FIXME: Do we care about other names here too?
7893    if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7894      // We really want to find the base class destructor here.
7895      QualType T = S->Context.getTypeDeclType(BaseRecord);
7896      CanQualType CT = S->Context.getCanonicalType(T);
7897
7898      Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
7899    }
7900
7901    for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7902         Path.Decls = Path.Decls.slice(1)) {
7903      NamedDecl *D = Path.Decls.front();
7904      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7905        if (MD->isVirtual() &&
7906            !S->IsOverload(
7907                Method, MD, /*UseMemberUsingDeclRules=*/false,
7908                /*ConsiderCudaAttrs=*/true,
7909                // C++2a [class.virtual]p2 does not consider requires clauses
7910                // when overriding.
7911                /*ConsiderRequiresClauses=*/false))
7912          return true;
7913      }
7914    }
7915
7916    return false;
7917  }
7918};
7919
7920enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
7921} // end anonymous namespace
7922
7923/// Report an error regarding overriding, along with any relevant
7924/// overridden methods.
7925///
7926/// \param DiagID the primary error to report.
7927/// \param MD the overriding method.
7928/// \param OEK which overrides to include as notes.
7929static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
7930                            OverrideErrorKind OEK = OEK_All) {
7931  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
7932  for (const CXXMethodDecl *O : MD->overridden_methods()) {
7933    // This check (& the OEK parameter) could be replaced by a predicate, but
7934    // without lambdas that would be overkill. This is still nicer than writing
7935    // out the diag loop 3 times.
7936    if ((OEK == OEK_All) ||
7937        (OEK == OEK_NonDeleted && !O->isDeleted()) ||
7938        (OEK == OEK_Deleted && O->isDeleted()))
7939      S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
7940  }
7941}
7942
7943/// AddOverriddenMethods - See if a method overrides any in the base classes,
7944/// and if so, check that it's a valid override and remember it.
7945bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
7946  // Look for methods in base classes that this method might override.
7947  CXXBasePaths Paths;
7948  FindOverriddenMethod FOM;
7949  FOM.Method = MD;
7950  FOM.S = this;
7951  bool hasDeletedOverridenMethods = false;
7952  bool hasNonDeletedOverridenMethods = false;
7953  bool AddedAny = false;
7954  if (DC->lookupInBases(FOM, Paths)) {
7955    for (auto *I : Paths.found_decls()) {
7956      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
7957        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
7958        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
7959            !CheckOverridingFunctionAttributes(MD, OldMD) &&
7960            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
7961            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
7962          hasDeletedOverridenMethods |= OldMD->isDeleted();
7963          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
7964          AddedAny = true;
7965        }
7966      }
7967    }
7968  }
7969
7970  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
7971    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
7972  }
7973  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
7974    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
7975  }
7976
7977  return AddedAny;
7978}
7979
7980namespace {
7981  // Struct for holding all of the extra arguments needed by
7982  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
7983  struct ActOnFDArgs {
7984    Scope *S;
7985    Declarator &D;
7986    MultiTemplateParamsArg TemplateParamLists;
7987    bool AddToScope;
7988  };
7989} // end anonymous namespace
7990
7991namespace {
7992
7993// Callback to only accept typo corrections that have a non-zero edit distance.
7994// Also only accept corrections that have the same parent decl.
7995class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
7996 public:
7997  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
7998                            CXXRecordDecl *Parent)
7999      : Context(Context), OriginalFD(TypoFD),
8000        ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
8001
8002  bool ValidateCandidate(const TypoCorrection &candidate) override {
8003    if (candidate.getEditDistance() == 0)
8004      return false;
8005
8006    SmallVector<unsigned, 1> MismatchedParams;
8007    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
8008                                          CDeclEnd = candidate.end();
8009         CDecl != CDeclEnd; ++CDecl) {
8010      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8011
8012      if (FD && !FD->hasBody() &&
8013          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
8014        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8015          CXXRecordDecl *Parent = MD->getParent();
8016          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
8017            return true;
8018        } else if (!ExpectedParent) {
8019          return true;
8020        }
8021      }
8022    }
8023
8024    return false;
8025  }
8026
8027  std::unique_ptr<CorrectionCandidateCallback> clone() override {
8028    return std::make_unique<DifferentNameValidatorCCC>(*this);
8029  }
8030
8031 private:
8032  ASTContext &Context;
8033  FunctionDecl *OriginalFD;
8034  CXXRecordDecl *ExpectedParent;
8035};
8036
8037} // end anonymous namespace
8038
8039void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
8040  TypoCorrectedFunctionDefinitions.insert(F);
8041}
8042
8043/// Generate diagnostics for an invalid function redeclaration.
8044///
8045/// This routine handles generating the diagnostic messages for an invalid
8046/// function redeclaration, including finding possible similar declarations
8047/// or performing typo correction if there are no previous declarations with
8048/// the same name.
8049///
8050/// Returns a NamedDecl iff typo correction was performed and substituting in
8051/// the new declaration name does not cause new errors.
8052static NamedDecl *DiagnoseInvalidRedeclaration(
8053    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
8054    ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
8055  DeclarationName Name = NewFD->getDeclName();
8056  DeclContext *NewDC = NewFD->getDeclContext();
8057  SmallVector<unsigned, 1> MismatchedParams;
8058  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
8059  TypoCorrection Correction;
8060  bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
8061  unsigned DiagMsg =
8062    IsLocalFriend ? diag::err_no_matching_local_friend :
8063    NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
8064    diag::err_member_decl_does_not_match;
8065  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
8066                    IsLocalFriend ? Sema::LookupLocalFriendName
8067                                  : Sema::LookupOrdinaryName,
8068                    Sema::ForVisibleRedeclaration);
8069
8070  NewFD->setInvalidDecl();
8071  if (IsLocalFriend)
8072    SemaRef.LookupName(Prev, S);
8073  else
8074    SemaRef.LookupQualifiedName(Prev, NewDC);
8075  assert(!Prev.isAmbiguous() &&
8076         "Cannot have an ambiguity in previous-declaration lookup");
8077  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8078  DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
8079                                MD ? MD->getParent() : nullptr);
8080  if (!Prev.empty()) {
8081    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
8082         Func != FuncEnd; ++Func) {
8083      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
8084      if (FD &&
8085          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8086        // Add 1 to the index so that 0 can mean the mismatch didn't
8087        // involve a parameter
8088        unsigned ParamNum =
8089            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
8090        NearMatches.push_back(std::make_pair(FD, ParamNum));
8091      }
8092    }
8093  // If the qualified name lookup yielded nothing, try typo correction
8094  } else if ((Correction = SemaRef.CorrectTypo(
8095                  Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
8096                  &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
8097                  IsLocalFriend ? nullptr : NewDC))) {
8098    // Set up everything for the call to ActOnFunctionDeclarator
8099    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
8100                              ExtraArgs.D.getIdentifierLoc());
8101    Previous.clear();
8102    Previous.setLookupName(Correction.getCorrection());
8103    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
8104                                    CDeclEnd = Correction.end();
8105         CDecl != CDeclEnd; ++CDecl) {
8106      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8107      if (FD && !FD->hasBody() &&
8108          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8109        Previous.addDecl(FD);
8110      }
8111    }
8112    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
8113
8114    NamedDecl *Result;
8115    // Retry building the function declaration with the new previous
8116    // declarations, and with errors suppressed.
8117    {
8118      // Trap errors.
8119      Sema::SFINAETrap Trap(SemaRef);
8120
8121      // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
8122      // pieces need to verify the typo-corrected C++ declaration and hopefully
8123      // eliminate the need for the parameter pack ExtraArgs.
8124      Result = SemaRef.ActOnFunctionDeclarator(
8125          ExtraArgs.S, ExtraArgs.D,
8126          Correction.getCorrectionDecl()->getDeclContext(),
8127          NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
8128          ExtraArgs.AddToScope);
8129
8130      if (Trap.hasErrorOccurred())
8131        Result = nullptr;
8132    }
8133
8134    if (Result) {
8135      // Determine which correction we picked.
8136      Decl *Canonical = Result->getCanonicalDecl();
8137      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8138           I != E; ++I)
8139        if ((*I)->getCanonicalDecl() == Canonical)
8140          Correction.setCorrectionDecl(*I);
8141
8142      // Let Sema know about the correction.
8143      SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
8144      SemaRef.diagnoseTypo(
8145          Correction,
8146          SemaRef.PDiag(IsLocalFriend
8147                          ? diag::err_no_matching_local_friend_suggest
8148                          : diag::err_member_decl_does_not_match_suggest)
8149            << Name << NewDC << IsDefinition);
8150      return Result;
8151    }
8152
8153    // Pretend the typo correction never occurred
8154    ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
8155                              ExtraArgs.D.getIdentifierLoc());
8156    ExtraArgs.D.setRedeclaration(wasRedeclaration);
8157    Previous.clear();
8158    Previous.setLookupName(Name);
8159  }
8160
8161  SemaRef.Diag(NewFD->getLocation(), DiagMsg)
8162      << Name << NewDC << IsDefinition << NewFD->getLocation();
8163
8164  bool NewFDisConst = false;
8165  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
8166    NewFDisConst = NewMD->isConst();
8167
8168  for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
8169       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
8170       NearMatch != NearMatchEnd; ++NearMatch) {
8171    FunctionDecl *FD = NearMatch->first;
8172    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8173    bool FDisConst = MD && MD->isConst();
8174    bool IsMember = MD || !IsLocalFriend;
8175
8176    // FIXME: These notes are poorly worded for the local friend case.
8177    if (unsigned Idx = NearMatch->second) {
8178      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
8179      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
8180      if (Loc.isInvalid()) Loc = FD->getLocation();
8181      SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
8182                                 : diag::note_local_decl_close_param_match)
8183        << Idx << FDParam->getType()
8184        << NewFD->getParamDecl(Idx - 1)->getType();
8185    } else if (FDisConst != NewFDisConst) {
8186      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
8187          << NewFDisConst << FD->getSourceRange().getEnd();
8188    } else
8189      SemaRef.Diag(FD->getLocation(),
8190                   IsMember ? diag::note_member_def_close_match
8191                            : diag::note_local_decl_close_match);
8192  }
8193  return nullptr;
8194}
8195
8196static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
8197  switch (D.getDeclSpec().getStorageClassSpec()) {
8198  default: llvm_unreachable("Unknown storage class!");
8199  case DeclSpec::SCS_auto:
8200  case DeclSpec::SCS_register:
8201  case DeclSpec::SCS_mutable:
8202    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8203                 diag::err_typecheck_sclass_func);
8204    D.getMutableDeclSpec().ClearStorageClassSpecs();
8205    D.setInvalidType();
8206    break;
8207  case DeclSpec::SCS_unspecified: break;
8208  case DeclSpec::SCS_extern:
8209    if (D.getDeclSpec().isExternInLinkageSpec())
8210      return SC_None;
8211    return SC_Extern;
8212  case DeclSpec::SCS_static: {
8213    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8214      // C99 6.7.1p5:
8215      //   The declaration of an identifier for a function that has
8216      //   block scope shall have no explicit storage-class specifier
8217      //   other than extern
8218      // See also (C++ [dcl.stc]p4).
8219      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8220                   diag::err_static_block_func);
8221      break;
8222    } else
8223      return SC_Static;
8224  }
8225  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
8226  }
8227
8228  // No explicit storage class has already been returned
8229  return SC_None;
8230}
8231
8232static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
8233                                           DeclContext *DC, QualType &R,
8234                                           TypeSourceInfo *TInfo,
8235                                           StorageClass SC,
8236                                           bool &IsVirtualOkay) {
8237  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8238  DeclarationName Name = NameInfo.getName();
8239
8240  FunctionDecl *NewFD = nullptr;
8241  bool isInline = D.getDeclSpec().isInlineSpecified();
8242
8243  if (!SemaRef.getLangOpts().CPlusPlus) {
8244    // Determine whether the function was written with a
8245    // prototype. This true when:
8246    //   - there is a prototype in the declarator, or
8247    //   - the type R of the function is some kind of typedef or other non-
8248    //     attributed reference to a type name (which eventually refers to a
8249    //     function type).
8250    bool HasPrototype =
8251      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
8252      (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
8253
8254    NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8255                                 R, TInfo, SC, isInline, HasPrototype,
8256                                 CSK_unspecified,
8257                                 /*TrailingRequiresClause=*/nullptr);
8258    if (D.isInvalidType())
8259      NewFD->setInvalidDecl();
8260
8261    return NewFD;
8262  }
8263
8264  ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8265
8266  ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8267  if (ConstexprKind == CSK_constinit) {
8268    SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
8269                 diag::err_constexpr_wrong_decl_kind)
8270        << ConstexprKind;
8271    ConstexprKind = CSK_unspecified;
8272    D.getMutableDeclSpec().ClearConstexprSpec();
8273  }
8274  Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
8275
8276  // Check that the return type is not an abstract class type.
8277  // For record types, this is done by the AbstractClassUsageDiagnoser once
8278  // the class has been completely parsed.
8279  if (!DC->isRecord() &&
8280      SemaRef.RequireNonAbstractType(
8281          D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(),
8282          diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8283    D.setInvalidType();
8284
8285  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8286    // This is a C++ constructor declaration.
8287    assert(DC->isRecord() &&
8288           "Constructors can only be declared in a member context");
8289
8290    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8291    return CXXConstructorDecl::Create(
8292        SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8293        TInfo, ExplicitSpecifier, isInline,
8294        /*isImplicitlyDeclared=*/false, ConstexprKind, InheritedConstructor(),
8295        TrailingRequiresClause);
8296
8297  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8298    // This is a C++ destructor declaration.
8299    if (DC->isRecord()) {
8300      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8301      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8302      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
8303          SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
8304          isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
8305          TrailingRequiresClause);
8306
8307      // If the destructor needs an implicit exception specification, set it
8308      // now. FIXME: It'd be nice to be able to create the right type to start
8309      // with, but the type needs to reference the destructor declaration.
8310      if (SemaRef.getLangOpts().CPlusPlus11)
8311        SemaRef.AdjustDestructorExceptionSpec(NewDD);
8312
8313      IsVirtualOkay = true;
8314      return NewDD;
8315
8316    } else {
8317      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8318      D.setInvalidType();
8319
8320      // Create a FunctionDecl to satisfy the function definition parsing
8321      // code path.
8322      return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8323                                  D.getIdentifierLoc(), Name, R, TInfo, SC,
8324                                  isInline,
8325                                  /*hasPrototype=*/true, ConstexprKind,
8326                                  TrailingRequiresClause);
8327    }
8328
8329  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8330    if (!DC->isRecord()) {
8331      SemaRef.Diag(D.getIdentifierLoc(),
8332           diag::err_conv_function_not_member);
8333      return nullptr;
8334    }
8335
8336    SemaRef.CheckConversionDeclarator(D, R, SC);
8337    if (D.isInvalidType())
8338      return nullptr;
8339
8340    IsVirtualOkay = true;
8341    return CXXConversionDecl::Create(
8342        SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8343        TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation(),
8344        TrailingRequiresClause);
8345
8346  } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8347    if (TrailingRequiresClause)
8348      SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
8349                   diag::err_trailing_requires_clause_on_deduction_guide)
8350          << TrailingRequiresClause->getSourceRange();
8351    SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8352
8353    return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8354                                         ExplicitSpecifier, NameInfo, R, TInfo,
8355                                         D.getEndLoc());
8356  } else if (DC->isRecord()) {
8357    // If the name of the function is the same as the name of the record,
8358    // then this must be an invalid constructor that has a return type.
8359    // (The parser checks for a return type and makes the declarator a
8360    // constructor if it has no return type).
8361    if (Name.getAsIdentifierInfo() &&
8362        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8363      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8364        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8365        << SourceRange(D.getIdentifierLoc());
8366      return nullptr;
8367    }
8368
8369    // This is a C++ method declaration.
8370    CXXMethodDecl *Ret = CXXMethodDecl::Create(
8371        SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8372        TInfo, SC, isInline, ConstexprKind, SourceLocation(),
8373        TrailingRequiresClause);
8374    IsVirtualOkay = !Ret->isStatic();
8375    return Ret;
8376  } else {
8377    bool isFriend =
8378        SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8379    if (!isFriend && SemaRef.CurContext->isRecord())
8380      return nullptr;
8381
8382    // Determine whether the function was written with a
8383    // prototype. This true when:
8384    //   - we're in C++ (where every function has a prototype),
8385    return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8386                                R, TInfo, SC, isInline, true /*HasPrototype*/,
8387                                ConstexprKind, TrailingRequiresClause);
8388  }
8389}
8390
8391enum OpenCLParamType {
8392  ValidKernelParam,
8393  PtrPtrKernelParam,
8394  PtrKernelParam,
8395  InvalidAddrSpacePtrKernelParam,
8396  InvalidKernelParam,
8397  RecordKernelParam
8398};
8399
8400static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8401  // Size dependent types are just typedefs to normal integer types
8402  // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8403  // integers other than by their names.
8404  StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8405
8406  // Remove typedefs one by one until we reach a typedef
8407  // for a size dependent type.
8408  QualType DesugaredTy = Ty;
8409  do {
8410    ArrayRef<StringRef> Names(SizeTypeNames);
8411    auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
8412    if (Names.end() != Match)
8413      return true;
8414
8415    Ty = DesugaredTy;
8416    DesugaredTy = Ty.getSingleStepDesugaredType(C);
8417  } while (DesugaredTy != Ty);
8418
8419  return false;
8420}
8421
8422static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8423  if (PT->isPointerType()) {
8424    QualType PointeeType = PT->getPointeeType();
8425    if (PointeeType->isPointerType())
8426      return PtrPtrKernelParam;
8427    if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8428        PointeeType.getAddressSpace() == LangAS::opencl_private ||
8429        PointeeType.getAddressSpace() == LangAS::Default)
8430      return InvalidAddrSpacePtrKernelParam;
8431    return PtrKernelParam;
8432  }
8433
8434  // OpenCL v1.2 s6.9.k:
8435  // Arguments to kernel functions in a program cannot be declared with the
8436  // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8437  // uintptr_t or a struct and/or union that contain fields declared to be one
8438  // of these built-in scalar types.
8439  if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8440    return InvalidKernelParam;
8441
8442  if (PT->isImageType())
8443    return PtrKernelParam;
8444
8445  if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8446    return InvalidKernelParam;
8447
8448  // OpenCL extension spec v1.2 s9.5:
8449  // This extension adds support for half scalar and vector types as built-in
8450  // types that can be used for arithmetic operations, conversions etc.
8451  if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8452    return InvalidKernelParam;
8453
8454  if (PT->isRecordType())
8455    return RecordKernelParam;
8456
8457  // Look into an array argument to check if it has a forbidden type.
8458  if (PT->isArrayType()) {
8459    const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8460    // Call ourself to check an underlying type of an array. Since the
8461    // getPointeeOrArrayElementType returns an innermost type which is not an
8462    // array, this recursive call only happens once.
8463    return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8464  }
8465
8466  return ValidKernelParam;
8467}
8468
8469static void checkIsValidOpenCLKernelParameter(
8470  Sema &S,
8471  Declarator &D,
8472  ParmVarDecl *Param,
8473  llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8474  QualType PT = Param->getType();
8475
8476  // Cache the valid types we encounter to avoid rechecking structs that are
8477  // used again
8478  if (ValidTypes.count(PT.getTypePtr()))
8479    return;
8480
8481  switch (getOpenCLKernelParameterType(S, PT)) {
8482  case PtrPtrKernelParam:
8483    // OpenCL v1.2 s6.9.a:
8484    // A kernel function argument cannot be declared as a
8485    // pointer to a pointer type.
8486    S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8487    D.setInvalidType();
8488    return;
8489
8490  case InvalidAddrSpacePtrKernelParam:
8491    // OpenCL v1.0 s6.5:
8492    // __kernel function arguments declared to be a pointer of a type can point
8493    // to one of the following address spaces only : __global, __local or
8494    // __constant.
8495    S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8496    D.setInvalidType();
8497    return;
8498
8499    // OpenCL v1.2 s6.9.k:
8500    // Arguments to kernel functions in a program cannot be declared with the
8501    // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8502    // uintptr_t or a struct and/or union that contain fields declared to be
8503    // one of these built-in scalar types.
8504
8505  case InvalidKernelParam:
8506    // OpenCL v1.2 s6.8 n:
8507    // A kernel function argument cannot be declared
8508    // of event_t type.
8509    // Do not diagnose half type since it is diagnosed as invalid argument
8510    // type for any function elsewhere.
8511    if (!PT->isHalfType()) {
8512      S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8513
8514      // Explain what typedefs are involved.
8515      const TypedefType *Typedef = nullptr;
8516      while ((Typedef = PT->getAs<TypedefType>())) {
8517        SourceLocation Loc = Typedef->getDecl()->getLocation();
8518        // SourceLocation may be invalid for a built-in type.
8519        if (Loc.isValid())
8520          S.Diag(Loc, diag::note_entity_declared_at) << PT;
8521        PT = Typedef->desugar();
8522      }
8523    }
8524
8525    D.setInvalidType();
8526    return;
8527
8528  case PtrKernelParam:
8529  case ValidKernelParam:
8530    ValidTypes.insert(PT.getTypePtr());
8531    return;
8532
8533  case RecordKernelParam:
8534    break;
8535  }
8536
8537  // Track nested structs we will inspect
8538  SmallVector<const Decl *, 4> VisitStack;
8539
8540  // Track where we are in the nested structs. Items will migrate from
8541  // VisitStack to HistoryStack as we do the DFS for bad field.
8542  SmallVector<const FieldDecl *, 4> HistoryStack;
8543  HistoryStack.push_back(nullptr);
8544
8545  // At this point we already handled everything except of a RecordType or
8546  // an ArrayType of a RecordType.
8547  assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
8548  const RecordType *RecTy =
8549      PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8550  const RecordDecl *OrigRecDecl = RecTy->getDecl();
8551
8552  VisitStack.push_back(RecTy->getDecl());
8553  assert(VisitStack.back() && "First decl null?");
8554
8555  do {
8556    const Decl *Next = VisitStack.pop_back_val();
8557    if (!Next) {
8558      assert(!HistoryStack.empty());
8559      // Found a marker, we have gone up a level
8560      if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8561        ValidTypes.insert(Hist->getType().getTypePtr());
8562
8563      continue;
8564    }
8565
8566    // Adds everything except the original parameter declaration (which is not a
8567    // field itself) to the history stack.
8568    const RecordDecl *RD;
8569    if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8570      HistoryStack.push_back(Field);
8571
8572      QualType FieldTy = Field->getType();
8573      // Other field types (known to be valid or invalid) are handled while we
8574      // walk around RecordDecl::fields().
8575      assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
8576             "Unexpected type.");
8577      const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8578
8579      RD = FieldRecTy->castAs<RecordType>()->getDecl();
8580    } else {
8581      RD = cast<RecordDecl>(Next);
8582    }
8583
8584    // Add a null marker so we know when we've gone back up a level
8585    VisitStack.push_back(nullptr);
8586
8587    for (const auto *FD : RD->fields()) {
8588      QualType QT = FD->getType();
8589
8590      if (ValidTypes.count(QT.getTypePtr()))
8591        continue;
8592
8593      OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8594      if (ParamType == ValidKernelParam)
8595        continue;
8596
8597      if (ParamType == RecordKernelParam) {
8598        VisitStack.push_back(FD);
8599        continue;
8600      }
8601
8602      // OpenCL v1.2 s6.9.p:
8603      // Arguments to kernel functions that are declared to be a struct or union
8604      // do not allow OpenCL objects to be passed as elements of the struct or
8605      // union.
8606      if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8607          ParamType == InvalidAddrSpacePtrKernelParam) {
8608        S.Diag(Param->getLocation(),
8609               diag::err_record_with_pointers_kernel_param)
8610          << PT->isUnionType()
8611          << PT;
8612      } else {
8613        S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8614      }
8615
8616      S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8617          << OrigRecDecl->getDeclName();
8618
8619      // We have an error, now let's go back up through history and show where
8620      // the offending field came from
8621      for (ArrayRef<const FieldDecl *>::const_iterator
8622               I = HistoryStack.begin() + 1,
8623               E = HistoryStack.end();
8624           I != E; ++I) {
8625        const FieldDecl *OuterField = *I;
8626        S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8627          << OuterField->getType();
8628      }
8629
8630      S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8631        << QT->isPointerType()
8632        << QT;
8633      D.setInvalidType();
8634      return;
8635    }
8636  } while (!VisitStack.empty());
8637}
8638
8639/// Find the DeclContext in which a tag is implicitly declared if we see an
8640/// elaborated type specifier in the specified context, and lookup finds
8641/// nothing.
8642static DeclContext *getTagInjectionContext(DeclContext *DC) {
8643  while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8644    DC = DC->getParent();
8645  return DC;
8646}
8647
8648/// Find the Scope in which a tag is implicitly declared if we see an
8649/// elaborated type specifier in the specified context, and lookup finds
8650/// nothing.
8651static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8652  while (S->isClassScope() ||
8653         (LangOpts.CPlusPlus &&
8654          S->isFunctionPrototypeScope()) ||
8655         ((S->getFlags() & Scope::DeclScope) == 0) ||
8656         (S->getEntity() && S->getEntity()->isTransparentContext()))
8657    S = S->getParent();
8658  return S;
8659}
8660
8661NamedDecl*
8662Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8663                              TypeSourceInfo *TInfo, LookupResult &Previous,
8664                              MultiTemplateParamsArg TemplateParamListsRef,
8665                              bool &AddToScope) {
8666  QualType R = TInfo->getType();
8667
8668  assert(R->isFunctionType());
8669  SmallVector<TemplateParameterList *, 4> TemplateParamLists;
8670  for (TemplateParameterList *TPL : TemplateParamListsRef)
8671    TemplateParamLists.push_back(TPL);
8672  if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
8673    if (!TemplateParamLists.empty() &&
8674        Invented->getDepth() == TemplateParamLists.back()->getDepth())
8675      TemplateParamLists.back() = Invented;
8676    else
8677      TemplateParamLists.push_back(Invented);
8678  }
8679
8680  // TODO: consider using NameInfo for diagnostic.
8681  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8682  DeclarationName Name = NameInfo.getName();
8683  StorageClass SC = getFunctionStorageClass(*this, D);
8684
8685  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8686    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8687         diag::err_invalid_thread)
8688      << DeclSpec::getSpecifierName(TSCS);
8689
8690  if (D.isFirstDeclarationOfMember())
8691    adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8692                           D.getIdentifierLoc());
8693
8694  bool isFriend = false;
8695  FunctionTemplateDecl *FunctionTemplate = nullptr;
8696  bool isMemberSpecialization = false;
8697  bool isFunctionTemplateSpecialization = false;
8698
8699  bool isDependentClassScopeExplicitSpecialization = false;
8700  bool HasExplicitTemplateArgs = false;
8701  TemplateArgumentListInfo TemplateArgs;
8702
8703  bool isVirtualOkay = false;
8704
8705  DeclContext *OriginalDC = DC;
8706  bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8707
8708  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8709                                              isVirtualOkay);
8710  if (!NewFD) return nullptr;
8711
8712  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8713    NewFD->setTopLevelDeclInObjCContainer();
8714
8715  // Set the lexical context. If this is a function-scope declaration, or has a
8716  // C++ scope specifier, or is the object of a friend declaration, the lexical
8717  // context will be different from the semantic context.
8718  NewFD->setLexicalDeclContext(CurContext);
8719
8720  if (IsLocalExternDecl)
8721    NewFD->setLocalExternDecl();
8722
8723  if (getLangOpts().CPlusPlus) {
8724    bool isInline = D.getDeclSpec().isInlineSpecified();
8725    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8726    bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
8727    isFriend = D.getDeclSpec().isFriendSpecified();
8728    if (isFriend && !isInline && D.isFunctionDefinition()) {
8729      // C++ [class.friend]p5
8730      //   A function can be defined in a friend declaration of a
8731      //   class . . . . Such a function is implicitly inline.
8732      NewFD->setImplicitlyInline();
8733    }
8734
8735    // If this is a method defined in an __interface, and is not a constructor
8736    // or an overloaded operator, then set the pure flag (isVirtual will already
8737    // return true).
8738    if (const CXXRecordDecl *Parent =
8739          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8740      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8741        NewFD->setPure(true);
8742
8743      // C++ [class.union]p2
8744      //   A union can have member functions, but not virtual functions.
8745      if (isVirtual && Parent->isUnion())
8746        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8747    }
8748
8749    SetNestedNameSpecifier(*this, NewFD, D);
8750    isMemberSpecialization = false;
8751    isFunctionTemplateSpecialization = false;
8752    if (D.isInvalidType())
8753      NewFD->setInvalidDecl();
8754
8755    // Match up the template parameter lists with the scope specifier, then
8756    // determine whether we have a template or a template specialization.
8757    bool Invalid = false;
8758    TemplateParameterList *TemplateParams =
8759        MatchTemplateParametersToScopeSpecifier(
8760            D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8761            D.getCXXScopeSpec(),
8762            D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8763                ? D.getName().TemplateId
8764                : nullptr,
8765            TemplateParamLists, isFriend, isMemberSpecialization,
8766            Invalid);
8767    if (TemplateParams) {
8768      if (TemplateParams->size() > 0) {
8769        // This is a function template
8770
8771        // Check that we can declare a template here.
8772        if (CheckTemplateDeclScope(S, TemplateParams))
8773          NewFD->setInvalidDecl();
8774
8775        // A destructor cannot be a template.
8776        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8777          Diag(NewFD->getLocation(), diag::err_destructor_template);
8778          NewFD->setInvalidDecl();
8779        }
8780
8781        // If we're adding a template to a dependent context, we may need to
8782        // rebuilding some of the types used within the template parameter list,
8783        // now that we know what the current instantiation is.
8784        if (DC->isDependentContext()) {
8785          ContextRAII SavedContext(*this, DC);
8786          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8787            Invalid = true;
8788        }
8789
8790        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8791                                                        NewFD->getLocation(),
8792                                                        Name, TemplateParams,
8793                                                        NewFD);
8794        FunctionTemplate->setLexicalDeclContext(CurContext);
8795        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8796
8797        // For source fidelity, store the other template param lists.
8798        if (TemplateParamLists.size() > 1) {
8799          NewFD->setTemplateParameterListsInfo(Context,
8800              ArrayRef<TemplateParameterList *>(TemplateParamLists)
8801                  .drop_back(1));
8802        }
8803      } else {
8804        // This is a function template specialization.
8805        isFunctionTemplateSpecialization = true;
8806        // For source fidelity, store all the template param lists.
8807        if (TemplateParamLists.size() > 0)
8808          NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8809
8810        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
8811        if (isFriend) {
8812          // We want to remove the "template<>", found here.
8813          SourceRange RemoveRange = TemplateParams->getSourceRange();
8814
8815          // If we remove the template<> and the name is not a
8816          // template-id, we're actually silently creating a problem:
8817          // the friend declaration will refer to an untemplated decl,
8818          // and clearly the user wants a template specialization.  So
8819          // we need to insert '<>' after the name.
8820          SourceLocation InsertLoc;
8821          if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
8822            InsertLoc = D.getName().getSourceRange().getEnd();
8823            InsertLoc = getLocForEndOfToken(InsertLoc);
8824          }
8825
8826          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
8827            << Name << RemoveRange
8828            << FixItHint::CreateRemoval(RemoveRange)
8829            << FixItHint::CreateInsertion(InsertLoc, "<>");
8830        }
8831      }
8832    } else {
8833      // All template param lists were matched against the scope specifier:
8834      // this is NOT (an explicit specialization of) a template.
8835      if (TemplateParamLists.size() > 0)
8836        // For source fidelity, store all the template param lists.
8837        NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8838    }
8839
8840    if (Invalid) {
8841      NewFD->setInvalidDecl();
8842      if (FunctionTemplate)
8843        FunctionTemplate->setInvalidDecl();
8844    }
8845
8846    // C++ [dcl.fct.spec]p5:
8847    //   The virtual specifier shall only be used in declarations of
8848    //   nonstatic class member functions that appear within a
8849    //   member-specification of a class declaration; see 10.3.
8850    //
8851    if (isVirtual && !NewFD->isInvalidDecl()) {
8852      if (!isVirtualOkay) {
8853        Diag(D.getDeclSpec().getVirtualSpecLoc(),
8854             diag::err_virtual_non_function);
8855      } else if (!CurContext->isRecord()) {
8856        // 'virtual' was specified outside of the class.
8857        Diag(D.getDeclSpec().getVirtualSpecLoc(),
8858             diag::err_virtual_out_of_class)
8859          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8860      } else if (NewFD->getDescribedFunctionTemplate()) {
8861        // C++ [temp.mem]p3:
8862        //  A member function template shall not be virtual.
8863        Diag(D.getDeclSpec().getVirtualSpecLoc(),
8864             diag::err_virtual_member_function_template)
8865          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8866      } else {
8867        // Okay: Add virtual to the method.
8868        NewFD->setVirtualAsWritten(true);
8869      }
8870
8871      if (getLangOpts().CPlusPlus14 &&
8872          NewFD->getReturnType()->isUndeducedType())
8873        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
8874    }
8875
8876    if (getLangOpts().CPlusPlus14 &&
8877        (NewFD->isDependentContext() ||
8878         (isFriend && CurContext->isDependentContext())) &&
8879        NewFD->getReturnType()->isUndeducedType()) {
8880      // If the function template is referenced directly (for instance, as a
8881      // member of the current instantiation), pretend it has a dependent type.
8882      // This is not really justified by the standard, but is the only sane
8883      // thing to do.
8884      // FIXME: For a friend function, we have not marked the function as being
8885      // a friend yet, so 'isDependentContext' on the FD doesn't work.
8886      const FunctionProtoType *FPT =
8887          NewFD->getType()->castAs<FunctionProtoType>();
8888      QualType Result =
8889          SubstAutoType(FPT->getReturnType(), Context.DependentTy);
8890      NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
8891                                             FPT->getExtProtoInfo()));
8892    }
8893
8894    // C++ [dcl.fct.spec]p3:
8895    //  The inline specifier shall not appear on a block scope function
8896    //  declaration.
8897    if (isInline && !NewFD->isInvalidDecl()) {
8898      if (CurContext->isFunctionOrMethod()) {
8899        // 'inline' is not allowed on block scope function declaration.
8900        Diag(D.getDeclSpec().getInlineSpecLoc(),
8901             diag::err_inline_declaration_block_scope) << Name
8902          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
8903      }
8904    }
8905
8906    // C++ [dcl.fct.spec]p6:
8907    //  The explicit specifier shall be used only in the declaration of a
8908    //  constructor or conversion function within its class definition;
8909    //  see 12.3.1 and 12.3.2.
8910    if (hasExplicit && !NewFD->isInvalidDecl() &&
8911        !isa<CXXDeductionGuideDecl>(NewFD)) {
8912      if (!CurContext->isRecord()) {
8913        // 'explicit' was specified outside of the class.
8914        Diag(D.getDeclSpec().getExplicitSpecLoc(),
8915             diag::err_explicit_out_of_class)
8916            << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
8917      } else if (!isa<CXXConstructorDecl>(NewFD) &&
8918                 !isa<CXXConversionDecl>(NewFD)) {
8919        // 'explicit' was specified on a function that wasn't a constructor
8920        // or conversion function.
8921        Diag(D.getDeclSpec().getExplicitSpecLoc(),
8922             diag::err_explicit_non_ctor_or_conv_function)
8923            << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
8924      }
8925    }
8926
8927    if (ConstexprSpecKind ConstexprKind =
8928            D.getDeclSpec().getConstexprSpecifier()) {
8929      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
8930      // are implicitly inline.
8931      NewFD->setImplicitlyInline();
8932
8933      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
8934      // be either constructors or to return a literal type. Therefore,
8935      // destructors cannot be declared constexpr.
8936      if (isa<CXXDestructorDecl>(NewFD) && !getLangOpts().CPlusPlus2a) {
8937        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
8938            << ConstexprKind;
8939      }
8940    }
8941
8942    // If __module_private__ was specified, mark the function accordingly.
8943    if (D.getDeclSpec().isModulePrivateSpecified()) {
8944      if (isFunctionTemplateSpecialization) {
8945        SourceLocation ModulePrivateLoc
8946          = D.getDeclSpec().getModulePrivateSpecLoc();
8947        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
8948          << 0
8949          << FixItHint::CreateRemoval(ModulePrivateLoc);
8950      } else {
8951        NewFD->setModulePrivate();
8952        if (FunctionTemplate)
8953          FunctionTemplate->setModulePrivate();
8954      }
8955    }
8956
8957    if (isFriend) {
8958      if (FunctionTemplate) {
8959        FunctionTemplate->setObjectOfFriendDecl();
8960        FunctionTemplate->setAccess(AS_public);
8961      }
8962      NewFD->setObjectOfFriendDecl();
8963      NewFD->setAccess(AS_public);
8964    }
8965
8966    // If a function is defined as defaulted or deleted, mark it as such now.
8967    // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
8968    // definition kind to FDK_Definition.
8969    switch (D.getFunctionDefinitionKind()) {
8970      case FDK_Declaration:
8971      case FDK_Definition:
8972        break;
8973
8974      case FDK_Defaulted:
8975        NewFD->setDefaulted();
8976        break;
8977
8978      case FDK_Deleted:
8979        NewFD->setDeletedAsWritten();
8980        break;
8981    }
8982
8983    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
8984        D.isFunctionDefinition()) {
8985      // C++ [class.mfct]p2:
8986      //   A member function may be defined (8.4) in its class definition, in
8987      //   which case it is an inline member function (7.1.2)
8988      NewFD->setImplicitlyInline();
8989    }
8990
8991    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
8992        !CurContext->isRecord()) {
8993      // C++ [class.static]p1:
8994      //   A data or function member of a class may be declared static
8995      //   in a class definition, in which case it is a static member of
8996      //   the class.
8997
8998      // Complain about the 'static' specifier if it's on an out-of-line
8999      // member function definition.
9000
9001      // MSVC permits the use of a 'static' storage specifier on an out-of-line
9002      // member function template declaration and class member template
9003      // declaration (MSVC versions before 2015), warn about this.
9004      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9005           ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
9006             cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
9007           (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
9008           ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
9009        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9010    }
9011
9012    // C++11 [except.spec]p15:
9013    //   A deallocation function with no exception-specification is treated
9014    //   as if it were specified with noexcept(true).
9015    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
9016    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
9017         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
9018        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
9019      NewFD->setType(Context.getFunctionType(
9020          FPT->getReturnType(), FPT->getParamTypes(),
9021          FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
9022  }
9023
9024  // Filter out previous declarations that don't match the scope.
9025  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
9026                       D.getCXXScopeSpec().isNotEmpty() ||
9027                       isMemberSpecialization ||
9028                       isFunctionTemplateSpecialization);
9029
9030  // Handle GNU asm-label extension (encoded as an attribute).
9031  if (Expr *E = (Expr*) D.getAsmLabel()) {
9032    // The parser guarantees this is a string.
9033    StringLiteral *SE = cast<StringLiteral>(E);
9034    NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
9035                                        /*IsLiteralLabel=*/true,
9036                                        SE->getStrTokenLoc(0)));
9037  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
9038    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
9039      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
9040    if (I != ExtnameUndeclaredIdentifiers.end()) {
9041      if (isDeclExternC(NewFD)) {
9042        NewFD->addAttr(I->second);
9043        ExtnameUndeclaredIdentifiers.erase(I);
9044      } else
9045        Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
9046            << /*Variable*/0 << NewFD;
9047    }
9048  }
9049
9050  // Copy the parameter declarations from the declarator D to the function
9051  // declaration NewFD, if they are available.  First scavenge them into Params.
9052  SmallVector<ParmVarDecl*, 16> Params;
9053  unsigned FTIIdx;
9054  if (D.isFunctionDeclarator(FTIIdx)) {
9055    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
9056
9057    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
9058    // function that takes no arguments, not a function that takes a
9059    // single void argument.
9060    // We let through "const void" here because Sema::GetTypeForDeclarator
9061    // already checks for that case.
9062    if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
9063      for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
9064        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
9065        assert(Param->getDeclContext() != NewFD && "Was set before ?");
9066        Param->setDeclContext(NewFD);
9067        Params.push_back(Param);
9068
9069        if (Param->isInvalidDecl())
9070          NewFD->setInvalidDecl();
9071      }
9072    }
9073
9074    if (!getLangOpts().CPlusPlus) {
9075      // In C, find all the tag declarations from the prototype and move them
9076      // into the function DeclContext. Remove them from the surrounding tag
9077      // injection context of the function, which is typically but not always
9078      // the TU.
9079      DeclContext *PrototypeTagContext =
9080          getTagInjectionContext(NewFD->getLexicalDeclContext());
9081      for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
9082        auto *TD = dyn_cast<TagDecl>(NonParmDecl);
9083
9084        // We don't want to reparent enumerators. Look at their parent enum
9085        // instead.
9086        if (!TD) {
9087          if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
9088            TD = cast<EnumDecl>(ECD->getDeclContext());
9089        }
9090        if (!TD)
9091          continue;
9092        DeclContext *TagDC = TD->getLexicalDeclContext();
9093        if (!TagDC->containsDecl(TD))
9094          continue;
9095        TagDC->removeDecl(TD);
9096        TD->setDeclContext(NewFD);
9097        NewFD->addDecl(TD);
9098
9099        // Preserve the lexical DeclContext if it is not the surrounding tag
9100        // injection context of the FD. In this example, the semantic context of
9101        // E will be f and the lexical context will be S, while both the
9102        // semantic and lexical contexts of S will be f:
9103        //   void f(struct S { enum E { a } f; } s);
9104        if (TagDC != PrototypeTagContext)
9105          TD->setLexicalDeclContext(TagDC);
9106      }
9107    }
9108  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
9109    // When we're declaring a function with a typedef, typeof, etc as in the
9110    // following example, we'll need to synthesize (unnamed)
9111    // parameters for use in the declaration.
9112    //
9113    // @code
9114    // typedef void fn(int);
9115    // fn f;
9116    // @endcode
9117
9118    // Synthesize a parameter for each argument type.
9119    for (const auto &AI : FT->param_types()) {
9120      ParmVarDecl *Param =
9121          BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
9122      Param->setScopeInfo(0, Params.size());
9123      Params.push_back(Param);
9124    }
9125  } else {
9126    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
9127           "Should not need args for typedef of non-prototype fn");
9128  }
9129
9130  // Finally, we know we have the right number of parameters, install them.
9131  NewFD->setParams(Params);
9132
9133  if (D.getDeclSpec().isNoreturnSpecified())
9134    NewFD->addAttr(C11NoReturnAttr::Create(Context,
9135                                           D.getDeclSpec().getNoreturnSpecLoc(),
9136                                           AttributeCommonInfo::AS_Keyword));
9137
9138  // Functions returning a variably modified type violate C99 6.7.5.2p2
9139  // because all functions have linkage.
9140  if (!NewFD->isInvalidDecl() &&
9141      NewFD->getReturnType()->isVariablyModifiedType()) {
9142    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
9143    NewFD->setInvalidDecl();
9144  }
9145
9146  // Apply an implicit SectionAttr if '#pragma clang section text' is active
9147  if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
9148      !NewFD->hasAttr<SectionAttr>())
9149    NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
9150        Context, PragmaClangTextSection.SectionName,
9151        PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));
9152
9153  // Apply an implicit SectionAttr if #pragma code_seg is active.
9154  if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
9155      !NewFD->hasAttr<SectionAttr>()) {
9156    NewFD->addAttr(SectionAttr::CreateImplicit(
9157        Context, CodeSegStack.CurrentValue->getString(),
9158        CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9159        SectionAttr::Declspec_allocate));
9160    if (UnifySection(CodeSegStack.CurrentValue->getString(),
9161                     ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
9162                         ASTContext::PSF_Read,
9163                     NewFD))
9164      NewFD->dropAttr<SectionAttr>();
9165  }
9166
9167  // Apply an implicit CodeSegAttr from class declspec or
9168  // apply an implicit SectionAttr from #pragma code_seg if active.
9169  if (!NewFD->hasAttr<CodeSegAttr>()) {
9170    if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
9171                                                                 D.isFunctionDefinition())) {
9172      NewFD->addAttr(SAttr);
9173    }
9174  }
9175
9176  // Handle attributes.
9177  ProcessDeclAttributes(S, NewFD, D);
9178
9179  if (getLangOpts().OpenCL) {
9180    // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
9181    // type declaration will generate a compilation error.
9182    LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
9183    if (AddressSpace != LangAS::Default) {
9184      Diag(NewFD->getLocation(),
9185           diag::err_opencl_return_value_with_address_space);
9186      NewFD->setInvalidDecl();
9187    }
9188  }
9189
9190  if (!getLangOpts().CPlusPlus) {
9191    // Perform semantic checking on the function declaration.
9192    if (!NewFD->isInvalidDecl() && NewFD->isMain())
9193      CheckMain(NewFD, D.getDeclSpec());
9194
9195    if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9196      CheckMSVCRTEntryPoint(NewFD);
9197
9198    if (!NewFD->isInvalidDecl())
9199      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9200                                                  isMemberSpecialization));
9201    else if (!Previous.empty())
9202      // Recover gracefully from an invalid redeclaration.
9203      D.setRedeclaration(true);
9204    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9205            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9206           "previous declaration set still overloaded");
9207
9208    // Diagnose no-prototype function declarations with calling conventions that
9209    // don't support variadic calls. Only do this in C and do it after merging
9210    // possibly prototyped redeclarations.
9211    const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
9212    if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
9213      CallingConv CC = FT->getExtInfo().getCC();
9214      if (!supportsVariadicCall(CC)) {
9215        // Windows system headers sometimes accidentally use stdcall without
9216        // (void) parameters, so we relax this to a warning.
9217        int DiagID =
9218            CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
9219        Diag(NewFD->getLocation(), DiagID)
9220            << FunctionType::getNameForCallConv(CC);
9221      }
9222    }
9223
9224   if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
9225       NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
9226     checkNonTrivialCUnion(NewFD->getReturnType(),
9227                           NewFD->getReturnTypeSourceRange().getBegin(),
9228                           NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
9229  } else {
9230    // C++11 [replacement.functions]p3:
9231    //  The program's definitions shall not be specified as inline.
9232    //
9233    // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
9234    //
9235    // Suppress the diagnostic if the function is __attribute__((used)), since
9236    // that forces an external definition to be emitted.
9237    if (D.getDeclSpec().isInlineSpecified() &&
9238        NewFD->isReplaceableGlobalAllocationFunction() &&
9239        !NewFD->hasAttr<UsedAttr>())
9240      Diag(D.getDeclSpec().getInlineSpecLoc(),
9241           diag::ext_operator_new_delete_declared_inline)
9242        << NewFD->getDeclName();
9243
9244    // If the declarator is a template-id, translate the parser's template
9245    // argument list into our AST format.
9246    if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9247      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
9248      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
9249      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
9250      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
9251                                         TemplateId->NumArgs);
9252      translateTemplateArguments(TemplateArgsPtr,
9253                                 TemplateArgs);
9254
9255      HasExplicitTemplateArgs = true;
9256
9257      if (NewFD->isInvalidDecl()) {
9258        HasExplicitTemplateArgs = false;
9259      } else if (FunctionTemplate) {
9260        // Function template with explicit template arguments.
9261        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9262          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9263
9264        HasExplicitTemplateArgs = false;
9265      } else {
9266        assert((isFunctionTemplateSpecialization ||
9267                D.getDeclSpec().isFriendSpecified()) &&
9268               "should have a 'template<>' for this decl");
9269        // "friend void foo<>(int);" is an implicit specialization decl.
9270        isFunctionTemplateSpecialization = true;
9271      }
9272    } else if (isFriend && isFunctionTemplateSpecialization) {
9273      // This combination is only possible in a recovery case;  the user
9274      // wrote something like:
9275      //   template <> friend void foo(int);
9276      // which we're recovering from as if the user had written:
9277      //   friend void foo<>(int);
9278      // Go ahead and fake up a template id.
9279      HasExplicitTemplateArgs = true;
9280      TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
9281      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
9282    }
9283
9284    // We do not add HD attributes to specializations here because
9285    // they may have different constexpr-ness compared to their
9286    // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
9287    // may end up with different effective targets. Instead, a
9288    // specialization inherits its target attributes from its template
9289    // in the CheckFunctionTemplateSpecialization() call below.
9290    if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
9291      maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
9292
9293    // If it's a friend (and only if it's a friend), it's possible
9294    // that either the specialized function type or the specialized
9295    // template is dependent, and therefore matching will fail.  In
9296    // this case, don't check the specialization yet.
9297    bool InstantiationDependent = false;
9298    if (isFunctionTemplateSpecialization && isFriend &&
9299        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
9300         TemplateSpecializationType::anyDependentTemplateArguments(
9301            TemplateArgs,
9302            InstantiationDependent))) {
9303      assert(HasExplicitTemplateArgs &&
9304             "friend function specialization without template args");
9305      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9306                                                       Previous))
9307        NewFD->setInvalidDecl();
9308    } else if (isFunctionTemplateSpecialization) {
9309      if (CurContext->isDependentContext() && CurContext->isRecord()
9310          && !isFriend) {
9311        isDependentClassScopeExplicitSpecialization = true;
9312      } else if (!NewFD->isInvalidDecl() &&
9313                 CheckFunctionTemplateSpecialization(
9314                     NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9315                     Previous))
9316        NewFD->setInvalidDecl();
9317
9318      // C++ [dcl.stc]p1:
9319      //   A storage-class-specifier shall not be specified in an explicit
9320      //   specialization (14.7.3)
9321      FunctionTemplateSpecializationInfo *Info =
9322          NewFD->getTemplateSpecializationInfo();
9323      if (Info && SC != SC_None) {
9324        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9325          Diag(NewFD->getLocation(),
9326               diag::err_explicit_specialization_inconsistent_storage_class)
9327            << SC
9328            << FixItHint::CreateRemoval(
9329                                      D.getDeclSpec().getStorageClassSpecLoc());
9330
9331        else
9332          Diag(NewFD->getLocation(),
9333               diag::ext_explicit_specialization_storage_class)
9334            << FixItHint::CreateRemoval(
9335                                      D.getDeclSpec().getStorageClassSpecLoc());
9336      }
9337    } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9338      if (CheckMemberSpecialization(NewFD, Previous))
9339          NewFD->setInvalidDecl();
9340    }
9341
9342    // Perform semantic checking on the function declaration.
9343    if (!isDependentClassScopeExplicitSpecialization) {
9344      if (!NewFD->isInvalidDecl() && NewFD->isMain())
9345        CheckMain(NewFD, D.getDeclSpec());
9346
9347      if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9348        CheckMSVCRTEntryPoint(NewFD);
9349
9350      if (!NewFD->isInvalidDecl())
9351        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9352                                                    isMemberSpecialization));
9353      else if (!Previous.empty())
9354        // Recover gracefully from an invalid redeclaration.
9355        D.setRedeclaration(true);
9356    }
9357
9358    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9359            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9360           "previous declaration set still overloaded");
9361
9362    NamedDecl *PrincipalDecl = (FunctionTemplate
9363                                ? cast<NamedDecl>(FunctionTemplate)
9364                                : NewFD);
9365
9366    if (isFriend && NewFD->getPreviousDecl()) {
9367      AccessSpecifier Access = AS_public;
9368      if (!NewFD->isInvalidDecl())
9369        Access = NewFD->getPreviousDecl()->getAccess();
9370
9371      NewFD->setAccess(Access);
9372      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9373    }
9374
9375    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9376        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9377      PrincipalDecl->setNonMemberOperator();
9378
9379    // If we have a function template, check the template parameter
9380    // list. This will check and merge default template arguments.
9381    if (FunctionTemplate) {
9382      FunctionTemplateDecl *PrevTemplate =
9383                                     FunctionTemplate->getPreviousDecl();
9384      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9385                       PrevTemplate ? PrevTemplate->getTemplateParameters()
9386                                    : nullptr,
9387                            D.getDeclSpec().isFriendSpecified()
9388                              ? (D.isFunctionDefinition()
9389                                   ? TPC_FriendFunctionTemplateDefinition
9390                                   : TPC_FriendFunctionTemplate)
9391                              : (D.getCXXScopeSpec().isSet() &&
9392                                 DC && DC->isRecord() &&
9393                                 DC->isDependentContext())
9394                                  ? TPC_ClassTemplateMember
9395                                  : TPC_FunctionTemplate);
9396    }
9397
9398    if (NewFD->isInvalidDecl()) {
9399      // Ignore all the rest of this.
9400    } else if (!D.isRedeclaration()) {
9401      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9402                                       AddToScope };
9403      // Fake up an access specifier if it's supposed to be a class member.
9404      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9405        NewFD->setAccess(AS_public);
9406
9407      // Qualified decls generally require a previous declaration.
9408      if (D.getCXXScopeSpec().isSet()) {
9409        // ...with the major exception of templated-scope or
9410        // dependent-scope friend declarations.
9411
9412        // TODO: we currently also suppress this check in dependent
9413        // contexts because (1) the parameter depth will be off when
9414        // matching friend templates and (2) we might actually be
9415        // selecting a friend based on a dependent factor.  But there
9416        // are situations where these conditions don't apply and we
9417        // can actually do this check immediately.
9418        //
9419        // Unless the scope is dependent, it's always an error if qualified
9420        // redeclaration lookup found nothing at all. Diagnose that now;
9421        // nothing will diagnose that error later.
9422        if (isFriend &&
9423            (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9424             (!Previous.empty() && CurContext->isDependentContext()))) {
9425          // ignore these
9426        } else {
9427          // The user tried to provide an out-of-line definition for a
9428          // function that is a member of a class or namespace, but there
9429          // was no such member function declared (C++ [class.mfct]p2,
9430          // C++ [namespace.memdef]p2). For example:
9431          //
9432          // class X {
9433          //   void f() const;
9434          // };
9435          //
9436          // void X::f() { } // ill-formed
9437          //
9438          // Complain about this problem, and attempt to suggest close
9439          // matches (e.g., those that differ only in cv-qualifiers and
9440          // whether the parameter types are references).
9441
9442          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9443                  *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9444            AddToScope = ExtraArgs.AddToScope;
9445            return Result;
9446          }
9447        }
9448
9449        // Unqualified local friend declarations are required to resolve
9450        // to something.
9451      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9452        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9453                *this, Previous, NewFD, ExtraArgs, true, S)) {
9454          AddToScope = ExtraArgs.AddToScope;
9455          return Result;
9456        }
9457      }
9458    } else if (!D.isFunctionDefinition() &&
9459               isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9460               !isFriend && !isFunctionTemplateSpecialization &&
9461               !isMemberSpecialization) {
9462      // An out-of-line member function declaration must also be a
9463      // definition (C++ [class.mfct]p2).
9464      // Note that this is not the case for explicit specializations of
9465      // function templates or member functions of class templates, per
9466      // C++ [temp.expl.spec]p2. We also allow these declarations as an
9467      // extension for compatibility with old SWIG code which likes to
9468      // generate them.
9469      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9470        << D.getCXXScopeSpec().getRange();
9471    }
9472  }
9473
9474  ProcessPragmaWeak(S, NewFD);
9475  checkAttributesAfterMerging(*this, *NewFD);
9476
9477  AddKnownFunctionAttributes(NewFD);
9478
9479  if (NewFD->hasAttr<OverloadableAttr>() &&
9480      !NewFD->getType()->getAs<FunctionProtoType>()) {
9481    Diag(NewFD->getLocation(),
9482         diag::err_attribute_overloadable_no_prototype)
9483      << NewFD;
9484
9485    // Turn this into a variadic function with no parameters.
9486    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9487    FunctionProtoType::ExtProtoInfo EPI(
9488        Context.getDefaultCallingConvention(true, false));
9489    EPI.Variadic = true;
9490    EPI.ExtInfo = FT->getExtInfo();
9491
9492    QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9493    NewFD->setType(R);
9494  }
9495
9496  // If there's a #pragma GCC visibility in scope, and this isn't a class
9497  // member, set the visibility of this function.
9498  if (!DC->isRecord() && NewFD->isExternallyVisible())
9499    AddPushedVisibilityAttribute(NewFD);
9500
9501  // If there's a #pragma clang arc_cf_code_audited in scope, consider
9502  // marking the function.
9503  AddCFAuditedAttribute(NewFD);
9504
9505  // If this is a function definition, check if we have to apply optnone due to
9506  // a pragma.
9507  if(D.isFunctionDefinition())
9508    AddRangeBasedOptnone(NewFD);
9509
9510  // If this is the first declaration of an extern C variable, update
9511  // the map of such variables.
9512  if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9513      isIncompleteDeclExternC(*this, NewFD))
9514    RegisterLocallyScopedExternCDecl(NewFD, S);
9515
9516  // Set this FunctionDecl's range up to the right paren.
9517  NewFD->setRangeEnd(D.getSourceRange().getEnd());
9518
9519  if (D.isRedeclaration() && !Previous.empty()) {
9520    NamedDecl *Prev = Previous.getRepresentativeDecl();
9521    checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9522                                   isMemberSpecialization ||
9523                                       isFunctionTemplateSpecialization,
9524                                   D.isFunctionDefinition());
9525  }
9526
9527  if (getLangOpts().CUDA) {
9528    IdentifierInfo *II = NewFD->getIdentifier();
9529    if (II && II->isStr(getCudaConfigureFuncName()) &&
9530        !NewFD->isInvalidDecl() &&
9531        NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9532      if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9533        Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9534            << getCudaConfigureFuncName();
9535      Context.setcudaConfigureCallDecl(NewFD);
9536    }
9537
9538    // Variadic functions, other than a *declaration* of printf, are not allowed
9539    // in device-side CUDA code, unless someone passed
9540    // -fcuda-allow-variadic-functions.
9541    if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9542        (NewFD->hasAttr<CUDADeviceAttr>() ||
9543         NewFD->hasAttr<CUDAGlobalAttr>()) &&
9544        !(II && II->isStr("printf") && NewFD->isExternC() &&
9545          !D.isFunctionDefinition())) {
9546      Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9547    }
9548  }
9549
9550  MarkUnusedFileScopedDecl(NewFD);
9551
9552
9553
9554  if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9555    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9556    if ((getLangOpts().OpenCLVersion >= 120)
9557        && (SC == SC_Static)) {
9558      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9559      D.setInvalidType();
9560    }
9561
9562    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9563    if (!NewFD->getReturnType()->isVoidType()) {
9564      SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9565      Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9566          << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9567                                : FixItHint());
9568      D.setInvalidType();
9569    }
9570
9571    llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9572    for (auto Param : NewFD->parameters())
9573      checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9574
9575    if (getLangOpts().OpenCLCPlusPlus) {
9576      if (DC->isRecord()) {
9577        Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9578        D.setInvalidType();
9579      }
9580      if (FunctionTemplate) {
9581        Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9582        D.setInvalidType();
9583      }
9584    }
9585  }
9586
9587  if (getLangOpts().CPlusPlus) {
9588    if (FunctionTemplate) {
9589      if (NewFD->isInvalidDecl())
9590        FunctionTemplate->setInvalidDecl();
9591      return FunctionTemplate;
9592    }
9593
9594    if (isMemberSpecialization && !NewFD->isInvalidDecl())
9595      CompleteMemberSpecialization(NewFD, Previous);
9596  }
9597
9598  for (const ParmVarDecl *Param : NewFD->parameters()) {
9599    QualType PT = Param->getType();
9600
9601    // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9602    // types.
9603    if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
9604      if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9605        QualType ElemTy = PipeTy->getElementType();
9606          if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9607            Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9608            D.setInvalidType();
9609          }
9610      }
9611    }
9612  }
9613
9614  // Here we have an function template explicit specialization at class scope.
9615  // The actual specialization will be postponed to template instatiation
9616  // time via the ClassScopeFunctionSpecializationDecl node.
9617  if (isDependentClassScopeExplicitSpecialization) {
9618    ClassScopeFunctionSpecializationDecl *NewSpec =
9619                         ClassScopeFunctionSpecializationDecl::Create(
9620                                Context, CurContext, NewFD->getLocation(),
9621                                cast<CXXMethodDecl>(NewFD),
9622                                HasExplicitTemplateArgs, TemplateArgs);
9623    CurContext->addDecl(NewSpec);
9624    AddToScope = false;
9625  }
9626
9627  // Diagnose availability attributes. Availability cannot be used on functions
9628  // that are run during load/unload.
9629  if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9630    if (NewFD->hasAttr<ConstructorAttr>()) {
9631      Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9632          << 1;
9633      NewFD->dropAttr<AvailabilityAttr>();
9634    }
9635    if (NewFD->hasAttr<DestructorAttr>()) {
9636      Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9637          << 2;
9638      NewFD->dropAttr<AvailabilityAttr>();
9639    }
9640  }
9641
9642  // Diagnose no_builtin attribute on function declaration that are not a
9643  // definition.
9644  // FIXME: We should really be doing this in
9645  // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
9646  // the FunctionDecl and at this point of the code
9647  // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
9648  // because Sema::ActOnStartOfFunctionDef has not been called yet.
9649  if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
9650    switch (D.getFunctionDefinitionKind()) {
9651    case FDK_Defaulted:
9652    case FDK_Deleted:
9653      Diag(NBA->getLocation(),
9654           diag::err_attribute_no_builtin_on_defaulted_deleted_function)
9655          << NBA->getSpelling();
9656      break;
9657    case FDK_Declaration:
9658      Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
9659          << NBA->getSpelling();
9660      break;
9661    case FDK_Definition:
9662      break;
9663    }
9664
9665  return NewFD;
9666}
9667
9668/// Return a CodeSegAttr from a containing class.  The Microsoft docs say
9669/// when __declspec(code_seg) "is applied to a class, all member functions of
9670/// the class and nested classes -- this includes compiler-generated special
9671/// member functions -- are put in the specified segment."
9672/// The actual behavior is a little more complicated. The Microsoft compiler
9673/// won't check outer classes if there is an active value from #pragma code_seg.
9674/// The CodeSeg is always applied from the direct parent but only from outer
9675/// classes when the #pragma code_seg stack is empty. See:
9676/// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9677/// available since MS has removed the page.
9678static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9679  const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9680  if (!Method)
9681    return nullptr;
9682  const CXXRecordDecl *Parent = Method->getParent();
9683  if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9684    Attr *NewAttr = SAttr->clone(S.getASTContext());
9685    NewAttr->setImplicit(true);
9686    return NewAttr;
9687  }
9688
9689  // The Microsoft compiler won't check outer classes for the CodeSeg
9690  // when the #pragma code_seg stack is active.
9691  if (S.CodeSegStack.CurrentValue)
9692   return nullptr;
9693
9694  while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9695    if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9696      Attr *NewAttr = SAttr->clone(S.getASTContext());
9697      NewAttr->setImplicit(true);
9698      return NewAttr;
9699    }
9700  }
9701  return nullptr;
9702}
9703
9704/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9705/// containing class. Otherwise it will return implicit SectionAttr if the
9706/// function is a definition and there is an active value on CodeSegStack
9707/// (from the current #pragma code-seg value).
9708///
9709/// \param FD Function being declared.
9710/// \param IsDefinition Whether it is a definition or just a declarartion.
9711/// \returns A CodeSegAttr or SectionAttr to apply to the function or
9712///          nullptr if no attribute should be added.
9713Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9714                                                       bool IsDefinition) {
9715  if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9716    return A;
9717  if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9718      CodeSegStack.CurrentValue)
9719    return SectionAttr::CreateImplicit(
9720        getASTContext(), CodeSegStack.CurrentValue->getString(),
9721        CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9722        SectionAttr::Declspec_allocate);
9723  return nullptr;
9724}
9725
9726/// Determines if we can perform a correct type check for \p D as a
9727/// redeclaration of \p PrevDecl. If not, we can generally still perform a
9728/// best-effort check.
9729///
9730/// \param NewD The new declaration.
9731/// \param OldD The old declaration.
9732/// \param NewT The portion of the type of the new declaration to check.
9733/// \param OldT The portion of the type of the old declaration to check.
9734bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9735                                          QualType NewT, QualType OldT) {
9736  if (!NewD->getLexicalDeclContext()->isDependentContext())
9737    return true;
9738
9739  // For dependently-typed local extern declarations and friends, we can't
9740  // perform a correct type check in general until instantiation:
9741  //
9742  //   int f();
9743  //   template<typename T> void g() { T f(); }
9744  //
9745  // (valid if g() is only instantiated with T = int).
9746  if (NewT->isDependentType() &&
9747      (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
9748    return false;
9749
9750  // Similarly, if the previous declaration was a dependent local extern
9751  // declaration, we don't really know its type yet.
9752  if (OldT->isDependentType() && OldD->isLocalExternDecl())
9753    return false;
9754
9755  return true;
9756}
9757
9758/// Checks if the new declaration declared in dependent context must be
9759/// put in the same redeclaration chain as the specified declaration.
9760///
9761/// \param D Declaration that is checked.
9762/// \param PrevDecl Previous declaration found with proper lookup method for the
9763///                 same declaration name.
9764/// \returns True if D must be added to the redeclaration chain which PrevDecl
9765///          belongs to.
9766///
9767bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
9768  if (!D->getLexicalDeclContext()->isDependentContext())
9769    return true;
9770
9771  // Don't chain dependent friend function definitions until instantiation, to
9772  // permit cases like
9773  //
9774  //   void func();
9775  //   template<typename T> class C1 { friend void func() {} };
9776  //   template<typename T> class C2 { friend void func() {} };
9777  //
9778  // ... which is valid if only one of C1 and C2 is ever instantiated.
9779  //
9780  // FIXME: This need only apply to function definitions. For now, we proxy
9781  // this by checking for a file-scope function. We do not want this to apply
9782  // to friend declarations nominating member functions, because that gets in
9783  // the way of access checks.
9784  if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
9785    return false;
9786
9787  auto *VD = dyn_cast<ValueDecl>(D);
9788  auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
9789  return !VD || !PrevVD ||
9790         canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
9791                                        PrevVD->getType());
9792}
9793
9794/// Check the target attribute of the function for MultiVersion
9795/// validity.
9796///
9797/// Returns true if there was an error, false otherwise.
9798static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
9799  const auto *TA = FD->getAttr<TargetAttr>();
9800  assert(TA && "MultiVersion Candidate requires a target attribute");
9801  ParsedTargetAttr ParseInfo = TA->parse();
9802  const TargetInfo &TargetInfo = S.Context.getTargetInfo();
9803  enum ErrType { Feature = 0, Architecture = 1 };
9804
9805  if (!ParseInfo.Architecture.empty() &&
9806      !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
9807    S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9808        << Architecture << ParseInfo.Architecture;
9809    return true;
9810  }
9811
9812  for (const auto &Feat : ParseInfo.Features) {
9813    auto BareFeat = StringRef{Feat}.substr(1);
9814    if (Feat[0] == '-') {
9815      S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9816          << Feature << ("no-" + BareFeat).str();
9817      return true;
9818    }
9819
9820    if (!TargetInfo.validateCpuSupports(BareFeat) ||
9821        !TargetInfo.isValidFeatureName(BareFeat)) {
9822      S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9823          << Feature << BareFeat;
9824      return true;
9825    }
9826  }
9827  return false;
9828}
9829
9830static bool HasNonMultiVersionAttributes(const FunctionDecl *FD,
9831                                         MultiVersionKind MVType) {
9832  for (const Attr *A : FD->attrs()) {
9833    switch (A->getKind()) {
9834    case attr::CPUDispatch:
9835    case attr::CPUSpecific:
9836      if (MVType != MultiVersionKind::CPUDispatch &&
9837          MVType != MultiVersionKind::CPUSpecific)
9838        return true;
9839      break;
9840    case attr::Target:
9841      if (MVType != MultiVersionKind::Target)
9842        return true;
9843      break;
9844    default:
9845      return true;
9846    }
9847  }
9848  return false;
9849}
9850
9851bool Sema::areMultiversionVariantFunctionsCompatible(
9852    const FunctionDecl *OldFD, const FunctionDecl *NewFD,
9853    const PartialDiagnostic &NoProtoDiagID,
9854    const PartialDiagnosticAt &NoteCausedDiagIDAt,
9855    const PartialDiagnosticAt &NoSupportDiagIDAt,
9856    const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
9857    bool ConstexprSupported, bool CLinkageMayDiffer) {
9858  enum DoesntSupport {
9859    FuncTemplates = 0,
9860    VirtFuncs = 1,
9861    DeducedReturn = 2,
9862    Constructors = 3,
9863    Destructors = 4,
9864    DeletedFuncs = 5,
9865    DefaultedFuncs = 6,
9866    ConstexprFuncs = 7,
9867    ConstevalFuncs = 8,
9868  };
9869  enum Different {
9870    CallingConv = 0,
9871    ReturnType = 1,
9872    ConstexprSpec = 2,
9873    InlineSpec = 3,
9874    StorageClass = 4,
9875    Linkage = 5,
9876  };
9877
9878  if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
9879      !OldFD->getType()->getAs<FunctionProtoType>()) {
9880    Diag(OldFD->getLocation(), NoProtoDiagID);
9881    Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
9882    return true;
9883  }
9884
9885  if (NoProtoDiagID.getDiagID() != 0 &&
9886      !NewFD->getType()->getAs<FunctionProtoType>())
9887    return Diag(NewFD->getLocation(), NoProtoDiagID);
9888
9889  if (!TemplatesSupported &&
9890      NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
9891    return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9892           << FuncTemplates;
9893
9894  if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
9895    if (NewCXXFD->isVirtual())
9896      return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9897             << VirtFuncs;
9898
9899    if (isa<CXXConstructorDecl>(NewCXXFD))
9900      return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9901             << Constructors;
9902
9903    if (isa<CXXDestructorDecl>(NewCXXFD))
9904      return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9905             << Destructors;
9906  }
9907
9908  if (NewFD->isDeleted())
9909    return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9910           << DeletedFuncs;
9911
9912  if (NewFD->isDefaulted())
9913    return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9914           << DefaultedFuncs;
9915
9916  if (!ConstexprSupported && NewFD->isConstexpr())
9917    return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9918           << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
9919
9920  QualType NewQType = Context.getCanonicalType(NewFD->getType());
9921  const auto *NewType = cast<FunctionType>(NewQType);
9922  QualType NewReturnType = NewType->getReturnType();
9923
9924  if (NewReturnType->isUndeducedType())
9925    return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9926           << DeducedReturn;
9927
9928  // Ensure the return type is identical.
9929  if (OldFD) {
9930    QualType OldQType = Context.getCanonicalType(OldFD->getType());
9931    const auto *OldType = cast<FunctionType>(OldQType);
9932    FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
9933    FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
9934
9935    if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
9936      return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
9937
9938    QualType OldReturnType = OldType->getReturnType();
9939
9940    if (OldReturnType != NewReturnType)
9941      return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
9942
9943    if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
9944      return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
9945
9946    if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
9947      return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
9948
9949    if (OldFD->getStorageClass() != NewFD->getStorageClass())
9950      return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass;
9951
9952    if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
9953      return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
9954
9955    if (CheckEquivalentExceptionSpec(
9956            OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
9957            NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
9958      return true;
9959  }
9960  return false;
9961}
9962
9963static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
9964                                             const FunctionDecl *NewFD,
9965                                             bool CausesMV,
9966                                             MultiVersionKind MVType) {
9967  if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9968    S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9969    if (OldFD)
9970      S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9971    return true;
9972  }
9973
9974  bool IsCPUSpecificCPUDispatchMVType =
9975      MVType == MultiVersionKind::CPUDispatch ||
9976      MVType == MultiVersionKind::CPUSpecific;
9977
9978  // For now, disallow all other attributes.  These should be opt-in, but
9979  // an analysis of all of them is a future FIXME.
9980  if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) {
9981    S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs)
9982        << IsCPUSpecificCPUDispatchMVType;
9983    S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9984    return true;
9985  }
9986
9987  if (HasNonMultiVersionAttributes(NewFD, MVType))
9988    return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs)
9989           << IsCPUSpecificCPUDispatchMVType;
9990
9991  // Only allow transition to MultiVersion if it hasn't been used.
9992  if (OldFD && CausesMV && OldFD->isUsed(false))
9993    return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
9994
9995  return S.areMultiversionVariantFunctionsCompatible(
9996      OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
9997      PartialDiagnosticAt(NewFD->getLocation(),
9998                          S.PDiag(diag::note_multiversioning_caused_here)),
9999      PartialDiagnosticAt(NewFD->getLocation(),
10000                          S.PDiag(diag::err_multiversion_doesnt_support)
10001                              << IsCPUSpecificCPUDispatchMVType),
10002      PartialDiagnosticAt(NewFD->getLocation(),
10003                          S.PDiag(diag::err_multiversion_diff)),
10004      /*TemplatesSupported=*/false,
10005      /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType,
10006      /*CLinkageMayDiffer=*/false);
10007}
10008
10009/// Check the validity of a multiversion function declaration that is the
10010/// first of its kind. Also sets the multiversion'ness' of the function itself.
10011///
10012/// This sets NewFD->isInvalidDecl() to true if there was an error.
10013///
10014/// Returns true if there was an error, false otherwise.
10015static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
10016                                           MultiVersionKind MVType,
10017                                           const TargetAttr *TA) {
10018  assert(MVType != MultiVersionKind::None &&
10019         "Function lacks multiversion attribute");
10020
10021  // Target only causes MV if it is default, otherwise this is a normal
10022  // function.
10023  if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
10024    return false;
10025
10026  if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
10027    FD->setInvalidDecl();
10028    return true;
10029  }
10030
10031  if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
10032    FD->setInvalidDecl();
10033    return true;
10034  }
10035
10036  FD->setIsMultiVersion();
10037  return false;
10038}
10039
10040static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
10041  for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
10042    if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
10043      return true;
10044  }
10045
10046  return false;
10047}
10048
10049static bool CheckTargetCausesMultiVersioning(
10050    Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
10051    bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10052    LookupResult &Previous) {
10053  const auto *OldTA = OldFD->getAttr<TargetAttr>();
10054  ParsedTargetAttr NewParsed = NewTA->parse();
10055  // Sort order doesn't matter, it just needs to be consistent.
10056  llvm::sort(NewParsed.Features);
10057
10058  // If the old decl is NOT MultiVersioned yet, and we don't cause that
10059  // to change, this is a simple redeclaration.
10060  if (!NewTA->isDefaultVersion() &&
10061      (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
10062    return false;
10063
10064  // Otherwise, this decl causes MultiVersioning.
10065  if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10066    S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10067    S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10068    NewFD->setInvalidDecl();
10069    return true;
10070  }
10071
10072  if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
10073                                       MultiVersionKind::Target)) {
10074    NewFD->setInvalidDecl();
10075    return true;
10076  }
10077
10078  if (CheckMultiVersionValue(S, NewFD)) {
10079    NewFD->setInvalidDecl();
10080    return true;
10081  }
10082
10083  // If this is 'default', permit the forward declaration.
10084  if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
10085    Redeclaration = true;
10086    OldDecl = OldFD;
10087    OldFD->setIsMultiVersion();
10088    NewFD->setIsMultiVersion();
10089    return false;
10090  }
10091
10092  if (CheckMultiVersionValue(S, OldFD)) {
10093    S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10094    NewFD->setInvalidDecl();
10095    return true;
10096  }
10097
10098  ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>());
10099
10100  if (OldParsed == NewParsed) {
10101    S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10102    S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10103    NewFD->setInvalidDecl();
10104    return true;
10105  }
10106
10107  for (const auto *FD : OldFD->redecls()) {
10108    const auto *CurTA = FD->getAttr<TargetAttr>();
10109    // We allow forward declarations before ANY multiversioning attributes, but
10110    // nothing after the fact.
10111    if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
10112        (!CurTA || CurTA->isInherited())) {
10113      S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
10114          << 0;
10115      S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10116      NewFD->setInvalidDecl();
10117      return true;
10118    }
10119  }
10120
10121  OldFD->setIsMultiVersion();
10122  NewFD->setIsMultiVersion();
10123  Redeclaration = false;
10124  MergeTypeWithPrevious = false;
10125  OldDecl = nullptr;
10126  Previous.clear();
10127  return false;
10128}
10129
10130/// Check the validity of a new function declaration being added to an existing
10131/// multiversioned declaration collection.
10132static bool CheckMultiVersionAdditionalDecl(
10133    Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
10134    MultiVersionKind NewMVType, const TargetAttr *NewTA,
10135    const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
10136    bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10137    LookupResult &Previous) {
10138
10139  MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
10140  // Disallow mixing of multiversioning types.
10141  if ((OldMVType == MultiVersionKind::Target &&
10142       NewMVType != MultiVersionKind::Target) ||
10143      (NewMVType == MultiVersionKind::Target &&
10144       OldMVType != MultiVersionKind::Target)) {
10145    S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10146    S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10147    NewFD->setInvalidDecl();
10148    return true;
10149  }
10150
10151  ParsedTargetAttr NewParsed;
10152  if (NewTA) {
10153    NewParsed = NewTA->parse();
10154    llvm::sort(NewParsed.Features);
10155  }
10156
10157  bool UseMemberUsingDeclRules =
10158      S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
10159
10160  // Next, check ALL non-overloads to see if this is a redeclaration of a
10161  // previous member of the MultiVersion set.
10162  for (NamedDecl *ND : Previous) {
10163    FunctionDecl *CurFD = ND->getAsFunction();
10164    if (!CurFD)
10165      continue;
10166    if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
10167      continue;
10168
10169    if (NewMVType == MultiVersionKind::Target) {
10170      const auto *CurTA = CurFD->getAttr<TargetAttr>();
10171      if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
10172        NewFD->setIsMultiVersion();
10173        Redeclaration = true;
10174        OldDecl = ND;
10175        return false;
10176      }
10177
10178      ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>());
10179      if (CurParsed == NewParsed) {
10180        S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10181        S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10182        NewFD->setInvalidDecl();
10183        return true;
10184      }
10185    } else {
10186      const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
10187      const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
10188      // Handle CPUDispatch/CPUSpecific versions.
10189      // Only 1 CPUDispatch function is allowed, this will make it go through
10190      // the redeclaration errors.
10191      if (NewMVType == MultiVersionKind::CPUDispatch &&
10192          CurFD->hasAttr<CPUDispatchAttr>()) {
10193        if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
10194            std::equal(
10195                CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
10196                NewCPUDisp->cpus_begin(),
10197                [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10198                  return Cur->getName() == New->getName();
10199                })) {
10200          NewFD->setIsMultiVersion();
10201          Redeclaration = true;
10202          OldDecl = ND;
10203          return false;
10204        }
10205
10206        // If the declarations don't match, this is an error condition.
10207        S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
10208        S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10209        NewFD->setInvalidDecl();
10210        return true;
10211      }
10212      if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
10213
10214        if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
10215            std::equal(
10216                CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
10217                NewCPUSpec->cpus_begin(),
10218                [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10219                  return Cur->getName() == New->getName();
10220                })) {
10221          NewFD->setIsMultiVersion();
10222          Redeclaration = true;
10223          OldDecl = ND;
10224          return false;
10225        }
10226
10227        // Only 1 version of CPUSpecific is allowed for each CPU.
10228        for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
10229          for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
10230            if (CurII == NewII) {
10231              S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
10232                  << NewII;
10233              S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10234              NewFD->setInvalidDecl();
10235              return true;
10236            }
10237          }
10238        }
10239      }
10240      // If the two decls aren't the same MVType, there is no possible error
10241      // condition.
10242    }
10243  }
10244
10245  // Else, this is simply a non-redecl case.  Checking the 'value' is only
10246  // necessary in the Target case, since The CPUSpecific/Dispatch cases are
10247  // handled in the attribute adding step.
10248  if (NewMVType == MultiVersionKind::Target &&
10249      CheckMultiVersionValue(S, NewFD)) {
10250    NewFD->setInvalidDecl();
10251    return true;
10252  }
10253
10254  if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
10255                                       !OldFD->isMultiVersion(), NewMVType)) {
10256    NewFD->setInvalidDecl();
10257    return true;
10258  }
10259
10260  // Permit forward declarations in the case where these two are compatible.
10261  if (!OldFD->isMultiVersion()) {
10262    OldFD->setIsMultiVersion();
10263    NewFD->setIsMultiVersion();
10264    Redeclaration = true;
10265    OldDecl = OldFD;
10266    return false;
10267  }
10268
10269  NewFD->setIsMultiVersion();
10270  Redeclaration = false;
10271  MergeTypeWithPrevious = false;
10272  OldDecl = nullptr;
10273  Previous.clear();
10274  return false;
10275}
10276
10277
10278/// Check the validity of a mulitversion function declaration.
10279/// Also sets the multiversion'ness' of the function itself.
10280///
10281/// This sets NewFD->isInvalidDecl() to true if there was an error.
10282///
10283/// Returns true if there was an error, false otherwise.
10284static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
10285                                      bool &Redeclaration, NamedDecl *&OldDecl,
10286                                      bool &MergeTypeWithPrevious,
10287                                      LookupResult &Previous) {
10288  const auto *NewTA = NewFD->getAttr<TargetAttr>();
10289  const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
10290  const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
10291
10292  // Mixing Multiversioning types is prohibited.
10293  if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
10294      (NewCPUDisp && NewCPUSpec)) {
10295    S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10296    NewFD->setInvalidDecl();
10297    return true;
10298  }
10299
10300  MultiVersionKind  MVType = NewFD->getMultiVersionKind();
10301
10302  // Main isn't allowed to become a multiversion function, however it IS
10303  // permitted to have 'main' be marked with the 'target' optimization hint.
10304  if (NewFD->isMain()) {
10305    if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
10306        MVType == MultiVersionKind::CPUDispatch ||
10307        MVType == MultiVersionKind::CPUSpecific) {
10308      S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
10309      NewFD->setInvalidDecl();
10310      return true;
10311    }
10312    return false;
10313  }
10314
10315  if (!OldDecl || !OldDecl->getAsFunction() ||
10316      OldDecl->getDeclContext()->getRedeclContext() !=
10317          NewFD->getDeclContext()->getRedeclContext()) {
10318    // If there's no previous declaration, AND this isn't attempting to cause
10319    // multiversioning, this isn't an error condition.
10320    if (MVType == MultiVersionKind::None)
10321      return false;
10322    return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
10323  }
10324
10325  FunctionDecl *OldFD = OldDecl->getAsFunction();
10326
10327  if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
10328    return false;
10329
10330  if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
10331    S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
10332        << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
10333    NewFD->setInvalidDecl();
10334    return true;
10335  }
10336
10337  // Handle the target potentially causes multiversioning case.
10338  if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
10339    return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
10340                                            Redeclaration, OldDecl,
10341                                            MergeTypeWithPrevious, Previous);
10342
10343  // At this point, we have a multiversion function decl (in OldFD) AND an
10344  // appropriate attribute in the current function decl.  Resolve that these are
10345  // still compatible with previous declarations.
10346  return CheckMultiVersionAdditionalDecl(
10347      S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10348      OldDecl, MergeTypeWithPrevious, Previous);
10349}
10350
10351/// Perform semantic checking of a new function declaration.
10352///
10353/// Performs semantic analysis of the new function declaration
10354/// NewFD. This routine performs all semantic checking that does not
10355/// require the actual declarator involved in the declaration, and is
10356/// used both for the declaration of functions as they are parsed
10357/// (called via ActOnDeclarator) and for the declaration of functions
10358/// that have been instantiated via C++ template instantiation (called
10359/// via InstantiateDecl).
10360///
10361/// \param IsMemberSpecialization whether this new function declaration is
10362/// a member specialization (that replaces any definition provided by the
10363/// previous declaration).
10364///
10365/// This sets NewFD->isInvalidDecl() to true if there was an error.
10366///
10367/// \returns true if the function declaration is a redeclaration.
10368bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10369                                    LookupResult &Previous,
10370                                    bool IsMemberSpecialization) {
10371  assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
10372         "Variably modified return types are not handled here");
10373
10374  // Determine whether the type of this function should be merged with
10375  // a previous visible declaration. This never happens for functions in C++,
10376  // and always happens in C if the previous declaration was visible.
10377  bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10378                               !Previous.isShadowed();
10379
10380  bool Redeclaration = false;
10381  NamedDecl *OldDecl = nullptr;
10382  bool MayNeedOverloadableChecks = false;
10383
10384  // Merge or overload the declaration with an existing declaration of
10385  // the same name, if appropriate.
10386  if (!Previous.empty()) {
10387    // Determine whether NewFD is an overload of PrevDecl or
10388    // a declaration that requires merging. If it's an overload,
10389    // there's no more work to do here; we'll just add the new
10390    // function to the scope.
10391    if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10392      NamedDecl *Candidate = Previous.getRepresentativeDecl();
10393      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10394        Redeclaration = true;
10395        OldDecl = Candidate;
10396      }
10397    } else {
10398      MayNeedOverloadableChecks = true;
10399      switch (CheckOverload(S, NewFD, Previous, OldDecl,
10400                            /*NewIsUsingDecl*/ false)) {
10401      case Ovl_Match:
10402        Redeclaration = true;
10403        break;
10404
10405      case Ovl_NonFunction:
10406        Redeclaration = true;
10407        break;
10408
10409      case Ovl_Overload:
10410        Redeclaration = false;
10411        break;
10412      }
10413    }
10414  }
10415
10416  // Check for a previous extern "C" declaration with this name.
10417  if (!Redeclaration &&
10418      checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10419    if (!Previous.empty()) {
10420      // This is an extern "C" declaration with the same name as a previous
10421      // declaration, and thus redeclares that entity...
10422      Redeclaration = true;
10423      OldDecl = Previous.getFoundDecl();
10424      MergeTypeWithPrevious = false;
10425
10426      // ... except in the presence of __attribute__((overloadable)).
10427      if (OldDecl->hasAttr<OverloadableAttr>() ||
10428          NewFD->hasAttr<OverloadableAttr>()) {
10429        if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10430          MayNeedOverloadableChecks = true;
10431          Redeclaration = false;
10432          OldDecl = nullptr;
10433        }
10434      }
10435    }
10436  }
10437
10438  if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10439                                MergeTypeWithPrevious, Previous))
10440    return Redeclaration;
10441
10442  // C++11 [dcl.constexpr]p8:
10443  //   A constexpr specifier for a non-static member function that is not
10444  //   a constructor declares that member function to be const.
10445  //
10446  // This needs to be delayed until we know whether this is an out-of-line
10447  // definition of a static member function.
10448  //
10449  // This rule is not present in C++1y, so we produce a backwards
10450  // compatibility warning whenever it happens in C++11.
10451  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10452  if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10453      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10454      !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
10455    CXXMethodDecl *OldMD = nullptr;
10456    if (OldDecl)
10457      OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10458    if (!OldMD || !OldMD->isStatic()) {
10459      const FunctionProtoType *FPT =
10460        MD->getType()->castAs<FunctionProtoType>();
10461      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10462      EPI.TypeQuals.addConst();
10463      MD->setType(Context.getFunctionType(FPT->getReturnType(),
10464                                          FPT->getParamTypes(), EPI));
10465
10466      // Warn that we did this, if we're not performing template instantiation.
10467      // In that case, we'll have warned already when the template was defined.
10468      if (!inTemplateInstantiation()) {
10469        SourceLocation AddConstLoc;
10470        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10471                .IgnoreParens().getAs<FunctionTypeLoc>())
10472          AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10473
10474        Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10475          << FixItHint::CreateInsertion(AddConstLoc, " const");
10476      }
10477    }
10478  }
10479
10480  if (Redeclaration) {
10481    // NewFD and OldDecl represent declarations that need to be
10482    // merged.
10483    if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10484      NewFD->setInvalidDecl();
10485      return Redeclaration;
10486    }
10487
10488    Previous.clear();
10489    Previous.addDecl(OldDecl);
10490
10491    if (FunctionTemplateDecl *OldTemplateDecl =
10492            dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10493      auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10494      FunctionTemplateDecl *NewTemplateDecl
10495        = NewFD->getDescribedFunctionTemplate();
10496      assert(NewTemplateDecl && "Template/non-template mismatch");
10497
10498      // The call to MergeFunctionDecl above may have created some state in
10499      // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10500      // can add it as a redeclaration.
10501      NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10502
10503      NewFD->setPreviousDeclaration(OldFD);
10504      adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10505      if (NewFD->isCXXClassMember()) {
10506        NewFD->setAccess(OldTemplateDecl->getAccess());
10507        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10508      }
10509
10510      // If this is an explicit specialization of a member that is a function
10511      // template, mark it as a member specialization.
10512      if (IsMemberSpecialization &&
10513          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10514        NewTemplateDecl->setMemberSpecialization();
10515        assert(OldTemplateDecl->isMemberSpecialization());
10516        // Explicit specializations of a member template do not inherit deleted
10517        // status from the parent member template that they are specializing.
10518        if (OldFD->isDeleted()) {
10519          // FIXME: This assert will not hold in the presence of modules.
10520          assert(OldFD->getCanonicalDecl() == OldFD);
10521          // FIXME: We need an update record for this AST mutation.
10522          OldFD->setDeletedAsWritten(false);
10523        }
10524      }
10525
10526    } else {
10527      if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10528        auto *OldFD = cast<FunctionDecl>(OldDecl);
10529        // This needs to happen first so that 'inline' propagates.
10530        NewFD->setPreviousDeclaration(OldFD);
10531        adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10532        if (NewFD->isCXXClassMember())
10533          NewFD->setAccess(OldFD->getAccess());
10534      }
10535    }
10536  } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10537             !NewFD->getAttr<OverloadableAttr>()) {
10538    assert((Previous.empty() ||
10539            llvm::any_of(Previous,
10540                         [](const NamedDecl *ND) {
10541                           return ND->hasAttr<OverloadableAttr>();
10542                         })) &&
10543           "Non-redecls shouldn't happen without overloadable present");
10544
10545    auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10546      const auto *FD = dyn_cast<FunctionDecl>(ND);
10547      return FD && !FD->hasAttr<OverloadableAttr>();
10548    });
10549
10550    if (OtherUnmarkedIter != Previous.end()) {
10551      Diag(NewFD->getLocation(),
10552           diag::err_attribute_overloadable_multiple_unmarked_overloads);
10553      Diag((*OtherUnmarkedIter)->getLocation(),
10554           diag::note_attribute_overloadable_prev_overload)
10555          << false;
10556
10557      NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10558    }
10559  }
10560
10561  // Semantic checking for this function declaration (in isolation).
10562
10563  if (getLangOpts().CPlusPlus) {
10564    // C++-specific checks.
10565    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10566      CheckConstructor(Constructor);
10567    } else if (CXXDestructorDecl *Destructor =
10568                dyn_cast<CXXDestructorDecl>(NewFD)) {
10569      CXXRecordDecl *Record = Destructor->getParent();
10570      QualType ClassType = Context.getTypeDeclType(Record);
10571
10572      // FIXME: Shouldn't we be able to perform this check even when the class
10573      // type is dependent? Both gcc and edg can handle that.
10574      if (!ClassType->isDependentType()) {
10575        DeclarationName Name
10576          = Context.DeclarationNames.getCXXDestructorName(
10577                                        Context.getCanonicalType(ClassType));
10578        if (NewFD->getDeclName() != Name) {
10579          Diag(NewFD->getLocation(), diag::err_destructor_name);
10580          NewFD->setInvalidDecl();
10581          return Redeclaration;
10582        }
10583      }
10584    } else if (CXXConversionDecl *Conversion
10585               = dyn_cast<CXXConversionDecl>(NewFD)) {
10586      ActOnConversionDeclarator(Conversion);
10587    } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10588      if (auto *TD = Guide->getDescribedFunctionTemplate())
10589        CheckDeductionGuideTemplate(TD);
10590
10591      // A deduction guide is not on the list of entities that can be
10592      // explicitly specialized.
10593      if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10594        Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10595            << /*explicit specialization*/ 1;
10596    }
10597
10598    // Find any virtual functions that this function overrides.
10599    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10600      if (!Method->isFunctionTemplateSpecialization() &&
10601          !Method->getDescribedFunctionTemplate() &&
10602          Method->isCanonicalDecl()) {
10603        if (AddOverriddenMethods(Method->getParent(), Method)) {
10604          // If the function was marked as "static", we have a problem.
10605          if (NewFD->getStorageClass() == SC_Static) {
10606            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
10607          }
10608        }
10609      }
10610      if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
10611        // C++2a [class.virtual]p6
10612        // A virtual method shall not have a requires-clause.
10613        Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
10614             diag::err_constrained_virtual_method);
10615
10616      if (Method->isStatic())
10617        checkThisInStaticMemberFunctionType(Method);
10618    }
10619
10620    // Extra checking for C++ overloaded operators (C++ [over.oper]).
10621    if (NewFD->isOverloadedOperator() &&
10622        CheckOverloadedOperatorDeclaration(NewFD)) {
10623      NewFD->setInvalidDecl();
10624      return Redeclaration;
10625    }
10626
10627    // Extra checking for C++0x literal operators (C++0x [over.literal]).
10628    if (NewFD->getLiteralIdentifier() &&
10629        CheckLiteralOperatorDeclaration(NewFD)) {
10630      NewFD->setInvalidDecl();
10631      return Redeclaration;
10632    }
10633
10634    // In C++, check default arguments now that we have merged decls. Unless
10635    // the lexical context is the class, because in this case this is done
10636    // during delayed parsing anyway.
10637    if (!CurContext->isRecord())
10638      CheckCXXDefaultArguments(NewFD);
10639
10640    // If this function declares a builtin function, check the type of this
10641    // declaration against the expected type for the builtin.
10642    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10643      ASTContext::GetBuiltinTypeError Error;
10644      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
10645      QualType T = Context.GetBuiltinType(BuiltinID, Error);
10646      // If the type of the builtin differs only in its exception
10647      // specification, that's OK.
10648      // FIXME: If the types do differ in this way, it would be better to
10649      // retain the 'noexcept' form of the type.
10650      if (!T.isNull() &&
10651          !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10652                                                            NewFD->getType()))
10653        // The type of this function differs from the type of the builtin,
10654        // so forget about the builtin entirely.
10655        Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10656    }
10657
10658    // If this function is declared as being extern "C", then check to see if
10659    // the function returns a UDT (class, struct, or union type) that is not C
10660    // compatible, and if it does, warn the user.
10661    // But, issue any diagnostic on the first declaration only.
10662    if (Previous.empty() && NewFD->isExternC()) {
10663      QualType R = NewFD->getReturnType();
10664      if (R->isIncompleteType() && !R->isVoidType())
10665        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10666            << NewFD << R;
10667      else if (!R.isPODType(Context) && !R->isVoidType() &&
10668               !R->isObjCObjectPointerType())
10669        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10670    }
10671
10672    // C++1z [dcl.fct]p6:
10673    //   [...] whether the function has a non-throwing exception-specification
10674    //   [is] part of the function type
10675    //
10676    // This results in an ABI break between C++14 and C++17 for functions whose
10677    // declared type includes an exception-specification in a parameter or
10678    // return type. (Exception specifications on the function itself are OK in
10679    // most cases, and exception specifications are not permitted in most other
10680    // contexts where they could make it into a mangling.)
10681    if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10682      auto HasNoexcept = [&](QualType T) -> bool {
10683        // Strip off declarator chunks that could be between us and a function
10684        // type. We don't need to look far, exception specifications are very
10685        // restricted prior to C++17.
10686        if (auto *RT = T->getAs<ReferenceType>())
10687          T = RT->getPointeeType();
10688        else if (T->isAnyPointerType())
10689          T = T->getPointeeType();
10690        else if (auto *MPT = T->getAs<MemberPointerType>())
10691          T = MPT->getPointeeType();
10692        if (auto *FPT = T->getAs<FunctionProtoType>())
10693          if (FPT->isNothrow())
10694            return true;
10695        return false;
10696      };
10697
10698      auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10699      bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10700      for (QualType T : FPT->param_types())
10701        AnyNoexcept |= HasNoexcept(T);
10702      if (AnyNoexcept)
10703        Diag(NewFD->getLocation(),
10704             diag::warn_cxx17_compat_exception_spec_in_signature)
10705            << NewFD;
10706    }
10707
10708    if (!Redeclaration && LangOpts.CUDA)
10709      checkCUDATargetOverload(NewFD, Previous);
10710  }
10711  return Redeclaration;
10712}
10713
10714void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
10715  // C++11 [basic.start.main]p3:
10716  //   A program that [...] declares main to be inline, static or
10717  //   constexpr is ill-formed.
10718  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
10719  //   appear in a declaration of main.
10720  // static main is not an error under C99, but we should warn about it.
10721  // We accept _Noreturn main as an extension.
10722  if (FD->getStorageClass() == SC_Static)
10723    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
10724         ? diag::err_static_main : diag::warn_static_main)
10725      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
10726  if (FD->isInlineSpecified())
10727    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
10728      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
10729  if (DS.isNoreturnSpecified()) {
10730    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
10731    SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
10732    Diag(NoreturnLoc, diag::ext_noreturn_main);
10733    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
10734      << FixItHint::CreateRemoval(NoreturnRange);
10735  }
10736  if (FD->isConstexpr()) {
10737    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
10738        << FD->isConsteval()
10739        << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
10740    FD->setConstexprKind(CSK_unspecified);
10741  }
10742
10743  if (getLangOpts().OpenCL) {
10744    Diag(FD->getLocation(), diag::err_opencl_no_main)
10745        << FD->hasAttr<OpenCLKernelAttr>();
10746    FD->setInvalidDecl();
10747    return;
10748  }
10749
10750  QualType T = FD->getType();
10751  assert(T->isFunctionType() && "function decl is not of function type");
10752  const FunctionType* FT = T->castAs<FunctionType>();
10753
10754  // Set default calling convention for main()
10755  if (FT->getCallConv() != CC_C) {
10756    FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
10757    FD->setType(QualType(FT, 0));
10758    T = Context.getCanonicalType(FD->getType());
10759  }
10760
10761  if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
10762    // In C with GNU extensions we allow main() to have non-integer return
10763    // type, but we should warn about the extension, and we disable the
10764    // implicit-return-zero rule.
10765
10766    // GCC in C mode accepts qualified 'int'.
10767    if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
10768      FD->setHasImplicitReturnZero(true);
10769    else {
10770      Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
10771      SourceRange RTRange = FD->getReturnTypeSourceRange();
10772      if (RTRange.isValid())
10773        Diag(RTRange.getBegin(), diag::note_main_change_return_type)
10774            << FixItHint::CreateReplacement(RTRange, "int");
10775    }
10776  } else {
10777    // In C and C++, main magically returns 0 if you fall off the end;
10778    // set the flag which tells us that.
10779    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
10780
10781    // All the standards say that main() should return 'int'.
10782    if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
10783      FD->setHasImplicitReturnZero(true);
10784    else {
10785      // Otherwise, this is just a flat-out error.
10786      SourceRange RTRange = FD->getReturnTypeSourceRange();
10787      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
10788          << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
10789                                : FixItHint());
10790      FD->setInvalidDecl(true);
10791    }
10792  }
10793
10794  // Treat protoless main() as nullary.
10795  if (isa<FunctionNoProtoType>(FT)) return;
10796
10797  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
10798  unsigned nparams = FTP->getNumParams();
10799  assert(FD->getNumParams() == nparams);
10800
10801  bool HasExtraParameters = (nparams > 3);
10802
10803  if (FTP->isVariadic()) {
10804    Diag(FD->getLocation(), diag::ext_variadic_main);
10805    // FIXME: if we had information about the location of the ellipsis, we
10806    // could add a FixIt hint to remove it as a parameter.
10807  }
10808
10809  // Darwin passes an undocumented fourth argument of type char**.  If
10810  // other platforms start sprouting these, the logic below will start
10811  // getting shifty.
10812  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
10813    HasExtraParameters = false;
10814
10815  if (HasExtraParameters) {
10816    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
10817    FD->setInvalidDecl(true);
10818    nparams = 3;
10819  }
10820
10821  // FIXME: a lot of the following diagnostics would be improved
10822  // if we had some location information about types.
10823
10824  QualType CharPP =
10825    Context.getPointerType(Context.getPointerType(Context.CharTy));
10826  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
10827
10828  for (unsigned i = 0; i < nparams; ++i) {
10829    QualType AT = FTP->getParamType(i);
10830
10831    bool mismatch = true;
10832
10833    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
10834      mismatch = false;
10835    else if (Expected[i] == CharPP) {
10836      // As an extension, the following forms are okay:
10837      //   char const **
10838      //   char const * const *
10839      //   char * const *
10840
10841      QualifierCollector qs;
10842      const PointerType* PT;
10843      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
10844          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
10845          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
10846                              Context.CharTy)) {
10847        qs.removeConst();
10848        mismatch = !qs.empty();
10849      }
10850    }
10851
10852    if (mismatch) {
10853      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
10854      // TODO: suggest replacing given type with expected type
10855      FD->setInvalidDecl(true);
10856    }
10857  }
10858
10859  if (nparams == 1 && !FD->isInvalidDecl()) {
10860    Diag(FD->getLocation(), diag::warn_main_one_arg);
10861  }
10862
10863  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10864    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10865    FD->setInvalidDecl();
10866  }
10867}
10868
10869void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
10870  QualType T = FD->getType();
10871  assert(T->isFunctionType() && "function decl is not of function type");
10872  const FunctionType *FT = T->castAs<FunctionType>();
10873
10874  // Set an implicit return of 'zero' if the function can return some integral,
10875  // enumeration, pointer or nullptr type.
10876  if (FT->getReturnType()->isIntegralOrEnumerationType() ||
10877      FT->getReturnType()->isAnyPointerType() ||
10878      FT->getReturnType()->isNullPtrType())
10879    // DllMain is exempt because a return value of zero means it failed.
10880    if (FD->getName() != "DllMain")
10881      FD->setHasImplicitReturnZero(true);
10882
10883  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10884    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10885    FD->setInvalidDecl();
10886  }
10887}
10888
10889bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
10890  // FIXME: Need strict checking.  In C89, we need to check for
10891  // any assignment, increment, decrement, function-calls, or
10892  // commas outside of a sizeof.  In C99, it's the same list,
10893  // except that the aforementioned are allowed in unevaluated
10894  // expressions.  Everything else falls under the
10895  // "may accept other forms of constant expressions" exception.
10896  // (We never end up here for C++, so the constant expression
10897  // rules there don't matter.)
10898  const Expr *Culprit;
10899  if (Init->isConstantInitializer(Context, false, &Culprit))
10900    return false;
10901  Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
10902    << Culprit->getSourceRange();
10903  return true;
10904}
10905
10906namespace {
10907  // Visits an initialization expression to see if OrigDecl is evaluated in
10908  // its own initialization and throws a warning if it does.
10909  class SelfReferenceChecker
10910      : public EvaluatedExprVisitor<SelfReferenceChecker> {
10911    Sema &S;
10912    Decl *OrigDecl;
10913    bool isRecordType;
10914    bool isPODType;
10915    bool isReferenceType;
10916
10917    bool isInitList;
10918    llvm::SmallVector<unsigned, 4> InitFieldIndex;
10919
10920  public:
10921    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
10922
10923    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
10924                                                    S(S), OrigDecl(OrigDecl) {
10925      isPODType = false;
10926      isRecordType = false;
10927      isReferenceType = false;
10928      isInitList = false;
10929      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
10930        isPODType = VD->getType().isPODType(S.Context);
10931        isRecordType = VD->getType()->isRecordType();
10932        isReferenceType = VD->getType()->isReferenceType();
10933      }
10934    }
10935
10936    // For most expressions, just call the visitor.  For initializer lists,
10937    // track the index of the field being initialized since fields are
10938    // initialized in order allowing use of previously initialized fields.
10939    void CheckExpr(Expr *E) {
10940      InitListExpr *InitList = dyn_cast<InitListExpr>(E);
10941      if (!InitList) {
10942        Visit(E);
10943        return;
10944      }
10945
10946      // Track and increment the index here.
10947      isInitList = true;
10948      InitFieldIndex.push_back(0);
10949      for (auto Child : InitList->children()) {
10950        CheckExpr(cast<Expr>(Child));
10951        ++InitFieldIndex.back();
10952      }
10953      InitFieldIndex.pop_back();
10954    }
10955
10956    // Returns true if MemberExpr is checked and no further checking is needed.
10957    // Returns false if additional checking is required.
10958    bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
10959      llvm::SmallVector<FieldDecl*, 4> Fields;
10960      Expr *Base = E;
10961      bool ReferenceField = false;
10962
10963      // Get the field members used.
10964      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10965        FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
10966        if (!FD)
10967          return false;
10968        Fields.push_back(FD);
10969        if (FD->getType()->isReferenceType())
10970          ReferenceField = true;
10971        Base = ME->getBase()->IgnoreParenImpCasts();
10972      }
10973
10974      // Keep checking only if the base Decl is the same.
10975      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
10976      if (!DRE || DRE->getDecl() != OrigDecl)
10977        return false;
10978
10979      // A reference field can be bound to an unininitialized field.
10980      if (CheckReference && !ReferenceField)
10981        return true;
10982
10983      // Convert FieldDecls to their index number.
10984      llvm::SmallVector<unsigned, 4> UsedFieldIndex;
10985      for (const FieldDecl *I : llvm::reverse(Fields))
10986        UsedFieldIndex.push_back(I->getFieldIndex());
10987
10988      // See if a warning is needed by checking the first difference in index
10989      // numbers.  If field being used has index less than the field being
10990      // initialized, then the use is safe.
10991      for (auto UsedIter = UsedFieldIndex.begin(),
10992                UsedEnd = UsedFieldIndex.end(),
10993                OrigIter = InitFieldIndex.begin(),
10994                OrigEnd = InitFieldIndex.end();
10995           UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
10996        if (*UsedIter < *OrigIter)
10997          return true;
10998        if (*UsedIter > *OrigIter)
10999          break;
11000      }
11001
11002      // TODO: Add a different warning which will print the field names.
11003      HandleDeclRefExpr(DRE);
11004      return true;
11005    }
11006
11007    // For most expressions, the cast is directly above the DeclRefExpr.
11008    // For conditional operators, the cast can be outside the conditional
11009    // operator if both expressions are DeclRefExpr's.
11010    void HandleValue(Expr *E) {
11011      E = E->IgnoreParens();
11012      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
11013        HandleDeclRefExpr(DRE);
11014        return;
11015      }
11016
11017      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
11018        Visit(CO->getCond());
11019        HandleValue(CO->getTrueExpr());
11020        HandleValue(CO->getFalseExpr());
11021        return;
11022      }
11023
11024      if (BinaryConditionalOperator *BCO =
11025              dyn_cast<BinaryConditionalOperator>(E)) {
11026        Visit(BCO->getCond());
11027        HandleValue(BCO->getFalseExpr());
11028        return;
11029      }
11030
11031      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
11032        HandleValue(OVE->getSourceExpr());
11033        return;
11034      }
11035
11036      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11037        if (BO->getOpcode() == BO_Comma) {
11038          Visit(BO->getLHS());
11039          HandleValue(BO->getRHS());
11040          return;
11041        }
11042      }
11043
11044      if (isa<MemberExpr>(E)) {
11045        if (isInitList) {
11046          if (CheckInitListMemberExpr(cast<MemberExpr>(E),
11047                                      false /*CheckReference*/))
11048            return;
11049        }
11050
11051        Expr *Base = E->IgnoreParenImpCasts();
11052        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11053          // Check for static member variables and don't warn on them.
11054          if (!isa<FieldDecl>(ME->getMemberDecl()))
11055            return;
11056          Base = ME->getBase()->IgnoreParenImpCasts();
11057        }
11058        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
11059          HandleDeclRefExpr(DRE);
11060        return;
11061      }
11062
11063      Visit(E);
11064    }
11065
11066    // Reference types not handled in HandleValue are handled here since all
11067    // uses of references are bad, not just r-value uses.
11068    void VisitDeclRefExpr(DeclRefExpr *E) {
11069      if (isReferenceType)
11070        HandleDeclRefExpr(E);
11071    }
11072
11073    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11074      if (E->getCastKind() == CK_LValueToRValue) {
11075        HandleValue(E->getSubExpr());
11076        return;
11077      }
11078
11079      Inherited::VisitImplicitCastExpr(E);
11080    }
11081
11082    void VisitMemberExpr(MemberExpr *E) {
11083      if (isInitList) {
11084        if (CheckInitListMemberExpr(E, true /*CheckReference*/))
11085          return;
11086      }
11087
11088      // Don't warn on arrays since they can be treated as pointers.
11089      if (E->getType()->canDecayToPointerType()) return;
11090
11091      // Warn when a non-static method call is followed by non-static member
11092      // field accesses, which is followed by a DeclRefExpr.
11093      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
11094      bool Warn = (MD && !MD->isStatic());
11095      Expr *Base = E->getBase()->IgnoreParenImpCasts();
11096      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11097        if (!isa<FieldDecl>(ME->getMemberDecl()))
11098          Warn = false;
11099        Base = ME->getBase()->IgnoreParenImpCasts();
11100      }
11101
11102      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
11103        if (Warn)
11104          HandleDeclRefExpr(DRE);
11105        return;
11106      }
11107
11108      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
11109      // Visit that expression.
11110      Visit(Base);
11111    }
11112
11113    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11114      Expr *Callee = E->getCallee();
11115
11116      if (isa<UnresolvedLookupExpr>(Callee))
11117        return Inherited::VisitCXXOperatorCallExpr(E);
11118
11119      Visit(Callee);
11120      for (auto Arg: E->arguments())
11121        HandleValue(Arg->IgnoreParenImpCasts());
11122    }
11123
11124    void VisitUnaryOperator(UnaryOperator *E) {
11125      // For POD record types, addresses of its own members are well-defined.
11126      if (E->getOpcode() == UO_AddrOf && isRecordType &&
11127          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
11128        if (!isPODType)
11129          HandleValue(E->getSubExpr());
11130        return;
11131      }
11132
11133      if (E->isIncrementDecrementOp()) {
11134        HandleValue(E->getSubExpr());
11135        return;
11136      }
11137
11138      Inherited::VisitUnaryOperator(E);
11139    }
11140
11141    void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
11142
11143    void VisitCXXConstructExpr(CXXConstructExpr *E) {
11144      if (E->getConstructor()->isCopyConstructor()) {
11145        Expr *ArgExpr = E->getArg(0);
11146        if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
11147          if (ILE->getNumInits() == 1)
11148            ArgExpr = ILE->getInit(0);
11149        if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
11150          if (ICE->getCastKind() == CK_NoOp)
11151            ArgExpr = ICE->getSubExpr();
11152        HandleValue(ArgExpr);
11153        return;
11154      }
11155      Inherited::VisitCXXConstructExpr(E);
11156    }
11157
11158    void VisitCallExpr(CallExpr *E) {
11159      // Treat std::move as a use.
11160      if (E->isCallToStdMove()) {
11161        HandleValue(E->getArg(0));
11162        return;
11163      }
11164
11165      Inherited::VisitCallExpr(E);
11166    }
11167
11168    void VisitBinaryOperator(BinaryOperator *E) {
11169      if (E->isCompoundAssignmentOp()) {
11170        HandleValue(E->getLHS());
11171        Visit(E->getRHS());
11172        return;
11173      }
11174
11175      Inherited::VisitBinaryOperator(E);
11176    }
11177
11178    // A custom visitor for BinaryConditionalOperator is needed because the
11179    // regular visitor would check the condition and true expression separately
11180    // but both point to the same place giving duplicate diagnostics.
11181    void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
11182      Visit(E->getCond());
11183      Visit(E->getFalseExpr());
11184    }
11185
11186    void HandleDeclRefExpr(DeclRefExpr *DRE) {
11187      Decl* ReferenceDecl = DRE->getDecl();
11188      if (OrigDecl != ReferenceDecl) return;
11189      unsigned diag;
11190      if (isReferenceType) {
11191        diag = diag::warn_uninit_self_reference_in_reference_init;
11192      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
11193        diag = diag::warn_static_self_reference_in_init;
11194      } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
11195                 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
11196                 DRE->getDecl()->getType()->isRecordType()) {
11197        diag = diag::warn_uninit_self_reference_in_init;
11198      } else {
11199        // Local variables will be handled by the CFG analysis.
11200        return;
11201      }
11202
11203      S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
11204                            S.PDiag(diag)
11205                                << DRE->getDecl() << OrigDecl->getLocation()
11206                                << DRE->getSourceRange());
11207    }
11208  };
11209
11210  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
11211  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
11212                                 bool DirectInit) {
11213    // Parameters arguments are occassionially constructed with itself,
11214    // for instance, in recursive functions.  Skip them.
11215    if (isa<ParmVarDecl>(OrigDecl))
11216      return;
11217
11218    E = E->IgnoreParens();
11219
11220    // Skip checking T a = a where T is not a record or reference type.
11221    // Doing so is a way to silence uninitialized warnings.
11222    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
11223      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
11224        if (ICE->getCastKind() == CK_LValueToRValue)
11225          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
11226            if (DRE->getDecl() == OrigDecl)
11227              return;
11228
11229    SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
11230  }
11231} // end anonymous namespace
11232
11233namespace {
11234  // Simple wrapper to add the name of a variable or (if no variable is
11235  // available) a DeclarationName into a diagnostic.
11236  struct VarDeclOrName {
11237    VarDecl *VDecl;
11238    DeclarationName Name;
11239
11240    friend const Sema::SemaDiagnosticBuilder &
11241    operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
11242      return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
11243    }
11244  };
11245} // end anonymous namespace
11246
11247QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
11248                                            DeclarationName Name, QualType Type,
11249                                            TypeSourceInfo *TSI,
11250                                            SourceRange Range, bool DirectInit,
11251                                            Expr *Init) {
11252  bool IsInitCapture = !VDecl;
11253  assert((!VDecl || !VDecl->isInitCapture()) &&
11254         "init captures are expected to be deduced prior to initialization");
11255
11256  VarDeclOrName VN{VDecl, Name};
11257
11258  DeducedType *Deduced = Type->getContainedDeducedType();
11259  assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
11260
11261  // C++11 [dcl.spec.auto]p3
11262  if (!Init) {
11263    assert(VDecl && "no init for init capture deduction?");
11264
11265    // Except for class argument deduction, and then for an initializing
11266    // declaration only, i.e. no static at class scope or extern.
11267    if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
11268        VDecl->hasExternalStorage() ||
11269        VDecl->isStaticDataMember()) {
11270      Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
11271        << VDecl->getDeclName() << Type;
11272      return QualType();
11273    }
11274  }
11275
11276  ArrayRef<Expr*> DeduceInits;
11277  if (Init)
11278    DeduceInits = Init;
11279
11280  if (DirectInit) {
11281    if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
11282      DeduceInits = PL->exprs();
11283  }
11284
11285  if (isa<DeducedTemplateSpecializationType>(Deduced)) {
11286    assert(VDecl && "non-auto type for init capture deduction?");
11287    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11288    InitializationKind Kind = InitializationKind::CreateForInit(
11289        VDecl->getLocation(), DirectInit, Init);
11290    // FIXME: Initialization should not be taking a mutable list of inits.
11291    SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
11292    return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
11293                                                       InitsCopy);
11294  }
11295
11296  if (DirectInit) {
11297    if (auto *IL = dyn_cast<InitListExpr>(Init))
11298      DeduceInits = IL->inits();
11299  }
11300
11301  // Deduction only works if we have exactly one source expression.
11302  if (DeduceInits.empty()) {
11303    // It isn't possible to write this directly, but it is possible to
11304    // end up in this situation with "auto x(some_pack...);"
11305    Diag(Init->getBeginLoc(), IsInitCapture
11306                                  ? diag::err_init_capture_no_expression
11307                                  : diag::err_auto_var_init_no_expression)
11308        << VN << Type << Range;
11309    return QualType();
11310  }
11311
11312  if (DeduceInits.size() > 1) {
11313    Diag(DeduceInits[1]->getBeginLoc(),
11314         IsInitCapture ? diag::err_init_capture_multiple_expressions
11315                       : diag::err_auto_var_init_multiple_expressions)
11316        << VN << Type << Range;
11317    return QualType();
11318  }
11319
11320  Expr *DeduceInit = DeduceInits[0];
11321  if (DirectInit && isa<InitListExpr>(DeduceInit)) {
11322    Diag(Init->getBeginLoc(), IsInitCapture
11323                                  ? diag::err_init_capture_paren_braces
11324                                  : diag::err_auto_var_init_paren_braces)
11325        << isa<InitListExpr>(Init) << VN << Type << Range;
11326    return QualType();
11327  }
11328
11329  // Expressions default to 'id' when we're in a debugger.
11330  bool DefaultedAnyToId = false;
11331  if (getLangOpts().DebuggerCastResultToId &&
11332      Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
11333    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11334    if (Result.isInvalid()) {
11335      return QualType();
11336    }
11337    Init = Result.get();
11338    DefaultedAnyToId = true;
11339  }
11340
11341  // C++ [dcl.decomp]p1:
11342  //   If the assignment-expression [...] has array type A and no ref-qualifier
11343  //   is present, e has type cv A
11344  if (VDecl && isa<DecompositionDecl>(VDecl) &&
11345      Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
11346      DeduceInit->getType()->isConstantArrayType())
11347    return Context.getQualifiedType(DeduceInit->getType(),
11348                                    Type.getQualifiers());
11349
11350  QualType DeducedType;
11351  if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
11352    if (!IsInitCapture)
11353      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11354    else if (isa<InitListExpr>(Init))
11355      Diag(Range.getBegin(),
11356           diag::err_init_capture_deduction_failure_from_init_list)
11357          << VN
11358          << (DeduceInit->getType().isNull() ? TSI->getType()
11359                                             : DeduceInit->getType())
11360          << DeduceInit->getSourceRange();
11361    else
11362      Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11363          << VN << TSI->getType()
11364          << (DeduceInit->getType().isNull() ? TSI->getType()
11365                                             : DeduceInit->getType())
11366          << DeduceInit->getSourceRange();
11367  }
11368
11369  // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11370  // 'id' instead of a specific object type prevents most of our usual
11371  // checks.
11372  // We only want to warn outside of template instantiations, though:
11373  // inside a template, the 'id' could have come from a parameter.
11374  if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11375      !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11376    SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11377    Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11378  }
11379
11380  return DeducedType;
11381}
11382
11383bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11384                                         Expr *Init) {
11385  QualType DeducedType = deduceVarTypeFromInitializer(
11386      VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11387      VDecl->getSourceRange(), DirectInit, Init);
11388  if (DeducedType.isNull()) {
11389    VDecl->setInvalidDecl();
11390    return true;
11391  }
11392
11393  VDecl->setType(DeducedType);
11394  assert(VDecl->isLinkageValid());
11395
11396  // In ARC, infer lifetime.
11397  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11398    VDecl->setInvalidDecl();
11399
11400  if (getLangOpts().OpenCL)
11401    deduceOpenCLAddressSpace(VDecl);
11402
11403  // If this is a redeclaration, check that the type we just deduced matches
11404  // the previously declared type.
11405  if (VarDecl *Old = VDecl->getPreviousDecl()) {
11406    // We never need to merge the type, because we cannot form an incomplete
11407    // array of auto, nor deduce such a type.
11408    MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11409  }
11410
11411  // Check the deduced type is valid for a variable declaration.
11412  CheckVariableDeclarationType(VDecl);
11413  return VDecl->isInvalidDecl();
11414}
11415
11416void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
11417                                              SourceLocation Loc) {
11418  if (auto *CE = dyn_cast<ConstantExpr>(Init))
11419    Init = CE->getSubExpr();
11420
11421  QualType InitType = Init->getType();
11422  assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11423          InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
11424         "shouldn't be called if type doesn't have a non-trivial C struct");
11425  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
11426    for (auto I : ILE->inits()) {
11427      if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
11428          !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
11429        continue;
11430      SourceLocation SL = I->getExprLoc();
11431      checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
11432    }
11433    return;
11434  }
11435
11436  if (isa<ImplicitValueInitExpr>(Init)) {
11437    if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11438      checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
11439                            NTCUK_Init);
11440  } else {
11441    // Assume all other explicit initializers involving copying some existing
11442    // object.
11443    // TODO: ignore any explicit initializers where we can guarantee
11444    // copy-elision.
11445    if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
11446      checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
11447  }
11448}
11449
11450namespace {
11451
11452bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
11453  // Ignore unavailable fields. A field can be marked as unavailable explicitly
11454  // in the source code or implicitly by the compiler if it is in a union
11455  // defined in a system header and has non-trivial ObjC ownership
11456  // qualifications. We don't want those fields to participate in determining
11457  // whether the containing union is non-trivial.
11458  return FD->hasAttr<UnavailableAttr>();
11459}
11460
11461struct DiagNonTrivalCUnionDefaultInitializeVisitor
11462    : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11463                                    void> {
11464  using Super =
11465      DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11466                                    void>;
11467
11468  DiagNonTrivalCUnionDefaultInitializeVisitor(
11469      QualType OrigTy, SourceLocation OrigLoc,
11470      Sema::NonTrivialCUnionContext UseContext, Sema &S)
11471      : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11472
11473  void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
11474                     const FieldDecl *FD, bool InNonTrivialUnion) {
11475    if (const auto *AT = S.Context.getAsArrayType(QT))
11476      return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11477                                     InNonTrivialUnion);
11478    return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
11479  }
11480
11481  void visitARCStrong(QualType QT, const FieldDecl *FD,
11482                      bool InNonTrivialUnion) {
11483    if (InNonTrivialUnion)
11484      S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11485          << 1 << 0 << QT << FD->getName();
11486  }
11487
11488  void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11489    if (InNonTrivialUnion)
11490      S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11491          << 1 << 0 << QT << FD->getName();
11492  }
11493
11494  void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11495    const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11496    if (RD->isUnion()) {
11497      if (OrigLoc.isValid()) {
11498        bool IsUnion = false;
11499        if (auto *OrigRD = OrigTy->getAsRecordDecl())
11500          IsUnion = OrigRD->isUnion();
11501        S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11502            << 0 << OrigTy << IsUnion << UseContext;
11503        // Reset OrigLoc so that this diagnostic is emitted only once.
11504        OrigLoc = SourceLocation();
11505      }
11506      InNonTrivialUnion = true;
11507    }
11508
11509    if (InNonTrivialUnion)
11510      S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11511          << 0 << 0 << QT.getUnqualifiedType() << "";
11512
11513    for (const FieldDecl *FD : RD->fields())
11514      if (!shouldIgnoreForRecordTriviality(FD))
11515        asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11516  }
11517
11518  void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11519
11520  // The non-trivial C union type or the struct/union type that contains a
11521  // non-trivial C union.
11522  QualType OrigTy;
11523  SourceLocation OrigLoc;
11524  Sema::NonTrivialCUnionContext UseContext;
11525  Sema &S;
11526};
11527
11528struct DiagNonTrivalCUnionDestructedTypeVisitor
11529    : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
11530  using Super =
11531      DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
11532
11533  DiagNonTrivalCUnionDestructedTypeVisitor(
11534      QualType OrigTy, SourceLocation OrigLoc,
11535      Sema::NonTrivialCUnionContext UseContext, Sema &S)
11536      : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11537
11538  void visitWithKind(QualType::DestructionKind DK, QualType QT,
11539                     const FieldDecl *FD, bool InNonTrivialUnion) {
11540    if (const auto *AT = S.Context.getAsArrayType(QT))
11541      return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11542                                     InNonTrivialUnion);
11543    return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
11544  }
11545
11546  void visitARCStrong(QualType QT, const FieldDecl *FD,
11547                      bool InNonTrivialUnion) {
11548    if (InNonTrivialUnion)
11549      S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11550          << 1 << 1 << QT << FD->getName();
11551  }
11552
11553  void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11554    if (InNonTrivialUnion)
11555      S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11556          << 1 << 1 << QT << FD->getName();
11557  }
11558
11559  void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11560    const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11561    if (RD->isUnion()) {
11562      if (OrigLoc.isValid()) {
11563        bool IsUnion = false;
11564        if (auto *OrigRD = OrigTy->getAsRecordDecl())
11565          IsUnion = OrigRD->isUnion();
11566        S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11567            << 1 << OrigTy << IsUnion << UseContext;
11568        // Reset OrigLoc so that this diagnostic is emitted only once.
11569        OrigLoc = SourceLocation();
11570      }
11571      InNonTrivialUnion = true;
11572    }
11573
11574    if (InNonTrivialUnion)
11575      S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11576          << 0 << 1 << QT.getUnqualifiedType() << "";
11577
11578    for (const FieldDecl *FD : RD->fields())
11579      if (!shouldIgnoreForRecordTriviality(FD))
11580        asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11581  }
11582
11583  void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11584  void visitCXXDestructor(QualType QT, const FieldDecl *FD,
11585                          bool InNonTrivialUnion) {}
11586
11587  // The non-trivial C union type or the struct/union type that contains a
11588  // non-trivial C union.
11589  QualType OrigTy;
11590  SourceLocation OrigLoc;
11591  Sema::NonTrivialCUnionContext UseContext;
11592  Sema &S;
11593};
11594
11595struct DiagNonTrivalCUnionCopyVisitor
11596    : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
11597  using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
11598
11599  DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
11600                                 Sema::NonTrivialCUnionContext UseContext,
11601                                 Sema &S)
11602      : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11603
11604  void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
11605                     const FieldDecl *FD, bool InNonTrivialUnion) {
11606    if (const auto *AT = S.Context.getAsArrayType(QT))
11607      return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11608                                     InNonTrivialUnion);
11609    return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
11610  }
11611
11612  void visitARCStrong(QualType QT, const FieldDecl *FD,
11613                      bool InNonTrivialUnion) {
11614    if (InNonTrivialUnion)
11615      S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11616          << 1 << 2 << QT << FD->getName();
11617  }
11618
11619  void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11620    if (InNonTrivialUnion)
11621      S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11622          << 1 << 2 << QT << FD->getName();
11623  }
11624
11625  void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11626    const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11627    if (RD->isUnion()) {
11628      if (OrigLoc.isValid()) {
11629        bool IsUnion = false;
11630        if (auto *OrigRD = OrigTy->getAsRecordDecl())
11631          IsUnion = OrigRD->isUnion();
11632        S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11633            << 2 << OrigTy << IsUnion << UseContext;
11634        // Reset OrigLoc so that this diagnostic is emitted only once.
11635        OrigLoc = SourceLocation();
11636      }
11637      InNonTrivialUnion = true;
11638    }
11639
11640    if (InNonTrivialUnion)
11641      S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11642          << 0 << 2 << QT.getUnqualifiedType() << "";
11643
11644    for (const FieldDecl *FD : RD->fields())
11645      if (!shouldIgnoreForRecordTriviality(FD))
11646        asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11647  }
11648
11649  void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
11650                const FieldDecl *FD, bool InNonTrivialUnion) {}
11651  void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11652  void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
11653                            bool InNonTrivialUnion) {}
11654
11655  // The non-trivial C union type or the struct/union type that contains a
11656  // non-trivial C union.
11657  QualType OrigTy;
11658  SourceLocation OrigLoc;
11659  Sema::NonTrivialCUnionContext UseContext;
11660  Sema &S;
11661};
11662
11663} // namespace
11664
11665void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
11666                                 NonTrivialCUnionContext UseContext,
11667                                 unsigned NonTrivialKind) {
11668  assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11669          QT.hasNonTrivialToPrimitiveDestructCUnion() ||
11670          QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
11671         "shouldn't be called if type doesn't have a non-trivial C union");
11672
11673  if ((NonTrivialKind & NTCUK_Init) &&
11674      QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11675    DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
11676        .visit(QT, nullptr, false);
11677  if ((NonTrivialKind & NTCUK_Destruct) &&
11678      QT.hasNonTrivialToPrimitiveDestructCUnion())
11679    DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
11680        .visit(QT, nullptr, false);
11681  if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
11682    DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
11683        .visit(QT, nullptr, false);
11684}
11685
11686/// AddInitializerToDecl - Adds the initializer Init to the
11687/// declaration dcl. If DirectInit is true, this is C++ direct
11688/// initialization rather than copy initialization.
11689void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
11690  // If there is no declaration, there was an error parsing it.  Just ignore
11691  // the initializer.
11692  if (!RealDecl || RealDecl->isInvalidDecl()) {
11693    CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
11694    return;
11695  }
11696
11697  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
11698    // Pure-specifiers are handled in ActOnPureSpecifier.
11699    Diag(Method->getLocation(), diag::err_member_function_initialization)
11700      << Method->getDeclName() << Init->getSourceRange();
11701    Method->setInvalidDecl();
11702    return;
11703  }
11704
11705  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
11706  if (!VDecl) {
11707    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
11708    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
11709    RealDecl->setInvalidDecl();
11710    return;
11711  }
11712
11713  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
11714  if (VDecl->getType()->isUndeducedType()) {
11715    // Attempt typo correction early so that the type of the init expression can
11716    // be deduced based on the chosen correction if the original init contains a
11717    // TypoExpr.
11718    ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
11719    if (!Res.isUsable()) {
11720      RealDecl->setInvalidDecl();
11721      return;
11722    }
11723    Init = Res.get();
11724
11725    if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
11726      return;
11727  }
11728
11729  // dllimport cannot be used on variable definitions.
11730  if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
11731    Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
11732    VDecl->setInvalidDecl();
11733    return;
11734  }
11735
11736  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
11737    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
11738    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
11739    VDecl->setInvalidDecl();
11740    return;
11741  }
11742
11743  if (!VDecl->getType()->isDependentType()) {
11744    // A definition must end up with a complete type, which means it must be
11745    // complete with the restriction that an array type might be completed by
11746    // the initializer; note that later code assumes this restriction.
11747    QualType BaseDeclType = VDecl->getType();
11748    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
11749      BaseDeclType = Array->getElementType();
11750    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
11751                            diag::err_typecheck_decl_incomplete_type)) {
11752      RealDecl->setInvalidDecl();
11753      return;
11754    }
11755
11756    // The variable can not have an abstract class type.
11757    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
11758                               diag::err_abstract_type_in_decl,
11759                               AbstractVariableType))
11760      VDecl->setInvalidDecl();
11761  }
11762
11763  // If adding the initializer will turn this declaration into a definition,
11764  // and we already have a definition for this variable, diagnose or otherwise
11765  // handle the situation.
11766  VarDecl *Def;
11767  if ((Def = VDecl->getDefinition()) && Def != VDecl &&
11768      (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
11769      !VDecl->isThisDeclarationADemotedDefinition() &&
11770      checkVarDeclRedefinition(Def, VDecl))
11771    return;
11772
11773  if (getLangOpts().CPlusPlus) {
11774    // C++ [class.static.data]p4
11775    //   If a static data member is of const integral or const
11776    //   enumeration type, its declaration in the class definition can
11777    //   specify a constant-initializer which shall be an integral
11778    //   constant expression (5.19). In that case, the member can appear
11779    //   in integral constant expressions. The member shall still be
11780    //   defined in a namespace scope if it is used in the program and the
11781    //   namespace scope definition shall not contain an initializer.
11782    //
11783    // We already performed a redefinition check above, but for static
11784    // data members we also need to check whether there was an in-class
11785    // declaration with an initializer.
11786    if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
11787      Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
11788          << VDecl->getDeclName();
11789      Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
11790           diag::note_previous_initializer)
11791          << 0;
11792      return;
11793    }
11794
11795    if (VDecl->hasLocalStorage())
11796      setFunctionHasBranchProtectedScope();
11797
11798    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
11799      VDecl->setInvalidDecl();
11800      return;
11801    }
11802  }
11803
11804  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
11805  // a kernel function cannot be initialized."
11806  if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
11807    Diag(VDecl->getLocation(), diag::err_local_cant_init);
11808    VDecl->setInvalidDecl();
11809    return;
11810  }
11811
11812  // Get the decls type and save a reference for later, since
11813  // CheckInitializerTypes may change it.
11814  QualType DclT = VDecl->getType(), SavT = DclT;
11815
11816  // Expressions default to 'id' when we're in a debugger
11817  // and we are assigning it to a variable of Objective-C pointer type.
11818  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
11819      Init->getType() == Context.UnknownAnyTy) {
11820    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11821    if (Result.isInvalid()) {
11822      VDecl->setInvalidDecl();
11823      return;
11824    }
11825    Init = Result.get();
11826  }
11827
11828  // Perform the initialization.
11829  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
11830  if (!VDecl->isInvalidDecl()) {
11831    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11832    InitializationKind Kind = InitializationKind::CreateForInit(
11833        VDecl->getLocation(), DirectInit, Init);
11834
11835    MultiExprArg Args = Init;
11836    if (CXXDirectInit)
11837      Args = MultiExprArg(CXXDirectInit->getExprs(),
11838                          CXXDirectInit->getNumExprs());
11839
11840    // Try to correct any TypoExprs in the initialization arguments.
11841    for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
11842      ExprResult Res = CorrectDelayedTyposInExpr(
11843          Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
11844            InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
11845            return Init.Failed() ? ExprError() : E;
11846          });
11847      if (Res.isInvalid()) {
11848        VDecl->setInvalidDecl();
11849      } else if (Res.get() != Args[Idx]) {
11850        Args[Idx] = Res.get();
11851      }
11852    }
11853    if (VDecl->isInvalidDecl())
11854      return;
11855
11856    InitializationSequence InitSeq(*this, Entity, Kind, Args,
11857                                   /*TopLevelOfInitList=*/false,
11858                                   /*TreatUnavailableAsInvalid=*/false);
11859    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
11860    if (Result.isInvalid()) {
11861      VDecl->setInvalidDecl();
11862      return;
11863    }
11864
11865    Init = Result.getAs<Expr>();
11866  }
11867
11868  // Check for self-references within variable initializers.
11869  // Variables declared within a function/method body (except for references)
11870  // are handled by a dataflow analysis.
11871  // This is undefined behavior in C++, but valid in C.
11872  if (getLangOpts().CPlusPlus) {
11873    if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
11874        VDecl->getType()->isReferenceType()) {
11875      CheckSelfReference(*this, RealDecl, Init, DirectInit);
11876    }
11877  }
11878
11879  // If the type changed, it means we had an incomplete type that was
11880  // completed by the initializer. For example:
11881  //   int ary[] = { 1, 3, 5 };
11882  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
11883  if (!VDecl->isInvalidDecl() && (DclT != SavT))
11884    VDecl->setType(DclT);
11885
11886  if (!VDecl->isInvalidDecl()) {
11887    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
11888
11889    if (VDecl->hasAttr<BlocksAttr>())
11890      checkRetainCycles(VDecl, Init);
11891
11892    // It is safe to assign a weak reference into a strong variable.
11893    // Although this code can still have problems:
11894    //   id x = self.weakProp;
11895    //   id y = self.weakProp;
11896    // we do not warn to warn spuriously when 'x' and 'y' are on separate
11897    // paths through the function. This should be revisited if
11898    // -Wrepeated-use-of-weak is made flow-sensitive.
11899    if (FunctionScopeInfo *FSI = getCurFunction())
11900      if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
11901           VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
11902          !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
11903                           Init->getBeginLoc()))
11904        FSI->markSafeWeakUse(Init);
11905  }
11906
11907  // The initialization is usually a full-expression.
11908  //
11909  // FIXME: If this is a braced initialization of an aggregate, it is not
11910  // an expression, and each individual field initializer is a separate
11911  // full-expression. For instance, in:
11912  //
11913  //   struct Temp { ~Temp(); };
11914  //   struct S { S(Temp); };
11915  //   struct T { S a, b; } t = { Temp(), Temp() }
11916  //
11917  // we should destroy the first Temp before constructing the second.
11918  ExprResult Result =
11919      ActOnFinishFullExpr(Init, VDecl->getLocation(),
11920                          /*DiscardedValue*/ false, VDecl->isConstexpr());
11921  if (Result.isInvalid()) {
11922    VDecl->setInvalidDecl();
11923    return;
11924  }
11925  Init = Result.get();
11926
11927  // Attach the initializer to the decl.
11928  VDecl->setInit(Init);
11929
11930  if (VDecl->isLocalVarDecl()) {
11931    // Don't check the initializer if the declaration is malformed.
11932    if (VDecl->isInvalidDecl()) {
11933      // do nothing
11934
11935    // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
11936    // This is true even in C++ for OpenCL.
11937    } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
11938      CheckForConstantInitializer(Init, DclT);
11939
11940    // Otherwise, C++ does not restrict the initializer.
11941    } else if (getLangOpts().CPlusPlus) {
11942      // do nothing
11943
11944    // C99 6.7.8p4: All the expressions in an initializer for an object that has
11945    // static storage duration shall be constant expressions or string literals.
11946    } else if (VDecl->getStorageClass() == SC_Static) {
11947      CheckForConstantInitializer(Init, DclT);
11948
11949    // C89 is stricter than C99 for aggregate initializers.
11950    // C89 6.5.7p3: All the expressions [...] in an initializer list
11951    // for an object that has aggregate or union type shall be
11952    // constant expressions.
11953    } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
11954               isa<InitListExpr>(Init)) {
11955      const Expr *Culprit;
11956      if (!Init->isConstantInitializer(Context, false, &Culprit)) {
11957        Diag(Culprit->getExprLoc(),
11958             diag::ext_aggregate_init_not_constant)
11959          << Culprit->getSourceRange();
11960      }
11961    }
11962
11963    if (auto *E = dyn_cast<ExprWithCleanups>(Init))
11964      if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
11965        if (VDecl->hasLocalStorage())
11966          BE->getBlockDecl()->setCanAvoidCopyToHeap();
11967  } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
11968             VDecl->getLexicalDeclContext()->isRecord()) {
11969    // This is an in-class initialization for a static data member, e.g.,
11970    //
11971    // struct S {
11972    //   static const int value = 17;
11973    // };
11974
11975    // C++ [class.mem]p4:
11976    //   A member-declarator can contain a constant-initializer only
11977    //   if it declares a static member (9.4) of const integral or
11978    //   const enumeration type, see 9.4.2.
11979    //
11980    // C++11 [class.static.data]p3:
11981    //   If a non-volatile non-inline const static data member is of integral
11982    //   or enumeration type, its declaration in the class definition can
11983    //   specify a brace-or-equal-initializer in which every initializer-clause
11984    //   that is an assignment-expression is a constant expression. A static
11985    //   data member of literal type can be declared in the class definition
11986    //   with the constexpr specifier; if so, its declaration shall specify a
11987    //   brace-or-equal-initializer in which every initializer-clause that is
11988    //   an assignment-expression is a constant expression.
11989
11990    // Do nothing on dependent types.
11991    if (DclT->isDependentType()) {
11992
11993    // Allow any 'static constexpr' members, whether or not they are of literal
11994    // type. We separately check that every constexpr variable is of literal
11995    // type.
11996    } else if (VDecl->isConstexpr()) {
11997
11998    // Require constness.
11999    } else if (!DclT.isConstQualified()) {
12000      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
12001        << Init->getSourceRange();
12002      VDecl->setInvalidDecl();
12003
12004    // We allow integer constant expressions in all cases.
12005    } else if (DclT->isIntegralOrEnumerationType()) {
12006      // Check whether the expression is a constant expression.
12007      SourceLocation Loc;
12008      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
12009        // In C++11, a non-constexpr const static data member with an
12010        // in-class initializer cannot be volatile.
12011        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
12012      else if (Init->isValueDependent())
12013        ; // Nothing to check.
12014      else if (Init->isIntegerConstantExpr(Context, &Loc))
12015        ; // Ok, it's an ICE!
12016      else if (Init->getType()->isScopedEnumeralType() &&
12017               Init->isCXX11ConstantExpr(Context))
12018        ; // Ok, it is a scoped-enum constant expression.
12019      else if (Init->isEvaluatable(Context)) {
12020        // If we can constant fold the initializer through heroics, accept it,
12021        // but report this as a use of an extension for -pedantic.
12022        Diag(Loc, diag::ext_in_class_initializer_non_constant)
12023          << Init->getSourceRange();
12024      } else {
12025        // Otherwise, this is some crazy unknown case.  Report the issue at the
12026        // location provided by the isIntegerConstantExpr failed check.
12027        Diag(Loc, diag::err_in_class_initializer_non_constant)
12028          << Init->getSourceRange();
12029        VDecl->setInvalidDecl();
12030      }
12031
12032    // We allow foldable floating-point constants as an extension.
12033    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
12034      // In C++98, this is a GNU extension. In C++11, it is not, but we support
12035      // it anyway and provide a fixit to add the 'constexpr'.
12036      if (getLangOpts().CPlusPlus11) {
12037        Diag(VDecl->getLocation(),
12038             diag::ext_in_class_initializer_float_type_cxx11)
12039            << DclT << Init->getSourceRange();
12040        Diag(VDecl->getBeginLoc(),
12041             diag::note_in_class_initializer_float_type_cxx11)
12042            << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12043      } else {
12044        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
12045          << DclT << Init->getSourceRange();
12046
12047        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
12048          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
12049            << Init->getSourceRange();
12050          VDecl->setInvalidDecl();
12051        }
12052      }
12053
12054    // Suggest adding 'constexpr' in C++11 for literal types.
12055    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
12056      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
12057          << DclT << Init->getSourceRange()
12058          << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12059      VDecl->setConstexpr(true);
12060
12061    } else {
12062      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
12063        << DclT << Init->getSourceRange();
12064      VDecl->setInvalidDecl();
12065    }
12066  } else if (VDecl->isFileVarDecl()) {
12067    // In C, extern is typically used to avoid tentative definitions when
12068    // declaring variables in headers, but adding an intializer makes it a
12069    // definition. This is somewhat confusing, so GCC and Clang both warn on it.
12070    // In C++, extern is often used to give implictly static const variables
12071    // external linkage, so don't warn in that case. If selectany is present,
12072    // this might be header code intended for C and C++ inclusion, so apply the
12073    // C++ rules.
12074    if (VDecl->getStorageClass() == SC_Extern &&
12075        ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
12076         !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
12077        !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
12078        !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
12079      Diag(VDecl->getLocation(), diag::warn_extern_init);
12080
12081    // In Microsoft C++ mode, a const variable defined in namespace scope has
12082    // external linkage by default if the variable is declared with
12083    // __declspec(dllexport).
12084    if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
12085        getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
12086        VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
12087      VDecl->setStorageClass(SC_Extern);
12088
12089    // C99 6.7.8p4. All file scoped initializers need to be constant.
12090    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
12091      CheckForConstantInitializer(Init, DclT);
12092  }
12093
12094  QualType InitType = Init->getType();
12095  if (!InitType.isNull() &&
12096      (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12097       InitType.hasNonTrivialToPrimitiveCopyCUnion()))
12098    checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
12099
12100  // We will represent direct-initialization similarly to copy-initialization:
12101  //    int x(1);  -as-> int x = 1;
12102  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
12103  //
12104  // Clients that want to distinguish between the two forms, can check for
12105  // direct initializer using VarDecl::getInitStyle().
12106  // A major benefit is that clients that don't particularly care about which
12107  // exactly form was it (like the CodeGen) can handle both cases without
12108  // special case code.
12109
12110  // C++ 8.5p11:
12111  // The form of initialization (using parentheses or '=') is generally
12112  // insignificant, but does matter when the entity being initialized has a
12113  // class type.
12114  if (CXXDirectInit) {
12115    assert(DirectInit && "Call-style initializer must be direct init.");
12116    VDecl->setInitStyle(VarDecl::CallInit);
12117  } else if (DirectInit) {
12118    // This must be list-initialization. No other way is direct-initialization.
12119    VDecl->setInitStyle(VarDecl::ListInit);
12120  }
12121
12122  CheckCompleteVariableDeclaration(VDecl);
12123}
12124
12125/// ActOnInitializerError - Given that there was an error parsing an
12126/// initializer for the given declaration, try to return to some form
12127/// of sanity.
12128void Sema::ActOnInitializerError(Decl *D) {
12129  // Our main concern here is re-establishing invariants like "a
12130  // variable's type is either dependent or complete".
12131  if (!D || D->isInvalidDecl()) return;
12132
12133  VarDecl *VD = dyn_cast<VarDecl>(D);
12134  if (!VD) return;
12135
12136  // Bindings are not usable if we can't make sense of the initializer.
12137  if (auto *DD = dyn_cast<DecompositionDecl>(D))
12138    for (auto *BD : DD->bindings())
12139      BD->setInvalidDecl();
12140
12141  // Auto types are meaningless if we can't make sense of the initializer.
12142  if (ParsingInitForAutoVars.count(D)) {
12143    D->setInvalidDecl();
12144    return;
12145  }
12146
12147  QualType Ty = VD->getType();
12148  if (Ty->isDependentType()) return;
12149
12150  // Require a complete type.
12151  if (RequireCompleteType(VD->getLocation(),
12152                          Context.getBaseElementType(Ty),
12153                          diag::err_typecheck_decl_incomplete_type)) {
12154    VD->setInvalidDecl();
12155    return;
12156  }
12157
12158  // Require a non-abstract type.
12159  if (RequireNonAbstractType(VD->getLocation(), Ty,
12160                             diag::err_abstract_type_in_decl,
12161                             AbstractVariableType)) {
12162    VD->setInvalidDecl();
12163    return;
12164  }
12165
12166  // Don't bother complaining about constructors or destructors,
12167  // though.
12168}
12169
12170void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
12171  // If there is no declaration, there was an error parsing it. Just ignore it.
12172  if (!RealDecl)
12173    return;
12174
12175  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
12176    QualType Type = Var->getType();
12177
12178    // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
12179    if (isa<DecompositionDecl>(RealDecl)) {
12180      Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
12181      Var->setInvalidDecl();
12182      return;
12183    }
12184
12185    if (Type->isUndeducedType() &&
12186        DeduceVariableDeclarationType(Var, false, nullptr))
12187      return;
12188
12189    // C++11 [class.static.data]p3: A static data member can be declared with
12190    // the constexpr specifier; if so, its declaration shall specify
12191    // a brace-or-equal-initializer.
12192    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
12193    // the definition of a variable [...] or the declaration of a static data
12194    // member.
12195    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
12196        !Var->isThisDeclarationADemotedDefinition()) {
12197      if (Var->isStaticDataMember()) {
12198        // C++1z removes the relevant rule; the in-class declaration is always
12199        // a definition there.
12200        if (!getLangOpts().CPlusPlus17 &&
12201            !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12202          Diag(Var->getLocation(),
12203               diag::err_constexpr_static_mem_var_requires_init)
12204            << Var->getDeclName();
12205          Var->setInvalidDecl();
12206          return;
12207        }
12208      } else {
12209        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
12210        Var->setInvalidDecl();
12211        return;
12212      }
12213    }
12214
12215    // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
12216    // be initialized.
12217    if (!Var->isInvalidDecl() &&
12218        Var->getType().getAddressSpace() == LangAS::opencl_constant &&
12219        Var->getStorageClass() != SC_Extern && !Var->getInit()) {
12220      Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
12221      Var->setInvalidDecl();
12222      return;
12223    }
12224
12225    VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
12226    if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
12227        Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12228      checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
12229                            NTCUC_DefaultInitializedObject, NTCUK_Init);
12230
12231
12232    switch (DefKind) {
12233    case VarDecl::Definition:
12234      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
12235        break;
12236
12237      // We have an out-of-line definition of a static data member
12238      // that has an in-class initializer, so we type-check this like
12239      // a declaration.
12240      //
12241      LLVM_FALLTHROUGH;
12242
12243    case VarDecl::DeclarationOnly:
12244      // It's only a declaration.
12245
12246      // Block scope. C99 6.7p7: If an identifier for an object is
12247      // declared with no linkage (C99 6.2.2p6), the type for the
12248      // object shall be complete.
12249      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
12250          !Var->hasLinkage() && !Var->isInvalidDecl() &&
12251          RequireCompleteType(Var->getLocation(), Type,
12252                              diag::err_typecheck_decl_incomplete_type))
12253        Var->setInvalidDecl();
12254
12255      // Make sure that the type is not abstract.
12256      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12257          RequireNonAbstractType(Var->getLocation(), Type,
12258                                 diag::err_abstract_type_in_decl,
12259                                 AbstractVariableType))
12260        Var->setInvalidDecl();
12261      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12262          Var->getStorageClass() == SC_PrivateExtern) {
12263        Diag(Var->getLocation(), diag::warn_private_extern);
12264        Diag(Var->getLocation(), diag::note_private_extern);
12265      }
12266
12267      if (Context.getTargetInfo().allowDebugInfoForExternalVar() &&
12268          !Var->isInvalidDecl() && !getLangOpts().CPlusPlus)
12269        ExternalDeclarations.push_back(Var);
12270
12271      return;
12272
12273    case VarDecl::TentativeDefinition:
12274      // File scope. C99 6.9.2p2: A declaration of an identifier for an
12275      // object that has file scope without an initializer, and without a
12276      // storage-class specifier or with the storage-class specifier "static",
12277      // constitutes a tentative definition. Note: A tentative definition with
12278      // external linkage is valid (C99 6.2.2p5).
12279      if (!Var->isInvalidDecl()) {
12280        if (const IncompleteArrayType *ArrayT
12281                                    = Context.getAsIncompleteArrayType(Type)) {
12282          if (RequireCompleteType(Var->getLocation(),
12283                                  ArrayT->getElementType(),
12284                                  diag::err_illegal_decl_array_incomplete_type))
12285            Var->setInvalidDecl();
12286        } else if (Var->getStorageClass() == SC_Static) {
12287          // C99 6.9.2p3: If the declaration of an identifier for an object is
12288          // a tentative definition and has internal linkage (C99 6.2.2p3), the
12289          // declared type shall not be an incomplete type.
12290          // NOTE: code such as the following
12291          //     static struct s;
12292          //     struct s { int a; };
12293          // is accepted by gcc. Hence here we issue a warning instead of
12294          // an error and we do not invalidate the static declaration.
12295          // NOTE: to avoid multiple warnings, only check the first declaration.
12296          if (Var->isFirstDecl())
12297            RequireCompleteType(Var->getLocation(), Type,
12298                                diag::ext_typecheck_decl_incomplete_type);
12299        }
12300      }
12301
12302      // Record the tentative definition; we're done.
12303      if (!Var->isInvalidDecl())
12304        TentativeDefinitions.push_back(Var);
12305      return;
12306    }
12307
12308    // Provide a specific diagnostic for uninitialized variable
12309    // definitions with incomplete array type.
12310    if (Type->isIncompleteArrayType()) {
12311      Diag(Var->getLocation(),
12312           diag::err_typecheck_incomplete_array_needs_initializer);
12313      Var->setInvalidDecl();
12314      return;
12315    }
12316
12317    // Provide a specific diagnostic for uninitialized variable
12318    // definitions with reference type.
12319    if (Type->isReferenceType()) {
12320      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
12321        << Var->getDeclName()
12322        << SourceRange(Var->getLocation(), Var->getLocation());
12323      Var->setInvalidDecl();
12324      return;
12325    }
12326
12327    // Do not attempt to type-check the default initializer for a
12328    // variable with dependent type.
12329    if (Type->isDependentType())
12330      return;
12331
12332    if (Var->isInvalidDecl())
12333      return;
12334
12335    if (!Var->hasAttr<AliasAttr>()) {
12336      if (RequireCompleteType(Var->getLocation(),
12337                              Context.getBaseElementType(Type),
12338                              diag::err_typecheck_decl_incomplete_type)) {
12339        Var->setInvalidDecl();
12340        return;
12341      }
12342    } else {
12343      return;
12344    }
12345
12346    // The variable can not have an abstract class type.
12347    if (RequireNonAbstractType(Var->getLocation(), Type,
12348                               diag::err_abstract_type_in_decl,
12349                               AbstractVariableType)) {
12350      Var->setInvalidDecl();
12351      return;
12352    }
12353
12354    // Check for jumps past the implicit initializer.  C++0x
12355    // clarifies that this applies to a "variable with automatic
12356    // storage duration", not a "local variable".
12357    // C++11 [stmt.dcl]p3
12358    //   A program that jumps from a point where a variable with automatic
12359    //   storage duration is not in scope to a point where it is in scope is
12360    //   ill-formed unless the variable has scalar type, class type with a
12361    //   trivial default constructor and a trivial destructor, a cv-qualified
12362    //   version of one of these types, or an array of one of the preceding
12363    //   types and is declared without an initializer.
12364    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
12365      if (const RecordType *Record
12366            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
12367        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
12368        // Mark the function (if we're in one) for further checking even if the
12369        // looser rules of C++11 do not require such checks, so that we can
12370        // diagnose incompatibilities with C++98.
12371        if (!CXXRecord->isPOD())
12372          setFunctionHasBranchProtectedScope();
12373      }
12374    }
12375    // In OpenCL, we can't initialize objects in the __local address space,
12376    // even implicitly, so don't synthesize an implicit initializer.
12377    if (getLangOpts().OpenCL &&
12378        Var->getType().getAddressSpace() == LangAS::opencl_local)
12379      return;
12380    // C++03 [dcl.init]p9:
12381    //   If no initializer is specified for an object, and the
12382    //   object is of (possibly cv-qualified) non-POD class type (or
12383    //   array thereof), the object shall be default-initialized; if
12384    //   the object is of const-qualified type, the underlying class
12385    //   type shall have a user-declared default
12386    //   constructor. Otherwise, if no initializer is specified for
12387    //   a non- static object, the object and its subobjects, if
12388    //   any, have an indeterminate initial value); if the object
12389    //   or any of its subobjects are of const-qualified type, the
12390    //   program is ill-formed.
12391    // C++0x [dcl.init]p11:
12392    //   If no initializer is specified for an object, the object is
12393    //   default-initialized; [...].
12394    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
12395    InitializationKind Kind
12396      = InitializationKind::CreateDefault(Var->getLocation());
12397
12398    InitializationSequence InitSeq(*this, Entity, Kind, None);
12399    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
12400    if (Init.isInvalid())
12401      Var->setInvalidDecl();
12402    else if (Init.get()) {
12403      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
12404      // This is important for template substitution.
12405      Var->setInitStyle(VarDecl::CallInit);
12406    }
12407
12408    CheckCompleteVariableDeclaration(Var);
12409  }
12410}
12411
12412void Sema::ActOnCXXForRangeDecl(Decl *D) {
12413  // If there is no declaration, there was an error parsing it. Ignore it.
12414  if (!D)
12415    return;
12416
12417  VarDecl *VD = dyn_cast<VarDecl>(D);
12418  if (!VD) {
12419    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
12420    D->setInvalidDecl();
12421    return;
12422  }
12423
12424  VD->setCXXForRangeDecl(true);
12425
12426  // for-range-declaration cannot be given a storage class specifier.
12427  int Error = -1;
12428  switch (VD->getStorageClass()) {
12429  case SC_None:
12430    break;
12431  case SC_Extern:
12432    Error = 0;
12433    break;
12434  case SC_Static:
12435    Error = 1;
12436    break;
12437  case SC_PrivateExtern:
12438    Error = 2;
12439    break;
12440  case SC_Auto:
12441    Error = 3;
12442    break;
12443  case SC_Register:
12444    Error = 4;
12445    break;
12446  }
12447  if (Error != -1) {
12448    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
12449      << VD->getDeclName() << Error;
12450    D->setInvalidDecl();
12451  }
12452}
12453
12454StmtResult
12455Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
12456                                 IdentifierInfo *Ident,
12457                                 ParsedAttributes &Attrs,
12458                                 SourceLocation AttrEnd) {
12459  // C++1y [stmt.iter]p1:
12460  //   A range-based for statement of the form
12461  //      for ( for-range-identifier : for-range-initializer ) statement
12462  //   is equivalent to
12463  //      for ( auto&& for-range-identifier : for-range-initializer ) statement
12464  DeclSpec DS(Attrs.getPool().getFactory());
12465
12466  const char *PrevSpec;
12467  unsigned DiagID;
12468  DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
12469                     getPrintingPolicy());
12470
12471  Declarator D(DS, DeclaratorContext::ForContext);
12472  D.SetIdentifier(Ident, IdentLoc);
12473  D.takeAttributes(Attrs, AttrEnd);
12474
12475  D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
12476                IdentLoc);
12477  Decl *Var = ActOnDeclarator(S, D);
12478  cast<VarDecl>(Var)->setCXXForRangeDecl(true);
12479  FinalizeDeclaration(Var);
12480  return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
12481                       AttrEnd.isValid() ? AttrEnd : IdentLoc);
12482}
12483
12484void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
12485  if (var->isInvalidDecl()) return;
12486
12487  if (getLangOpts().OpenCL) {
12488    // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
12489    // initialiser
12490    if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
12491        !var->hasInit()) {
12492      Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
12493          << 1 /*Init*/;
12494      var->setInvalidDecl();
12495      return;
12496    }
12497  }
12498
12499  // In Objective-C, don't allow jumps past the implicit initialization of a
12500  // local retaining variable.
12501  if (getLangOpts().ObjC &&
12502      var->hasLocalStorage()) {
12503    switch (var->getType().getObjCLifetime()) {
12504    case Qualifiers::OCL_None:
12505    case Qualifiers::OCL_ExplicitNone:
12506    case Qualifiers::OCL_Autoreleasing:
12507      break;
12508
12509    case Qualifiers::OCL_Weak:
12510    case Qualifiers::OCL_Strong:
12511      setFunctionHasBranchProtectedScope();
12512      break;
12513    }
12514  }
12515
12516  if (var->hasLocalStorage() &&
12517      var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
12518    setFunctionHasBranchProtectedScope();
12519
12520  // Warn about externally-visible variables being defined without a
12521  // prior declaration.  We only want to do this for global
12522  // declarations, but we also specifically need to avoid doing it for
12523  // class members because the linkage of an anonymous class can
12524  // change if it's later given a typedef name.
12525  if (var->isThisDeclarationADefinition() &&
12526      var->getDeclContext()->getRedeclContext()->isFileContext() &&
12527      var->isExternallyVisible() && var->hasLinkage() &&
12528      !var->isInline() && !var->getDescribedVarTemplate() &&
12529      !isa<VarTemplatePartialSpecializationDecl>(var) &&
12530      !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
12531      !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
12532                                  var->getLocation())) {
12533    // Find a previous declaration that's not a definition.
12534    VarDecl *prev = var->getPreviousDecl();
12535    while (prev && prev->isThisDeclarationADefinition())
12536      prev = prev->getPreviousDecl();
12537
12538    if (!prev) {
12539      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
12540      Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
12541          << /* variable */ 0;
12542    }
12543  }
12544
12545  // Cache the result of checking for constant initialization.
12546  Optional<bool> CacheHasConstInit;
12547  const Expr *CacheCulprit = nullptr;
12548  auto checkConstInit = [&]() mutable {
12549    if (!CacheHasConstInit)
12550      CacheHasConstInit = var->getInit()->isConstantInitializer(
12551            Context, var->getType()->isReferenceType(), &CacheCulprit);
12552    return *CacheHasConstInit;
12553  };
12554
12555  if (var->getTLSKind() == VarDecl::TLS_Static) {
12556    if (var->getType().isDestructedType()) {
12557      // GNU C++98 edits for __thread, [basic.start.term]p3:
12558      //   The type of an object with thread storage duration shall not
12559      //   have a non-trivial destructor.
12560      Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
12561      if (getLangOpts().CPlusPlus11)
12562        Diag(var->getLocation(), diag::note_use_thread_local);
12563    } else if (getLangOpts().CPlusPlus && var->hasInit()) {
12564      if (!checkConstInit()) {
12565        // GNU C++98 edits for __thread, [basic.start.init]p4:
12566        //   An object of thread storage duration shall not require dynamic
12567        //   initialization.
12568        // FIXME: Need strict checking here.
12569        Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
12570          << CacheCulprit->getSourceRange();
12571        if (getLangOpts().CPlusPlus11)
12572          Diag(var->getLocation(), diag::note_use_thread_local);
12573      }
12574    }
12575  }
12576
12577  // Apply section attributes and pragmas to global variables.
12578  bool GlobalStorage = var->hasGlobalStorage();
12579  if (GlobalStorage && var->isThisDeclarationADefinition() &&
12580      !inTemplateInstantiation()) {
12581    PragmaStack<StringLiteral *> *Stack = nullptr;
12582    int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
12583    if (var->getType().isConstQualified())
12584      Stack = &ConstSegStack;
12585    else if (!var->getInit()) {
12586      Stack = &BSSSegStack;
12587      SectionFlags |= ASTContext::PSF_Write;
12588    } else {
12589      Stack = &DataSegStack;
12590      SectionFlags |= ASTContext::PSF_Write;
12591    }
12592    if (Stack->CurrentValue && !var->hasAttr<SectionAttr>())
12593      var->addAttr(SectionAttr::CreateImplicit(
12594          Context, Stack->CurrentValue->getString(),
12595          Stack->CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
12596          SectionAttr::Declspec_allocate));
12597    if (const SectionAttr *SA = var->getAttr<SectionAttr>())
12598      if (UnifySection(SA->getName(), SectionFlags, var))
12599        var->dropAttr<SectionAttr>();
12600
12601    // Apply the init_seg attribute if this has an initializer.  If the
12602    // initializer turns out to not be dynamic, we'll end up ignoring this
12603    // attribute.
12604    if (CurInitSeg && var->getInit())
12605      var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
12606                                               CurInitSegLoc,
12607                                               AttributeCommonInfo::AS_Pragma));
12608  }
12609
12610  // All the following checks are C++ only.
12611  if (!getLangOpts().CPlusPlus) {
12612      // If this variable must be emitted, add it as an initializer for the
12613      // current module.
12614     if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
12615       Context.addModuleInitializer(ModuleScopes.back().Module, var);
12616     return;
12617  }
12618
12619  if (auto *DD = dyn_cast<DecompositionDecl>(var))
12620    CheckCompleteDecompositionDeclaration(DD);
12621
12622  QualType type = var->getType();
12623  if (type->isDependentType()) return;
12624
12625  if (var->hasAttr<BlocksAttr>())
12626    getCurFunction()->addByrefBlockVar(var);
12627
12628  Expr *Init = var->getInit();
12629  bool IsGlobal = GlobalStorage && !var->isStaticLocal();
12630  QualType baseType = Context.getBaseElementType(type);
12631
12632  if (Init && !Init->isValueDependent()) {
12633    if (var->isConstexpr()) {
12634      SmallVector<PartialDiagnosticAt, 8> Notes;
12635      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
12636        SourceLocation DiagLoc = var->getLocation();
12637        // If the note doesn't add any useful information other than a source
12638        // location, fold it into the primary diagnostic.
12639        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
12640              diag::note_invalid_subexpr_in_const_expr) {
12641          DiagLoc = Notes[0].first;
12642          Notes.clear();
12643        }
12644        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
12645          << var << Init->getSourceRange();
12646        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
12647          Diag(Notes[I].first, Notes[I].second);
12648      }
12649    } else if (var->mightBeUsableInConstantExpressions(Context)) {
12650      // Check whether the initializer of a const variable of integral or
12651      // enumeration type is an ICE now, since we can't tell whether it was
12652      // initialized by a constant expression if we check later.
12653      var->checkInitIsICE();
12654    }
12655
12656    // Don't emit further diagnostics about constexpr globals since they
12657    // were just diagnosed.
12658    if (!var->isConstexpr() && GlobalStorage && var->hasAttr<ConstInitAttr>()) {
12659      // FIXME: Need strict checking in C++03 here.
12660      bool DiagErr = getLangOpts().CPlusPlus11
12661          ? !var->checkInitIsICE() : !checkConstInit();
12662      if (DiagErr) {
12663        auto *Attr = var->getAttr<ConstInitAttr>();
12664        Diag(var->getLocation(), diag::err_require_constant_init_failed)
12665          << Init->getSourceRange();
12666        Diag(Attr->getLocation(),
12667             diag::note_declared_required_constant_init_here)
12668            << Attr->getRange() << Attr->isConstinit();
12669        if (getLangOpts().CPlusPlus11) {
12670          APValue Value;
12671          SmallVector<PartialDiagnosticAt, 8> Notes;
12672          Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
12673          for (auto &it : Notes)
12674            Diag(it.first, it.second);
12675        } else {
12676          Diag(CacheCulprit->getExprLoc(),
12677               diag::note_invalid_subexpr_in_const_expr)
12678              << CacheCulprit->getSourceRange();
12679        }
12680      }
12681    }
12682    else if (!var->isConstexpr() && IsGlobal &&
12683             !getDiagnostics().isIgnored(diag::warn_global_constructor,
12684                                    var->getLocation())) {
12685      // Warn about globals which don't have a constant initializer.  Don't
12686      // warn about globals with a non-trivial destructor because we already
12687      // warned about them.
12688      CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
12689      if (!(RD && !RD->hasTrivialDestructor())) {
12690        if (!checkConstInit())
12691          Diag(var->getLocation(), diag::warn_global_constructor)
12692            << Init->getSourceRange();
12693      }
12694    }
12695  }
12696
12697  // Require the destructor.
12698  if (const RecordType *recordType = baseType->getAs<RecordType>())
12699    FinalizeVarWithDestructor(var, recordType);
12700
12701  // If this variable must be emitted, add it as an initializer for the current
12702  // module.
12703  if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
12704    Context.addModuleInitializer(ModuleScopes.back().Module, var);
12705}
12706
12707/// Determines if a variable's alignment is dependent.
12708static bool hasDependentAlignment(VarDecl *VD) {
12709  if (VD->getType()->isDependentType())
12710    return true;
12711  for (auto *I : VD->specific_attrs<AlignedAttr>())
12712    if (I->isAlignmentDependent())
12713      return true;
12714  return false;
12715}
12716
12717/// Check if VD needs to be dllexport/dllimport due to being in a
12718/// dllexport/import function.
12719void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
12720  assert(VD->isStaticLocal());
12721
12722  auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12723
12724  // Find outermost function when VD is in lambda function.
12725  while (FD && !getDLLAttr(FD) &&
12726         !FD->hasAttr<DLLExportStaticLocalAttr>() &&
12727         !FD->hasAttr<DLLImportStaticLocalAttr>()) {
12728    FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
12729  }
12730
12731  if (!FD)
12732    return;
12733
12734  // Static locals inherit dll attributes from their function.
12735  if (Attr *A = getDLLAttr(FD)) {
12736    auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
12737    NewAttr->setInherited(true);
12738    VD->addAttr(NewAttr);
12739  } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
12740    auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
12741    NewAttr->setInherited(true);
12742    VD->addAttr(NewAttr);
12743
12744    // Export this function to enforce exporting this static variable even
12745    // if it is not used in this compilation unit.
12746    if (!FD->hasAttr<DLLExportAttr>())
12747      FD->addAttr(NewAttr);
12748
12749  } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
12750    auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
12751    NewAttr->setInherited(true);
12752    VD->addAttr(NewAttr);
12753  }
12754}
12755
12756/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
12757/// any semantic actions necessary after any initializer has been attached.
12758void Sema::FinalizeDeclaration(Decl *ThisDecl) {
12759  // Note that we are no longer parsing the initializer for this declaration.
12760  ParsingInitForAutoVars.erase(ThisDecl);
12761
12762  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
12763  if (!VD)
12764    return;
12765
12766  // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
12767  if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
12768      !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
12769    if (PragmaClangBSSSection.Valid)
12770      VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
12771          Context, PragmaClangBSSSection.SectionName,
12772          PragmaClangBSSSection.PragmaLocation,
12773          AttributeCommonInfo::AS_Pragma));
12774    if (PragmaClangDataSection.Valid)
12775      VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
12776          Context, PragmaClangDataSection.SectionName,
12777          PragmaClangDataSection.PragmaLocation,
12778          AttributeCommonInfo::AS_Pragma));
12779    if (PragmaClangRodataSection.Valid)
12780      VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
12781          Context, PragmaClangRodataSection.SectionName,
12782          PragmaClangRodataSection.PragmaLocation,
12783          AttributeCommonInfo::AS_Pragma));
12784    if (PragmaClangRelroSection.Valid)
12785      VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
12786          Context, PragmaClangRelroSection.SectionName,
12787          PragmaClangRelroSection.PragmaLocation,
12788          AttributeCommonInfo::AS_Pragma));
12789  }
12790
12791  if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
12792    for (auto *BD : DD->bindings()) {
12793      FinalizeDeclaration(BD);
12794    }
12795  }
12796
12797  checkAttributesAfterMerging(*this, *VD);
12798
12799  // Perform TLS alignment check here after attributes attached to the variable
12800  // which may affect the alignment have been processed. Only perform the check
12801  // if the target has a maximum TLS alignment (zero means no constraints).
12802  if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
12803    // Protect the check so that it's not performed on dependent types and
12804    // dependent alignments (we can't determine the alignment in that case).
12805    if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
12806        !VD->isInvalidDecl()) {
12807      CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
12808      if (Context.getDeclAlign(VD) > MaxAlignChars) {
12809        Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
12810          << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
12811          << (unsigned)MaxAlignChars.getQuantity();
12812      }
12813    }
12814  }
12815
12816  if (VD->isStaticLocal()) {
12817    CheckStaticLocalForDllExport(VD);
12818
12819    if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
12820      // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__
12821      // function, only __shared__ variables or variables without any device
12822      // memory qualifiers may be declared with static storage class.
12823      // Note: It is unclear how a function-scope non-const static variable
12824      // without device memory qualifier is implemented, therefore only static
12825      // const variable without device memory qualifier is allowed.
12826      [&]() {
12827        if (!getLangOpts().CUDA)
12828          return;
12829        if (VD->hasAttr<CUDASharedAttr>())
12830          return;
12831        if (VD->getType().isConstQualified() &&
12832            !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
12833          return;
12834        if (CUDADiagIfDeviceCode(VD->getLocation(),
12835                                 diag::err_device_static_local_var)
12836            << CurrentCUDATarget())
12837          VD->setInvalidDecl();
12838      }();
12839    }
12840  }
12841
12842  // Perform check for initializers of device-side global variables.
12843  // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
12844  // 7.5). We must also apply the same checks to all __shared__
12845  // variables whether they are local or not. CUDA also allows
12846  // constant initializers for __constant__ and __device__ variables.
12847  if (getLangOpts().CUDA)
12848    checkAllowedCUDAInitializer(VD);
12849
12850  // Grab the dllimport or dllexport attribute off of the VarDecl.
12851  const InheritableAttr *DLLAttr = getDLLAttr(VD);
12852
12853  // Imported static data members cannot be defined out-of-line.
12854  if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
12855    if (VD->isStaticDataMember() && VD->isOutOfLine() &&
12856        VD->isThisDeclarationADefinition()) {
12857      // We allow definitions of dllimport class template static data members
12858      // with a warning.
12859      CXXRecordDecl *Context =
12860        cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
12861      bool IsClassTemplateMember =
12862          isa<ClassTemplatePartialSpecializationDecl>(Context) ||
12863          Context->getDescribedClassTemplate();
12864
12865      Diag(VD->getLocation(),
12866           IsClassTemplateMember
12867               ? diag::warn_attribute_dllimport_static_field_definition
12868               : diag::err_attribute_dllimport_static_field_definition);
12869      Diag(IA->getLocation(), diag::note_attribute);
12870      if (!IsClassTemplateMember)
12871        VD->setInvalidDecl();
12872    }
12873  }
12874
12875  // dllimport/dllexport variables cannot be thread local, their TLS index
12876  // isn't exported with the variable.
12877  if (DLLAttr && VD->getTLSKind()) {
12878    auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12879    if (F && getDLLAttr(F)) {
12880      assert(VD->isStaticLocal());
12881      // But if this is a static local in a dlimport/dllexport function, the
12882      // function will never be inlined, which means the var would never be
12883      // imported, so having it marked import/export is safe.
12884    } else {
12885      Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
12886                                                                    << DLLAttr;
12887      VD->setInvalidDecl();
12888    }
12889  }
12890
12891  if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
12892    if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
12893      Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
12894      VD->dropAttr<UsedAttr>();
12895    }
12896  }
12897
12898  const DeclContext *DC = VD->getDeclContext();
12899  // If there's a #pragma GCC visibility in scope, and this isn't a class
12900  // member, set the visibility of this variable.
12901  if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
12902    AddPushedVisibilityAttribute(VD);
12903
12904  // FIXME: Warn on unused var template partial specializations.
12905  if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
12906    MarkUnusedFileScopedDecl(VD);
12907
12908  // Now we have parsed the initializer and can update the table of magic
12909  // tag values.
12910  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
12911      !VD->getType()->isIntegralOrEnumerationType())
12912    return;
12913
12914  for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
12915    const Expr *MagicValueExpr = VD->getInit();
12916    if (!MagicValueExpr) {
12917      continue;
12918    }
12919    llvm::APSInt MagicValueInt;
12920    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
12921      Diag(I->getRange().getBegin(),
12922           diag::err_type_tag_for_datatype_not_ice)
12923        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12924      continue;
12925    }
12926    if (MagicValueInt.getActiveBits() > 64) {
12927      Diag(I->getRange().getBegin(),
12928           diag::err_type_tag_for_datatype_too_large)
12929        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12930      continue;
12931    }
12932    uint64_t MagicValue = MagicValueInt.getZExtValue();
12933    RegisterTypeTagForDatatype(I->getArgumentKind(),
12934                               MagicValue,
12935                               I->getMatchingCType(),
12936                               I->getLayoutCompatible(),
12937                               I->getMustBeNull());
12938  }
12939}
12940
12941static bool hasDeducedAuto(DeclaratorDecl *DD) {
12942  auto *VD = dyn_cast<VarDecl>(DD);
12943  return VD && !VD->getType()->hasAutoForTrailingReturnType();
12944}
12945
12946Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
12947                                                   ArrayRef<Decl *> Group) {
12948  SmallVector<Decl*, 8> Decls;
12949
12950  if (DS.isTypeSpecOwned())
12951    Decls.push_back(DS.getRepAsDecl());
12952
12953  DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
12954  DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
12955  bool DiagnosedMultipleDecomps = false;
12956  DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
12957  bool DiagnosedNonDeducedAuto = false;
12958
12959  for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12960    if (Decl *D = Group[i]) {
12961      // For declarators, there are some additional syntactic-ish checks we need
12962      // to perform.
12963      if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
12964        if (!FirstDeclaratorInGroup)
12965          FirstDeclaratorInGroup = DD;
12966        if (!FirstDecompDeclaratorInGroup)
12967          FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
12968        if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
12969            !hasDeducedAuto(DD))
12970          FirstNonDeducedAutoInGroup = DD;
12971
12972        if (FirstDeclaratorInGroup != DD) {
12973          // A decomposition declaration cannot be combined with any other
12974          // declaration in the same group.
12975          if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
12976            Diag(FirstDecompDeclaratorInGroup->getLocation(),
12977                 diag::err_decomp_decl_not_alone)
12978                << FirstDeclaratorInGroup->getSourceRange()
12979                << DD->getSourceRange();
12980            DiagnosedMultipleDecomps = true;
12981          }
12982
12983          // A declarator that uses 'auto' in any way other than to declare a
12984          // variable with a deduced type cannot be combined with any other
12985          // declarator in the same group.
12986          if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
12987            Diag(FirstNonDeducedAutoInGroup->getLocation(),
12988                 diag::err_auto_non_deduced_not_alone)
12989                << FirstNonDeducedAutoInGroup->getType()
12990                       ->hasAutoForTrailingReturnType()
12991                << FirstDeclaratorInGroup->getSourceRange()
12992                << DD->getSourceRange();
12993            DiagnosedNonDeducedAuto = true;
12994          }
12995        }
12996      }
12997
12998      Decls.push_back(D);
12999    }
13000  }
13001
13002  if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
13003    if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
13004      handleTagNumbering(Tag, S);
13005      if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
13006          getLangOpts().CPlusPlus)
13007        Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
13008    }
13009  }
13010
13011  return BuildDeclaratorGroup(Decls);
13012}
13013
13014/// BuildDeclaratorGroup - convert a list of declarations into a declaration
13015/// group, performing any necessary semantic checking.
13016Sema::DeclGroupPtrTy
13017Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
13018  // C++14 [dcl.spec.auto]p7: (DR1347)
13019  //   If the type that replaces the placeholder type is not the same in each
13020  //   deduction, the program is ill-formed.
13021  if (Group.size() > 1) {
13022    QualType Deduced;
13023    VarDecl *DeducedDecl = nullptr;
13024    for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13025      VarDecl *D = dyn_cast<VarDecl>(Group[i]);
13026      if (!D || D->isInvalidDecl())
13027        break;
13028      DeducedType *DT = D->getType()->getContainedDeducedType();
13029      if (!DT || DT->getDeducedType().isNull())
13030        continue;
13031      if (Deduced.isNull()) {
13032        Deduced = DT->getDeducedType();
13033        DeducedDecl = D;
13034      } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
13035        auto *AT = dyn_cast<AutoType>(DT);
13036        Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
13037             diag::err_auto_different_deductions)
13038          << (AT ? (unsigned)AT->getKeyword() : 3)
13039          << Deduced << DeducedDecl->getDeclName()
13040          << DT->getDeducedType() << D->getDeclName()
13041          << DeducedDecl->getInit()->getSourceRange()
13042          << D->getInit()->getSourceRange();
13043        D->setInvalidDecl();
13044        break;
13045      }
13046    }
13047  }
13048
13049  ActOnDocumentableDecls(Group);
13050
13051  return DeclGroupPtrTy::make(
13052      DeclGroupRef::Create(Context, Group.data(), Group.size()));
13053}
13054
13055void Sema::ActOnDocumentableDecl(Decl *D) {
13056  ActOnDocumentableDecls(D);
13057}
13058
13059void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
13060  // Don't parse the comment if Doxygen diagnostics are ignored.
13061  if (Group.empty() || !Group[0])
13062    return;
13063
13064  if (Diags.isIgnored(diag::warn_doc_param_not_found,
13065                      Group[0]->getLocation()) &&
13066      Diags.isIgnored(diag::warn_unknown_comment_command_name,
13067                      Group[0]->getLocation()))
13068    return;
13069
13070  if (Group.size() >= 2) {
13071    // This is a decl group.  Normally it will contain only declarations
13072    // produced from declarator list.  But in case we have any definitions or
13073    // additional declaration references:
13074    //   'typedef struct S {} S;'
13075    //   'typedef struct S *S;'
13076    //   'struct S *pS;'
13077    // FinalizeDeclaratorGroup adds these as separate declarations.
13078    Decl *MaybeTagDecl = Group[0];
13079    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
13080      Group = Group.slice(1);
13081    }
13082  }
13083
13084  // FIMXE: We assume every Decl in the group is in the same file.
13085  // This is false when preprocessor constructs the group from decls in
13086  // different files (e. g. macros or #include).
13087  Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
13088}
13089
13090/// Common checks for a parameter-declaration that should apply to both function
13091/// parameters and non-type template parameters.
13092void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
13093  // Check that there are no default arguments inside the type of this
13094  // parameter.
13095  if (getLangOpts().CPlusPlus)
13096    CheckExtraCXXDefaultArguments(D);
13097
13098  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
13099  if (D.getCXXScopeSpec().isSet()) {
13100    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
13101      << D.getCXXScopeSpec().getRange();
13102  }
13103
13104  // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
13105  // simple identifier except [...irrelevant cases...].
13106  switch (D.getName().getKind()) {
13107  case UnqualifiedIdKind::IK_Identifier:
13108    break;
13109
13110  case UnqualifiedIdKind::IK_OperatorFunctionId:
13111  case UnqualifiedIdKind::IK_ConversionFunctionId:
13112  case UnqualifiedIdKind::IK_LiteralOperatorId:
13113  case UnqualifiedIdKind::IK_ConstructorName:
13114  case UnqualifiedIdKind::IK_DestructorName:
13115  case UnqualifiedIdKind::IK_ImplicitSelfParam:
13116  case UnqualifiedIdKind::IK_DeductionGuideName:
13117    Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
13118      << GetNameForDeclarator(D).getName();
13119    break;
13120
13121  case UnqualifiedIdKind::IK_TemplateId:
13122  case UnqualifiedIdKind::IK_ConstructorTemplateId:
13123    // GetNameForDeclarator would not produce a useful name in this case.
13124    Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
13125    break;
13126  }
13127}
13128
13129/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
13130/// to introduce parameters into function prototype scope.
13131Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
13132  const DeclSpec &DS = D.getDeclSpec();
13133
13134  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
13135
13136  // C++03 [dcl.stc]p2 also permits 'auto'.
13137  StorageClass SC = SC_None;
13138  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
13139    SC = SC_Register;
13140    // In C++11, the 'register' storage class specifier is deprecated.
13141    // In C++17, it is not allowed, but we tolerate it as an extension.
13142    if (getLangOpts().CPlusPlus11) {
13143      Diag(DS.getStorageClassSpecLoc(),
13144           getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
13145                                     : diag::warn_deprecated_register)
13146        << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
13147    }
13148  } else if (getLangOpts().CPlusPlus &&
13149             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
13150    SC = SC_Auto;
13151  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
13152    Diag(DS.getStorageClassSpecLoc(),
13153         diag::err_invalid_storage_class_in_func_decl);
13154    D.getMutableDeclSpec().ClearStorageClassSpecs();
13155  }
13156
13157  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
13158    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
13159      << DeclSpec::getSpecifierName(TSCS);
13160  if (DS.isInlineSpecified())
13161    Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
13162        << getLangOpts().CPlusPlus17;
13163  if (DS.hasConstexprSpecifier())
13164    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
13165        << 0 << D.getDeclSpec().getConstexprSpecifier();
13166
13167  DiagnoseFunctionSpecifiers(DS);
13168
13169  CheckFunctionOrTemplateParamDeclarator(S, D);
13170
13171  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13172  QualType parmDeclType = TInfo->getType();
13173
13174  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
13175  IdentifierInfo *II = D.getIdentifier();
13176  if (II) {
13177    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
13178                   ForVisibleRedeclaration);
13179    LookupName(R, S);
13180    if (R.isSingleResult()) {
13181      NamedDecl *PrevDecl = R.getFoundDecl();
13182      if (PrevDecl->isTemplateParameter()) {
13183        // Maybe we will complain about the shadowed template parameter.
13184        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13185        // Just pretend that we didn't see the previous declaration.
13186        PrevDecl = nullptr;
13187      } else if (S->isDeclScope(PrevDecl)) {
13188        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
13189        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13190
13191        // Recover by removing the name
13192        II = nullptr;
13193        D.SetIdentifier(nullptr, D.getIdentifierLoc());
13194        D.setInvalidType(true);
13195      }
13196    }
13197  }
13198
13199  // Temporarily put parameter variables in the translation unit, not
13200  // the enclosing context.  This prevents them from accidentally
13201  // looking like class members in C++.
13202  ParmVarDecl *New =
13203      CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
13204                     D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
13205
13206  if (D.isInvalidType())
13207    New->setInvalidDecl();
13208
13209  assert(S->isFunctionPrototypeScope());
13210  assert(S->getFunctionPrototypeDepth() >= 1);
13211  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
13212                    S->getNextFunctionPrototypeIndex());
13213
13214  // Add the parameter declaration into this scope.
13215  S->AddDecl(New);
13216  if (II)
13217    IdResolver.AddDecl(New);
13218
13219  ProcessDeclAttributes(S, New, D);
13220
13221  if (D.getDeclSpec().isModulePrivateSpecified())
13222    Diag(New->getLocation(), diag::err_module_private_local)
13223      << 1 << New->getDeclName()
13224      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13225      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13226
13227  if (New->hasAttr<BlocksAttr>()) {
13228    Diag(New->getLocation(), diag::err_block_on_nonlocal);
13229  }
13230
13231  if (getLangOpts().OpenCL)
13232    deduceOpenCLAddressSpace(New);
13233
13234  return New;
13235}
13236
13237/// Synthesizes a variable for a parameter arising from a
13238/// typedef.
13239ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
13240                                              SourceLocation Loc,
13241                                              QualType T) {
13242  /* FIXME: setting StartLoc == Loc.
13243     Would it be worth to modify callers so as to provide proper source
13244     location for the unnamed parameters, embedding the parameter's type? */
13245  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
13246                                T, Context.getTrivialTypeSourceInfo(T, Loc),
13247                                           SC_None, nullptr);
13248  Param->setImplicit();
13249  return Param;
13250}
13251
13252void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
13253  // Don't diagnose unused-parameter errors in template instantiations; we
13254  // will already have done so in the template itself.
13255  if (inTemplateInstantiation())
13256    return;
13257
13258  for (const ParmVarDecl *Parameter : Parameters) {
13259    if (!Parameter->isReferenced() && Parameter->getDeclName() &&
13260        !Parameter->hasAttr<UnusedAttr>()) {
13261      Diag(Parameter->getLocation(), diag::warn_unused_parameter)
13262        << Parameter->getDeclName();
13263    }
13264  }
13265}
13266
13267void Sema::DiagnoseSizeOfParametersAndReturnValue(
13268    ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
13269  if (LangOpts.NumLargeByValueCopy == 0) // No check.
13270    return;
13271
13272  // Warn if the return value is pass-by-value and larger than the specified
13273  // threshold.
13274  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
13275    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
13276    if (Size > LangOpts.NumLargeByValueCopy)
13277      Diag(D->getLocation(), diag::warn_return_value_size)
13278          << D->getDeclName() << Size;
13279  }
13280
13281  // Warn if any parameter is pass-by-value and larger than the specified
13282  // threshold.
13283  for (const ParmVarDecl *Parameter : Parameters) {
13284    QualType T = Parameter->getType();
13285    if (T->isDependentType() || !T.isPODType(Context))
13286      continue;
13287    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
13288    if (Size > LangOpts.NumLargeByValueCopy)
13289      Diag(Parameter->getLocation(), diag::warn_parameter_size)
13290          << Parameter->getDeclName() << Size;
13291  }
13292}
13293
13294ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
13295                                  SourceLocation NameLoc, IdentifierInfo *Name,
13296                                  QualType T, TypeSourceInfo *TSInfo,
13297                                  StorageClass SC) {
13298  // In ARC, infer a lifetime qualifier for appropriate parameter types.
13299  if (getLangOpts().ObjCAutoRefCount &&
13300      T.getObjCLifetime() == Qualifiers::OCL_None &&
13301      T->isObjCLifetimeType()) {
13302
13303    Qualifiers::ObjCLifetime lifetime;
13304
13305    // Special cases for arrays:
13306    //   - if it's const, use __unsafe_unretained
13307    //   - otherwise, it's an error
13308    if (T->isArrayType()) {
13309      if (!T.isConstQualified()) {
13310        if (DelayedDiagnostics.shouldDelayDiagnostics())
13311          DelayedDiagnostics.add(
13312              sema::DelayedDiagnostic::makeForbiddenType(
13313              NameLoc, diag::err_arc_array_param_no_ownership, T, false));
13314        else
13315          Diag(NameLoc, diag::err_arc_array_param_no_ownership)
13316              << TSInfo->getTypeLoc().getSourceRange();
13317      }
13318      lifetime = Qualifiers::OCL_ExplicitNone;
13319    } else {
13320      lifetime = T->getObjCARCImplicitLifetime();
13321    }
13322    T = Context.getLifetimeQualifiedType(T, lifetime);
13323  }
13324
13325  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
13326                                         Context.getAdjustedParameterType(T),
13327                                         TSInfo, SC, nullptr);
13328
13329  // Make a note if we created a new pack in the scope of a lambda, so that
13330  // we know that references to that pack must also be expanded within the
13331  // lambda scope.
13332  if (New->isParameterPack())
13333    if (auto *LSI = getEnclosingLambda())
13334      LSI->LocalPacks.push_back(New);
13335
13336  if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
13337      New->getType().hasNonTrivialToPrimitiveCopyCUnion())
13338    checkNonTrivialCUnion(New->getType(), New->getLocation(),
13339                          NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
13340
13341  // Parameters can not be abstract class types.
13342  // For record types, this is done by the AbstractClassUsageDiagnoser once
13343  // the class has been completely parsed.
13344  if (!CurContext->isRecord() &&
13345      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
13346                             AbstractParamType))
13347    New->setInvalidDecl();
13348
13349  // Parameter declarators cannot be interface types. All ObjC objects are
13350  // passed by reference.
13351  if (T->isObjCObjectType()) {
13352    SourceLocation TypeEndLoc =
13353        getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
13354    Diag(NameLoc,
13355         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
13356      << FixItHint::CreateInsertion(TypeEndLoc, "*");
13357    T = Context.getObjCObjectPointerType(T);
13358    New->setType(T);
13359  }
13360
13361  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
13362  // duration shall not be qualified by an address-space qualifier."
13363  // Since all parameters have automatic store duration, they can not have
13364  // an address space.
13365  if (T.getAddressSpace() != LangAS::Default &&
13366      // OpenCL allows function arguments declared to be an array of a type
13367      // to be qualified with an address space.
13368      !(getLangOpts().OpenCL &&
13369        (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
13370    Diag(NameLoc, diag::err_arg_with_address_space);
13371    New->setInvalidDecl();
13372  }
13373
13374  return New;
13375}
13376
13377void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
13378                                           SourceLocation LocAfterDecls) {
13379  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
13380
13381  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
13382  // for a K&R function.
13383  if (!FTI.hasPrototype) {
13384    for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
13385      --i;
13386      if (FTI.Params[i].Param == nullptr) {
13387        SmallString<256> Code;
13388        llvm::raw_svector_ostream(Code)
13389            << "  int " << FTI.Params[i].Ident->getName() << ";\n";
13390        Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
13391            << FTI.Params[i].Ident
13392            << FixItHint::CreateInsertion(LocAfterDecls, Code);
13393
13394        // Implicitly declare the argument as type 'int' for lack of a better
13395        // type.
13396        AttributeFactory attrs;
13397        DeclSpec DS(attrs);
13398        const char* PrevSpec; // unused
13399        unsigned DiagID; // unused
13400        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
13401                           DiagID, Context.getPrintingPolicy());
13402        // Use the identifier location for the type source range.
13403        DS.SetRangeStart(FTI.Params[i].IdentLoc);
13404        DS.SetRangeEnd(FTI.Params[i].IdentLoc);
13405        Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
13406        ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
13407        FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
13408      }
13409    }
13410  }
13411}
13412
13413Decl *
13414Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
13415                              MultiTemplateParamsArg TemplateParameterLists,
13416                              SkipBodyInfo *SkipBody) {
13417  assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
13418  assert(D.isFunctionDeclarator() && "Not a function declarator!");
13419  Scope *ParentScope = FnBodyScope->getParent();
13420
13421  D.setFunctionDefinitionKind(FDK_Definition);
13422  Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
13423  return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
13424}
13425
13426void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
13427  Consumer.HandleInlineFunctionDefinition(D);
13428}
13429
13430static bool
13431ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
13432                                const FunctionDecl *&PossiblePrototype) {
13433  // Don't warn about invalid declarations.
13434  if (FD->isInvalidDecl())
13435    return false;
13436
13437  // Or declarations that aren't global.
13438  if (!FD->isGlobal())
13439    return false;
13440
13441  // Don't warn about C++ member functions.
13442  if (isa<CXXMethodDecl>(FD))
13443    return false;
13444
13445  // Don't warn about 'main'.
13446  if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
13447    if (IdentifierInfo *II = FD->getIdentifier())
13448      if (II->isStr("main"))
13449        return false;
13450
13451  // Don't warn about inline functions.
13452  if (FD->isInlined())
13453    return false;
13454
13455  // Don't warn about function templates.
13456  if (FD->getDescribedFunctionTemplate())
13457    return false;
13458
13459  // Don't warn about function template specializations.
13460  if (FD->isFunctionTemplateSpecialization())
13461    return false;
13462
13463  // Don't warn for OpenCL kernels.
13464  if (FD->hasAttr<OpenCLKernelAttr>())
13465    return false;
13466
13467  // Don't warn on explicitly deleted functions.
13468  if (FD->isDeleted())
13469    return false;
13470
13471  for (const FunctionDecl *Prev = FD->getPreviousDecl();
13472       Prev; Prev = Prev->getPreviousDecl()) {
13473    // Ignore any declarations that occur in function or method
13474    // scope, because they aren't visible from the header.
13475    if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
13476      continue;
13477
13478    PossiblePrototype = Prev;
13479    return Prev->getType()->isFunctionNoProtoType();
13480  }
13481
13482  return true;
13483}
13484
13485void
13486Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
13487                                   const FunctionDecl *EffectiveDefinition,
13488                                   SkipBodyInfo *SkipBody) {
13489  const FunctionDecl *Definition = EffectiveDefinition;
13490  if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
13491    // If this is a friend function defined in a class template, it does not
13492    // have a body until it is used, nevertheless it is a definition, see
13493    // [temp.inst]p2:
13494    //
13495    // ... for the purpose of determining whether an instantiated redeclaration
13496    // is valid according to [basic.def.odr] and [class.mem], a declaration that
13497    // corresponds to a definition in the template is considered to be a
13498    // definition.
13499    //
13500    // The following code must produce redefinition error:
13501    //
13502    //     template<typename T> struct C20 { friend void func_20() {} };
13503    //     C20<int> c20i;
13504    //     void func_20() {}
13505    //
13506    for (auto I : FD->redecls()) {
13507      if (I != FD && !I->isInvalidDecl() &&
13508          I->getFriendObjectKind() != Decl::FOK_None) {
13509        if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
13510          if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
13511            // A merged copy of the same function, instantiated as a member of
13512            // the same class, is OK.
13513            if (declaresSameEntity(OrigFD, Original) &&
13514                declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
13515                                   cast<Decl>(FD->getLexicalDeclContext())))
13516              continue;
13517          }
13518
13519          if (Original->isThisDeclarationADefinition()) {
13520            Definition = I;
13521            break;
13522          }
13523        }
13524      }
13525    }
13526  }
13527
13528  if (!Definition)
13529    // Similar to friend functions a friend function template may be a
13530    // definition and do not have a body if it is instantiated in a class
13531    // template.
13532    if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) {
13533      for (auto I : FTD->redecls()) {
13534        auto D = cast<FunctionTemplateDecl>(I);
13535        if (D != FTD) {
13536          assert(!D->isThisDeclarationADefinition() &&
13537                 "More than one definition in redeclaration chain");
13538          if (D->getFriendObjectKind() != Decl::FOK_None)
13539            if (FunctionTemplateDecl *FT =
13540                                       D->getInstantiatedFromMemberTemplate()) {
13541              if (FT->isThisDeclarationADefinition()) {
13542                Definition = D->getTemplatedDecl();
13543                break;
13544              }
13545            }
13546        }
13547      }
13548    }
13549
13550  if (!Definition)
13551    return;
13552
13553  if (canRedefineFunction(Definition, getLangOpts()))
13554    return;
13555
13556  // Don't emit an error when this is redefinition of a typo-corrected
13557  // definition.
13558  if (TypoCorrectedFunctionDefinitions.count(Definition))
13559    return;
13560
13561  // If we don't have a visible definition of the function, and it's inline or
13562  // a template, skip the new definition.
13563  if (SkipBody && !hasVisibleDefinition(Definition) &&
13564      (Definition->getFormalLinkage() == InternalLinkage ||
13565       Definition->isInlined() ||
13566       Definition->getDescribedFunctionTemplate() ||
13567       Definition->getNumTemplateParameterLists())) {
13568    SkipBody->ShouldSkip = true;
13569    SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
13570    if (auto *TD = Definition->getDescribedFunctionTemplate())
13571      makeMergedDefinitionVisible(TD);
13572    makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
13573    return;
13574  }
13575
13576  if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
13577      Definition->getStorageClass() == SC_Extern)
13578    Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
13579        << FD->getDeclName() << getLangOpts().CPlusPlus;
13580  else
13581    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
13582
13583  Diag(Definition->getLocation(), diag::note_previous_definition);
13584  FD->setInvalidDecl();
13585}
13586
13587static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
13588                                   Sema &S) {
13589  CXXRecordDecl *const LambdaClass = CallOperator->getParent();
13590
13591  LambdaScopeInfo *LSI = S.PushLambdaScope();
13592  LSI->CallOperator = CallOperator;
13593  LSI->Lambda = LambdaClass;
13594  LSI->ReturnType = CallOperator->getReturnType();
13595  const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
13596
13597  if (LCD == LCD_None)
13598    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
13599  else if (LCD == LCD_ByCopy)
13600    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
13601  else if (LCD == LCD_ByRef)
13602    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
13603  DeclarationNameInfo DNI = CallOperator->getNameInfo();
13604
13605  LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
13606  LSI->Mutable = !CallOperator->isConst();
13607
13608  // Add the captures to the LSI so they can be noted as already
13609  // captured within tryCaptureVar.
13610  auto I = LambdaClass->field_begin();
13611  for (const auto &C : LambdaClass->captures()) {
13612    if (C.capturesVariable()) {
13613      VarDecl *VD = C.getCapturedVar();
13614      if (VD->isInitCapture())
13615        S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
13616      QualType CaptureType = VD->getType();
13617      const bool ByRef = C.getCaptureKind() == LCK_ByRef;
13618      LSI->addCapture(VD, /*IsBlock*/false, ByRef,
13619          /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
13620          /*EllipsisLoc*/C.isPackExpansion()
13621                         ? C.getEllipsisLoc() : SourceLocation(),
13622          CaptureType, /*Invalid*/false);
13623
13624    } else if (C.capturesThis()) {
13625      LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
13626                          C.getCaptureKind() == LCK_StarThis);
13627    } else {
13628      LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
13629                             I->getType());
13630    }
13631    ++I;
13632  }
13633}
13634
13635Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
13636                                    SkipBodyInfo *SkipBody) {
13637  if (!D) {
13638    // Parsing the function declaration failed in some way. Push on a fake scope
13639    // anyway so we can try to parse the function body.
13640    PushFunctionScope();
13641    PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
13642    return D;
13643  }
13644
13645  FunctionDecl *FD = nullptr;
13646
13647  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
13648    FD = FunTmpl->getTemplatedDecl();
13649  else
13650    FD = cast<FunctionDecl>(D);
13651
13652  // Do not push if it is a lambda because one is already pushed when building
13653  // the lambda in ActOnStartOfLambdaDefinition().
13654  if (!isLambdaCallOperator(FD))
13655    PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
13656
13657  // Check for defining attributes before the check for redefinition.
13658  if (const auto *Attr = FD->getAttr<AliasAttr>()) {
13659    Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
13660    FD->dropAttr<AliasAttr>();
13661    FD->setInvalidDecl();
13662  }
13663  if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
13664    Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
13665    FD->dropAttr<IFuncAttr>();
13666    FD->setInvalidDecl();
13667  }
13668
13669  // See if this is a redefinition. If 'will have body' is already set, then
13670  // these checks were already performed when it was set.
13671  if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
13672    CheckForFunctionRedefinition(FD, nullptr, SkipBody);
13673
13674    // If we're skipping the body, we're done. Don't enter the scope.
13675    if (SkipBody && SkipBody->ShouldSkip)
13676      return D;
13677  }
13678
13679  // Mark this function as "will have a body eventually".  This lets users to
13680  // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
13681  // this function.
13682  FD->setWillHaveBody();
13683
13684  // If we are instantiating a generic lambda call operator, push
13685  // a LambdaScopeInfo onto the function stack.  But use the information
13686  // that's already been calculated (ActOnLambdaExpr) to prime the current
13687  // LambdaScopeInfo.
13688  // When the template operator is being specialized, the LambdaScopeInfo,
13689  // has to be properly restored so that tryCaptureVariable doesn't try
13690  // and capture any new variables. In addition when calculating potential
13691  // captures during transformation of nested lambdas, it is necessary to
13692  // have the LSI properly restored.
13693  if (isGenericLambdaCallOperatorSpecialization(FD)) {
13694    assert(inTemplateInstantiation() &&
13695           "There should be an active template instantiation on the stack "
13696           "when instantiating a generic lambda!");
13697    RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
13698  } else {
13699    // Enter a new function scope
13700    PushFunctionScope();
13701  }
13702
13703  // Builtin functions cannot be defined.
13704  if (unsigned BuiltinID = FD->getBuiltinID()) {
13705    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
13706        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
13707      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
13708      FD->setInvalidDecl();
13709    }
13710  }
13711
13712  // The return type of a function definition must be complete
13713  // (C99 6.9.1p3, C++ [dcl.fct]p6).
13714  QualType ResultType = FD->getReturnType();
13715  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
13716      !FD->isInvalidDecl() &&
13717      RequireCompleteType(FD->getLocation(), ResultType,
13718                          diag::err_func_def_incomplete_result))
13719    FD->setInvalidDecl();
13720
13721  if (FnBodyScope)
13722    PushDeclContext(FnBodyScope, FD);
13723
13724  // Check the validity of our function parameters
13725  CheckParmsForFunctionDef(FD->parameters(),
13726                           /*CheckParameterNames=*/true);
13727
13728  // Add non-parameter declarations already in the function to the current
13729  // scope.
13730  if (FnBodyScope) {
13731    for (Decl *NPD : FD->decls()) {
13732      auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
13733      if (!NonParmDecl)
13734        continue;
13735      assert(!isa<ParmVarDecl>(NonParmDecl) &&
13736             "parameters should not be in newly created FD yet");
13737
13738      // If the decl has a name, make it accessible in the current scope.
13739      if (NonParmDecl->getDeclName())
13740        PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
13741
13742      // Similarly, dive into enums and fish their constants out, making them
13743      // accessible in this scope.
13744      if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
13745        for (auto *EI : ED->enumerators())
13746          PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
13747      }
13748    }
13749  }
13750
13751  // Introduce our parameters into the function scope
13752  for (auto Param : FD->parameters()) {
13753    Param->setOwningFunction(FD);
13754
13755    // If this has an identifier, add it to the scope stack.
13756    if (Param->getIdentifier() && FnBodyScope) {
13757      CheckShadow(FnBodyScope, Param);
13758
13759      PushOnScopeChains(Param, FnBodyScope);
13760    }
13761  }
13762
13763  // Ensure that the function's exception specification is instantiated.
13764  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
13765    ResolveExceptionSpec(D->getLocation(), FPT);
13766
13767  // dllimport cannot be applied to non-inline function definitions.
13768  if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
13769      !FD->isTemplateInstantiation()) {
13770    assert(!FD->hasAttr<DLLExportAttr>());
13771    Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
13772    FD->setInvalidDecl();
13773    return D;
13774  }
13775  // We want to attach documentation to original Decl (which might be
13776  // a function template).
13777  ActOnDocumentableDecl(D);
13778  if (getCurLexicalContext()->isObjCContainer() &&
13779      getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
13780      getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
13781    Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
13782
13783  return D;
13784}
13785
13786/// Given the set of return statements within a function body,
13787/// compute the variables that are subject to the named return value
13788/// optimization.
13789///
13790/// Each of the variables that is subject to the named return value
13791/// optimization will be marked as NRVO variables in the AST, and any
13792/// return statement that has a marked NRVO variable as its NRVO candidate can
13793/// use the named return value optimization.
13794///
13795/// This function applies a very simplistic algorithm for NRVO: if every return
13796/// statement in the scope of a variable has the same NRVO candidate, that
13797/// candidate is an NRVO variable.
13798void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
13799  ReturnStmt **Returns = Scope->Returns.data();
13800
13801  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
13802    if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
13803      if (!NRVOCandidate->isNRVOVariable())
13804        Returns[I]->setNRVOCandidate(nullptr);
13805    }
13806  }
13807}
13808
13809bool Sema::canDelayFunctionBody(const Declarator &D) {
13810  // We can't delay parsing the body of a constexpr function template (yet).
13811  if (D.getDeclSpec().hasConstexprSpecifier())
13812    return false;
13813
13814  // We can't delay parsing the body of a function template with a deduced
13815  // return type (yet).
13816  if (D.getDeclSpec().hasAutoTypeSpec()) {
13817    // If the placeholder introduces a non-deduced trailing return type,
13818    // we can still delay parsing it.
13819    if (D.getNumTypeObjects()) {
13820      const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
13821      if (Outer.Kind == DeclaratorChunk::Function &&
13822          Outer.Fun.hasTrailingReturnType()) {
13823        QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
13824        return Ty.isNull() || !Ty->isUndeducedType();
13825      }
13826    }
13827    return false;
13828  }
13829
13830  return true;
13831}
13832
13833bool Sema::canSkipFunctionBody(Decl *D) {
13834  // We cannot skip the body of a function (or function template) which is
13835  // constexpr, since we may need to evaluate its body in order to parse the
13836  // rest of the file.
13837  // We cannot skip the body of a function with an undeduced return type,
13838  // because any callers of that function need to know the type.
13839  if (const FunctionDecl *FD = D->getAsFunction()) {
13840    if (FD->isConstexpr())
13841      return false;
13842    // We can't simply call Type::isUndeducedType here, because inside template
13843    // auto can be deduced to a dependent type, which is not considered
13844    // "undeduced".
13845    if (FD->getReturnType()->getContainedDeducedType())
13846      return false;
13847  }
13848  return Consumer.shouldSkipFunctionBody(D);
13849}
13850
13851Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
13852  if (!Decl)
13853    return nullptr;
13854  if (FunctionDecl *FD = Decl->getAsFunction())
13855    FD->setHasSkippedBody();
13856  else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
13857    MD->setHasSkippedBody();
13858  return Decl;
13859}
13860
13861Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
13862  return ActOnFinishFunctionBody(D, BodyArg, false);
13863}
13864
13865/// RAII object that pops an ExpressionEvaluationContext when exiting a function
13866/// body.
13867class ExitFunctionBodyRAII {
13868public:
13869  ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
13870  ~ExitFunctionBodyRAII() {
13871    if (!IsLambda)
13872      S.PopExpressionEvaluationContext();
13873  }
13874
13875private:
13876  Sema &S;
13877  bool IsLambda = false;
13878};
13879
13880static void diagnoseImplicitlyRetainedSelf(Sema &S) {
13881  llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
13882
13883  auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
13884    if (EscapeInfo.count(BD))
13885      return EscapeInfo[BD];
13886
13887    bool R = false;
13888    const BlockDecl *CurBD = BD;
13889
13890    do {
13891      R = !CurBD->doesNotEscape();
13892      if (R)
13893        break;
13894      CurBD = CurBD->getParent()->getInnermostBlockDecl();
13895    } while (CurBD);
13896
13897    return EscapeInfo[BD] = R;
13898  };
13899
13900  // If the location where 'self' is implicitly retained is inside a escaping
13901  // block, emit a diagnostic.
13902  for (const std::pair<SourceLocation, const BlockDecl *> &P :
13903       S.ImplicitlyRetainedSelfLocs)
13904    if (IsOrNestedInEscapingBlock(P.second))
13905      S.Diag(P.first, diag::warn_implicitly_retains_self)
13906          << FixItHint::CreateInsertion(P.first, "self->");
13907}
13908
13909Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
13910                                    bool IsInstantiation) {
13911  FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
13912
13913  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
13914  sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
13915
13916  if (getLangOpts().Coroutines && getCurFunction()->isCoroutine())
13917    CheckCompletedCoroutineBody(FD, Body);
13918
13919  // Do not call PopExpressionEvaluationContext() if it is a lambda because one
13920  // is already popped when finishing the lambda in BuildLambdaExpr(). This is
13921  // meant to pop the context added in ActOnStartOfFunctionDef().
13922  ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
13923
13924  if (FD) {
13925    FD->setBody(Body);
13926    FD->setWillHaveBody(false);
13927
13928    if (getLangOpts().CPlusPlus14) {
13929      if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
13930          FD->getReturnType()->isUndeducedType()) {
13931        // If the function has a deduced result type but contains no 'return'
13932        // statements, the result type as written must be exactly 'auto', and
13933        // the deduced result type is 'void'.
13934        if (!FD->getReturnType()->getAs<AutoType>()) {
13935          Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
13936              << FD->getReturnType();
13937          FD->setInvalidDecl();
13938        } else {
13939          // Substitute 'void' for the 'auto' in the type.
13940          TypeLoc ResultType = getReturnTypeLoc(FD);
13941          Context.adjustDeducedFunctionResultType(
13942              FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
13943        }
13944      }
13945    } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
13946      // In C++11, we don't use 'auto' deduction rules for lambda call
13947      // operators because we don't support return type deduction.
13948      auto *LSI = getCurLambda();
13949      if (LSI->HasImplicitReturnType) {
13950        deduceClosureReturnType(*LSI);
13951
13952        // C++11 [expr.prim.lambda]p4:
13953        //   [...] if there are no return statements in the compound-statement
13954        //   [the deduced type is] the type void
13955        QualType RetType =
13956            LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
13957
13958        // Update the return type to the deduced type.
13959        const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
13960        FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
13961                                            Proto->getExtProtoInfo()));
13962      }
13963    }
13964
13965    // If the function implicitly returns zero (like 'main') or is naked,
13966    // don't complain about missing return statements.
13967    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
13968      WP.disableCheckFallThrough();
13969
13970    // MSVC permits the use of pure specifier (=0) on function definition,
13971    // defined at class scope, warn about this non-standard construct.
13972    if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
13973      Diag(FD->getLocation(), diag::ext_pure_function_definition);
13974
13975    if (!FD->isInvalidDecl()) {
13976      // Don't diagnose unused parameters of defaulted or deleted functions.
13977      if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
13978        DiagnoseUnusedParameters(FD->parameters());
13979      DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
13980                                             FD->getReturnType(), FD);
13981
13982      // If this is a structor, we need a vtable.
13983      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
13984        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
13985      else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
13986        MarkVTableUsed(FD->getLocation(), Destructor->getParent());
13987
13988      // Try to apply the named return value optimization. We have to check
13989      // if we can do this here because lambdas keep return statements around
13990      // to deduce an implicit return type.
13991      if (FD->getReturnType()->isRecordType() &&
13992          (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
13993        computeNRVO(Body, getCurFunction());
13994    }
13995
13996    // GNU warning -Wmissing-prototypes:
13997    //   Warn if a global function is defined without a previous
13998    //   prototype declaration. This warning is issued even if the
13999    //   definition itself provides a prototype. The aim is to detect
14000    //   global functions that fail to be declared in header files.
14001    const FunctionDecl *PossiblePrototype = nullptr;
14002    if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
14003      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
14004
14005      if (PossiblePrototype) {
14006        // We found a declaration that is not a prototype,
14007        // but that could be a zero-parameter prototype
14008        if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
14009          TypeLoc TL = TI->getTypeLoc();
14010          if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
14011            Diag(PossiblePrototype->getLocation(),
14012                 diag::note_declaration_not_a_prototype)
14013                << (FD->getNumParams() != 0)
14014                << (FD->getNumParams() == 0
14015                        ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
14016                        : FixItHint{});
14017        }
14018      } else {
14019        Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14020            << /* function */ 1
14021            << (FD->getStorageClass() == SC_None
14022                    ? FixItHint::CreateInsertion(FD->getTypeSpecStartLoc(),
14023                                                 "static ")
14024                    : FixItHint{});
14025      }
14026
14027      // GNU warning -Wstrict-prototypes
14028      //   Warn if K&R function is defined without a previous declaration.
14029      //   This warning is issued only if the definition itself does not provide
14030      //   a prototype. Only K&R definitions do not provide a prototype.
14031      //   An empty list in a function declarator that is part of a definition
14032      //   of that function specifies that the function has no parameters
14033      //   (C99 6.7.5.3p14)
14034      if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
14035          !LangOpts.CPlusPlus) {
14036        TypeSourceInfo *TI = FD->getTypeSourceInfo();
14037        TypeLoc TL = TI->getTypeLoc();
14038        FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
14039        Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
14040      }
14041    }
14042
14043    // Warn on CPUDispatch with an actual body.
14044    if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
14045      if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
14046        if (!CmpndBody->body_empty())
14047          Diag(CmpndBody->body_front()->getBeginLoc(),
14048               diag::warn_dispatch_body_ignored);
14049
14050    if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
14051      const CXXMethodDecl *KeyFunction;
14052      if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
14053          MD->isVirtual() &&
14054          (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
14055          MD == KeyFunction->getCanonicalDecl()) {
14056        // Update the key-function state if necessary for this ABI.
14057        if (FD->isInlined() &&
14058            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
14059          Context.setNonKeyFunction(MD);
14060
14061          // If the newly-chosen key function is already defined, then we
14062          // need to mark the vtable as used retroactively.
14063          KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
14064          const FunctionDecl *Definition;
14065          if (KeyFunction && KeyFunction->isDefined(Definition))
14066            MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
14067        } else {
14068          // We just defined they key function; mark the vtable as used.
14069          MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
14070        }
14071      }
14072    }
14073
14074    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
14075           "Function parsing confused");
14076  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
14077    assert(MD == getCurMethodDecl() && "Method parsing confused");
14078    MD->setBody(Body);
14079    if (!MD->isInvalidDecl()) {
14080      DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
14081                                             MD->getReturnType(), MD);
14082
14083      if (Body)
14084        computeNRVO(Body, getCurFunction());
14085    }
14086    if (getCurFunction()->ObjCShouldCallSuper) {
14087      Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
14088          << MD->getSelector().getAsString();
14089      getCurFunction()->ObjCShouldCallSuper = false;
14090    }
14091    if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
14092      const ObjCMethodDecl *InitMethod = nullptr;
14093      bool isDesignated =
14094          MD->isDesignatedInitializerForTheInterface(&InitMethod);
14095      assert(isDesignated && InitMethod);
14096      (void)isDesignated;
14097
14098      auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
14099        auto IFace = MD->getClassInterface();
14100        if (!IFace)
14101          return false;
14102        auto SuperD = IFace->getSuperClass();
14103        if (!SuperD)
14104          return false;
14105        return SuperD->getIdentifier() ==
14106            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
14107      };
14108      // Don't issue this warning for unavailable inits or direct subclasses
14109      // of NSObject.
14110      if (!MD->isUnavailable() && !superIsNSObject(MD)) {
14111        Diag(MD->getLocation(),
14112             diag::warn_objc_designated_init_missing_super_call);
14113        Diag(InitMethod->getLocation(),
14114             diag::note_objc_designated_init_marked_here);
14115      }
14116      getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
14117    }
14118    if (getCurFunction()->ObjCWarnForNoInitDelegation) {
14119      // Don't issue this warning for unavaialable inits.
14120      if (!MD->isUnavailable())
14121        Diag(MD->getLocation(),
14122             diag::warn_objc_secondary_init_missing_init_call);
14123      getCurFunction()->ObjCWarnForNoInitDelegation = false;
14124    }
14125
14126    diagnoseImplicitlyRetainedSelf(*this);
14127  } else {
14128    // Parsing the function declaration failed in some way. Pop the fake scope
14129    // we pushed on.
14130    PopFunctionScopeInfo(ActivePolicy, dcl);
14131    return nullptr;
14132  }
14133
14134  if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
14135    DiagnoseUnguardedAvailabilityViolations(dcl);
14136
14137  assert(!getCurFunction()->ObjCShouldCallSuper &&
14138         "This should only be set for ObjC methods, which should have been "
14139         "handled in the block above.");
14140
14141  // Verify and clean out per-function state.
14142  if (Body && (!FD || !FD->isDefaulted())) {
14143    // C++ constructors that have function-try-blocks can't have return
14144    // statements in the handlers of that block. (C++ [except.handle]p14)
14145    // Verify this.
14146    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
14147      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
14148
14149    // Verify that gotos and switch cases don't jump into scopes illegally.
14150    if (getCurFunction()->NeedsScopeChecking() &&
14151        !PP.isCodeCompletionEnabled())
14152      DiagnoseInvalidJumps(Body);
14153
14154    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
14155      if (!Destructor->getParent()->isDependentType())
14156        CheckDestructor(Destructor);
14157
14158      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
14159                                             Destructor->getParent());
14160    }
14161
14162    // If any errors have occurred, clear out any temporaries that may have
14163    // been leftover. This ensures that these temporaries won't be picked up for
14164    // deletion in some later function.
14165    if (getDiagnostics().hasErrorOccurred() ||
14166        getDiagnostics().getSuppressAllDiagnostics()) {
14167      DiscardCleanupsInEvaluationContext();
14168    }
14169    if (!getDiagnostics().hasUncompilableErrorOccurred() &&
14170        !isa<FunctionTemplateDecl>(dcl)) {
14171      // Since the body is valid, issue any analysis-based warnings that are
14172      // enabled.
14173      ActivePolicy = &WP;
14174    }
14175
14176    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
14177        !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
14178      FD->setInvalidDecl();
14179
14180    if (FD && FD->hasAttr<NakedAttr>()) {
14181      for (const Stmt *S : Body->children()) {
14182        // Allow local register variables without initializer as they don't
14183        // require prologue.
14184        bool RegisterVariables = false;
14185        if (auto *DS = dyn_cast<DeclStmt>(S)) {
14186          for (const auto *Decl : DS->decls()) {
14187            if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
14188              RegisterVariables =
14189                  Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
14190              if (!RegisterVariables)
14191                break;
14192            }
14193          }
14194        }
14195        if (RegisterVariables)
14196          continue;
14197        if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
14198          Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
14199          Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
14200          FD->setInvalidDecl();
14201          break;
14202        }
14203      }
14204    }
14205
14206    assert(ExprCleanupObjects.size() ==
14207               ExprEvalContexts.back().NumCleanupObjects &&
14208           "Leftover temporaries in function");
14209    assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
14210    assert(MaybeODRUseExprs.empty() &&
14211           "Leftover expressions for odr-use checking");
14212  }
14213
14214  if (!IsInstantiation)
14215    PopDeclContext();
14216
14217  PopFunctionScopeInfo(ActivePolicy, dcl);
14218  // If any errors have occurred, clear out any temporaries that may have
14219  // been leftover. This ensures that these temporaries won't be picked up for
14220  // deletion in some later function.
14221  if (getDiagnostics().hasErrorOccurred()) {
14222    DiscardCleanupsInEvaluationContext();
14223  }
14224
14225  return dcl;
14226}
14227
14228/// When we finish delayed parsing of an attribute, we must attach it to the
14229/// relevant Decl.
14230void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
14231                                       ParsedAttributes &Attrs) {
14232  // Always attach attributes to the underlying decl.
14233  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
14234    D = TD->getTemplatedDecl();
14235  ProcessDeclAttributeList(S, D, Attrs);
14236
14237  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
14238    if (Method->isStatic())
14239      checkThisInStaticMemberFunctionAttributes(Method);
14240}
14241
14242/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
14243/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
14244NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
14245                                          IdentifierInfo &II, Scope *S) {
14246  // Find the scope in which the identifier is injected and the corresponding
14247  // DeclContext.
14248  // FIXME: C89 does not say what happens if there is no enclosing block scope.
14249  // In that case, we inject the declaration into the translation unit scope
14250  // instead.
14251  Scope *BlockScope = S;
14252  while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
14253    BlockScope = BlockScope->getParent();
14254
14255  Scope *ContextScope = BlockScope;
14256  while (!ContextScope->getEntity())
14257    ContextScope = ContextScope->getParent();
14258  ContextRAII SavedContext(*this, ContextScope->getEntity());
14259
14260  // Before we produce a declaration for an implicitly defined
14261  // function, see whether there was a locally-scoped declaration of
14262  // this name as a function or variable. If so, use that
14263  // (non-visible) declaration, and complain about it.
14264  NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
14265  if (ExternCPrev) {
14266    // We still need to inject the function into the enclosing block scope so
14267    // that later (non-call) uses can see it.
14268    PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
14269
14270    // C89 footnote 38:
14271    //   If in fact it is not defined as having type "function returning int",
14272    //   the behavior is undefined.
14273    if (!isa<FunctionDecl>(ExternCPrev) ||
14274        !Context.typesAreCompatible(
14275            cast<FunctionDecl>(ExternCPrev)->getType(),
14276            Context.getFunctionNoProtoType(Context.IntTy))) {
14277      Diag(Loc, diag::ext_use_out_of_scope_declaration)
14278          << ExternCPrev << !getLangOpts().C99;
14279      Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
14280      return ExternCPrev;
14281    }
14282  }
14283
14284  // Extension in C99.  Legal in C90, but warn about it.
14285  unsigned diag_id;
14286  if (II.getName().startswith("__builtin_"))
14287    diag_id = diag::warn_builtin_unknown;
14288  // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
14289  else if (getLangOpts().OpenCL)
14290    diag_id = diag::err_opencl_implicit_function_decl;
14291  else if (getLangOpts().C99)
14292    diag_id = diag::ext_implicit_function_decl;
14293  else
14294    diag_id = diag::warn_implicit_function_decl;
14295  Diag(Loc, diag_id) << &II;
14296
14297  // If we found a prior declaration of this function, don't bother building
14298  // another one. We've already pushed that one into scope, so there's nothing
14299  // more to do.
14300  if (ExternCPrev)
14301    return ExternCPrev;
14302
14303  // Because typo correction is expensive, only do it if the implicit
14304  // function declaration is going to be treated as an error.
14305  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
14306    TypoCorrection Corrected;
14307    DeclFilterCCC<FunctionDecl> CCC{};
14308    if (S && (Corrected =
14309                  CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
14310                              S, nullptr, CCC, CTK_NonError)))
14311      diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
14312                   /*ErrorRecovery*/false);
14313  }
14314
14315  // Set a Declarator for the implicit definition: int foo();
14316  const char *Dummy;
14317  AttributeFactory attrFactory;
14318  DeclSpec DS(attrFactory);
14319  unsigned DiagID;
14320  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
14321                                  Context.getPrintingPolicy());
14322  (void)Error; // Silence warning.
14323  assert(!Error && "Error setting up implicit decl!");
14324  SourceLocation NoLoc;
14325  Declarator D(DS, DeclaratorContext::BlockContext);
14326  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
14327                                             /*IsAmbiguous=*/false,
14328                                             /*LParenLoc=*/NoLoc,
14329                                             /*Params=*/nullptr,
14330                                             /*NumParams=*/0,
14331                                             /*EllipsisLoc=*/NoLoc,
14332                                             /*RParenLoc=*/NoLoc,
14333                                             /*RefQualifierIsLvalueRef=*/true,
14334                                             /*RefQualifierLoc=*/NoLoc,
14335                                             /*MutableLoc=*/NoLoc, EST_None,
14336                                             /*ESpecRange=*/SourceRange(),
14337                                             /*Exceptions=*/nullptr,
14338                                             /*ExceptionRanges=*/nullptr,
14339                                             /*NumExceptions=*/0,
14340                                             /*NoexceptExpr=*/nullptr,
14341                                             /*ExceptionSpecTokens=*/nullptr,
14342                                             /*DeclsInPrototype=*/None, Loc,
14343                                             Loc, D),
14344                std::move(DS.getAttributes()), SourceLocation());
14345  D.SetIdentifier(&II, Loc);
14346
14347  // Insert this function into the enclosing block scope.
14348  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
14349  FD->setImplicit();
14350
14351  AddKnownFunctionAttributes(FD);
14352
14353  return FD;
14354}
14355
14356/// Adds any function attributes that we know a priori based on
14357/// the declaration of this function.
14358///
14359/// These attributes can apply both to implicitly-declared builtins
14360/// (like __builtin___printf_chk) or to library-declared functions
14361/// like NSLog or printf.
14362///
14363/// We need to check for duplicate attributes both here and where user-written
14364/// attributes are applied to declarations.
14365void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
14366  if (FD->isInvalidDecl())
14367    return;
14368
14369  // If this is a built-in function, map its builtin attributes to
14370  // actual attributes.
14371  if (unsigned BuiltinID = FD->getBuiltinID()) {
14372    // Handle printf-formatting attributes.
14373    unsigned FormatIdx;
14374    bool HasVAListArg;
14375    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
14376      if (!FD->hasAttr<FormatAttr>()) {
14377        const char *fmt = "printf";
14378        unsigned int NumParams = FD->getNumParams();
14379        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
14380            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
14381          fmt = "NSString";
14382        FD->addAttr(FormatAttr::CreateImplicit(Context,
14383                                               &Context.Idents.get(fmt),
14384                                               FormatIdx+1,
14385                                               HasVAListArg ? 0 : FormatIdx+2,
14386                                               FD->getLocation()));
14387      }
14388    }
14389    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
14390                                             HasVAListArg)) {
14391     if (!FD->hasAttr<FormatAttr>())
14392       FD->addAttr(FormatAttr::CreateImplicit(Context,
14393                                              &Context.Idents.get("scanf"),
14394                                              FormatIdx+1,
14395                                              HasVAListArg ? 0 : FormatIdx+2,
14396                                              FD->getLocation()));
14397    }
14398
14399    // Handle automatically recognized callbacks.
14400    SmallVector<int, 4> Encoding;
14401    if (!FD->hasAttr<CallbackAttr>() &&
14402        Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
14403      FD->addAttr(CallbackAttr::CreateImplicit(
14404          Context, Encoding.data(), Encoding.size(), FD->getLocation()));
14405
14406    // Mark const if we don't care about errno and that is the only thing
14407    // preventing the function from being const. This allows IRgen to use LLVM
14408    // intrinsics for such functions.
14409    if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
14410        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
14411      FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14412
14413    // We make "fma" on some platforms const because we know it does not set
14414    // errno in those environments even though it could set errno based on the
14415    // C standard.
14416    const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
14417    if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
14418        !FD->hasAttr<ConstAttr>()) {
14419      switch (BuiltinID) {
14420      case Builtin::BI__builtin_fma:
14421      case Builtin::BI__builtin_fmaf:
14422      case Builtin::BI__builtin_fmal:
14423      case Builtin::BIfma:
14424      case Builtin::BIfmaf:
14425      case Builtin::BIfmal:
14426        FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14427        break;
14428      default:
14429        break;
14430      }
14431    }
14432
14433    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
14434        !FD->hasAttr<ReturnsTwiceAttr>())
14435      FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
14436                                         FD->getLocation()));
14437    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
14438      FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14439    if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
14440      FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
14441    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
14442      FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14443    if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
14444        !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
14445      // Add the appropriate attribute, depending on the CUDA compilation mode
14446      // and which target the builtin belongs to. For example, during host
14447      // compilation, aux builtins are __device__, while the rest are __host__.
14448      if (getLangOpts().CUDAIsDevice !=
14449          Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
14450        FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
14451      else
14452        FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
14453    }
14454  }
14455
14456  // If C++ exceptions are enabled but we are told extern "C" functions cannot
14457  // throw, add an implicit nothrow attribute to any extern "C" function we come
14458  // across.
14459  if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
14460      FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
14461    const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
14462    if (!FPT || FPT->getExceptionSpecType() == EST_None)
14463      FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14464  }
14465
14466  IdentifierInfo *Name = FD->getIdentifier();
14467  if (!Name)
14468    return;
14469  if ((!getLangOpts().CPlusPlus &&
14470       FD->getDeclContext()->isTranslationUnit()) ||
14471      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
14472       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
14473       LinkageSpecDecl::lang_c)) {
14474    // Okay: this could be a libc/libm/Objective-C function we know
14475    // about.
14476  } else
14477    return;
14478
14479  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
14480    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
14481    // target-specific builtins, perhaps?
14482    if (!FD->hasAttr<FormatAttr>())
14483      FD->addAttr(FormatAttr::CreateImplicit(Context,
14484                                             &Context.Idents.get("printf"), 2,
14485                                             Name->isStr("vasprintf") ? 0 : 3,
14486                                             FD->getLocation()));
14487  }
14488
14489  if (Name->isStr("__CFStringMakeConstantString")) {
14490    // We already have a __builtin___CFStringMakeConstantString,
14491    // but builds that use -fno-constant-cfstrings don't go through that.
14492    if (!FD->hasAttr<FormatArgAttr>())
14493      FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
14494                                                FD->getLocation()));
14495  }
14496}
14497
14498TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
14499                                    TypeSourceInfo *TInfo) {
14500  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
14501  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
14502
14503  if (!TInfo) {
14504    assert(D.isInvalidType() && "no declarator info for valid type");
14505    TInfo = Context.getTrivialTypeSourceInfo(T);
14506  }
14507
14508  // Scope manipulation handled by caller.
14509  TypedefDecl *NewTD =
14510      TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
14511                          D.getIdentifierLoc(), D.getIdentifier(), TInfo);
14512
14513  // Bail out immediately if we have an invalid declaration.
14514  if (D.isInvalidType()) {
14515    NewTD->setInvalidDecl();
14516    return NewTD;
14517  }
14518
14519  if (D.getDeclSpec().isModulePrivateSpecified()) {
14520    if (CurContext->isFunctionOrMethod())
14521      Diag(NewTD->getLocation(), diag::err_module_private_local)
14522        << 2 << NewTD->getDeclName()
14523        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
14524        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
14525    else
14526      NewTD->setModulePrivate();
14527  }
14528
14529  // C++ [dcl.typedef]p8:
14530  //   If the typedef declaration defines an unnamed class (or
14531  //   enum), the first typedef-name declared by the declaration
14532  //   to be that class type (or enum type) is used to denote the
14533  //   class type (or enum type) for linkage purposes only.
14534  // We need to check whether the type was declared in the declaration.
14535  switch (D.getDeclSpec().getTypeSpecType()) {
14536  case TST_enum:
14537  case TST_struct:
14538  case TST_interface:
14539  case TST_union:
14540  case TST_class: {
14541    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
14542    setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
14543    break;
14544  }
14545
14546  default:
14547    break;
14548  }
14549
14550  return NewTD;
14551}
14552
14553/// Check that this is a valid underlying type for an enum declaration.
14554bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
14555  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
14556  QualType T = TI->getType();
14557
14558  if (T->isDependentType())
14559    return false;
14560
14561  if (const BuiltinType *BT = T->getAs<BuiltinType>())
14562    if (BT->isInteger())
14563      return false;
14564
14565  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
14566  return true;
14567}
14568
14569/// Check whether this is a valid redeclaration of a previous enumeration.
14570/// \return true if the redeclaration was invalid.
14571bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
14572                                  QualType EnumUnderlyingTy, bool IsFixed,
14573                                  const EnumDecl *Prev) {
14574  if (IsScoped != Prev->isScoped()) {
14575    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
14576      << Prev->isScoped();
14577    Diag(Prev->getLocation(), diag::note_previous_declaration);
14578    return true;
14579  }
14580
14581  if (IsFixed && Prev->isFixed()) {
14582    if (!EnumUnderlyingTy->isDependentType() &&
14583        !Prev->getIntegerType()->isDependentType() &&
14584        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
14585                                        Prev->getIntegerType())) {
14586      // TODO: Highlight the underlying type of the redeclaration.
14587      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
14588        << EnumUnderlyingTy << Prev->getIntegerType();
14589      Diag(Prev->getLocation(), diag::note_previous_declaration)
14590          << Prev->getIntegerTypeRange();
14591      return true;
14592    }
14593  } else if (IsFixed != Prev->isFixed()) {
14594    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
14595      << Prev->isFixed();
14596    Diag(Prev->getLocation(), diag::note_previous_declaration);
14597    return true;
14598  }
14599
14600  return false;
14601}
14602
14603/// Get diagnostic %select index for tag kind for
14604/// redeclaration diagnostic message.
14605/// WARNING: Indexes apply to particular diagnostics only!
14606///
14607/// \returns diagnostic %select index.
14608static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
14609  switch (Tag) {
14610  case TTK_Struct: return 0;
14611  case TTK_Interface: return 1;
14612  case TTK_Class:  return 2;
14613  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
14614  }
14615}
14616
14617/// Determine if tag kind is a class-key compatible with
14618/// class for redeclaration (class, struct, or __interface).
14619///
14620/// \returns true iff the tag kind is compatible.
14621static bool isClassCompatTagKind(TagTypeKind Tag)
14622{
14623  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
14624}
14625
14626Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
14627                                             TagTypeKind TTK) {
14628  if (isa<TypedefDecl>(PrevDecl))
14629    return NTK_Typedef;
14630  else if (isa<TypeAliasDecl>(PrevDecl))
14631    return NTK_TypeAlias;
14632  else if (isa<ClassTemplateDecl>(PrevDecl))
14633    return NTK_Template;
14634  else if (isa<TypeAliasTemplateDecl>(PrevDecl))
14635    return NTK_TypeAliasTemplate;
14636  else if (isa<TemplateTemplateParmDecl>(PrevDecl))
14637    return NTK_TemplateTemplateArgument;
14638  switch (TTK) {
14639  case TTK_Struct:
14640  case TTK_Interface:
14641  case TTK_Class:
14642    return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
14643  case TTK_Union:
14644    return NTK_NonUnion;
14645  case TTK_Enum:
14646    return NTK_NonEnum;
14647  }
14648  llvm_unreachable("invalid TTK");
14649}
14650
14651/// Determine whether a tag with a given kind is acceptable
14652/// as a redeclaration of the given tag declaration.
14653///
14654/// \returns true if the new tag kind is acceptable, false otherwise.
14655bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
14656                                        TagTypeKind NewTag, bool isDefinition,
14657                                        SourceLocation NewTagLoc,
14658                                        const IdentifierInfo *Name) {
14659  // C++ [dcl.type.elab]p3:
14660  //   The class-key or enum keyword present in the
14661  //   elaborated-type-specifier shall agree in kind with the
14662  //   declaration to which the name in the elaborated-type-specifier
14663  //   refers. This rule also applies to the form of
14664  //   elaborated-type-specifier that declares a class-name or
14665  //   friend class since it can be construed as referring to the
14666  //   definition of the class. Thus, in any
14667  //   elaborated-type-specifier, the enum keyword shall be used to
14668  //   refer to an enumeration (7.2), the union class-key shall be
14669  //   used to refer to a union (clause 9), and either the class or
14670  //   struct class-key shall be used to refer to a class (clause 9)
14671  //   declared using the class or struct class-key.
14672  TagTypeKind OldTag = Previous->getTagKind();
14673  if (OldTag != NewTag &&
14674      !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
14675    return false;
14676
14677  // Tags are compatible, but we might still want to warn on mismatched tags.
14678  // Non-class tags can't be mismatched at this point.
14679  if (!isClassCompatTagKind(NewTag))
14680    return true;
14681
14682  // Declarations for which -Wmismatched-tags is disabled are entirely ignored
14683  // by our warning analysis. We don't want to warn about mismatches with (eg)
14684  // declarations in system headers that are designed to be specialized, but if
14685  // a user asks us to warn, we should warn if their code contains mismatched
14686  // declarations.
14687  auto IsIgnoredLoc = [&](SourceLocation Loc) {
14688    return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
14689                                      Loc);
14690  };
14691  if (IsIgnoredLoc(NewTagLoc))
14692    return true;
14693
14694  auto IsIgnored = [&](const TagDecl *Tag) {
14695    return IsIgnoredLoc(Tag->getLocation());
14696  };
14697  while (IsIgnored(Previous)) {
14698    Previous = Previous->getPreviousDecl();
14699    if (!Previous)
14700      return true;
14701    OldTag = Previous->getTagKind();
14702  }
14703
14704  bool isTemplate = false;
14705  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
14706    isTemplate = Record->getDescribedClassTemplate();
14707
14708  if (inTemplateInstantiation()) {
14709    if (OldTag != NewTag) {
14710      // In a template instantiation, do not offer fix-its for tag mismatches
14711      // since they usually mess up the template instead of fixing the problem.
14712      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
14713        << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14714        << getRedeclDiagFromTagKind(OldTag);
14715      // FIXME: Note previous location?
14716    }
14717    return true;
14718  }
14719
14720  if (isDefinition) {
14721    // On definitions, check all previous tags and issue a fix-it for each
14722    // one that doesn't match the current tag.
14723    if (Previous->getDefinition()) {
14724      // Don't suggest fix-its for redefinitions.
14725      return true;
14726    }
14727
14728    bool previousMismatch = false;
14729    for (const TagDecl *I : Previous->redecls()) {
14730      if (I->getTagKind() != NewTag) {
14731        // Ignore previous declarations for which the warning was disabled.
14732        if (IsIgnored(I))
14733          continue;
14734
14735        if (!previousMismatch) {
14736          previousMismatch = true;
14737          Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
14738            << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14739            << getRedeclDiagFromTagKind(I->getTagKind());
14740        }
14741        Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
14742          << getRedeclDiagFromTagKind(NewTag)
14743          << FixItHint::CreateReplacement(I->getInnerLocStart(),
14744               TypeWithKeyword::getTagTypeKindName(NewTag));
14745      }
14746    }
14747    return true;
14748  }
14749
14750  // Identify the prevailing tag kind: this is the kind of the definition (if
14751  // there is a non-ignored definition), or otherwise the kind of the prior
14752  // (non-ignored) declaration.
14753  const TagDecl *PrevDef = Previous->getDefinition();
14754  if (PrevDef && IsIgnored(PrevDef))
14755    PrevDef = nullptr;
14756  const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
14757  if (Redecl->getTagKind() != NewTag) {
14758    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
14759      << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14760      << getRedeclDiagFromTagKind(OldTag);
14761    Diag(Redecl->getLocation(), diag::note_previous_use);
14762
14763    // If there is a previous definition, suggest a fix-it.
14764    if (PrevDef) {
14765      Diag(NewTagLoc, diag::note_struct_class_suggestion)
14766        << getRedeclDiagFromTagKind(Redecl->getTagKind())
14767        << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
14768             TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
14769    }
14770  }
14771
14772  return true;
14773}
14774
14775/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
14776/// from an outer enclosing namespace or file scope inside a friend declaration.
14777/// This should provide the commented out code in the following snippet:
14778///   namespace N {
14779///     struct X;
14780///     namespace M {
14781///       struct Y { friend struct /*N::*/ X; };
14782///     }
14783///   }
14784static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
14785                                         SourceLocation NameLoc) {
14786  // While the decl is in a namespace, do repeated lookup of that name and see
14787  // if we get the same namespace back.  If we do not, continue until
14788  // translation unit scope, at which point we have a fully qualified NNS.
14789  SmallVector<IdentifierInfo *, 4> Namespaces;
14790  DeclContext *DC = ND->getDeclContext()->getRedeclContext();
14791  for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
14792    // This tag should be declared in a namespace, which can only be enclosed by
14793    // other namespaces.  Bail if there's an anonymous namespace in the chain.
14794    NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
14795    if (!Namespace || Namespace->isAnonymousNamespace())
14796      return FixItHint();
14797    IdentifierInfo *II = Namespace->getIdentifier();
14798    Namespaces.push_back(II);
14799    NamedDecl *Lookup = SemaRef.LookupSingleName(
14800        S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
14801    if (Lookup == Namespace)
14802      break;
14803  }
14804
14805  // Once we have all the namespaces, reverse them to go outermost first, and
14806  // build an NNS.
14807  SmallString<64> Insertion;
14808  llvm::raw_svector_ostream OS(Insertion);
14809  if (DC->isTranslationUnit())
14810    OS << "::";
14811  std::reverse(Namespaces.begin(), Namespaces.end());
14812  for (auto *II : Namespaces)
14813    OS << II->getName() << "::";
14814  return FixItHint::CreateInsertion(NameLoc, Insertion);
14815}
14816
14817/// Determine whether a tag originally declared in context \p OldDC can
14818/// be redeclared with an unqualified name in \p NewDC (assuming name lookup
14819/// found a declaration in \p OldDC as a previous decl, perhaps through a
14820/// using-declaration).
14821static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
14822                                         DeclContext *NewDC) {
14823  OldDC = OldDC->getRedeclContext();
14824  NewDC = NewDC->getRedeclContext();
14825
14826  if (OldDC->Equals(NewDC))
14827    return true;
14828
14829  // In MSVC mode, we allow a redeclaration if the contexts are related (either
14830  // encloses the other).
14831  if (S.getLangOpts().MSVCCompat &&
14832      (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
14833    return true;
14834
14835  return false;
14836}
14837
14838/// This is invoked when we see 'struct foo' or 'struct {'.  In the
14839/// former case, Name will be non-null.  In the later case, Name will be null.
14840/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
14841/// reference/declaration/definition of a tag.
14842///
14843/// \param IsTypeSpecifier \c true if this is a type-specifier (or
14844/// trailing-type-specifier) other than one in an alias-declaration.
14845///
14846/// \param SkipBody If non-null, will be set to indicate if the caller should
14847/// skip the definition of this tag and treat it as if it were a declaration.
14848Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
14849                     SourceLocation KWLoc, CXXScopeSpec &SS,
14850                     IdentifierInfo *Name, SourceLocation NameLoc,
14851                     const ParsedAttributesView &Attrs, AccessSpecifier AS,
14852                     SourceLocation ModulePrivateLoc,
14853                     MultiTemplateParamsArg TemplateParameterLists,
14854                     bool &OwnedDecl, bool &IsDependent,
14855                     SourceLocation ScopedEnumKWLoc,
14856                     bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
14857                     bool IsTypeSpecifier, bool IsTemplateParamOrArg,
14858                     SkipBodyInfo *SkipBody) {
14859  // If this is not a definition, it must have a name.
14860  IdentifierInfo *OrigName = Name;
14861  assert((Name != nullptr || TUK == TUK_Definition) &&
14862         "Nameless record must be a definition!");
14863  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
14864
14865  OwnedDecl = false;
14866  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
14867  bool ScopedEnum = ScopedEnumKWLoc.isValid();
14868
14869  // FIXME: Check member specializations more carefully.
14870  bool isMemberSpecialization = false;
14871  bool Invalid = false;
14872
14873  // We only need to do this matching if we have template parameters
14874  // or a scope specifier, which also conveniently avoids this work
14875  // for non-C++ cases.
14876  if (TemplateParameterLists.size() > 0 ||
14877      (SS.isNotEmpty() && TUK != TUK_Reference)) {
14878    if (TemplateParameterList *TemplateParams =
14879            MatchTemplateParametersToScopeSpecifier(
14880                KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
14881                TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
14882      if (Kind == TTK_Enum) {
14883        Diag(KWLoc, diag::err_enum_template);
14884        return nullptr;
14885      }
14886
14887      if (TemplateParams->size() > 0) {
14888        // This is a declaration or definition of a class template (which may
14889        // be a member of another template).
14890
14891        if (Invalid)
14892          return nullptr;
14893
14894        OwnedDecl = false;
14895        DeclResult Result = CheckClassTemplate(
14896            S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
14897            AS, ModulePrivateLoc,
14898            /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
14899            TemplateParameterLists.data(), SkipBody);
14900        return Result.get();
14901      } else {
14902        // The "template<>" header is extraneous.
14903        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
14904          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
14905        isMemberSpecialization = true;
14906      }
14907    }
14908  }
14909
14910  // Figure out the underlying type if this a enum declaration. We need to do
14911  // this early, because it's needed to detect if this is an incompatible
14912  // redeclaration.
14913  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
14914  bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
14915
14916  if (Kind == TTK_Enum) {
14917    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
14918      // No underlying type explicitly specified, or we failed to parse the
14919      // type, default to int.
14920      EnumUnderlying = Context.IntTy.getTypePtr();
14921    } else if (UnderlyingType.get()) {
14922      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
14923      // integral type; any cv-qualification is ignored.
14924      TypeSourceInfo *TI = nullptr;
14925      GetTypeFromParser(UnderlyingType.get(), &TI);
14926      EnumUnderlying = TI;
14927
14928      if (CheckEnumUnderlyingType(TI))
14929        // Recover by falling back to int.
14930        EnumUnderlying = Context.IntTy.getTypePtr();
14931
14932      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
14933                                          UPPC_FixedUnderlyingType))
14934        EnumUnderlying = Context.IntTy.getTypePtr();
14935
14936    } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
14937      // For MSVC ABI compatibility, unfixed enums must use an underlying type
14938      // of 'int'. However, if this is an unfixed forward declaration, don't set
14939      // the underlying type unless the user enables -fms-compatibility. This
14940      // makes unfixed forward declared enums incomplete and is more conforming.
14941      if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
14942        EnumUnderlying = Context.IntTy.getTypePtr();
14943    }
14944  }
14945
14946  DeclContext *SearchDC = CurContext;
14947  DeclContext *DC = CurContext;
14948  bool isStdBadAlloc = false;
14949  bool isStdAlignValT = false;
14950
14951  RedeclarationKind Redecl = forRedeclarationInCurContext();
14952  if (TUK == TUK_Friend || TUK == TUK_Reference)
14953    Redecl = NotForRedeclaration;
14954
14955  /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
14956  /// implemented asks for structural equivalence checking, the returned decl
14957  /// here is passed back to the parser, allowing the tag body to be parsed.
14958  auto createTagFromNewDecl = [&]() -> TagDecl * {
14959    assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
14960    // If there is an identifier, use the location of the identifier as the
14961    // location of the decl, otherwise use the location of the struct/union
14962    // keyword.
14963    SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14964    TagDecl *New = nullptr;
14965
14966    if (Kind == TTK_Enum) {
14967      New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
14968                             ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
14969      // If this is an undefined enum, bail.
14970      if (TUK != TUK_Definition && !Invalid)
14971        return nullptr;
14972      if (EnumUnderlying) {
14973        EnumDecl *ED = cast<EnumDecl>(New);
14974        if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
14975          ED->setIntegerTypeSourceInfo(TI);
14976        else
14977          ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
14978        ED->setPromotionType(ED->getIntegerType());
14979      }
14980    } else { // struct/union
14981      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14982                               nullptr);
14983    }
14984
14985    if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14986      // Add alignment attributes if necessary; these attributes are checked
14987      // when the ASTContext lays out the structure.
14988      //
14989      // It is important for implementing the correct semantics that this
14990      // happen here (in ActOnTag). The #pragma pack stack is
14991      // maintained as a result of parser callbacks which can occur at
14992      // many points during the parsing of a struct declaration (because
14993      // the #pragma tokens are effectively skipped over during the
14994      // parsing of the struct).
14995      if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14996        AddAlignmentAttributesForRecord(RD);
14997        AddMsStructLayoutForRecord(RD);
14998      }
14999    }
15000    New->setLexicalDeclContext(CurContext);
15001    return New;
15002  };
15003
15004  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
15005  if (Name && SS.isNotEmpty()) {
15006    // We have a nested-name tag ('struct foo::bar').
15007
15008    // Check for invalid 'foo::'.
15009    if (SS.isInvalid()) {
15010      Name = nullptr;
15011      goto CreateNewDecl;
15012    }
15013
15014    // If this is a friend or a reference to a class in a dependent
15015    // context, don't try to make a decl for it.
15016    if (TUK == TUK_Friend || TUK == TUK_Reference) {
15017      DC = computeDeclContext(SS, false);
15018      if (!DC) {
15019        IsDependent = true;
15020        return nullptr;
15021      }
15022    } else {
15023      DC = computeDeclContext(SS, true);
15024      if (!DC) {
15025        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
15026          << SS.getRange();
15027        return nullptr;
15028      }
15029    }
15030
15031    if (RequireCompleteDeclContext(SS, DC))
15032      return nullptr;
15033
15034    SearchDC = DC;
15035    // Look-up name inside 'foo::'.
15036    LookupQualifiedName(Previous, DC);
15037
15038    if (Previous.isAmbiguous())
15039      return nullptr;
15040
15041    if (Previous.empty()) {
15042      // Name lookup did not find anything. However, if the
15043      // nested-name-specifier refers to the current instantiation,
15044      // and that current instantiation has any dependent base
15045      // classes, we might find something at instantiation time: treat
15046      // this as a dependent elaborated-type-specifier.
15047      // But this only makes any sense for reference-like lookups.
15048      if (Previous.wasNotFoundInCurrentInstantiation() &&
15049          (TUK == TUK_Reference || TUK == TUK_Friend)) {
15050        IsDependent = true;
15051        return nullptr;
15052      }
15053
15054      // A tag 'foo::bar' must already exist.
15055      Diag(NameLoc, diag::err_not_tag_in_scope)
15056        << Kind << Name << DC << SS.getRange();
15057      Name = nullptr;
15058      Invalid = true;
15059      goto CreateNewDecl;
15060    }
15061  } else if (Name) {
15062    // C++14 [class.mem]p14:
15063    //   If T is the name of a class, then each of the following shall have a
15064    //   name different from T:
15065    //    -- every member of class T that is itself a type
15066    if (TUK != TUK_Reference && TUK != TUK_Friend &&
15067        DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
15068      return nullptr;
15069
15070    // If this is a named struct, check to see if there was a previous forward
15071    // declaration or definition.
15072    // FIXME: We're looking into outer scopes here, even when we
15073    // shouldn't be. Doing so can result in ambiguities that we
15074    // shouldn't be diagnosing.
15075    LookupName(Previous, S);
15076
15077    // When declaring or defining a tag, ignore ambiguities introduced
15078    // by types using'ed into this scope.
15079    if (Previous.isAmbiguous() &&
15080        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
15081      LookupResult::Filter F = Previous.makeFilter();
15082      while (F.hasNext()) {
15083        NamedDecl *ND = F.next();
15084        if (!ND->getDeclContext()->getRedeclContext()->Equals(
15085                SearchDC->getRedeclContext()))
15086          F.erase();
15087      }
15088      F.done();
15089    }
15090
15091    // C++11 [namespace.memdef]p3:
15092    //   If the name in a friend declaration is neither qualified nor
15093    //   a template-id and the declaration is a function or an
15094    //   elaborated-type-specifier, the lookup to determine whether
15095    //   the entity has been previously declared shall not consider
15096    //   any scopes outside the innermost enclosing namespace.
15097    //
15098    // MSVC doesn't implement the above rule for types, so a friend tag
15099    // declaration may be a redeclaration of a type declared in an enclosing
15100    // scope.  They do implement this rule for friend functions.
15101    //
15102    // Does it matter that this should be by scope instead of by
15103    // semantic context?
15104    if (!Previous.empty() && TUK == TUK_Friend) {
15105      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
15106      LookupResult::Filter F = Previous.makeFilter();
15107      bool FriendSawTagOutsideEnclosingNamespace = false;
15108      while (F.hasNext()) {
15109        NamedDecl *ND = F.next();
15110        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15111        if (DC->isFileContext() &&
15112            !EnclosingNS->Encloses(ND->getDeclContext())) {
15113          if (getLangOpts().MSVCCompat)
15114            FriendSawTagOutsideEnclosingNamespace = true;
15115          else
15116            F.erase();
15117        }
15118      }
15119      F.done();
15120
15121      // Diagnose this MSVC extension in the easy case where lookup would have
15122      // unambiguously found something outside the enclosing namespace.
15123      if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
15124        NamedDecl *ND = Previous.getFoundDecl();
15125        Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
15126            << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
15127      }
15128    }
15129
15130    // Note:  there used to be some attempt at recovery here.
15131    if (Previous.isAmbiguous())
15132      return nullptr;
15133
15134    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
15135      // FIXME: This makes sure that we ignore the contexts associated
15136      // with C structs, unions, and enums when looking for a matching
15137      // tag declaration or definition. See the similar lookup tweak
15138      // in Sema::LookupName; is there a better way to deal with this?
15139      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
15140        SearchDC = SearchDC->getParent();
15141    }
15142  }
15143
15144  if (Previous.isSingleResult() &&
15145      Previous.getFoundDecl()->isTemplateParameter()) {
15146    // Maybe we will complain about the shadowed template parameter.
15147    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
15148    // Just pretend that we didn't see the previous declaration.
15149    Previous.clear();
15150  }
15151
15152  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
15153      DC->Equals(getStdNamespace())) {
15154    if (Name->isStr("bad_alloc")) {
15155      // This is a declaration of or a reference to "std::bad_alloc".
15156      isStdBadAlloc = true;
15157
15158      // If std::bad_alloc has been implicitly declared (but made invisible to
15159      // name lookup), fill in this implicit declaration as the previous
15160      // declaration, so that the declarations get chained appropriately.
15161      if (Previous.empty() && StdBadAlloc)
15162        Previous.addDecl(getStdBadAlloc());
15163    } else if (Name->isStr("align_val_t")) {
15164      isStdAlignValT = true;
15165      if (Previous.empty() && StdAlignValT)
15166        Previous.addDecl(getStdAlignValT());
15167    }
15168  }
15169
15170  // If we didn't find a previous declaration, and this is a reference
15171  // (or friend reference), move to the correct scope.  In C++, we
15172  // also need to do a redeclaration lookup there, just in case
15173  // there's a shadow friend decl.
15174  if (Name && Previous.empty() &&
15175      (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
15176    if (Invalid) goto CreateNewDecl;
15177    assert(SS.isEmpty());
15178
15179    if (TUK == TUK_Reference || IsTemplateParamOrArg) {
15180      // C++ [basic.scope.pdecl]p5:
15181      //   -- for an elaborated-type-specifier of the form
15182      //
15183      //          class-key identifier
15184      //
15185      //      if the elaborated-type-specifier is used in the
15186      //      decl-specifier-seq or parameter-declaration-clause of a
15187      //      function defined in namespace scope, the identifier is
15188      //      declared as a class-name in the namespace that contains
15189      //      the declaration; otherwise, except as a friend
15190      //      declaration, the identifier is declared in the smallest
15191      //      non-class, non-function-prototype scope that contains the
15192      //      declaration.
15193      //
15194      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
15195      // C structs and unions.
15196      //
15197      // It is an error in C++ to declare (rather than define) an enum
15198      // type, including via an elaborated type specifier.  We'll
15199      // diagnose that later; for now, declare the enum in the same
15200      // scope as we would have picked for any other tag type.
15201      //
15202      // GNU C also supports this behavior as part of its incomplete
15203      // enum types extension, while GNU C++ does not.
15204      //
15205      // Find the context where we'll be declaring the tag.
15206      // FIXME: We would like to maintain the current DeclContext as the
15207      // lexical context,
15208      SearchDC = getTagInjectionContext(SearchDC);
15209
15210      // Find the scope where we'll be declaring the tag.
15211      S = getTagInjectionScope(S, getLangOpts());
15212    } else {
15213      assert(TUK == TUK_Friend);
15214      // C++ [namespace.memdef]p3:
15215      //   If a friend declaration in a non-local class first declares a
15216      //   class or function, the friend class or function is a member of
15217      //   the innermost enclosing namespace.
15218      SearchDC = SearchDC->getEnclosingNamespaceContext();
15219    }
15220
15221    // In C++, we need to do a redeclaration lookup to properly
15222    // diagnose some problems.
15223    // FIXME: redeclaration lookup is also used (with and without C++) to find a
15224    // hidden declaration so that we don't get ambiguity errors when using a
15225    // type declared by an elaborated-type-specifier.  In C that is not correct
15226    // and we should instead merge compatible types found by lookup.
15227    if (getLangOpts().CPlusPlus) {
15228      Previous.setRedeclarationKind(forRedeclarationInCurContext());
15229      LookupQualifiedName(Previous, SearchDC);
15230    } else {
15231      Previous.setRedeclarationKind(forRedeclarationInCurContext());
15232      LookupName(Previous, S);
15233    }
15234  }
15235
15236  // If we have a known previous declaration to use, then use it.
15237  if (Previous.empty() && SkipBody && SkipBody->Previous)
15238    Previous.addDecl(SkipBody->Previous);
15239
15240  if (!Previous.empty()) {
15241    NamedDecl *PrevDecl = Previous.getFoundDecl();
15242    NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
15243
15244    // It's okay to have a tag decl in the same scope as a typedef
15245    // which hides a tag decl in the same scope.  Finding this
15246    // insanity with a redeclaration lookup can only actually happen
15247    // in C++.
15248    //
15249    // This is also okay for elaborated-type-specifiers, which is
15250    // technically forbidden by the current standard but which is
15251    // okay according to the likely resolution of an open issue;
15252    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
15253    if (getLangOpts().CPlusPlus) {
15254      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15255        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
15256          TagDecl *Tag = TT->getDecl();
15257          if (Tag->getDeclName() == Name &&
15258              Tag->getDeclContext()->getRedeclContext()
15259                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
15260            PrevDecl = Tag;
15261            Previous.clear();
15262            Previous.addDecl(Tag);
15263            Previous.resolveKind();
15264          }
15265        }
15266      }
15267    }
15268
15269    // If this is a redeclaration of a using shadow declaration, it must
15270    // declare a tag in the same context. In MSVC mode, we allow a
15271    // redefinition if either context is within the other.
15272    if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
15273      auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
15274      if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
15275          isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
15276          !(OldTag && isAcceptableTagRedeclContext(
15277                          *this, OldTag->getDeclContext(), SearchDC))) {
15278        Diag(KWLoc, diag::err_using_decl_conflict_reverse);
15279        Diag(Shadow->getTargetDecl()->getLocation(),
15280             diag::note_using_decl_target);
15281        Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
15282            << 0;
15283        // Recover by ignoring the old declaration.
15284        Previous.clear();
15285        goto CreateNewDecl;
15286      }
15287    }
15288
15289    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
15290      // If this is a use of a previous tag, or if the tag is already declared
15291      // in the same scope (so that the definition/declaration completes or
15292      // rementions the tag), reuse the decl.
15293      if (TUK == TUK_Reference || TUK == TUK_Friend ||
15294          isDeclInScope(DirectPrevDecl, SearchDC, S,
15295                        SS.isNotEmpty() || isMemberSpecialization)) {
15296        // Make sure that this wasn't declared as an enum and now used as a
15297        // struct or something similar.
15298        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
15299                                          TUK == TUK_Definition, KWLoc,
15300                                          Name)) {
15301          bool SafeToContinue
15302            = (PrevTagDecl->getTagKind() != TTK_Enum &&
15303               Kind != TTK_Enum);
15304          if (SafeToContinue)
15305            Diag(KWLoc, diag::err_use_with_wrong_tag)
15306              << Name
15307              << FixItHint::CreateReplacement(SourceRange(KWLoc),
15308                                              PrevTagDecl->getKindName());
15309          else
15310            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
15311          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
15312
15313          if (SafeToContinue)
15314            Kind = PrevTagDecl->getTagKind();
15315          else {
15316            // Recover by making this an anonymous redefinition.
15317            Name = nullptr;
15318            Previous.clear();
15319            Invalid = true;
15320          }
15321        }
15322
15323        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
15324          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
15325
15326          // If this is an elaborated-type-specifier for a scoped enumeration,
15327          // the 'class' keyword is not necessary and not permitted.
15328          if (TUK == TUK_Reference || TUK == TUK_Friend) {
15329            if (ScopedEnum)
15330              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
15331                << PrevEnum->isScoped()
15332                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
15333            return PrevTagDecl;
15334          }
15335
15336          QualType EnumUnderlyingTy;
15337          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
15338            EnumUnderlyingTy = TI->getType().getUnqualifiedType();
15339          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
15340            EnumUnderlyingTy = QualType(T, 0);
15341
15342          // All conflicts with previous declarations are recovered by
15343          // returning the previous declaration, unless this is a definition,
15344          // in which case we want the caller to bail out.
15345          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
15346                                     ScopedEnum, EnumUnderlyingTy,
15347                                     IsFixed, PrevEnum))
15348            return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
15349        }
15350
15351        // C++11 [class.mem]p1:
15352        //   A member shall not be declared twice in the member-specification,
15353        //   except that a nested class or member class template can be declared
15354        //   and then later defined.
15355        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
15356            S->isDeclScope(PrevDecl)) {
15357          Diag(NameLoc, diag::ext_member_redeclared);
15358          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
15359        }
15360
15361        if (!Invalid) {
15362          // If this is a use, just return the declaration we found, unless
15363          // we have attributes.
15364          if (TUK == TUK_Reference || TUK == TUK_Friend) {
15365            if (!Attrs.empty()) {
15366              // FIXME: Diagnose these attributes. For now, we create a new
15367              // declaration to hold them.
15368            } else if (TUK == TUK_Reference &&
15369                       (PrevTagDecl->getFriendObjectKind() ==
15370                            Decl::FOK_Undeclared ||
15371                        PrevDecl->getOwningModule() != getCurrentModule()) &&
15372                       SS.isEmpty()) {
15373              // This declaration is a reference to an existing entity, but
15374              // has different visibility from that entity: it either makes
15375              // a friend visible or it makes a type visible in a new module.
15376              // In either case, create a new declaration. We only do this if
15377              // the declaration would have meant the same thing if no prior
15378              // declaration were found, that is, if it was found in the same
15379              // scope where we would have injected a declaration.
15380              if (!getTagInjectionContext(CurContext)->getRedeclContext()
15381                       ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
15382                return PrevTagDecl;
15383              // This is in the injected scope, create a new declaration in
15384              // that scope.
15385              S = getTagInjectionScope(S, getLangOpts());
15386            } else {
15387              return PrevTagDecl;
15388            }
15389          }
15390
15391          // Diagnose attempts to redefine a tag.
15392          if (TUK == TUK_Definition) {
15393            if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
15394              // If we're defining a specialization and the previous definition
15395              // is from an implicit instantiation, don't emit an error
15396              // here; we'll catch this in the general case below.
15397              bool IsExplicitSpecializationAfterInstantiation = false;
15398              if (isMemberSpecialization) {
15399                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
15400                  IsExplicitSpecializationAfterInstantiation =
15401                    RD->getTemplateSpecializationKind() !=
15402                    TSK_ExplicitSpecialization;
15403                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
15404                  IsExplicitSpecializationAfterInstantiation =
15405                    ED->getTemplateSpecializationKind() !=
15406                    TSK_ExplicitSpecialization;
15407              }
15408
15409              // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
15410              // not keep more that one definition around (merge them). However,
15411              // ensure the decl passes the structural compatibility check in
15412              // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
15413              NamedDecl *Hidden = nullptr;
15414              if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
15415                // There is a definition of this tag, but it is not visible. We
15416                // explicitly make use of C++'s one definition rule here, and
15417                // assume that this definition is identical to the hidden one
15418                // we already have. Make the existing definition visible and
15419                // use it in place of this one.
15420                if (!getLangOpts().CPlusPlus) {
15421                  // Postpone making the old definition visible until after we
15422                  // complete parsing the new one and do the structural
15423                  // comparison.
15424                  SkipBody->CheckSameAsPrevious = true;
15425                  SkipBody->New = createTagFromNewDecl();
15426                  SkipBody->Previous = Def;
15427                  return Def;
15428                } else {
15429                  SkipBody->ShouldSkip = true;
15430                  SkipBody->Previous = Def;
15431                  makeMergedDefinitionVisible(Hidden);
15432                  // Carry on and handle it like a normal definition. We'll
15433                  // skip starting the definitiion later.
15434                }
15435              } else if (!IsExplicitSpecializationAfterInstantiation) {
15436                // A redeclaration in function prototype scope in C isn't
15437                // visible elsewhere, so merely issue a warning.
15438                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
15439                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
15440                else
15441                  Diag(NameLoc, diag::err_redefinition) << Name;
15442                notePreviousDefinition(Def,
15443                                       NameLoc.isValid() ? NameLoc : KWLoc);
15444                // If this is a redefinition, recover by making this
15445                // struct be anonymous, which will make any later
15446                // references get the previous definition.
15447                Name = nullptr;
15448                Previous.clear();
15449                Invalid = true;
15450              }
15451            } else {
15452              // If the type is currently being defined, complain
15453              // about a nested redefinition.
15454              auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
15455              if (TD->isBeingDefined()) {
15456                Diag(NameLoc, diag::err_nested_redefinition) << Name;
15457                Diag(PrevTagDecl->getLocation(),
15458                     diag::note_previous_definition);
15459                Name = nullptr;
15460                Previous.clear();
15461                Invalid = true;
15462              }
15463            }
15464
15465            // Okay, this is definition of a previously declared or referenced
15466            // tag. We're going to create a new Decl for it.
15467          }
15468
15469          // Okay, we're going to make a redeclaration.  If this is some kind
15470          // of reference, make sure we build the redeclaration in the same DC
15471          // as the original, and ignore the current access specifier.
15472          if (TUK == TUK_Friend || TUK == TUK_Reference) {
15473            SearchDC = PrevTagDecl->getDeclContext();
15474            AS = AS_none;
15475          }
15476        }
15477        // If we get here we have (another) forward declaration or we
15478        // have a definition.  Just create a new decl.
15479
15480      } else {
15481        // If we get here, this is a definition of a new tag type in a nested
15482        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
15483        // new decl/type.  We set PrevDecl to NULL so that the entities
15484        // have distinct types.
15485        Previous.clear();
15486      }
15487      // If we get here, we're going to create a new Decl. If PrevDecl
15488      // is non-NULL, it's a definition of the tag declared by
15489      // PrevDecl. If it's NULL, we have a new definition.
15490
15491    // Otherwise, PrevDecl is not a tag, but was found with tag
15492    // lookup.  This is only actually possible in C++, where a few
15493    // things like templates still live in the tag namespace.
15494    } else {
15495      // Use a better diagnostic if an elaborated-type-specifier
15496      // found the wrong kind of type on the first
15497      // (non-redeclaration) lookup.
15498      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
15499          !Previous.isForRedeclaration()) {
15500        NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
15501        Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
15502                                                       << Kind;
15503        Diag(PrevDecl->getLocation(), diag::note_declared_at);
15504        Invalid = true;
15505
15506      // Otherwise, only diagnose if the declaration is in scope.
15507      } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
15508                                SS.isNotEmpty() || isMemberSpecialization)) {
15509        // do nothing
15510
15511      // Diagnose implicit declarations introduced by elaborated types.
15512      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
15513        NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
15514        Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
15515        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
15516        Invalid = true;
15517
15518      // Otherwise it's a declaration.  Call out a particularly common
15519      // case here.
15520      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15521        unsigned Kind = 0;
15522        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
15523        Diag(NameLoc, diag::err_tag_definition_of_typedef)
15524          << Name << Kind << TND->getUnderlyingType();
15525        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
15526        Invalid = true;
15527
15528      // Otherwise, diagnose.
15529      } else {
15530        // The tag name clashes with something else in the target scope,
15531        // issue an error and recover by making this tag be anonymous.
15532        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
15533        notePreviousDefinition(PrevDecl, NameLoc);
15534        Name = nullptr;
15535        Invalid = true;
15536      }
15537
15538      // The existing declaration isn't relevant to us; we're in a
15539      // new scope, so clear out the previous declaration.
15540      Previous.clear();
15541    }
15542  }
15543
15544CreateNewDecl:
15545
15546  TagDecl *PrevDecl = nullptr;
15547  if (Previous.isSingleResult())
15548    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
15549
15550  // If there is an identifier, use the location of the identifier as the
15551  // location of the decl, otherwise use the location of the struct/union
15552  // keyword.
15553  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
15554
15555  // Otherwise, create a new declaration. If there is a previous
15556  // declaration of the same entity, the two will be linked via
15557  // PrevDecl.
15558  TagDecl *New;
15559
15560  if (Kind == TTK_Enum) {
15561    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
15562    // enum X { A, B, C } D;    D should chain to X.
15563    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
15564                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
15565                           ScopedEnumUsesClassTag, IsFixed);
15566
15567    if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
15568      StdAlignValT = cast<EnumDecl>(New);
15569
15570    // If this is an undefined enum, warn.
15571    if (TUK != TUK_Definition && !Invalid) {
15572      TagDecl *Def;
15573      if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
15574        // C++0x: 7.2p2: opaque-enum-declaration.
15575        // Conflicts are diagnosed above. Do nothing.
15576      }
15577      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
15578        Diag(Loc, diag::ext_forward_ref_enum_def)
15579          << New;
15580        Diag(Def->getLocation(), diag::note_previous_definition);
15581      } else {
15582        unsigned DiagID = diag::ext_forward_ref_enum;
15583        if (getLangOpts().MSVCCompat)
15584          DiagID = diag::ext_ms_forward_ref_enum;
15585        else if (getLangOpts().CPlusPlus)
15586          DiagID = diag::err_forward_ref_enum;
15587        Diag(Loc, DiagID);
15588      }
15589    }
15590
15591    if (EnumUnderlying) {
15592      EnumDecl *ED = cast<EnumDecl>(New);
15593      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
15594        ED->setIntegerTypeSourceInfo(TI);
15595      else
15596        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
15597      ED->setPromotionType(ED->getIntegerType());
15598      assert(ED->isComplete() && "enum with type should be complete");
15599    }
15600  } else {
15601    // struct/union/class
15602
15603    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
15604    // struct X { int A; } D;    D should chain to X.
15605    if (getLangOpts().CPlusPlus) {
15606      // FIXME: Look for a way to use RecordDecl for simple structs.
15607      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15608                                  cast_or_null<CXXRecordDecl>(PrevDecl));
15609
15610      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
15611        StdBadAlloc = cast<CXXRecordDecl>(New);
15612    } else
15613      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15614                               cast_or_null<RecordDecl>(PrevDecl));
15615  }
15616
15617  // C++11 [dcl.type]p3:
15618  //   A type-specifier-seq shall not define a class or enumeration [...].
15619  if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
15620      TUK == TUK_Definition) {
15621    Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
15622      << Context.getTagDeclType(New);
15623    Invalid = true;
15624  }
15625
15626  if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
15627      DC->getDeclKind() == Decl::Enum) {
15628    Diag(New->getLocation(), diag::err_type_defined_in_enum)
15629      << Context.getTagDeclType(New);
15630    Invalid = true;
15631  }
15632
15633  // Maybe add qualifier info.
15634  if (SS.isNotEmpty()) {
15635    if (SS.isSet()) {
15636      // If this is either a declaration or a definition, check the
15637      // nested-name-specifier against the current context.
15638      if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
15639          diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
15640                                       isMemberSpecialization))
15641        Invalid = true;
15642
15643      New->setQualifierInfo(SS.getWithLocInContext(Context));
15644      if (TemplateParameterLists.size() > 0) {
15645        New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
15646      }
15647    }
15648    else
15649      Invalid = true;
15650  }
15651
15652  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15653    // Add alignment attributes if necessary; these attributes are checked when
15654    // the ASTContext lays out the structure.
15655    //
15656    // It is important for implementing the correct semantics that this
15657    // happen here (in ActOnTag). The #pragma pack stack is
15658    // maintained as a result of parser callbacks which can occur at
15659    // many points during the parsing of a struct declaration (because
15660    // the #pragma tokens are effectively skipped over during the
15661    // parsing of the struct).
15662    if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15663      AddAlignmentAttributesForRecord(RD);
15664      AddMsStructLayoutForRecord(RD);
15665    }
15666  }
15667
15668  if (ModulePrivateLoc.isValid()) {
15669    if (isMemberSpecialization)
15670      Diag(New->getLocation(), diag::err_module_private_specialization)
15671        << 2
15672        << FixItHint::CreateRemoval(ModulePrivateLoc);
15673    // __module_private__ does not apply to local classes. However, we only
15674    // diagnose this as an error when the declaration specifiers are
15675    // freestanding. Here, we just ignore the __module_private__.
15676    else if (!SearchDC->isFunctionOrMethod())
15677      New->setModulePrivate();
15678  }
15679
15680  // If this is a specialization of a member class (of a class template),
15681  // check the specialization.
15682  if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
15683    Invalid = true;
15684
15685  // If we're declaring or defining a tag in function prototype scope in C,
15686  // note that this type can only be used within the function and add it to
15687  // the list of decls to inject into the function definition scope.
15688  if ((Name || Kind == TTK_Enum) &&
15689      getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
15690    if (getLangOpts().CPlusPlus) {
15691      // C++ [dcl.fct]p6:
15692      //   Types shall not be defined in return or parameter types.
15693      if (TUK == TUK_Definition && !IsTypeSpecifier) {
15694        Diag(Loc, diag::err_type_defined_in_param_type)
15695            << Name;
15696        Invalid = true;
15697      }
15698    } else if (!PrevDecl) {
15699      Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
15700    }
15701  }
15702
15703  if (Invalid)
15704    New->setInvalidDecl();
15705
15706  // Set the lexical context. If the tag has a C++ scope specifier, the
15707  // lexical context will be different from the semantic context.
15708  New->setLexicalDeclContext(CurContext);
15709
15710  // Mark this as a friend decl if applicable.
15711  // In Microsoft mode, a friend declaration also acts as a forward
15712  // declaration so we always pass true to setObjectOfFriendDecl to make
15713  // the tag name visible.
15714  if (TUK == TUK_Friend)
15715    New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
15716
15717  // Set the access specifier.
15718  if (!Invalid && SearchDC->isRecord())
15719    SetMemberAccessSpecifier(New, PrevDecl, AS);
15720
15721  if (PrevDecl)
15722    CheckRedeclarationModuleOwnership(New, PrevDecl);
15723
15724  if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
15725    New->startDefinition();
15726
15727  ProcessDeclAttributeList(S, New, Attrs);
15728  AddPragmaAttributes(S, New);
15729
15730  // If this has an identifier, add it to the scope stack.
15731  if (TUK == TUK_Friend) {
15732    // We might be replacing an existing declaration in the lookup tables;
15733    // if so, borrow its access specifier.
15734    if (PrevDecl)
15735      New->setAccess(PrevDecl->getAccess());
15736
15737    DeclContext *DC = New->getDeclContext()->getRedeclContext();
15738    DC->makeDeclVisibleInContext(New);
15739    if (Name) // can be null along some error paths
15740      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
15741        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
15742  } else if (Name) {
15743    S = getNonFieldDeclScope(S);
15744    PushOnScopeChains(New, S, true);
15745  } else {
15746    CurContext->addDecl(New);
15747  }
15748
15749  // If this is the C FILE type, notify the AST context.
15750  if (IdentifierInfo *II = New->getIdentifier())
15751    if (!New->isInvalidDecl() &&
15752        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
15753        II->isStr("FILE"))
15754      Context.setFILEDecl(New);
15755
15756  if (PrevDecl)
15757    mergeDeclAttributes(New, PrevDecl);
15758
15759  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
15760    inferGslOwnerPointerAttribute(CXXRD);
15761
15762  // If there's a #pragma GCC visibility in scope, set the visibility of this
15763  // record.
15764  AddPushedVisibilityAttribute(New);
15765
15766  if (isMemberSpecialization && !New->isInvalidDecl())
15767    CompleteMemberSpecialization(New, Previous);
15768
15769  OwnedDecl = true;
15770  // In C++, don't return an invalid declaration. We can't recover well from
15771  // the cases where we make the type anonymous.
15772  if (Invalid && getLangOpts().CPlusPlus) {
15773    if (New->isBeingDefined())
15774      if (auto RD = dyn_cast<RecordDecl>(New))
15775        RD->completeDefinition();
15776    return nullptr;
15777  } else if (SkipBody && SkipBody->ShouldSkip) {
15778    return SkipBody->Previous;
15779  } else {
15780    return New;
15781  }
15782}
15783
15784void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
15785  AdjustDeclIfTemplate(TagD);
15786  TagDecl *Tag = cast<TagDecl>(TagD);
15787
15788  // Enter the tag context.
15789  PushDeclContext(S, Tag);
15790
15791  ActOnDocumentableDecl(TagD);
15792
15793  // If there's a #pragma GCC visibility in scope, set the visibility of this
15794  // record.
15795  AddPushedVisibilityAttribute(Tag);
15796}
15797
15798bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
15799                                    SkipBodyInfo &SkipBody) {
15800  if (!hasStructuralCompatLayout(Prev, SkipBody.New))
15801    return false;
15802
15803  // Make the previous decl visible.
15804  makeMergedDefinitionVisible(SkipBody.Previous);
15805  return true;
15806}
15807
15808Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
15809  assert(isa<ObjCContainerDecl>(IDecl) &&
15810         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
15811  DeclContext *OCD = cast<DeclContext>(IDecl);
15812  assert(getContainingDC(OCD) == CurContext &&
15813      "The next DeclContext should be lexically contained in the current one.");
15814  CurContext = OCD;
15815  return IDecl;
15816}
15817
15818void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
15819                                           SourceLocation FinalLoc,
15820                                           bool IsFinalSpelledSealed,
15821                                           SourceLocation LBraceLoc) {
15822  AdjustDeclIfTemplate(TagD);
15823  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
15824
15825  FieldCollector->StartClass();
15826
15827  if (!Record->getIdentifier())
15828    return;
15829
15830  if (FinalLoc.isValid())
15831    Record->addAttr(FinalAttr::Create(
15832        Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
15833        static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));
15834
15835  // C++ [class]p2:
15836  //   [...] The class-name is also inserted into the scope of the
15837  //   class itself; this is known as the injected-class-name. For
15838  //   purposes of access checking, the injected-class-name is treated
15839  //   as if it were a public member name.
15840  CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
15841      Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
15842      Record->getLocation(), Record->getIdentifier(),
15843      /*PrevDecl=*/nullptr,
15844      /*DelayTypeCreation=*/true);
15845  Context.getTypeDeclType(InjectedClassName, Record);
15846  InjectedClassName->setImplicit();
15847  InjectedClassName->setAccess(AS_public);
15848  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
15849      InjectedClassName->setDescribedClassTemplate(Template);
15850  PushOnScopeChains(InjectedClassName, S);
15851  assert(InjectedClassName->isInjectedClassName() &&
15852         "Broken injected-class-name");
15853}
15854
15855void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
15856                                    SourceRange BraceRange) {
15857  AdjustDeclIfTemplate(TagD);
15858  TagDecl *Tag = cast<TagDecl>(TagD);
15859  Tag->setBraceRange(BraceRange);
15860
15861  // Make sure we "complete" the definition even it is invalid.
15862  if (Tag->isBeingDefined()) {
15863    assert(Tag->isInvalidDecl() && "We should already have completed it");
15864    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15865      RD->completeDefinition();
15866  }
15867
15868  if (isa<CXXRecordDecl>(Tag)) {
15869    FieldCollector->FinishClass();
15870  }
15871
15872  // Exit this scope of this tag's definition.
15873  PopDeclContext();
15874
15875  if (getCurLexicalContext()->isObjCContainer() &&
15876      Tag->getDeclContext()->isFileContext())
15877    Tag->setTopLevelDeclInObjCContainer();
15878
15879  // Notify the consumer that we've defined a tag.
15880  if (!Tag->isInvalidDecl())
15881    Consumer.HandleTagDeclDefinition(Tag);
15882}
15883
15884void Sema::ActOnObjCContainerFinishDefinition() {
15885  // Exit this scope of this interface definition.
15886  PopDeclContext();
15887}
15888
15889void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
15890  assert(DC == CurContext && "Mismatch of container contexts");
15891  OriginalLexicalContext = DC;
15892  ActOnObjCContainerFinishDefinition();
15893}
15894
15895void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
15896  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
15897  OriginalLexicalContext = nullptr;
15898}
15899
15900void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
15901  AdjustDeclIfTemplate(TagD);
15902  TagDecl *Tag = cast<TagDecl>(TagD);
15903  Tag->setInvalidDecl();
15904
15905  // Make sure we "complete" the definition even it is invalid.
15906  if (Tag->isBeingDefined()) {
15907    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15908      RD->completeDefinition();
15909  }
15910
15911  // We're undoing ActOnTagStartDefinition here, not
15912  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
15913  // the FieldCollector.
15914
15915  PopDeclContext();
15916}
15917
15918// Note that FieldName may be null for anonymous bitfields.
15919ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
15920                                IdentifierInfo *FieldName,
15921                                QualType FieldTy, bool IsMsStruct,
15922                                Expr *BitWidth, bool *ZeroWidth) {
15923  // Default to true; that shouldn't confuse checks for emptiness
15924  if (ZeroWidth)
15925    *ZeroWidth = true;
15926
15927  // C99 6.7.2.1p4 - verify the field type.
15928  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
15929  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
15930    // Handle incomplete types with specific error.
15931    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
15932      return ExprError();
15933    if (FieldName)
15934      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
15935        << FieldName << FieldTy << BitWidth->getSourceRange();
15936    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
15937      << FieldTy << BitWidth->getSourceRange();
15938  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
15939                                             UPPC_BitFieldWidth))
15940    return ExprError();
15941
15942  // If the bit-width is type- or value-dependent, don't try to check
15943  // it now.
15944  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
15945    return BitWidth;
15946
15947  llvm::APSInt Value;
15948  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
15949  if (ICE.isInvalid())
15950    return ICE;
15951  BitWidth = ICE.get();
15952
15953  if (Value != 0 && ZeroWidth)
15954    *ZeroWidth = false;
15955
15956  // Zero-width bitfield is ok for anonymous field.
15957  if (Value == 0 && FieldName)
15958    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
15959
15960  if (Value.isSigned() && Value.isNegative()) {
15961    if (FieldName)
15962      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
15963               << FieldName << Value.toString(10);
15964    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
15965      << Value.toString(10);
15966  }
15967
15968  if (!FieldTy->isDependentType()) {
15969    uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
15970    uint64_t TypeWidth = Context.getIntWidth(FieldTy);
15971    bool BitfieldIsOverwide = Value.ugt(TypeWidth);
15972
15973    // Over-wide bitfields are an error in C or when using the MSVC bitfield
15974    // ABI.
15975    bool CStdConstraintViolation =
15976        BitfieldIsOverwide && !getLangOpts().CPlusPlus;
15977    bool MSBitfieldViolation =
15978        Value.ugt(TypeStorageSize) &&
15979        (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
15980    if (CStdConstraintViolation || MSBitfieldViolation) {
15981      unsigned DiagWidth =
15982          CStdConstraintViolation ? TypeWidth : TypeStorageSize;
15983      if (FieldName)
15984        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
15985               << FieldName << (unsigned)Value.getZExtValue()
15986               << !CStdConstraintViolation << DiagWidth;
15987
15988      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
15989             << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
15990             << DiagWidth;
15991    }
15992
15993    // Warn on types where the user might conceivably expect to get all
15994    // specified bits as value bits: that's all integral types other than
15995    // 'bool'.
15996    if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
15997      if (FieldName)
15998        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
15999            << FieldName << (unsigned)Value.getZExtValue()
16000            << (unsigned)TypeWidth;
16001      else
16002        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
16003            << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
16004    }
16005  }
16006
16007  return BitWidth;
16008}
16009
16010/// ActOnField - Each field of a C struct/union is passed into this in order
16011/// to create a FieldDecl object for it.
16012Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
16013                       Declarator &D, Expr *BitfieldWidth) {
16014  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
16015                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
16016                               /*InitStyle=*/ICIS_NoInit, AS_public);
16017  return Res;
16018}
16019
16020/// HandleField - Analyze a field of a C struct or a C++ data member.
16021///
16022FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
16023                             SourceLocation DeclStart,
16024                             Declarator &D, Expr *BitWidth,
16025                             InClassInitStyle InitStyle,
16026                             AccessSpecifier AS) {
16027  if (D.isDecompositionDeclarator()) {
16028    const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
16029    Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
16030      << Decomp.getSourceRange();
16031    return nullptr;
16032  }
16033
16034  IdentifierInfo *II = D.getIdentifier();
16035  SourceLocation Loc = DeclStart;
16036  if (II) Loc = D.getIdentifierLoc();
16037
16038  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16039  QualType T = TInfo->getType();
16040  if (getLangOpts().CPlusPlus) {
16041    CheckExtraCXXDefaultArguments(D);
16042
16043    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16044                                        UPPC_DataMemberType)) {
16045      D.setInvalidType();
16046      T = Context.IntTy;
16047      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
16048    }
16049  }
16050
16051  DiagnoseFunctionSpecifiers(D.getDeclSpec());
16052
16053  if (D.getDeclSpec().isInlineSpecified())
16054    Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
16055        << getLangOpts().CPlusPlus17;
16056  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
16057    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
16058         diag::err_invalid_thread)
16059      << DeclSpec::getSpecifierName(TSCS);
16060
16061  // Check to see if this name was declared as a member previously
16062  NamedDecl *PrevDecl = nullptr;
16063  LookupResult Previous(*this, II, Loc, LookupMemberName,
16064                        ForVisibleRedeclaration);
16065  LookupName(Previous, S);
16066  switch (Previous.getResultKind()) {
16067    case LookupResult::Found:
16068    case LookupResult::FoundUnresolvedValue:
16069      PrevDecl = Previous.getAsSingle<NamedDecl>();
16070      break;
16071
16072    case LookupResult::FoundOverloaded:
16073      PrevDecl = Previous.getRepresentativeDecl();
16074      break;
16075
16076    case LookupResult::NotFound:
16077    case LookupResult::NotFoundInCurrentInstantiation:
16078    case LookupResult::Ambiguous:
16079      break;
16080  }
16081  Previous.suppressDiagnostics();
16082
16083  if (PrevDecl && PrevDecl->isTemplateParameter()) {
16084    // Maybe we will complain about the shadowed template parameter.
16085    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16086    // Just pretend that we didn't see the previous declaration.
16087    PrevDecl = nullptr;
16088  }
16089
16090  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
16091    PrevDecl = nullptr;
16092
16093  bool Mutable
16094    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
16095  SourceLocation TSSL = D.getBeginLoc();
16096  FieldDecl *NewFD
16097    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
16098                     TSSL, AS, PrevDecl, &D);
16099
16100  if (NewFD->isInvalidDecl())
16101    Record->setInvalidDecl();
16102
16103  if (D.getDeclSpec().isModulePrivateSpecified())
16104    NewFD->setModulePrivate();
16105
16106  if (NewFD->isInvalidDecl() && PrevDecl) {
16107    // Don't introduce NewFD into scope; there's already something
16108    // with the same name in the same scope.
16109  } else if (II) {
16110    PushOnScopeChains(NewFD, S);
16111  } else
16112    Record->addDecl(NewFD);
16113
16114  return NewFD;
16115}
16116
16117/// Build a new FieldDecl and check its well-formedness.
16118///
16119/// This routine builds a new FieldDecl given the fields name, type,
16120/// record, etc. \p PrevDecl should refer to any previous declaration
16121/// with the same name and in the same scope as the field to be
16122/// created.
16123///
16124/// \returns a new FieldDecl.
16125///
16126/// \todo The Declarator argument is a hack. It will be removed once
16127FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
16128                                TypeSourceInfo *TInfo,
16129                                RecordDecl *Record, SourceLocation Loc,
16130                                bool Mutable, Expr *BitWidth,
16131                                InClassInitStyle InitStyle,
16132                                SourceLocation TSSL,
16133                                AccessSpecifier AS, NamedDecl *PrevDecl,
16134                                Declarator *D) {
16135  IdentifierInfo *II = Name.getAsIdentifierInfo();
16136  bool InvalidDecl = false;
16137  if (D) InvalidDecl = D->isInvalidType();
16138
16139  // If we receive a broken type, recover by assuming 'int' and
16140  // marking this declaration as invalid.
16141  if (T.isNull()) {
16142    InvalidDecl = true;
16143    T = Context.IntTy;
16144  }
16145
16146  QualType EltTy = Context.getBaseElementType(T);
16147  if (!EltTy->isDependentType()) {
16148    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
16149      // Fields of incomplete type force their record to be invalid.
16150      Record->setInvalidDecl();
16151      InvalidDecl = true;
16152    } else {
16153      NamedDecl *Def;
16154      EltTy->isIncompleteType(&Def);
16155      if (Def && Def->isInvalidDecl()) {
16156        Record->setInvalidDecl();
16157        InvalidDecl = true;
16158      }
16159    }
16160  }
16161
16162  // TR 18037 does not allow fields to be declared with address space
16163  if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
16164      T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
16165    Diag(Loc, diag::err_field_with_address_space);
16166    Record->setInvalidDecl();
16167    InvalidDecl = true;
16168  }
16169
16170  if (LangOpts.OpenCL) {
16171    // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
16172    // used as structure or union field: image, sampler, event or block types.
16173    if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
16174        T->isBlockPointerType()) {
16175      Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
16176      Record->setInvalidDecl();
16177      InvalidDecl = true;
16178    }
16179    // OpenCL v1.2 s6.9.c: bitfields are not supported.
16180    if (BitWidth) {
16181      Diag(Loc, diag::err_opencl_bitfields);
16182      InvalidDecl = true;
16183    }
16184  }
16185
16186  // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
16187  if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
16188      T.hasQualifiers()) {
16189    InvalidDecl = true;
16190    Diag(Loc, diag::err_anon_bitfield_qualifiers);
16191  }
16192
16193  // C99 6.7.2.1p8: A member of a structure or union may have any type other
16194  // than a variably modified type.
16195  if (!InvalidDecl && T->isVariablyModifiedType()) {
16196    bool SizeIsNegative;
16197    llvm::APSInt Oversized;
16198
16199    TypeSourceInfo *FixedTInfo =
16200      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
16201                                                    SizeIsNegative,
16202                                                    Oversized);
16203    if (FixedTInfo) {
16204      Diag(Loc, diag::warn_illegal_constant_array_size);
16205      TInfo = FixedTInfo;
16206      T = FixedTInfo->getType();
16207    } else {
16208      if (SizeIsNegative)
16209        Diag(Loc, diag::err_typecheck_negative_array_size);
16210      else if (Oversized.getBoolValue())
16211        Diag(Loc, diag::err_array_too_large)
16212          << Oversized.toString(10);
16213      else
16214        Diag(Loc, diag::err_typecheck_field_variable_size);
16215      InvalidDecl = true;
16216    }
16217  }
16218
16219  // Fields can not have abstract class types
16220  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
16221                                             diag::err_abstract_type_in_decl,
16222                                             AbstractFieldType))
16223    InvalidDecl = true;
16224
16225  bool ZeroWidth = false;
16226  if (InvalidDecl)
16227    BitWidth = nullptr;
16228  // If this is declared as a bit-field, check the bit-field.
16229  if (BitWidth) {
16230    BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
16231                              &ZeroWidth).get();
16232    if (!BitWidth) {
16233      InvalidDecl = true;
16234      BitWidth = nullptr;
16235      ZeroWidth = false;
16236    }
16237  }
16238
16239  // Check that 'mutable' is consistent with the type of the declaration.
16240  if (!InvalidDecl && Mutable) {
16241    unsigned DiagID = 0;
16242    if (T->isReferenceType())
16243      DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
16244                                        : diag::err_mutable_reference;
16245    else if (T.isConstQualified())
16246      DiagID = diag::err_mutable_const;
16247
16248    if (DiagID) {
16249      SourceLocation ErrLoc = Loc;
16250      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
16251        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
16252      Diag(ErrLoc, DiagID);
16253      if (DiagID != diag::ext_mutable_reference) {
16254        Mutable = false;
16255        InvalidDecl = true;
16256      }
16257    }
16258  }
16259
16260  // C++11 [class.union]p8 (DR1460):
16261  //   At most one variant member of a union may have a
16262  //   brace-or-equal-initializer.
16263  if (InitStyle != ICIS_NoInit)
16264    checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
16265
16266  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
16267                                       BitWidth, Mutable, InitStyle);
16268  if (InvalidDecl)
16269    NewFD->setInvalidDecl();
16270
16271  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
16272    Diag(Loc, diag::err_duplicate_member) << II;
16273    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16274    NewFD->setInvalidDecl();
16275  }
16276
16277  if (!InvalidDecl && getLangOpts().CPlusPlus) {
16278    if (Record->isUnion()) {
16279      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16280        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
16281        if (RDecl->getDefinition()) {
16282          // C++ [class.union]p1: An object of a class with a non-trivial
16283          // constructor, a non-trivial copy constructor, a non-trivial
16284          // destructor, or a non-trivial copy assignment operator
16285          // cannot be a member of a union, nor can an array of such
16286          // objects.
16287          if (CheckNontrivialField(NewFD))
16288            NewFD->setInvalidDecl();
16289        }
16290      }
16291
16292      // C++ [class.union]p1: If a union contains a member of reference type,
16293      // the program is ill-formed, except when compiling with MSVC extensions
16294      // enabled.
16295      if (EltTy->isReferenceType()) {
16296        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
16297                                    diag::ext_union_member_of_reference_type :
16298                                    diag::err_union_member_of_reference_type)
16299          << NewFD->getDeclName() << EltTy;
16300        if (!getLangOpts().MicrosoftExt)
16301          NewFD->setInvalidDecl();
16302      }
16303    }
16304  }
16305
16306  // FIXME: We need to pass in the attributes given an AST
16307  // representation, not a parser representation.
16308  if (D) {
16309    // FIXME: The current scope is almost... but not entirely... correct here.
16310    ProcessDeclAttributes(getCurScope(), NewFD, *D);
16311
16312    if (NewFD->hasAttrs())
16313      CheckAlignasUnderalignment(NewFD);
16314  }
16315
16316  // In auto-retain/release, infer strong retension for fields of
16317  // retainable type.
16318  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
16319    NewFD->setInvalidDecl();
16320
16321  if (T.isObjCGCWeak())
16322    Diag(Loc, diag::warn_attribute_weak_on_field);
16323
16324  NewFD->setAccess(AS);
16325  return NewFD;
16326}
16327
16328bool Sema::CheckNontrivialField(FieldDecl *FD) {
16329  assert(FD);
16330  assert(getLangOpts().CPlusPlus && "valid check only for C++");
16331
16332  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
16333    return false;
16334
16335  QualType EltTy = Context.getBaseElementType(FD->getType());
16336  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16337    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
16338    if (RDecl->getDefinition()) {
16339      // We check for copy constructors before constructors
16340      // because otherwise we'll never get complaints about
16341      // copy constructors.
16342
16343      CXXSpecialMember member = CXXInvalid;
16344      // We're required to check for any non-trivial constructors. Since the
16345      // implicit default constructor is suppressed if there are any
16346      // user-declared constructors, we just need to check that there is a
16347      // trivial default constructor and a trivial copy constructor. (We don't
16348      // worry about move constructors here, since this is a C++98 check.)
16349      if (RDecl->hasNonTrivialCopyConstructor())
16350        member = CXXCopyConstructor;
16351      else if (!RDecl->hasTrivialDefaultConstructor())
16352        member = CXXDefaultConstructor;
16353      else if (RDecl->hasNonTrivialCopyAssignment())
16354        member = CXXCopyAssignment;
16355      else if (RDecl->hasNonTrivialDestructor())
16356        member = CXXDestructor;
16357
16358      if (member != CXXInvalid) {
16359        if (!getLangOpts().CPlusPlus11 &&
16360            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
16361          // Objective-C++ ARC: it is an error to have a non-trivial field of
16362          // a union. However, system headers in Objective-C programs
16363          // occasionally have Objective-C lifetime objects within unions,
16364          // and rather than cause the program to fail, we make those
16365          // members unavailable.
16366          SourceLocation Loc = FD->getLocation();
16367          if (getSourceManager().isInSystemHeader(Loc)) {
16368            if (!FD->hasAttr<UnavailableAttr>())
16369              FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
16370                            UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
16371            return false;
16372          }
16373        }
16374
16375        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
16376               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
16377               diag::err_illegal_union_or_anon_struct_member)
16378          << FD->getParent()->isUnion() << FD->getDeclName() << member;
16379        DiagnoseNontrivial(RDecl, member);
16380        return !getLangOpts().CPlusPlus11;
16381      }
16382    }
16383  }
16384
16385  return false;
16386}
16387
16388/// TranslateIvarVisibility - Translate visibility from a token ID to an
16389///  AST enum value.
16390static ObjCIvarDecl::AccessControl
16391TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
16392  switch (ivarVisibility) {
16393  default: llvm_unreachable("Unknown visitibility kind");
16394  case tok::objc_private: return ObjCIvarDecl::Private;
16395  case tok::objc_public: return ObjCIvarDecl::Public;
16396  case tok::objc_protected: return ObjCIvarDecl::Protected;
16397  case tok::objc_package: return ObjCIvarDecl::Package;
16398  }
16399}
16400
16401/// ActOnIvar - Each ivar field of an objective-c class is passed into this
16402/// in order to create an IvarDecl object for it.
16403Decl *Sema::ActOnIvar(Scope *S,
16404                                SourceLocation DeclStart,
16405                                Declarator &D, Expr *BitfieldWidth,
16406                                tok::ObjCKeywordKind Visibility) {
16407
16408  IdentifierInfo *II = D.getIdentifier();
16409  Expr *BitWidth = (Expr*)BitfieldWidth;
16410  SourceLocation Loc = DeclStart;
16411  if (II) Loc = D.getIdentifierLoc();
16412
16413  // FIXME: Unnamed fields can be handled in various different ways, for
16414  // example, unnamed unions inject all members into the struct namespace!
16415
16416  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16417  QualType T = TInfo->getType();
16418
16419  if (BitWidth) {
16420    // 6.7.2.1p3, 6.7.2.1p4
16421    BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
16422    if (!BitWidth)
16423      D.setInvalidType();
16424  } else {
16425    // Not a bitfield.
16426
16427    // validate II.
16428
16429  }
16430  if (T->isReferenceType()) {
16431    Diag(Loc, diag::err_ivar_reference_type);
16432    D.setInvalidType();
16433  }
16434  // C99 6.7.2.1p8: A member of a structure or union may have any type other
16435  // than a variably modified type.
16436  else if (T->isVariablyModifiedType()) {
16437    Diag(Loc, diag::err_typecheck_ivar_variable_size);
16438    D.setInvalidType();
16439  }
16440
16441  // Get the visibility (access control) for this ivar.
16442  ObjCIvarDecl::AccessControl ac =
16443    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
16444                                        : ObjCIvarDecl::None;
16445  // Must set ivar's DeclContext to its enclosing interface.
16446  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
16447  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
16448    return nullptr;
16449  ObjCContainerDecl *EnclosingContext;
16450  if (ObjCImplementationDecl *IMPDecl =
16451      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16452    if (LangOpts.ObjCRuntime.isFragile()) {
16453    // Case of ivar declared in an implementation. Context is that of its class.
16454      EnclosingContext = IMPDecl->getClassInterface();
16455      assert(EnclosingContext && "Implementation has no class interface!");
16456    }
16457    else
16458      EnclosingContext = EnclosingDecl;
16459  } else {
16460    if (ObjCCategoryDecl *CDecl =
16461        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16462      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
16463        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
16464        return nullptr;
16465      }
16466    }
16467    EnclosingContext = EnclosingDecl;
16468  }
16469
16470  // Construct the decl.
16471  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
16472                                             DeclStart, Loc, II, T,
16473                                             TInfo, ac, (Expr *)BitfieldWidth);
16474
16475  if (II) {
16476    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
16477                                           ForVisibleRedeclaration);
16478    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
16479        && !isa<TagDecl>(PrevDecl)) {
16480      Diag(Loc, diag::err_duplicate_member) << II;
16481      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16482      NewID->setInvalidDecl();
16483    }
16484  }
16485
16486  // Process attributes attached to the ivar.
16487  ProcessDeclAttributes(S, NewID, D);
16488
16489  if (D.isInvalidType())
16490    NewID->setInvalidDecl();
16491
16492  // In ARC, infer 'retaining' for ivars of retainable type.
16493  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
16494    NewID->setInvalidDecl();
16495
16496  if (D.getDeclSpec().isModulePrivateSpecified())
16497    NewID->setModulePrivate();
16498
16499  if (II) {
16500    // FIXME: When interfaces are DeclContexts, we'll need to add
16501    // these to the interface.
16502    S->AddDecl(NewID);
16503    IdResolver.AddDecl(NewID);
16504  }
16505
16506  if (LangOpts.ObjCRuntime.isNonFragile() &&
16507      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
16508    Diag(Loc, diag::warn_ivars_in_interface);
16509
16510  return NewID;
16511}
16512
16513/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
16514/// class and class extensions. For every class \@interface and class
16515/// extension \@interface, if the last ivar is a bitfield of any type,
16516/// then add an implicit `char :0` ivar to the end of that interface.
16517void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
16518                             SmallVectorImpl<Decl *> &AllIvarDecls) {
16519  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
16520    return;
16521
16522  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
16523  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
16524
16525  if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
16526    return;
16527  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
16528  if (!ID) {
16529    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
16530      if (!CD->IsClassExtension())
16531        return;
16532    }
16533    // No need to add this to end of @implementation.
16534    else
16535      return;
16536  }
16537  // All conditions are met. Add a new bitfield to the tail end of ivars.
16538  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
16539  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
16540
16541  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
16542                              DeclLoc, DeclLoc, nullptr,
16543                              Context.CharTy,
16544                              Context.getTrivialTypeSourceInfo(Context.CharTy,
16545                                                               DeclLoc),
16546                              ObjCIvarDecl::Private, BW,
16547                              true);
16548  AllIvarDecls.push_back(Ivar);
16549}
16550
16551void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
16552                       ArrayRef<Decl *> Fields, SourceLocation LBrac,
16553                       SourceLocation RBrac,
16554                       const ParsedAttributesView &Attrs) {
16555  assert(EnclosingDecl && "missing record or interface decl");
16556
16557  // If this is an Objective-C @implementation or category and we have
16558  // new fields here we should reset the layout of the interface since
16559  // it will now change.
16560  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
16561    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
16562    switch (DC->getKind()) {
16563    default: break;
16564    case Decl::ObjCCategory:
16565      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
16566      break;
16567    case Decl::ObjCImplementation:
16568      Context.
16569        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
16570      break;
16571    }
16572  }
16573
16574  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
16575  CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
16576
16577  // Start counting up the number of named members; make sure to include
16578  // members of anonymous structs and unions in the total.
16579  unsigned NumNamedMembers = 0;
16580  if (Record) {
16581    for (const auto *I : Record->decls()) {
16582      if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
16583        if (IFD->getDeclName())
16584          ++NumNamedMembers;
16585    }
16586  }
16587
16588  // Verify that all the fields are okay.
16589  SmallVector<FieldDecl*, 32> RecFields;
16590
16591  for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
16592       i != end; ++i) {
16593    FieldDecl *FD = cast<FieldDecl>(*i);
16594
16595    // Get the type for the field.
16596    const Type *FDTy = FD->getType().getTypePtr();
16597
16598    if (!FD->isAnonymousStructOrUnion()) {
16599      // Remember all fields written by the user.
16600      RecFields.push_back(FD);
16601    }
16602
16603    // If the field is already invalid for some reason, don't emit more
16604    // diagnostics about it.
16605    if (FD->isInvalidDecl()) {
16606      EnclosingDecl->setInvalidDecl();
16607      continue;
16608    }
16609
16610    // C99 6.7.2.1p2:
16611    //   A structure or union shall not contain a member with
16612    //   incomplete or function type (hence, a structure shall not
16613    //   contain an instance of itself, but may contain a pointer to
16614    //   an instance of itself), except that the last member of a
16615    //   structure with more than one named member may have incomplete
16616    //   array type; such a structure (and any union containing,
16617    //   possibly recursively, a member that is such a structure)
16618    //   shall not be a member of a structure or an element of an
16619    //   array.
16620    bool IsLastField = (i + 1 == Fields.end());
16621    if (FDTy->isFunctionType()) {
16622      // Field declared as a function.
16623      Diag(FD->getLocation(), diag::err_field_declared_as_function)
16624        << FD->getDeclName();
16625      FD->setInvalidDecl();
16626      EnclosingDecl->setInvalidDecl();
16627      continue;
16628    } else if (FDTy->isIncompleteArrayType() &&
16629               (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
16630      if (Record) {
16631        // Flexible array member.
16632        // Microsoft and g++ is more permissive regarding flexible array.
16633        // It will accept flexible array in union and also
16634        // as the sole element of a struct/class.
16635        unsigned DiagID = 0;
16636        if (!Record->isUnion() && !IsLastField) {
16637          Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
16638            << FD->getDeclName() << FD->getType() << Record->getTagKind();
16639          Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
16640          FD->setInvalidDecl();
16641          EnclosingDecl->setInvalidDecl();
16642          continue;
16643        } else if (Record->isUnion())
16644          DiagID = getLangOpts().MicrosoftExt
16645                       ? diag::ext_flexible_array_union_ms
16646                       : getLangOpts().CPlusPlus
16647                             ? diag::ext_flexible_array_union_gnu
16648                             : diag::err_flexible_array_union;
16649        else if (NumNamedMembers < 1)
16650          DiagID = getLangOpts().MicrosoftExt
16651                       ? diag::ext_flexible_array_empty_aggregate_ms
16652                       : getLangOpts().CPlusPlus
16653                             ? diag::ext_flexible_array_empty_aggregate_gnu
16654                             : diag::err_flexible_array_empty_aggregate;
16655
16656        if (DiagID)
16657          Diag(FD->getLocation(), DiagID) << FD->getDeclName()
16658                                          << Record->getTagKind();
16659        // While the layout of types that contain virtual bases is not specified
16660        // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
16661        // virtual bases after the derived members.  This would make a flexible
16662        // array member declared at the end of an object not adjacent to the end
16663        // of the type.
16664        if (CXXRecord && CXXRecord->getNumVBases() != 0)
16665          Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
16666              << FD->getDeclName() << Record->getTagKind();
16667        if (!getLangOpts().C99)
16668          Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
16669            << FD->getDeclName() << Record->getTagKind();
16670
16671        // If the element type has a non-trivial destructor, we would not
16672        // implicitly destroy the elements, so disallow it for now.
16673        //
16674        // FIXME: GCC allows this. We should probably either implicitly delete
16675        // the destructor of the containing class, or just allow this.
16676        QualType BaseElem = Context.getBaseElementType(FD->getType());
16677        if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
16678          Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
16679            << FD->getDeclName() << FD->getType();
16680          FD->setInvalidDecl();
16681          EnclosingDecl->setInvalidDecl();
16682          continue;
16683        }
16684        // Okay, we have a legal flexible array member at the end of the struct.
16685        Record->setHasFlexibleArrayMember(true);
16686      } else {
16687        // In ObjCContainerDecl ivars with incomplete array type are accepted,
16688        // unless they are followed by another ivar. That check is done
16689        // elsewhere, after synthesized ivars are known.
16690      }
16691    } else if (!FDTy->isDependentType() &&
16692               RequireCompleteType(FD->getLocation(), FD->getType(),
16693                                   diag::err_field_incomplete)) {
16694      // Incomplete type
16695      FD->setInvalidDecl();
16696      EnclosingDecl->setInvalidDecl();
16697      continue;
16698    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
16699      if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
16700        // A type which contains a flexible array member is considered to be a
16701        // flexible array member.
16702        Record->setHasFlexibleArrayMember(true);
16703        if (!Record->isUnion()) {
16704          // If this is a struct/class and this is not the last element, reject
16705          // it.  Note that GCC supports variable sized arrays in the middle of
16706          // structures.
16707          if (!IsLastField)
16708            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
16709              << FD->getDeclName() << FD->getType();
16710          else {
16711            // We support flexible arrays at the end of structs in
16712            // other structs as an extension.
16713            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
16714              << FD->getDeclName();
16715          }
16716        }
16717      }
16718      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
16719          RequireNonAbstractType(FD->getLocation(), FD->getType(),
16720                                 diag::err_abstract_type_in_decl,
16721                                 AbstractIvarType)) {
16722        // Ivars can not have abstract class types
16723        FD->setInvalidDecl();
16724      }
16725      if (Record && FDTTy->getDecl()->hasObjectMember())
16726        Record->setHasObjectMember(true);
16727      if (Record && FDTTy->getDecl()->hasVolatileMember())
16728        Record->setHasVolatileMember(true);
16729    } else if (FDTy->isObjCObjectType()) {
16730      /// A field cannot be an Objective-c object
16731      Diag(FD->getLocation(), diag::err_statically_allocated_object)
16732        << FixItHint::CreateInsertion(FD->getLocation(), "*");
16733      QualType T = Context.getObjCObjectPointerType(FD->getType());
16734      FD->setType(T);
16735    } else if (Record && Record->isUnion() &&
16736               FD->getType().hasNonTrivialObjCLifetime() &&
16737               getSourceManager().isInSystemHeader(FD->getLocation()) &&
16738               !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
16739               (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
16740                !Context.hasDirectOwnershipQualifier(FD->getType()))) {
16741      // For backward compatibility, fields of C unions declared in system
16742      // headers that have non-trivial ObjC ownership qualifications are marked
16743      // as unavailable unless the qualifier is explicit and __strong. This can
16744      // break ABI compatibility between programs compiled with ARC and MRR, but
16745      // is a better option than rejecting programs using those unions under
16746      // ARC.
16747      FD->addAttr(UnavailableAttr::CreateImplicit(
16748          Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
16749          FD->getLocation()));
16750    } else if (getLangOpts().ObjC &&
16751               getLangOpts().getGC() != LangOptions::NonGC &&
16752               Record && !Record->hasObjectMember()) {
16753      if (FD->getType()->isObjCObjectPointerType() ||
16754          FD->getType().isObjCGCStrong())
16755        Record->setHasObjectMember(true);
16756      else if (Context.getAsArrayType(FD->getType())) {
16757        QualType BaseType = Context.getBaseElementType(FD->getType());
16758        if (BaseType->isRecordType() &&
16759            BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
16760          Record->setHasObjectMember(true);
16761        else if (BaseType->isObjCObjectPointerType() ||
16762                 BaseType.isObjCGCStrong())
16763               Record->setHasObjectMember(true);
16764      }
16765    }
16766
16767    if (Record && !getLangOpts().CPlusPlus &&
16768        !shouldIgnoreForRecordTriviality(FD)) {
16769      QualType FT = FD->getType();
16770      if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
16771        Record->setNonTrivialToPrimitiveDefaultInitialize(true);
16772        if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
16773            Record->isUnion())
16774          Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
16775      }
16776      QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
16777      if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
16778        Record->setNonTrivialToPrimitiveCopy(true);
16779        if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
16780          Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
16781      }
16782      if (FT.isDestructedType()) {
16783        Record->setNonTrivialToPrimitiveDestroy(true);
16784        Record->setParamDestroyedInCallee(true);
16785        if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
16786          Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
16787      }
16788
16789      if (const auto *RT = FT->getAs<RecordType>()) {
16790        if (RT->getDecl()->getArgPassingRestrictions() ==
16791            RecordDecl::APK_CanNeverPassInRegs)
16792          Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
16793      } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
16794        Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
16795    }
16796
16797    if (Record && FD->getType().isVolatileQualified())
16798      Record->setHasVolatileMember(true);
16799    // Keep track of the number of named members.
16800    if (FD->getIdentifier())
16801      ++NumNamedMembers;
16802  }
16803
16804  // Okay, we successfully defined 'Record'.
16805  if (Record) {
16806    bool Completed = false;
16807    if (CXXRecord) {
16808      if (!CXXRecord->isInvalidDecl()) {
16809        // Set access bits correctly on the directly-declared conversions.
16810        for (CXXRecordDecl::conversion_iterator
16811               I = CXXRecord->conversion_begin(),
16812               E = CXXRecord->conversion_end(); I != E; ++I)
16813          I.setAccess((*I)->getAccess());
16814      }
16815
16816      if (!CXXRecord->isDependentType()) {
16817        // Add any implicitly-declared members to this class.
16818        AddImplicitlyDeclaredMembersToClass(CXXRecord);
16819
16820        if (!CXXRecord->isInvalidDecl()) {
16821          // If we have virtual base classes, we may end up finding multiple
16822          // final overriders for a given virtual function. Check for this
16823          // problem now.
16824          if (CXXRecord->getNumVBases()) {
16825            CXXFinalOverriderMap FinalOverriders;
16826            CXXRecord->getFinalOverriders(FinalOverriders);
16827
16828            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
16829                                             MEnd = FinalOverriders.end();
16830                 M != MEnd; ++M) {
16831              for (OverridingMethods::iterator SO = M->second.begin(),
16832                                            SOEnd = M->second.end();
16833                   SO != SOEnd; ++SO) {
16834                assert(SO->second.size() > 0 &&
16835                       "Virtual function without overriding functions?");
16836                if (SO->second.size() == 1)
16837                  continue;
16838
16839                // C++ [class.virtual]p2:
16840                //   In a derived class, if a virtual member function of a base
16841                //   class subobject has more than one final overrider the
16842                //   program is ill-formed.
16843                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
16844                  << (const NamedDecl *)M->first << Record;
16845                Diag(M->first->getLocation(),
16846                     diag::note_overridden_virtual_function);
16847                for (OverridingMethods::overriding_iterator
16848                          OM = SO->second.begin(),
16849                       OMEnd = SO->second.end();
16850                     OM != OMEnd; ++OM)
16851                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
16852                    << (const NamedDecl *)M->first << OM->Method->getParent();
16853
16854                Record->setInvalidDecl();
16855              }
16856            }
16857            CXXRecord->completeDefinition(&FinalOverriders);
16858            Completed = true;
16859          }
16860        }
16861      }
16862    }
16863
16864    if (!Completed)
16865      Record->completeDefinition();
16866
16867    // Handle attributes before checking the layout.
16868    ProcessDeclAttributeList(S, Record, Attrs);
16869
16870    // We may have deferred checking for a deleted destructor. Check now.
16871    if (CXXRecord) {
16872      auto *Dtor = CXXRecord->getDestructor();
16873      if (Dtor && Dtor->isImplicit() &&
16874          ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
16875        CXXRecord->setImplicitDestructorIsDeleted();
16876        SetDeclDeleted(Dtor, CXXRecord->getLocation());
16877      }
16878    }
16879
16880    if (Record->hasAttrs()) {
16881      CheckAlignasUnderalignment(Record);
16882
16883      if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
16884        checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
16885                                           IA->getRange(), IA->getBestCase(),
16886                                           IA->getInheritanceModel());
16887    }
16888
16889    // Check if the structure/union declaration is a type that can have zero
16890    // size in C. For C this is a language extension, for C++ it may cause
16891    // compatibility problems.
16892    bool CheckForZeroSize;
16893    if (!getLangOpts().CPlusPlus) {
16894      CheckForZeroSize = true;
16895    } else {
16896      // For C++ filter out types that cannot be referenced in C code.
16897      CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
16898      CheckForZeroSize =
16899          CXXRecord->getLexicalDeclContext()->isExternCContext() &&
16900          !CXXRecord->isDependentType() &&
16901          CXXRecord->isCLike();
16902    }
16903    if (CheckForZeroSize) {
16904      bool ZeroSize = true;
16905      bool IsEmpty = true;
16906      unsigned NonBitFields = 0;
16907      for (RecordDecl::field_iterator I = Record->field_begin(),
16908                                      E = Record->field_end();
16909           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
16910        IsEmpty = false;
16911        if (I->isUnnamedBitfield()) {
16912          if (!I->isZeroLengthBitField(Context))
16913            ZeroSize = false;
16914        } else {
16915          ++NonBitFields;
16916          QualType FieldType = I->getType();
16917          if (FieldType->isIncompleteType() ||
16918              !Context.getTypeSizeInChars(FieldType).isZero())
16919            ZeroSize = false;
16920        }
16921      }
16922
16923      // Empty structs are an extension in C (C99 6.7.2.1p7). They are
16924      // allowed in C++, but warn if its declaration is inside
16925      // extern "C" block.
16926      if (ZeroSize) {
16927        Diag(RecLoc, getLangOpts().CPlusPlus ?
16928                         diag::warn_zero_size_struct_union_in_extern_c :
16929                         diag::warn_zero_size_struct_union_compat)
16930          << IsEmpty << Record->isUnion() << (NonBitFields > 1);
16931      }
16932
16933      // Structs without named members are extension in C (C99 6.7.2.1p7),
16934      // but are accepted by GCC.
16935      if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
16936        Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
16937                               diag::ext_no_named_members_in_struct_union)
16938          << Record->isUnion();
16939      }
16940    }
16941  } else {
16942    ObjCIvarDecl **ClsFields =
16943      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
16944    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
16945      ID->setEndOfDefinitionLoc(RBrac);
16946      // Add ivar's to class's DeclContext.
16947      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16948        ClsFields[i]->setLexicalDeclContext(ID);
16949        ID->addDecl(ClsFields[i]);
16950      }
16951      // Must enforce the rule that ivars in the base classes may not be
16952      // duplicates.
16953      if (ID->getSuperClass())
16954        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
16955    } else if (ObjCImplementationDecl *IMPDecl =
16956                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16957      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
16958      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
16959        // Ivar declared in @implementation never belongs to the implementation.
16960        // Only it is in implementation's lexical context.
16961        ClsFields[I]->setLexicalDeclContext(IMPDecl);
16962      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
16963      IMPDecl->setIvarLBraceLoc(LBrac);
16964      IMPDecl->setIvarRBraceLoc(RBrac);
16965    } else if (ObjCCategoryDecl *CDecl =
16966                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16967      // case of ivars in class extension; all other cases have been
16968      // reported as errors elsewhere.
16969      // FIXME. Class extension does not have a LocEnd field.
16970      // CDecl->setLocEnd(RBrac);
16971      // Add ivar's to class extension's DeclContext.
16972      // Diagnose redeclaration of private ivars.
16973      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
16974      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16975        if (IDecl) {
16976          if (const ObjCIvarDecl *ClsIvar =
16977              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
16978            Diag(ClsFields[i]->getLocation(),
16979                 diag::err_duplicate_ivar_declaration);
16980            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
16981            continue;
16982          }
16983          for (const auto *Ext : IDecl->known_extensions()) {
16984            if (const ObjCIvarDecl *ClsExtIvar
16985                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
16986              Diag(ClsFields[i]->getLocation(),
16987                   diag::err_duplicate_ivar_declaration);
16988              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
16989              continue;
16990            }
16991          }
16992        }
16993        ClsFields[i]->setLexicalDeclContext(CDecl);
16994        CDecl->addDecl(ClsFields[i]);
16995      }
16996      CDecl->setIvarLBraceLoc(LBrac);
16997      CDecl->setIvarRBraceLoc(RBrac);
16998    }
16999  }
17000}
17001
17002/// Determine whether the given integral value is representable within
17003/// the given type T.
17004static bool isRepresentableIntegerValue(ASTContext &Context,
17005                                        llvm::APSInt &Value,
17006                                        QualType T) {
17007  assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
17008         "Integral type required!");
17009  unsigned BitWidth = Context.getIntWidth(T);
17010
17011  if (Value.isUnsigned() || Value.isNonNegative()) {
17012    if (T->isSignedIntegerOrEnumerationType())
17013      --BitWidth;
17014    return Value.getActiveBits() <= BitWidth;
17015  }
17016  return Value.getMinSignedBits() <= BitWidth;
17017}
17018
17019// Given an integral type, return the next larger integral type
17020// (or a NULL type of no such type exists).
17021static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
17022  // FIXME: Int128/UInt128 support, which also needs to be introduced into
17023  // enum checking below.
17024  assert((T->isIntegralType(Context) ||
17025         T->isEnumeralType()) && "Integral type required!");
17026  const unsigned NumTypes = 4;
17027  QualType SignedIntegralTypes[NumTypes] = {
17028    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
17029  };
17030  QualType UnsignedIntegralTypes[NumTypes] = {
17031    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
17032    Context.UnsignedLongLongTy
17033  };
17034
17035  unsigned BitWidth = Context.getTypeSize(T);
17036  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
17037                                                        : UnsignedIntegralTypes;
17038  for (unsigned I = 0; I != NumTypes; ++I)
17039    if (Context.getTypeSize(Types[I]) > BitWidth)
17040      return Types[I];
17041
17042  return QualType();
17043}
17044
17045EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
17046                                          EnumConstantDecl *LastEnumConst,
17047                                          SourceLocation IdLoc,
17048                                          IdentifierInfo *Id,
17049                                          Expr *Val) {
17050  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17051  llvm::APSInt EnumVal(IntWidth);
17052  QualType EltTy;
17053
17054  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
17055    Val = nullptr;
17056
17057  if (Val)
17058    Val = DefaultLvalueConversion(Val).get();
17059
17060  if (Val) {
17061    if (Enum->isDependentType() || Val->isTypeDependent())
17062      EltTy = Context.DependentTy;
17063    else {
17064      if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
17065        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
17066        // constant-expression in the enumerator-definition shall be a converted
17067        // constant expression of the underlying type.
17068        EltTy = Enum->getIntegerType();
17069        ExprResult Converted =
17070          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
17071                                           CCEK_Enumerator);
17072        if (Converted.isInvalid())
17073          Val = nullptr;
17074        else
17075          Val = Converted.get();
17076      } else if (!Val->isValueDependent() &&
17077                 !(Val = VerifyIntegerConstantExpression(Val,
17078                                                         &EnumVal).get())) {
17079        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
17080      } else {
17081        if (Enum->isComplete()) {
17082          EltTy = Enum->getIntegerType();
17083
17084          // In Obj-C and Microsoft mode, require the enumeration value to be
17085          // representable in the underlying type of the enumeration. In C++11,
17086          // we perform a non-narrowing conversion as part of converted constant
17087          // expression checking.
17088          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17089            if (Context.getTargetInfo()
17090                    .getTriple()
17091                    .isWindowsMSVCEnvironment()) {
17092              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
17093            } else {
17094              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
17095            }
17096          }
17097
17098          // Cast to the underlying type.
17099          Val = ImpCastExprToType(Val, EltTy,
17100                                  EltTy->isBooleanType() ? CK_IntegralToBoolean
17101                                                         : CK_IntegralCast)
17102                    .get();
17103        } else if (getLangOpts().CPlusPlus) {
17104          // C++11 [dcl.enum]p5:
17105          //   If the underlying type is not fixed, the type of each enumerator
17106          //   is the type of its initializing value:
17107          //     - If an initializer is specified for an enumerator, the
17108          //       initializing value has the same type as the expression.
17109          EltTy = Val->getType();
17110        } else {
17111          // C99 6.7.2.2p2:
17112          //   The expression that defines the value of an enumeration constant
17113          //   shall be an integer constant expression that has a value
17114          //   representable as an int.
17115
17116          // Complain if the value is not representable in an int.
17117          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
17118            Diag(IdLoc, diag::ext_enum_value_not_int)
17119              << EnumVal.toString(10) << Val->getSourceRange()
17120              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
17121          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
17122            // Force the type of the expression to 'int'.
17123            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
17124          }
17125          EltTy = Val->getType();
17126        }
17127      }
17128    }
17129  }
17130
17131  if (!Val) {
17132    if (Enum->isDependentType())
17133      EltTy = Context.DependentTy;
17134    else if (!LastEnumConst) {
17135      // C++0x [dcl.enum]p5:
17136      //   If the underlying type is not fixed, the type of each enumerator
17137      //   is the type of its initializing value:
17138      //     - If no initializer is specified for the first enumerator, the
17139      //       initializing value has an unspecified integral type.
17140      //
17141      // GCC uses 'int' for its unspecified integral type, as does
17142      // C99 6.7.2.2p3.
17143      if (Enum->isFixed()) {
17144        EltTy = Enum->getIntegerType();
17145      }
17146      else {
17147        EltTy = Context.IntTy;
17148      }
17149    } else {
17150      // Assign the last value + 1.
17151      EnumVal = LastEnumConst->getInitVal();
17152      ++EnumVal;
17153      EltTy = LastEnumConst->getType();
17154
17155      // Check for overflow on increment.
17156      if (EnumVal < LastEnumConst->getInitVal()) {
17157        // C++0x [dcl.enum]p5:
17158        //   If the underlying type is not fixed, the type of each enumerator
17159        //   is the type of its initializing value:
17160        //
17161        //     - Otherwise the type of the initializing value is the same as
17162        //       the type of the initializing value of the preceding enumerator
17163        //       unless the incremented value is not representable in that type,
17164        //       in which case the type is an unspecified integral type
17165        //       sufficient to contain the incremented value. If no such type
17166        //       exists, the program is ill-formed.
17167        QualType T = getNextLargerIntegralType(Context, EltTy);
17168        if (T.isNull() || Enum->isFixed()) {
17169          // There is no integral type larger enough to represent this
17170          // value. Complain, then allow the value to wrap around.
17171          EnumVal = LastEnumConst->getInitVal();
17172          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
17173          ++EnumVal;
17174          if (Enum->isFixed())
17175            // When the underlying type is fixed, this is ill-formed.
17176            Diag(IdLoc, diag::err_enumerator_wrapped)
17177              << EnumVal.toString(10)
17178              << EltTy;
17179          else
17180            Diag(IdLoc, diag::ext_enumerator_increment_too_large)
17181              << EnumVal.toString(10);
17182        } else {
17183          EltTy = T;
17184        }
17185
17186        // Retrieve the last enumerator's value, extent that type to the
17187        // type that is supposed to be large enough to represent the incremented
17188        // value, then increment.
17189        EnumVal = LastEnumConst->getInitVal();
17190        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17191        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
17192        ++EnumVal;
17193
17194        // If we're not in C++, diagnose the overflow of enumerator values,
17195        // which in C99 means that the enumerator value is not representable in
17196        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
17197        // permits enumerator values that are representable in some larger
17198        // integral type.
17199        if (!getLangOpts().CPlusPlus && !T.isNull())
17200          Diag(IdLoc, diag::warn_enum_value_overflow);
17201      } else if (!getLangOpts().CPlusPlus &&
17202                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17203        // Enforce C99 6.7.2.2p2 even when we compute the next value.
17204        Diag(IdLoc, diag::ext_enum_value_not_int)
17205          << EnumVal.toString(10) << 1;
17206      }
17207    }
17208  }
17209
17210  if (!EltTy->isDependentType()) {
17211    // Make the enumerator value match the signedness and size of the
17212    // enumerator's type.
17213    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
17214    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17215  }
17216
17217  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
17218                                  Val, EnumVal);
17219}
17220
17221Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
17222                                                SourceLocation IILoc) {
17223  if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
17224      !getLangOpts().CPlusPlus)
17225    return SkipBodyInfo();
17226
17227  // We have an anonymous enum definition. Look up the first enumerator to
17228  // determine if we should merge the definition with an existing one and
17229  // skip the body.
17230  NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
17231                                         forRedeclarationInCurContext());
17232  auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
17233  if (!PrevECD)
17234    return SkipBodyInfo();
17235
17236  EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
17237  NamedDecl *Hidden;
17238  if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
17239    SkipBodyInfo Skip;
17240    Skip.Previous = Hidden;
17241    return Skip;
17242  }
17243
17244  return SkipBodyInfo();
17245}
17246
17247Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
17248                              SourceLocation IdLoc, IdentifierInfo *Id,
17249                              const ParsedAttributesView &Attrs,
17250                              SourceLocation EqualLoc, Expr *Val) {
17251  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
17252  EnumConstantDecl *LastEnumConst =
17253    cast_or_null<EnumConstantDecl>(lastEnumConst);
17254
17255  // The scope passed in may not be a decl scope.  Zip up the scope tree until
17256  // we find one that is.
17257  S = getNonFieldDeclScope(S);
17258
17259  // Verify that there isn't already something declared with this name in this
17260  // scope.
17261  LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
17262  LookupName(R, S);
17263  NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
17264
17265  if (PrevDecl && PrevDecl->isTemplateParameter()) {
17266    // Maybe we will complain about the shadowed template parameter.
17267    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
17268    // Just pretend that we didn't see the previous declaration.
17269    PrevDecl = nullptr;
17270  }
17271
17272  // C++ [class.mem]p15:
17273  // If T is the name of a class, then each of the following shall have a name
17274  // different from T:
17275  // - every enumerator of every member of class T that is an unscoped
17276  // enumerated type
17277  if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
17278    DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
17279                            DeclarationNameInfo(Id, IdLoc));
17280
17281  EnumConstantDecl *New =
17282    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
17283  if (!New)
17284    return nullptr;
17285
17286  if (PrevDecl) {
17287    if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
17288      // Check for other kinds of shadowing not already handled.
17289      CheckShadow(New, PrevDecl, R);
17290    }
17291
17292    // When in C++, we may get a TagDecl with the same name; in this case the
17293    // enum constant will 'hide' the tag.
17294    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
17295           "Received TagDecl when not in C++!");
17296    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
17297      if (isa<EnumConstantDecl>(PrevDecl))
17298        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
17299      else
17300        Diag(IdLoc, diag::err_redefinition) << Id;
17301      notePreviousDefinition(PrevDecl, IdLoc);
17302      return nullptr;
17303    }
17304  }
17305
17306  // Process attributes.
17307  ProcessDeclAttributeList(S, New, Attrs);
17308  AddPragmaAttributes(S, New);
17309
17310  // Register this decl in the current scope stack.
17311  New->setAccess(TheEnumDecl->getAccess());
17312  PushOnScopeChains(New, S);
17313
17314  ActOnDocumentableDecl(New);
17315
17316  return New;
17317}
17318
17319// Returns true when the enum initial expression does not trigger the
17320// duplicate enum warning.  A few common cases are exempted as follows:
17321// Element2 = Element1
17322// Element2 = Element1 + 1
17323// Element2 = Element1 - 1
17324// Where Element2 and Element1 are from the same enum.
17325static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
17326  Expr *InitExpr = ECD->getInitExpr();
17327  if (!InitExpr)
17328    return true;
17329  InitExpr = InitExpr->IgnoreImpCasts();
17330
17331  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
17332    if (!BO->isAdditiveOp())
17333      return true;
17334    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
17335    if (!IL)
17336      return true;
17337    if (IL->getValue() != 1)
17338      return true;
17339
17340    InitExpr = BO->getLHS();
17341  }
17342
17343  // This checks if the elements are from the same enum.
17344  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
17345  if (!DRE)
17346    return true;
17347
17348  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
17349  if (!EnumConstant)
17350    return true;
17351
17352  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
17353      Enum)
17354    return true;
17355
17356  return false;
17357}
17358
17359// Emits a warning when an element is implicitly set a value that
17360// a previous element has already been set to.
17361static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
17362                                        EnumDecl *Enum, QualType EnumType) {
17363  // Avoid anonymous enums
17364  if (!Enum->getIdentifier())
17365    return;
17366
17367  // Only check for small enums.
17368  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
17369    return;
17370
17371  if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
17372    return;
17373
17374  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
17375  typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
17376
17377  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
17378  typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
17379
17380  // Use int64_t as a key to avoid needing special handling for DenseMap keys.
17381  auto EnumConstantToKey = [](const EnumConstantDecl *D) {
17382    llvm::APSInt Val = D->getInitVal();
17383    return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
17384  };
17385
17386  DuplicatesVector DupVector;
17387  ValueToVectorMap EnumMap;
17388
17389  // Populate the EnumMap with all values represented by enum constants without
17390  // an initializer.
17391  for (auto *Element : Elements) {
17392    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
17393
17394    // Null EnumConstantDecl means a previous diagnostic has been emitted for
17395    // this constant.  Skip this enum since it may be ill-formed.
17396    if (!ECD) {
17397      return;
17398    }
17399
17400    // Constants with initalizers are handled in the next loop.
17401    if (ECD->getInitExpr())
17402      continue;
17403
17404    // Duplicate values are handled in the next loop.
17405    EnumMap.insert({EnumConstantToKey(ECD), ECD});
17406  }
17407
17408  if (EnumMap.size() == 0)
17409    return;
17410
17411  // Create vectors for any values that has duplicates.
17412  for (auto *Element : Elements) {
17413    // The last loop returned if any constant was null.
17414    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
17415    if (!ValidDuplicateEnum(ECD, Enum))
17416      continue;
17417
17418    auto Iter = EnumMap.find(EnumConstantToKey(ECD));
17419    if (Iter == EnumMap.end())
17420      continue;
17421
17422    DeclOrVector& Entry = Iter->second;
17423    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
17424      // Ensure constants are different.
17425      if (D == ECD)
17426        continue;
17427
17428      // Create new vector and push values onto it.
17429      auto Vec = std::make_unique<ECDVector>();
17430      Vec->push_back(D);
17431      Vec->push_back(ECD);
17432
17433      // Update entry to point to the duplicates vector.
17434      Entry = Vec.get();
17435
17436      // Store the vector somewhere we can consult later for quick emission of
17437      // diagnostics.
17438      DupVector.emplace_back(std::move(Vec));
17439      continue;
17440    }
17441
17442    ECDVector *Vec = Entry.get<ECDVector*>();
17443    // Make sure constants are not added more than once.
17444    if (*Vec->begin() == ECD)
17445      continue;
17446
17447    Vec->push_back(ECD);
17448  }
17449
17450  // Emit diagnostics.
17451  for (const auto &Vec : DupVector) {
17452    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
17453
17454    // Emit warning for one enum constant.
17455    auto *FirstECD = Vec->front();
17456    S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
17457      << FirstECD << FirstECD->getInitVal().toString(10)
17458      << FirstECD->getSourceRange();
17459
17460    // Emit one note for each of the remaining enum constants with
17461    // the same value.
17462    for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
17463      S.Diag(ECD->getLocation(), diag::note_duplicate_element)
17464        << ECD << ECD->getInitVal().toString(10)
17465        << ECD->getSourceRange();
17466  }
17467}
17468
17469bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
17470                             bool AllowMask) const {
17471  assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
17472  assert(ED->isCompleteDefinition() && "expected enum definition");
17473
17474  auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
17475  llvm::APInt &FlagBits = R.first->second;
17476
17477  if (R.second) {
17478    for (auto *E : ED->enumerators()) {
17479      const auto &EVal = E->getInitVal();
17480      // Only single-bit enumerators introduce new flag values.
17481      if (EVal.isPowerOf2())
17482        FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
17483    }
17484  }
17485
17486  // A value is in a flag enum if either its bits are a subset of the enum's
17487  // flag bits (the first condition) or we are allowing masks and the same is
17488  // true of its complement (the second condition). When masks are allowed, we
17489  // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
17490  //
17491  // While it's true that any value could be used as a mask, the assumption is
17492  // that a mask will have all of the insignificant bits set. Anything else is
17493  // likely a logic error.
17494  llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
17495  return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
17496}
17497
17498void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
17499                         Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
17500                         const ParsedAttributesView &Attrs) {
17501  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
17502  QualType EnumType = Context.getTypeDeclType(Enum);
17503
17504  ProcessDeclAttributeList(S, Enum, Attrs);
17505
17506  if (Enum->isDependentType()) {
17507    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
17508      EnumConstantDecl *ECD =
17509        cast_or_null<EnumConstantDecl>(Elements[i]);
17510      if (!ECD) continue;
17511
17512      ECD->setType(EnumType);
17513    }
17514
17515    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
17516    return;
17517  }
17518
17519  // TODO: If the result value doesn't fit in an int, it must be a long or long
17520  // long value.  ISO C does not support this, but GCC does as an extension,
17521  // emit a warning.
17522  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17523  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
17524  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
17525
17526  // Verify that all the values are okay, compute the size of the values, and
17527  // reverse the list.
17528  unsigned NumNegativeBits = 0;
17529  unsigned NumPositiveBits = 0;
17530
17531  // Keep track of whether all elements have type int.
17532  bool AllElementsInt = true;
17533
17534  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
17535    EnumConstantDecl *ECD =
17536      cast_or_null<EnumConstantDecl>(Elements[i]);
17537    if (!ECD) continue;  // Already issued a diagnostic.
17538
17539    const llvm::APSInt &InitVal = ECD->getInitVal();
17540
17541    // Keep track of the size of positive and negative values.
17542    if (InitVal.isUnsigned() || InitVal.isNonNegative())
17543      NumPositiveBits = std::max(NumPositiveBits,
17544                                 (unsigned)InitVal.getActiveBits());
17545    else
17546      NumNegativeBits = std::max(NumNegativeBits,
17547                                 (unsigned)InitVal.getMinSignedBits());
17548
17549    // Keep track of whether every enum element has type int (very common).
17550    if (AllElementsInt)
17551      AllElementsInt = ECD->getType() == Context.IntTy;
17552  }
17553
17554  // Figure out the type that should be used for this enum.
17555  QualType BestType;
17556  unsigned BestWidth;
17557
17558  // C++0x N3000 [conv.prom]p3:
17559  //   An rvalue of an unscoped enumeration type whose underlying
17560  //   type is not fixed can be converted to an rvalue of the first
17561  //   of the following types that can represent all the values of
17562  //   the enumeration: int, unsigned int, long int, unsigned long
17563  //   int, long long int, or unsigned long long int.
17564  // C99 6.4.4.3p2:
17565  //   An identifier declared as an enumeration constant has type int.
17566  // The C99 rule is modified by a gcc extension
17567  QualType BestPromotionType;
17568
17569  bool Packed = Enum->hasAttr<PackedAttr>();
17570  // -fshort-enums is the equivalent to specifying the packed attribute on all
17571  // enum definitions.
17572  if (LangOpts.ShortEnums)
17573    Packed = true;
17574
17575  // If the enum already has a type because it is fixed or dictated by the
17576  // target, promote that type instead of analyzing the enumerators.
17577  if (Enum->isComplete()) {
17578    BestType = Enum->getIntegerType();
17579    if (BestType->isPromotableIntegerType())
17580      BestPromotionType = Context.getPromotedIntegerType(BestType);
17581    else
17582      BestPromotionType = BestType;
17583
17584    BestWidth = Context.getIntWidth(BestType);
17585  }
17586  else if (NumNegativeBits) {
17587    // If there is a negative value, figure out the smallest integer type (of
17588    // int/long/longlong) that fits.
17589    // If it's packed, check also if it fits a char or a short.
17590    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
17591      BestType = Context.SignedCharTy;
17592      BestWidth = CharWidth;
17593    } else if (Packed && NumNegativeBits <= ShortWidth &&
17594               NumPositiveBits < ShortWidth) {
17595      BestType = Context.ShortTy;
17596      BestWidth = ShortWidth;
17597    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
17598      BestType = Context.IntTy;
17599      BestWidth = IntWidth;
17600    } else {
17601      BestWidth = Context.getTargetInfo().getLongWidth();
17602
17603      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
17604        BestType = Context.LongTy;
17605      } else {
17606        BestWidth = Context.getTargetInfo().getLongLongWidth();
17607
17608        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
17609          Diag(Enum->getLocation(), diag::ext_enum_too_large);
17610        BestType = Context.LongLongTy;
17611      }
17612    }
17613    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
17614  } else {
17615    // If there is no negative value, figure out the smallest type that fits
17616    // all of the enumerator values.
17617    // If it's packed, check also if it fits a char or a short.
17618    if (Packed && NumPositiveBits <= CharWidth) {
17619      BestType = Context.UnsignedCharTy;
17620      BestPromotionType = Context.IntTy;
17621      BestWidth = CharWidth;
17622    } else if (Packed && NumPositiveBits <= ShortWidth) {
17623      BestType = Context.UnsignedShortTy;
17624      BestPromotionType = Context.IntTy;
17625      BestWidth = ShortWidth;
17626    } else if (NumPositiveBits <= IntWidth) {
17627      BestType = Context.UnsignedIntTy;
17628      BestWidth = IntWidth;
17629      BestPromotionType
17630        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
17631                           ? Context.UnsignedIntTy : Context.IntTy;
17632    } else if (NumPositiveBits <=
17633               (BestWidth = Context.getTargetInfo().getLongWidth())) {
17634      BestType = Context.UnsignedLongTy;
17635      BestPromotionType
17636        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
17637                           ? Context.UnsignedLongTy : Context.LongTy;
17638    } else {
17639      BestWidth = Context.getTargetInfo().getLongLongWidth();
17640      assert(NumPositiveBits <= BestWidth &&
17641             "How could an initializer get larger than ULL?");
17642      BestType = Context.UnsignedLongLongTy;
17643      BestPromotionType
17644        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
17645                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
17646    }
17647  }
17648
17649  // Loop over all of the enumerator constants, changing their types to match
17650  // the type of the enum if needed.
17651  for (auto *D : Elements) {
17652    auto *ECD = cast_or_null<EnumConstantDecl>(D);
17653    if (!ECD) continue;  // Already issued a diagnostic.
17654
17655    // Standard C says the enumerators have int type, but we allow, as an
17656    // extension, the enumerators to be larger than int size.  If each
17657    // enumerator value fits in an int, type it as an int, otherwise type it the
17658    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
17659    // that X has type 'int', not 'unsigned'.
17660
17661    // Determine whether the value fits into an int.
17662    llvm::APSInt InitVal = ECD->getInitVal();
17663
17664    // If it fits into an integer type, force it.  Otherwise force it to match
17665    // the enum decl type.
17666    QualType NewTy;
17667    unsigned NewWidth;
17668    bool NewSign;
17669    if (!getLangOpts().CPlusPlus &&
17670        !Enum->isFixed() &&
17671        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
17672      NewTy = Context.IntTy;
17673      NewWidth = IntWidth;
17674      NewSign = true;
17675    } else if (ECD->getType() == BestType) {
17676      // Already the right type!
17677      if (getLangOpts().CPlusPlus)
17678        // C++ [dcl.enum]p4: Following the closing brace of an
17679        // enum-specifier, each enumerator has the type of its
17680        // enumeration.
17681        ECD->setType(EnumType);
17682      continue;
17683    } else {
17684      NewTy = BestType;
17685      NewWidth = BestWidth;
17686      NewSign = BestType->isSignedIntegerOrEnumerationType();
17687    }
17688
17689    // Adjust the APSInt value.
17690    InitVal = InitVal.extOrTrunc(NewWidth);
17691    InitVal.setIsSigned(NewSign);
17692    ECD->setInitVal(InitVal);
17693
17694    // Adjust the Expr initializer and type.
17695    if (ECD->getInitExpr() &&
17696        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
17697      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
17698                                                CK_IntegralCast,
17699                                                ECD->getInitExpr(),
17700                                                /*base paths*/ nullptr,
17701                                                VK_RValue));
17702    if (getLangOpts().CPlusPlus)
17703      // C++ [dcl.enum]p4: Following the closing brace of an
17704      // enum-specifier, each enumerator has the type of its
17705      // enumeration.
17706      ECD->setType(EnumType);
17707    else
17708      ECD->setType(NewTy);
17709  }
17710
17711  Enum->completeDefinition(BestType, BestPromotionType,
17712                           NumPositiveBits, NumNegativeBits);
17713
17714  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
17715
17716  if (Enum->isClosedFlag()) {
17717    for (Decl *D : Elements) {
17718      EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
17719      if (!ECD) continue;  // Already issued a diagnostic.
17720
17721      llvm::APSInt InitVal = ECD->getInitVal();
17722      if (InitVal != 0 && !InitVal.isPowerOf2() &&
17723          !IsValueInFlagEnum(Enum, InitVal, true))
17724        Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
17725          << ECD << Enum;
17726    }
17727  }
17728
17729  // Now that the enum type is defined, ensure it's not been underaligned.
17730  if (Enum->hasAttrs())
17731    CheckAlignasUnderalignment(Enum);
17732}
17733
17734Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
17735                                  SourceLocation StartLoc,
17736                                  SourceLocation EndLoc) {
17737  StringLiteral *AsmString = cast<StringLiteral>(expr);
17738
17739  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
17740                                                   AsmString, StartLoc,
17741                                                   EndLoc);
17742  CurContext->addDecl(New);
17743  return New;
17744}
17745
17746void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
17747                                      IdentifierInfo* AliasName,
17748                                      SourceLocation PragmaLoc,
17749                                      SourceLocation NameLoc,
17750                                      SourceLocation AliasNameLoc) {
17751  NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
17752                                         LookupOrdinaryName);
17753  AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
17754                           AttributeCommonInfo::AS_Pragma);
17755  AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
17756      Context, AliasName->getName(), /*LiteralLabel=*/true, Info);
17757
17758  // If a declaration that:
17759  // 1) declares a function or a variable
17760  // 2) has external linkage
17761  // already exists, add a label attribute to it.
17762  if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17763    if (isDeclExternC(PrevDecl))
17764      PrevDecl->addAttr(Attr);
17765    else
17766      Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
17767          << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
17768  // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
17769  } else
17770    (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
17771}
17772
17773void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
17774                             SourceLocation PragmaLoc,
17775                             SourceLocation NameLoc) {
17776  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
17777
17778  if (PrevDecl) {
17779    PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
17780  } else {
17781    (void)WeakUndeclaredIdentifiers.insert(
17782      std::pair<IdentifierInfo*,WeakInfo>
17783        (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
17784  }
17785}
17786
17787void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
17788                                IdentifierInfo* AliasName,
17789                                SourceLocation PragmaLoc,
17790                                SourceLocation NameLoc,
17791                                SourceLocation AliasNameLoc) {
17792  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
17793                                    LookupOrdinaryName);
17794  WeakInfo W = WeakInfo(Name, NameLoc);
17795
17796  if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17797    if (!PrevDecl->hasAttr<AliasAttr>())
17798      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
17799        DeclApplyPragmaWeak(TUScope, ND, W);
17800  } else {
17801    (void)WeakUndeclaredIdentifiers.insert(
17802      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
17803  }
17804}
17805
17806Decl *Sema::getObjCDeclContext() const {
17807  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
17808}
17809
17810Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD) {
17811  // Templates are emitted when they're instantiated.
17812  if (FD->isDependentContext())
17813    return FunctionEmissionStatus::TemplateDiscarded;
17814
17815  FunctionEmissionStatus OMPES = FunctionEmissionStatus::Unknown;
17816  if (LangOpts.OpenMPIsDevice) {
17817    Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
17818        OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
17819    if (DevTy.hasValue()) {
17820      if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
17821        OMPES = FunctionEmissionStatus::OMPDiscarded;
17822      else if (DeviceKnownEmittedFns.count(FD) > 0)
17823        OMPES = FunctionEmissionStatus::Emitted;
17824    }
17825  } else if (LangOpts.OpenMP) {
17826    // In OpenMP 4.5 all the functions are host functions.
17827    if (LangOpts.OpenMP <= 45) {
17828      OMPES = FunctionEmissionStatus::Emitted;
17829    } else {
17830      Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
17831          OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
17832      // In OpenMP 5.0 or above, DevTy may be changed later by
17833      // #pragma omp declare target to(*) device_type(*). Therefore DevTy
17834      // having no value does not imply host. The emission status will be
17835      // checked again at the end of compilation unit.
17836      if (DevTy.hasValue()) {
17837        if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) {
17838          OMPES = FunctionEmissionStatus::OMPDiscarded;
17839        } else if (DeviceKnownEmittedFns.count(FD) > 0) {
17840          OMPES = FunctionEmissionStatus::Emitted;
17841        }
17842      }
17843    }
17844  }
17845  if (OMPES == FunctionEmissionStatus::OMPDiscarded ||
17846      (OMPES == FunctionEmissionStatus::Emitted && !LangOpts.CUDA))
17847    return OMPES;
17848
17849  if (LangOpts.CUDA) {
17850    // When compiling for device, host functions are never emitted.  Similarly,
17851    // when compiling for host, device and global functions are never emitted.
17852    // (Technically, we do emit a host-side stub for global functions, but this
17853    // doesn't count for our purposes here.)
17854    Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
17855    if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
17856      return FunctionEmissionStatus::CUDADiscarded;
17857    if (!LangOpts.CUDAIsDevice &&
17858        (T == Sema::CFT_Device || T == Sema::CFT_Global))
17859      return FunctionEmissionStatus::CUDADiscarded;
17860
17861    // Check whether this function is externally visible -- if so, it's
17862    // known-emitted.
17863    //
17864    // We have to check the GVA linkage of the function's *definition* -- if we
17865    // only have a declaration, we don't know whether or not the function will
17866    // be emitted, because (say) the definition could include "inline".
17867    FunctionDecl *Def = FD->getDefinition();
17868
17869    if (Def &&
17870        !isDiscardableGVALinkage(getASTContext().GetGVALinkageForFunction(Def))
17871        && (!LangOpts.OpenMP || OMPES == FunctionEmissionStatus::Emitted))
17872      return FunctionEmissionStatus::Emitted;
17873  }
17874
17875  // Otherwise, the function is known-emitted if it's in our set of
17876  // known-emitted functions.
17877  return (DeviceKnownEmittedFns.count(FD) > 0)
17878             ? FunctionEmissionStatus::Emitted
17879             : FunctionEmissionStatus::Unknown;
17880}
17881
17882bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
17883  // Host-side references to a __global__ function refer to the stub, so the
17884  // function itself is never emitted and therefore should not be marked.
17885  // If we have host fn calls kernel fn calls host+device, the HD function
17886  // does not get instantiated on the host. We model this by omitting at the
17887  // call to the kernel from the callgraph. This ensures that, when compiling
17888  // for host, only HD functions actually called from the host get marked as
17889  // known-emitted.
17890  return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
17891         IdentifyCUDATarget(Callee) == CFT_Global;
17892}
17893