CGExprAgg.cpp revision 360784
1//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Aggregate Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGObjCRuntime.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "ConstantEmitter.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/StmtVisitor.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/GlobalVariable.h"
26#include "llvm/IR/IntrinsicInst.h"
27#include "llvm/IR/Intrinsics.h"
28using namespace clang;
29using namespace CodeGen;
30
31//===----------------------------------------------------------------------===//
32//                        Aggregate Expression Emitter
33//===----------------------------------------------------------------------===//
34
35namespace  {
36class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
37  CodeGenFunction &CGF;
38  CGBuilderTy &Builder;
39  AggValueSlot Dest;
40  bool IsResultUnused;
41
42  AggValueSlot EnsureSlot(QualType T) {
43    if (!Dest.isIgnored()) return Dest;
44    return CGF.CreateAggTemp(T, "agg.tmp.ensured");
45  }
46  void EnsureDest(QualType T) {
47    if (!Dest.isIgnored()) return;
48    Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
49  }
50
51  // Calls `Fn` with a valid return value slot, potentially creating a temporary
52  // to do so. If a temporary is created, an appropriate copy into `Dest` will
53  // be emitted, as will lifetime markers.
54  //
55  // The given function should take a ReturnValueSlot, and return an RValue that
56  // points to said slot.
57  void withReturnValueSlot(const Expr *E,
58                           llvm::function_ref<RValue(ReturnValueSlot)> Fn);
59
60public:
61  AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
62    : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63    IsResultUnused(IsResultUnused) { }
64
65  //===--------------------------------------------------------------------===//
66  //                               Utilities
67  //===--------------------------------------------------------------------===//
68
69  /// EmitAggLoadOfLValue - Given an expression with aggregate type that
70  /// represents a value lvalue, this method emits the address of the lvalue,
71  /// then loads the result into DestPtr.
72  void EmitAggLoadOfLValue(const Expr *E);
73
74  enum ExprValueKind {
75    EVK_RValue,
76    EVK_NonRValue
77  };
78
79  /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80  /// SrcIsRValue is true if source comes from an RValue.
81  void EmitFinalDestCopy(QualType type, const LValue &src,
82                         ExprValueKind SrcValueKind = EVK_NonRValue);
83  void EmitFinalDestCopy(QualType type, RValue src);
84  void EmitCopy(QualType type, const AggValueSlot &dest,
85                const AggValueSlot &src);
86
87  void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
88
89  void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
90                     QualType ArrayQTy, InitListExpr *E);
91
92  AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
93    if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
94      return AggValueSlot::NeedsGCBarriers;
95    return AggValueSlot::DoesNotNeedGCBarriers;
96  }
97
98  bool TypeRequiresGCollection(QualType T);
99
100  //===--------------------------------------------------------------------===//
101  //                            Visitor Methods
102  //===--------------------------------------------------------------------===//
103
104  void Visit(Expr *E) {
105    ApplyDebugLocation DL(CGF, E);
106    StmtVisitor<AggExprEmitter>::Visit(E);
107  }
108
109  void VisitStmt(Stmt *S) {
110    CGF.ErrorUnsupported(S, "aggregate expression");
111  }
112  void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
113  void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
114    Visit(GE->getResultExpr());
115  }
116  void VisitCoawaitExpr(CoawaitExpr *E) {
117    CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
118  }
119  void VisitCoyieldExpr(CoyieldExpr *E) {
120    CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
121  }
122  void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
123  void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
124  void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
125    return Visit(E->getReplacement());
126  }
127
128  void VisitConstantExpr(ConstantExpr *E) {
129    return Visit(E->getSubExpr());
130  }
131
132  // l-values.
133  void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
134  void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
135  void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
136  void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
137  void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
138  void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
139    EmitAggLoadOfLValue(E);
140  }
141  void VisitPredefinedExpr(const PredefinedExpr *E) {
142    EmitAggLoadOfLValue(E);
143  }
144
145  // Operators.
146  void VisitCastExpr(CastExpr *E);
147  void VisitCallExpr(const CallExpr *E);
148  void VisitStmtExpr(const StmtExpr *E);
149  void VisitBinaryOperator(const BinaryOperator *BO);
150  void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
151  void VisitBinAssign(const BinaryOperator *E);
152  void VisitBinComma(const BinaryOperator *E);
153  void VisitBinCmp(const BinaryOperator *E);
154  void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
155    Visit(E->getSemanticForm());
156  }
157
158  void VisitObjCMessageExpr(ObjCMessageExpr *E);
159  void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
160    EmitAggLoadOfLValue(E);
161  }
162
163  void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
164  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
165  void VisitChooseExpr(const ChooseExpr *CE);
166  void VisitInitListExpr(InitListExpr *E);
167  void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
168                              llvm::Value *outerBegin = nullptr);
169  void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
170  void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
171  void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
172    CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
173    Visit(DAE->getExpr());
174  }
175  void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
176    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
177    Visit(DIE->getExpr());
178  }
179  void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
180  void VisitCXXConstructExpr(const CXXConstructExpr *E);
181  void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
182  void VisitLambdaExpr(LambdaExpr *E);
183  void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
184  void VisitExprWithCleanups(ExprWithCleanups *E);
185  void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
186  void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
187  void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
188  void VisitOpaqueValueExpr(OpaqueValueExpr *E);
189
190  void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
191    if (E->isGLValue()) {
192      LValue LV = CGF.EmitPseudoObjectLValue(E);
193      return EmitFinalDestCopy(E->getType(), LV);
194    }
195
196    CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
197  }
198
199  void VisitVAArgExpr(VAArgExpr *E);
200
201  void EmitInitializationToLValue(Expr *E, LValue Address);
202  void EmitNullInitializationToLValue(LValue Address);
203  //  case Expr::ChooseExprClass:
204  void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
205  void VisitAtomicExpr(AtomicExpr *E) {
206    RValue Res = CGF.EmitAtomicExpr(E);
207    EmitFinalDestCopy(E->getType(), Res);
208  }
209};
210}  // end anonymous namespace.
211
212//===----------------------------------------------------------------------===//
213//                                Utilities
214//===----------------------------------------------------------------------===//
215
216/// EmitAggLoadOfLValue - Given an expression with aggregate type that
217/// represents a value lvalue, this method emits the address of the lvalue,
218/// then loads the result into DestPtr.
219void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
220  LValue LV = CGF.EmitLValue(E);
221
222  // If the type of the l-value is atomic, then do an atomic load.
223  if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
224    CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
225    return;
226  }
227
228  EmitFinalDestCopy(E->getType(), LV);
229}
230
231/// True if the given aggregate type requires special GC API calls.
232bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
233  // Only record types have members that might require garbage collection.
234  const RecordType *RecordTy = T->getAs<RecordType>();
235  if (!RecordTy) return false;
236
237  // Don't mess with non-trivial C++ types.
238  RecordDecl *Record = RecordTy->getDecl();
239  if (isa<CXXRecordDecl>(Record) &&
240      (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
241       !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
242    return false;
243
244  // Check whether the type has an object member.
245  return Record->hasObjectMember();
246}
247
248void AggExprEmitter::withReturnValueSlot(
249    const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
250  QualType RetTy = E->getType();
251  bool RequiresDestruction =
252      Dest.isIgnored() &&
253      RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
254
255  // If it makes no observable difference, save a memcpy + temporary.
256  //
257  // We need to always provide our own temporary if destruction is required.
258  // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
259  // its lifetime before we have the chance to emit a proper destructor call.
260  bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
261                 (RequiresDestruction && !Dest.getAddress().isValid());
262
263  Address RetAddr = Address::invalid();
264  Address RetAllocaAddr = Address::invalid();
265
266  EHScopeStack::stable_iterator LifetimeEndBlock;
267  llvm::Value *LifetimeSizePtr = nullptr;
268  llvm::IntrinsicInst *LifetimeStartInst = nullptr;
269  if (!UseTemp) {
270    RetAddr = Dest.getAddress();
271  } else {
272    RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
273    uint64_t Size =
274        CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
275    LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
276    if (LifetimeSizePtr) {
277      LifetimeStartInst =
278          cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
279      assert(LifetimeStartInst->getIntrinsicID() ==
280                 llvm::Intrinsic::lifetime_start &&
281             "Last insertion wasn't a lifetime.start?");
282
283      CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
284          NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
285      LifetimeEndBlock = CGF.EHStack.stable_begin();
286    }
287  }
288
289  RValue Src =
290      EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused));
291
292  if (RequiresDestruction)
293    CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy);
294
295  if (!UseTemp)
296    return;
297
298  assert(Dest.getPointer() != Src.getAggregatePointer());
299  EmitFinalDestCopy(E->getType(), Src);
300
301  if (!RequiresDestruction && LifetimeStartInst) {
302    // If there's no dtor to run, the copy was the last use of our temporary.
303    // Since we're not guaranteed to be in an ExprWithCleanups, clean up
304    // eagerly.
305    CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
306    CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
307  }
308}
309
310/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
311void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
312  assert(src.isAggregate() && "value must be aggregate value!");
313  LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
314  EmitFinalDestCopy(type, srcLV, EVK_RValue);
315}
316
317/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
318void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
319                                       ExprValueKind SrcValueKind) {
320  // If Dest is ignored, then we're evaluating an aggregate expression
321  // in a context that doesn't care about the result.  Note that loads
322  // from volatile l-values force the existence of a non-ignored
323  // destination.
324  if (Dest.isIgnored())
325    return;
326
327  // Copy non-trivial C structs here.
328  LValue DstLV = CGF.MakeAddrLValue(
329      Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
330
331  if (SrcValueKind == EVK_RValue) {
332    if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
333      if (Dest.isPotentiallyAliased())
334        CGF.callCStructMoveAssignmentOperator(DstLV, src);
335      else
336        CGF.callCStructMoveConstructor(DstLV, src);
337      return;
338    }
339  } else {
340    if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
341      if (Dest.isPotentiallyAliased())
342        CGF.callCStructCopyAssignmentOperator(DstLV, src);
343      else
344        CGF.callCStructCopyConstructor(DstLV, src);
345      return;
346    }
347  }
348
349  AggValueSlot srcAgg = AggValueSlot::forLValue(
350      src, CGF, AggValueSlot::IsDestructed, needsGC(type),
351      AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
352  EmitCopy(type, Dest, srcAgg);
353}
354
355/// Perform a copy from the source into the destination.
356///
357/// \param type - the type of the aggregate being copied; qualifiers are
358///   ignored
359void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
360                              const AggValueSlot &src) {
361  if (dest.requiresGCollection()) {
362    CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
363    llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
364    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
365                                                      dest.getAddress(),
366                                                      src.getAddress(),
367                                                      size);
368    return;
369  }
370
371  // If the result of the assignment is used, copy the LHS there also.
372  // It's volatile if either side is.  Use the minimum alignment of
373  // the two sides.
374  LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
375  LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
376  CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
377                        dest.isVolatile() || src.isVolatile());
378}
379
380/// Emit the initializer for a std::initializer_list initialized with a
381/// real initializer list.
382void
383AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
384  // Emit an array containing the elements.  The array is externally destructed
385  // if the std::initializer_list object is.
386  ASTContext &Ctx = CGF.getContext();
387  LValue Array = CGF.EmitLValue(E->getSubExpr());
388  assert(Array.isSimple() && "initializer_list array not a simple lvalue");
389  Address ArrayPtr = Array.getAddress(CGF);
390
391  const ConstantArrayType *ArrayType =
392      Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
393  assert(ArrayType && "std::initializer_list constructed from non-array");
394
395  // FIXME: Perform the checks on the field types in SemaInit.
396  RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
397  RecordDecl::field_iterator Field = Record->field_begin();
398  if (Field == Record->field_end()) {
399    CGF.ErrorUnsupported(E, "weird std::initializer_list");
400    return;
401  }
402
403  // Start pointer.
404  if (!Field->getType()->isPointerType() ||
405      !Ctx.hasSameType(Field->getType()->getPointeeType(),
406                       ArrayType->getElementType())) {
407    CGF.ErrorUnsupported(E, "weird std::initializer_list");
408    return;
409  }
410
411  AggValueSlot Dest = EnsureSlot(E->getType());
412  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
413  LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
414  llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
415  llvm::Value *IdxStart[] = { Zero, Zero };
416  llvm::Value *ArrayStart =
417      Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
418  CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
419  ++Field;
420
421  if (Field == Record->field_end()) {
422    CGF.ErrorUnsupported(E, "weird std::initializer_list");
423    return;
424  }
425
426  llvm::Value *Size = Builder.getInt(ArrayType->getSize());
427  LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
428  if (Field->getType()->isPointerType() &&
429      Ctx.hasSameType(Field->getType()->getPointeeType(),
430                      ArrayType->getElementType())) {
431    // End pointer.
432    llvm::Value *IdxEnd[] = { Zero, Size };
433    llvm::Value *ArrayEnd =
434        Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
435    CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
436  } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
437    // Length.
438    CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
439  } else {
440    CGF.ErrorUnsupported(E, "weird std::initializer_list");
441    return;
442  }
443}
444
445/// Determine if E is a trivial array filler, that is, one that is
446/// equivalent to zero-initialization.
447static bool isTrivialFiller(Expr *E) {
448  if (!E)
449    return true;
450
451  if (isa<ImplicitValueInitExpr>(E))
452    return true;
453
454  if (auto *ILE = dyn_cast<InitListExpr>(E)) {
455    if (ILE->getNumInits())
456      return false;
457    return isTrivialFiller(ILE->getArrayFiller());
458  }
459
460  if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
461    return Cons->getConstructor()->isDefaultConstructor() &&
462           Cons->getConstructor()->isTrivial();
463
464  // FIXME: Are there other cases where we can avoid emitting an initializer?
465  return false;
466}
467
468/// Emit initialization of an array from an initializer list.
469void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
470                                   QualType ArrayQTy, InitListExpr *E) {
471  uint64_t NumInitElements = E->getNumInits();
472
473  uint64_t NumArrayElements = AType->getNumElements();
474  assert(NumInitElements <= NumArrayElements);
475
476  QualType elementType =
477      CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
478
479  // DestPtr is an array*.  Construct an elementType* by drilling
480  // down a level.
481  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
482  llvm::Value *indices[] = { zero, zero };
483  llvm::Value *begin =
484    Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
485
486  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
487  CharUnits elementAlign =
488    DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
489
490  // Consider initializing the array by copying from a global. For this to be
491  // more efficient than per-element initialization, the size of the elements
492  // with explicit initializers should be large enough.
493  if (NumInitElements * elementSize.getQuantity() > 16 &&
494      elementType.isTriviallyCopyableType(CGF.getContext())) {
495    CodeGen::CodeGenModule &CGM = CGF.CGM;
496    ConstantEmitter Emitter(CGF);
497    LangAS AS = ArrayQTy.getAddressSpace();
498    if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
499      auto GV = new llvm::GlobalVariable(
500          CGM.getModule(), C->getType(),
501          CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
502          llvm::GlobalValue::PrivateLinkage, C, "constinit",
503          /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
504          CGM.getContext().getTargetAddressSpace(AS));
505      Emitter.finalize(GV);
506      CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
507      GV->setAlignment(Align.getAsAlign());
508      EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
509      return;
510    }
511  }
512
513  // Exception safety requires us to destroy all the
514  // already-constructed members if an initializer throws.
515  // For that, we'll need an EH cleanup.
516  QualType::DestructionKind dtorKind = elementType.isDestructedType();
517  Address endOfInit = Address::invalid();
518  EHScopeStack::stable_iterator cleanup;
519  llvm::Instruction *cleanupDominator = nullptr;
520  if (CGF.needsEHCleanup(dtorKind)) {
521    // In principle we could tell the cleanup where we are more
522    // directly, but the control flow can get so varied here that it
523    // would actually be quite complex.  Therefore we go through an
524    // alloca.
525    endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
526                                     "arrayinit.endOfInit");
527    cleanupDominator = Builder.CreateStore(begin, endOfInit);
528    CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
529                                         elementAlign,
530                                         CGF.getDestroyer(dtorKind));
531    cleanup = CGF.EHStack.stable_begin();
532
533  // Otherwise, remember that we didn't need a cleanup.
534  } else {
535    dtorKind = QualType::DK_none;
536  }
537
538  llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
539
540  // The 'current element to initialize'.  The invariants on this
541  // variable are complicated.  Essentially, after each iteration of
542  // the loop, it points to the last initialized element, except
543  // that it points to the beginning of the array before any
544  // elements have been initialized.
545  llvm::Value *element = begin;
546
547  // Emit the explicit initializers.
548  for (uint64_t i = 0; i != NumInitElements; ++i) {
549    // Advance to the next element.
550    if (i > 0) {
551      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
552
553      // Tell the cleanup that it needs to destroy up to this
554      // element.  TODO: some of these stores can be trivially
555      // observed to be unnecessary.
556      if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
557    }
558
559    LValue elementLV =
560      CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
561    EmitInitializationToLValue(E->getInit(i), elementLV);
562  }
563
564  // Check whether there's a non-trivial array-fill expression.
565  Expr *filler = E->getArrayFiller();
566  bool hasTrivialFiller = isTrivialFiller(filler);
567
568  // Any remaining elements need to be zero-initialized, possibly
569  // using the filler expression.  We can skip this if the we're
570  // emitting to zeroed memory.
571  if (NumInitElements != NumArrayElements &&
572      !(Dest.isZeroed() && hasTrivialFiller &&
573        CGF.getTypes().isZeroInitializable(elementType))) {
574
575    // Use an actual loop.  This is basically
576    //   do { *array++ = filler; } while (array != end);
577
578    // Advance to the start of the rest of the array.
579    if (NumInitElements) {
580      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
581      if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
582    }
583
584    // Compute the end of the array.
585    llvm::Value *end = Builder.CreateInBoundsGEP(begin,
586                      llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
587                                                 "arrayinit.end");
588
589    llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
590    llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
591
592    // Jump into the body.
593    CGF.EmitBlock(bodyBB);
594    llvm::PHINode *currentElement =
595      Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
596    currentElement->addIncoming(element, entryBB);
597
598    // Emit the actual filler expression.
599    {
600      // C++1z [class.temporary]p5:
601      //   when a default constructor is called to initialize an element of
602      //   an array with no corresponding initializer [...] the destruction of
603      //   every temporary created in a default argument is sequenced before
604      //   the construction of the next array element, if any
605      CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
606      LValue elementLV =
607        CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
608      if (filler)
609        EmitInitializationToLValue(filler, elementLV);
610      else
611        EmitNullInitializationToLValue(elementLV);
612    }
613
614    // Move on to the next element.
615    llvm::Value *nextElement =
616      Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
617
618    // Tell the EH cleanup that we finished with the last element.
619    if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
620
621    // Leave the loop if we're done.
622    llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
623                                             "arrayinit.done");
624    llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
625    Builder.CreateCondBr(done, endBB, bodyBB);
626    currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
627
628    CGF.EmitBlock(endBB);
629  }
630
631  // Leave the partial-array cleanup if we entered one.
632  if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
633}
634
635//===----------------------------------------------------------------------===//
636//                            Visitor Methods
637//===----------------------------------------------------------------------===//
638
639void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
640  Visit(E->getSubExpr());
641}
642
643void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
644  // If this is a unique OVE, just visit its source expression.
645  if (e->isUnique())
646    Visit(e->getSourceExpr());
647  else
648    EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
649}
650
651void
652AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
653  if (Dest.isPotentiallyAliased() &&
654      E->getType().isPODType(CGF.getContext())) {
655    // For a POD type, just emit a load of the lvalue + a copy, because our
656    // compound literal might alias the destination.
657    EmitAggLoadOfLValue(E);
658    return;
659  }
660
661  AggValueSlot Slot = EnsureSlot(E->getType());
662  CGF.EmitAggExpr(E->getInitializer(), Slot);
663}
664
665/// Attempt to look through various unimportant expressions to find a
666/// cast of the given kind.
667static Expr *findPeephole(Expr *op, CastKind kind) {
668  while (true) {
669    op = op->IgnoreParens();
670    if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
671      if (castE->getCastKind() == kind)
672        return castE->getSubExpr();
673      if (castE->getCastKind() == CK_NoOp)
674        continue;
675    }
676    return nullptr;
677  }
678}
679
680void AggExprEmitter::VisitCastExpr(CastExpr *E) {
681  if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
682    CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
683  switch (E->getCastKind()) {
684  case CK_Dynamic: {
685    // FIXME: Can this actually happen? We have no test coverage for it.
686    assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
687    LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
688                                      CodeGenFunction::TCK_Load);
689    // FIXME: Do we also need to handle property references here?
690    if (LV.isSimple())
691      CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
692    else
693      CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
694
695    if (!Dest.isIgnored())
696      CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
697    break;
698  }
699
700  case CK_ToUnion: {
701    // Evaluate even if the destination is ignored.
702    if (Dest.isIgnored()) {
703      CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
704                      /*ignoreResult=*/true);
705      break;
706    }
707
708    // GCC union extension
709    QualType Ty = E->getSubExpr()->getType();
710    Address CastPtr =
711      Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
712    EmitInitializationToLValue(E->getSubExpr(),
713                               CGF.MakeAddrLValue(CastPtr, Ty));
714    break;
715  }
716
717  case CK_LValueToRValueBitCast: {
718    if (Dest.isIgnored()) {
719      CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
720                      /*ignoreResult=*/true);
721      break;
722    }
723
724    LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
725    Address SourceAddress =
726        Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
727    Address DestAddress =
728        Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
729    llvm::Value *SizeVal = llvm::ConstantInt::get(
730        CGF.SizeTy,
731        CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
732    Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
733    break;
734  }
735
736  case CK_DerivedToBase:
737  case CK_BaseToDerived:
738  case CK_UncheckedDerivedToBase: {
739    llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
740                "should have been unpacked before we got here");
741  }
742
743  case CK_NonAtomicToAtomic:
744  case CK_AtomicToNonAtomic: {
745    bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
746
747    // Determine the atomic and value types.
748    QualType atomicType = E->getSubExpr()->getType();
749    QualType valueType = E->getType();
750    if (isToAtomic) std::swap(atomicType, valueType);
751
752    assert(atomicType->isAtomicType());
753    assert(CGF.getContext().hasSameUnqualifiedType(valueType,
754                          atomicType->castAs<AtomicType>()->getValueType()));
755
756    // Just recurse normally if we're ignoring the result or the
757    // atomic type doesn't change representation.
758    if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
759      return Visit(E->getSubExpr());
760    }
761
762    CastKind peepholeTarget =
763      (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
764
765    // These two cases are reverses of each other; try to peephole them.
766    if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
767      assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
768                                                     E->getType()) &&
769           "peephole significantly changed types?");
770      return Visit(op);
771    }
772
773    // If we're converting an r-value of non-atomic type to an r-value
774    // of atomic type, just emit directly into the relevant sub-object.
775    if (isToAtomic) {
776      AggValueSlot valueDest = Dest;
777      if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
778        // Zero-initialize.  (Strictly speaking, we only need to initialize
779        // the padding at the end, but this is simpler.)
780        if (!Dest.isZeroed())
781          CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
782
783        // Build a GEP to refer to the subobject.
784        Address valueAddr =
785            CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
786        valueDest = AggValueSlot::forAddr(valueAddr,
787                                          valueDest.getQualifiers(),
788                                          valueDest.isExternallyDestructed(),
789                                          valueDest.requiresGCollection(),
790                                          valueDest.isPotentiallyAliased(),
791                                          AggValueSlot::DoesNotOverlap,
792                                          AggValueSlot::IsZeroed);
793      }
794
795      CGF.EmitAggExpr(E->getSubExpr(), valueDest);
796      return;
797    }
798
799    // Otherwise, we're converting an atomic type to a non-atomic type.
800    // Make an atomic temporary, emit into that, and then copy the value out.
801    AggValueSlot atomicSlot =
802      CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
803    CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
804
805    Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
806    RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
807    return EmitFinalDestCopy(valueType, rvalue);
808  }
809  case CK_AddressSpaceConversion:
810     return Visit(E->getSubExpr());
811
812  case CK_LValueToRValue:
813    // If we're loading from a volatile type, force the destination
814    // into existence.
815    if (E->getSubExpr()->getType().isVolatileQualified()) {
816      EnsureDest(E->getType());
817      return Visit(E->getSubExpr());
818    }
819
820    LLVM_FALLTHROUGH;
821
822
823  case CK_NoOp:
824  case CK_UserDefinedConversion:
825  case CK_ConstructorConversion:
826    assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
827                                                   E->getType()) &&
828           "Implicit cast types must be compatible");
829    Visit(E->getSubExpr());
830    break;
831
832  case CK_LValueBitCast:
833    llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
834
835  case CK_Dependent:
836  case CK_BitCast:
837  case CK_ArrayToPointerDecay:
838  case CK_FunctionToPointerDecay:
839  case CK_NullToPointer:
840  case CK_NullToMemberPointer:
841  case CK_BaseToDerivedMemberPointer:
842  case CK_DerivedToBaseMemberPointer:
843  case CK_MemberPointerToBoolean:
844  case CK_ReinterpretMemberPointer:
845  case CK_IntegralToPointer:
846  case CK_PointerToIntegral:
847  case CK_PointerToBoolean:
848  case CK_ToVoid:
849  case CK_VectorSplat:
850  case CK_IntegralCast:
851  case CK_BooleanToSignedIntegral:
852  case CK_IntegralToBoolean:
853  case CK_IntegralToFloating:
854  case CK_FloatingToIntegral:
855  case CK_FloatingToBoolean:
856  case CK_FloatingCast:
857  case CK_CPointerToObjCPointerCast:
858  case CK_BlockPointerToObjCPointerCast:
859  case CK_AnyPointerToBlockPointerCast:
860  case CK_ObjCObjectLValueCast:
861  case CK_FloatingRealToComplex:
862  case CK_FloatingComplexToReal:
863  case CK_FloatingComplexToBoolean:
864  case CK_FloatingComplexCast:
865  case CK_FloatingComplexToIntegralComplex:
866  case CK_IntegralRealToComplex:
867  case CK_IntegralComplexToReal:
868  case CK_IntegralComplexToBoolean:
869  case CK_IntegralComplexCast:
870  case CK_IntegralComplexToFloatingComplex:
871  case CK_ARCProduceObject:
872  case CK_ARCConsumeObject:
873  case CK_ARCReclaimReturnedObject:
874  case CK_ARCExtendBlockObject:
875  case CK_CopyAndAutoreleaseBlockObject:
876  case CK_BuiltinFnToFnPtr:
877  case CK_ZeroToOCLOpaqueType:
878
879  case CK_IntToOCLSampler:
880  case CK_FixedPointCast:
881  case CK_FixedPointToBoolean:
882  case CK_FixedPointToIntegral:
883  case CK_IntegralToFixedPoint:
884    llvm_unreachable("cast kind invalid for aggregate types");
885  }
886}
887
888void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
889  if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
890    EmitAggLoadOfLValue(E);
891    return;
892  }
893
894  withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
895    return CGF.EmitCallExpr(E, Slot);
896  });
897}
898
899void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
900  withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
901    return CGF.EmitObjCMessageExpr(E, Slot);
902  });
903}
904
905void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
906  CGF.EmitIgnoredExpr(E->getLHS());
907  Visit(E->getRHS());
908}
909
910void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
911  CodeGenFunction::StmtExprEvaluation eval(CGF);
912  CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
913}
914
915enum CompareKind {
916  CK_Less,
917  CK_Greater,
918  CK_Equal,
919};
920
921static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
922                                const BinaryOperator *E, llvm::Value *LHS,
923                                llvm::Value *RHS, CompareKind Kind,
924                                const char *NameSuffix = "") {
925  QualType ArgTy = E->getLHS()->getType();
926  if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
927    ArgTy = CT->getElementType();
928
929  if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
930    assert(Kind == CK_Equal &&
931           "member pointers may only be compared for equality");
932    return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
933        CGF, LHS, RHS, MPT, /*IsInequality*/ false);
934  }
935
936  // Compute the comparison instructions for the specified comparison kind.
937  struct CmpInstInfo {
938    const char *Name;
939    llvm::CmpInst::Predicate FCmp;
940    llvm::CmpInst::Predicate SCmp;
941    llvm::CmpInst::Predicate UCmp;
942  };
943  CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
944    using FI = llvm::FCmpInst;
945    using II = llvm::ICmpInst;
946    switch (Kind) {
947    case CK_Less:
948      return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
949    case CK_Greater:
950      return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
951    case CK_Equal:
952      return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
953    }
954    llvm_unreachable("Unrecognised CompareKind enum");
955  }();
956
957  if (ArgTy->hasFloatingRepresentation())
958    return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
959                              llvm::Twine(InstInfo.Name) + NameSuffix);
960  if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
961    auto Inst =
962        ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
963    return Builder.CreateICmp(Inst, LHS, RHS,
964                              llvm::Twine(InstInfo.Name) + NameSuffix);
965  }
966
967  llvm_unreachable("unsupported aggregate binary expression should have "
968                   "already been handled");
969}
970
971void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
972  using llvm::BasicBlock;
973  using llvm::PHINode;
974  using llvm::Value;
975  assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
976                                      E->getRHS()->getType()));
977  const ComparisonCategoryInfo &CmpInfo =
978      CGF.getContext().CompCategories.getInfoForType(E->getType());
979  assert(CmpInfo.Record->isTriviallyCopyable() &&
980         "cannot copy non-trivially copyable aggregate");
981
982  QualType ArgTy = E->getLHS()->getType();
983
984  if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
985      !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
986      !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
987    return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
988  }
989  bool IsComplex = ArgTy->isAnyComplexType();
990
991  // Evaluate the operands to the expression and extract their values.
992  auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
993    RValue RV = CGF.EmitAnyExpr(E);
994    if (RV.isScalar())
995      return {RV.getScalarVal(), nullptr};
996    if (RV.isAggregate())
997      return {RV.getAggregatePointer(), nullptr};
998    assert(RV.isComplex());
999    return RV.getComplexVal();
1000  };
1001  auto LHSValues = EmitOperand(E->getLHS()),
1002       RHSValues = EmitOperand(E->getRHS());
1003
1004  auto EmitCmp = [&](CompareKind K) {
1005    Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1006                             K, IsComplex ? ".r" : "");
1007    if (!IsComplex)
1008      return Cmp;
1009    assert(K == CompareKind::CK_Equal);
1010    Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1011                                 RHSValues.second, K, ".i");
1012    return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1013  };
1014  auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1015    return Builder.getInt(VInfo->getIntValue());
1016  };
1017
1018  Value *Select;
1019  if (ArgTy->isNullPtrType()) {
1020    Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1021  } else if (!CmpInfo.isPartial()) {
1022    Value *SelectOne =
1023        Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1024                             EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1025    Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1026                                  EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1027                                  SelectOne, "sel.eq");
1028  } else {
1029    Value *SelectEq = Builder.CreateSelect(
1030        EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1031        EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1032    Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1033                                           EmitCmpRes(CmpInfo.getGreater()),
1034                                           SelectEq, "sel.gt");
1035    Select = Builder.CreateSelect(
1036        EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1037  }
1038  // Create the return value in the destination slot.
1039  EnsureDest(E->getType());
1040  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1041
1042  // Emit the address of the first (and only) field in the comparison category
1043  // type, and initialize it from the constant integer value selected above.
1044  LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1045      DestLV, *CmpInfo.Record->field_begin());
1046  CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1047
1048  // All done! The result is in the Dest slot.
1049}
1050
1051void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1052  if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1053    VisitPointerToDataMemberBinaryOperator(E);
1054  else
1055    CGF.ErrorUnsupported(E, "aggregate binary expression");
1056}
1057
1058void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1059                                                    const BinaryOperator *E) {
1060  LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1061  EmitFinalDestCopy(E->getType(), LV);
1062}
1063
1064/// Is the value of the given expression possibly a reference to or
1065/// into a __block variable?
1066static bool isBlockVarRef(const Expr *E) {
1067  // Make sure we look through parens.
1068  E = E->IgnoreParens();
1069
1070  // Check for a direct reference to a __block variable.
1071  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1072    const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1073    return (var && var->hasAttr<BlocksAttr>());
1074  }
1075
1076  // More complicated stuff.
1077
1078  // Binary operators.
1079  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1080    // For an assignment or pointer-to-member operation, just care
1081    // about the LHS.
1082    if (op->isAssignmentOp() || op->isPtrMemOp())
1083      return isBlockVarRef(op->getLHS());
1084
1085    // For a comma, just care about the RHS.
1086    if (op->getOpcode() == BO_Comma)
1087      return isBlockVarRef(op->getRHS());
1088
1089    // FIXME: pointer arithmetic?
1090    return false;
1091
1092  // Check both sides of a conditional operator.
1093  } else if (const AbstractConditionalOperator *op
1094               = dyn_cast<AbstractConditionalOperator>(E)) {
1095    return isBlockVarRef(op->getTrueExpr())
1096        || isBlockVarRef(op->getFalseExpr());
1097
1098  // OVEs are required to support BinaryConditionalOperators.
1099  } else if (const OpaqueValueExpr *op
1100               = dyn_cast<OpaqueValueExpr>(E)) {
1101    if (const Expr *src = op->getSourceExpr())
1102      return isBlockVarRef(src);
1103
1104  // Casts are necessary to get things like (*(int*)&var) = foo().
1105  // We don't really care about the kind of cast here, except
1106  // we don't want to look through l2r casts, because it's okay
1107  // to get the *value* in a __block variable.
1108  } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1109    if (cast->getCastKind() == CK_LValueToRValue)
1110      return false;
1111    return isBlockVarRef(cast->getSubExpr());
1112
1113  // Handle unary operators.  Again, just aggressively look through
1114  // it, ignoring the operation.
1115  } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1116    return isBlockVarRef(uop->getSubExpr());
1117
1118  // Look into the base of a field access.
1119  } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1120    return isBlockVarRef(mem->getBase());
1121
1122  // Look into the base of a subscript.
1123  } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1124    return isBlockVarRef(sub->getBase());
1125  }
1126
1127  return false;
1128}
1129
1130void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1131  // For an assignment to work, the value on the right has
1132  // to be compatible with the value on the left.
1133  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1134                                                 E->getRHS()->getType())
1135         && "Invalid assignment");
1136
1137  // If the LHS might be a __block variable, and the RHS can
1138  // potentially cause a block copy, we need to evaluate the RHS first
1139  // so that the assignment goes the right place.
1140  // This is pretty semantically fragile.
1141  if (isBlockVarRef(E->getLHS()) &&
1142      E->getRHS()->HasSideEffects(CGF.getContext())) {
1143    // Ensure that we have a destination, and evaluate the RHS into that.
1144    EnsureDest(E->getRHS()->getType());
1145    Visit(E->getRHS());
1146
1147    // Now emit the LHS and copy into it.
1148    LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1149
1150    // That copy is an atomic copy if the LHS is atomic.
1151    if (LHS.getType()->isAtomicType() ||
1152        CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1153      CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1154      return;
1155    }
1156
1157    EmitCopy(E->getLHS()->getType(),
1158             AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1159                                     needsGC(E->getLHS()->getType()),
1160                                     AggValueSlot::IsAliased,
1161                                     AggValueSlot::MayOverlap),
1162             Dest);
1163    return;
1164  }
1165
1166  LValue LHS = CGF.EmitLValue(E->getLHS());
1167
1168  // If we have an atomic type, evaluate into the destination and then
1169  // do an atomic copy.
1170  if (LHS.getType()->isAtomicType() ||
1171      CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1172    EnsureDest(E->getRHS()->getType());
1173    Visit(E->getRHS());
1174    CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1175    return;
1176  }
1177
1178  // Codegen the RHS so that it stores directly into the LHS.
1179  AggValueSlot LHSSlot = AggValueSlot::forLValue(
1180      LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1181      AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1182  // A non-volatile aggregate destination might have volatile member.
1183  if (!LHSSlot.isVolatile() &&
1184      CGF.hasVolatileMember(E->getLHS()->getType()))
1185    LHSSlot.setVolatile(true);
1186
1187  CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1188
1189  // Copy into the destination if the assignment isn't ignored.
1190  EmitFinalDestCopy(E->getType(), LHS);
1191}
1192
1193void AggExprEmitter::
1194VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1195  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1196  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1197  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1198
1199  // Bind the common expression if necessary.
1200  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1201
1202  CodeGenFunction::ConditionalEvaluation eval(CGF);
1203  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1204                           CGF.getProfileCount(E));
1205
1206  // Save whether the destination's lifetime is externally managed.
1207  bool isExternallyDestructed = Dest.isExternallyDestructed();
1208
1209  eval.begin(CGF);
1210  CGF.EmitBlock(LHSBlock);
1211  CGF.incrementProfileCounter(E);
1212  Visit(E->getTrueExpr());
1213  eval.end(CGF);
1214
1215  assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1216  CGF.Builder.CreateBr(ContBlock);
1217
1218  // If the result of an agg expression is unused, then the emission
1219  // of the LHS might need to create a destination slot.  That's fine
1220  // with us, and we can safely emit the RHS into the same slot, but
1221  // we shouldn't claim that it's already being destructed.
1222  Dest.setExternallyDestructed(isExternallyDestructed);
1223
1224  eval.begin(CGF);
1225  CGF.EmitBlock(RHSBlock);
1226  Visit(E->getFalseExpr());
1227  eval.end(CGF);
1228
1229  CGF.EmitBlock(ContBlock);
1230}
1231
1232void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1233  Visit(CE->getChosenSubExpr());
1234}
1235
1236void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1237  Address ArgValue = Address::invalid();
1238  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1239
1240  // If EmitVAArg fails, emit an error.
1241  if (!ArgPtr.isValid()) {
1242    CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1243    return;
1244  }
1245
1246  EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1247}
1248
1249void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1250  // Ensure that we have a slot, but if we already do, remember
1251  // whether it was externally destructed.
1252  bool wasExternallyDestructed = Dest.isExternallyDestructed();
1253  EnsureDest(E->getType());
1254
1255  // We're going to push a destructor if there isn't already one.
1256  Dest.setExternallyDestructed();
1257
1258  Visit(E->getSubExpr());
1259
1260  // Push that destructor we promised.
1261  if (!wasExternallyDestructed)
1262    CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1263}
1264
1265void
1266AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1267  AggValueSlot Slot = EnsureSlot(E->getType());
1268  CGF.EmitCXXConstructExpr(E, Slot);
1269}
1270
1271void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1272    const CXXInheritedCtorInitExpr *E) {
1273  AggValueSlot Slot = EnsureSlot(E->getType());
1274  CGF.EmitInheritedCXXConstructorCall(
1275      E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1276      E->inheritedFromVBase(), E);
1277}
1278
1279void
1280AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1281  AggValueSlot Slot = EnsureSlot(E->getType());
1282  LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1283
1284  // We'll need to enter cleanup scopes in case any of the element
1285  // initializers throws an exception.
1286  SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1287  llvm::Instruction *CleanupDominator = nullptr;
1288
1289  CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1290  for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1291                                               e = E->capture_init_end();
1292       i != e; ++i, ++CurField) {
1293    // Emit initialization
1294    LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1295    if (CurField->hasCapturedVLAType()) {
1296      CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1297      continue;
1298    }
1299
1300    EmitInitializationToLValue(*i, LV);
1301
1302    // Push a destructor if necessary.
1303    if (QualType::DestructionKind DtorKind =
1304            CurField->getType().isDestructedType()) {
1305      assert(LV.isSimple());
1306      if (CGF.needsEHCleanup(DtorKind)) {
1307        if (!CleanupDominator)
1308          CleanupDominator = CGF.Builder.CreateAlignedLoad(
1309              CGF.Int8Ty,
1310              llvm::Constant::getNullValue(CGF.Int8PtrTy),
1311              CharUnits::One()); // placeholder
1312
1313        CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1314                        CGF.getDestroyer(DtorKind), false);
1315        Cleanups.push_back(CGF.EHStack.stable_begin());
1316      }
1317    }
1318  }
1319
1320  // Deactivate all the partial cleanups in reverse order, which
1321  // generally means popping them.
1322  for (unsigned i = Cleanups.size(); i != 0; --i)
1323    CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1324
1325  // Destroy the placeholder if we made one.
1326  if (CleanupDominator)
1327    CleanupDominator->eraseFromParent();
1328}
1329
1330void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1331  CGF.enterFullExpression(E);
1332  CodeGenFunction::RunCleanupsScope cleanups(CGF);
1333  Visit(E->getSubExpr());
1334}
1335
1336void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1337  QualType T = E->getType();
1338  AggValueSlot Slot = EnsureSlot(T);
1339  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1340}
1341
1342void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1343  QualType T = E->getType();
1344  AggValueSlot Slot = EnsureSlot(T);
1345  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1346}
1347
1348/// isSimpleZero - If emitting this value will obviously just cause a store of
1349/// zero to memory, return true.  This can return false if uncertain, so it just
1350/// handles simple cases.
1351static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1352  E = E->IgnoreParens();
1353
1354  // 0
1355  if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1356    return IL->getValue() == 0;
1357  // +0.0
1358  if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1359    return FL->getValue().isPosZero();
1360  // int()
1361  if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1362      CGF.getTypes().isZeroInitializable(E->getType()))
1363    return true;
1364  // (int*)0 - Null pointer expressions.
1365  if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1366    return ICE->getCastKind() == CK_NullToPointer &&
1367           CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1368           !E->HasSideEffects(CGF.getContext());
1369  // '\0'
1370  if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1371    return CL->getValue() == 0;
1372
1373  // Otherwise, hard case: conservatively return false.
1374  return false;
1375}
1376
1377
1378void
1379AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1380  QualType type = LV.getType();
1381  // FIXME: Ignore result?
1382  // FIXME: Are initializers affected by volatile?
1383  if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1384    // Storing "i32 0" to a zero'd memory location is a noop.
1385    return;
1386  } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1387    return EmitNullInitializationToLValue(LV);
1388  } else if (isa<NoInitExpr>(E)) {
1389    // Do nothing.
1390    return;
1391  } else if (type->isReferenceType()) {
1392    RValue RV = CGF.EmitReferenceBindingToExpr(E);
1393    return CGF.EmitStoreThroughLValue(RV, LV);
1394  }
1395
1396  switch (CGF.getEvaluationKind(type)) {
1397  case TEK_Complex:
1398    CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1399    return;
1400  case TEK_Aggregate:
1401    CGF.EmitAggExpr(
1402        E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1403                                   AggValueSlot::DoesNotNeedGCBarriers,
1404                                   AggValueSlot::IsNotAliased,
1405                                   AggValueSlot::MayOverlap, Dest.isZeroed()));
1406    return;
1407  case TEK_Scalar:
1408    if (LV.isSimple()) {
1409      CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1410    } else {
1411      CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1412    }
1413    return;
1414  }
1415  llvm_unreachable("bad evaluation kind");
1416}
1417
1418void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1419  QualType type = lv.getType();
1420
1421  // If the destination slot is already zeroed out before the aggregate is
1422  // copied into it, we don't have to emit any zeros here.
1423  if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1424    return;
1425
1426  if (CGF.hasScalarEvaluationKind(type)) {
1427    // For non-aggregates, we can store the appropriate null constant.
1428    llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1429    // Note that the following is not equivalent to
1430    // EmitStoreThroughBitfieldLValue for ARC types.
1431    if (lv.isBitField()) {
1432      CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1433    } else {
1434      assert(lv.isSimple());
1435      CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1436    }
1437  } else {
1438    // There's a potential optimization opportunity in combining
1439    // memsets; that would be easy for arrays, but relatively
1440    // difficult for structures with the current code.
1441    CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1442  }
1443}
1444
1445void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1446#if 0
1447  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1448  // (Length of globals? Chunks of zeroed-out space?).
1449  //
1450  // If we can, prefer a copy from a global; this is a lot less code for long
1451  // globals, and it's easier for the current optimizers to analyze.
1452  if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1453    llvm::GlobalVariable* GV =
1454    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1455                             llvm::GlobalValue::InternalLinkage, C, "");
1456    EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1457    return;
1458  }
1459#endif
1460  if (E->hadArrayRangeDesignator())
1461    CGF.ErrorUnsupported(E, "GNU array range designator extension");
1462
1463  if (E->isTransparent())
1464    return Visit(E->getInit(0));
1465
1466  AggValueSlot Dest = EnsureSlot(E->getType());
1467
1468  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1469
1470  // Handle initialization of an array.
1471  if (E->getType()->isArrayType()) {
1472    auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1473    EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1474    return;
1475  }
1476
1477  assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1478
1479  // Do struct initialization; this code just sets each individual member
1480  // to the approprate value.  This makes bitfield support automatic;
1481  // the disadvantage is that the generated code is more difficult for
1482  // the optimizer, especially with bitfields.
1483  unsigned NumInitElements = E->getNumInits();
1484  RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1485
1486  // We'll need to enter cleanup scopes in case any of the element
1487  // initializers throws an exception.
1488  SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1489  llvm::Instruction *cleanupDominator = nullptr;
1490  auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1491    cleanups.push_back(cleanup);
1492    if (!cleanupDominator) // create placeholder once needed
1493      cleanupDominator = CGF.Builder.CreateAlignedLoad(
1494          CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1495          CharUnits::One());
1496  };
1497
1498  unsigned curInitIndex = 0;
1499
1500  // Emit initialization of base classes.
1501  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1502    assert(E->getNumInits() >= CXXRD->getNumBases() &&
1503           "missing initializer for base class");
1504    for (auto &Base : CXXRD->bases()) {
1505      assert(!Base.isVirtual() && "should not see vbases here");
1506      auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1507      Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1508          Dest.getAddress(), CXXRD, BaseRD,
1509          /*isBaseVirtual*/ false);
1510      AggValueSlot AggSlot = AggValueSlot::forAddr(
1511          V, Qualifiers(),
1512          AggValueSlot::IsDestructed,
1513          AggValueSlot::DoesNotNeedGCBarriers,
1514          AggValueSlot::IsNotAliased,
1515          CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1516      CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1517
1518      if (QualType::DestructionKind dtorKind =
1519              Base.getType().isDestructedType()) {
1520        CGF.pushDestroy(dtorKind, V, Base.getType());
1521        addCleanup(CGF.EHStack.stable_begin());
1522      }
1523    }
1524  }
1525
1526  // Prepare a 'this' for CXXDefaultInitExprs.
1527  CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1528
1529  if (record->isUnion()) {
1530    // Only initialize one field of a union. The field itself is
1531    // specified by the initializer list.
1532    if (!E->getInitializedFieldInUnion()) {
1533      // Empty union; we have nothing to do.
1534
1535#ifndef NDEBUG
1536      // Make sure that it's really an empty and not a failure of
1537      // semantic analysis.
1538      for (const auto *Field : record->fields())
1539        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1540#endif
1541      return;
1542    }
1543
1544    // FIXME: volatility
1545    FieldDecl *Field = E->getInitializedFieldInUnion();
1546
1547    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1548    if (NumInitElements) {
1549      // Store the initializer into the field
1550      EmitInitializationToLValue(E->getInit(0), FieldLoc);
1551    } else {
1552      // Default-initialize to null.
1553      EmitNullInitializationToLValue(FieldLoc);
1554    }
1555
1556    return;
1557  }
1558
1559  // Here we iterate over the fields; this makes it simpler to both
1560  // default-initialize fields and skip over unnamed fields.
1561  for (const auto *field : record->fields()) {
1562    // We're done once we hit the flexible array member.
1563    if (field->getType()->isIncompleteArrayType())
1564      break;
1565
1566    // Always skip anonymous bitfields.
1567    if (field->isUnnamedBitfield())
1568      continue;
1569
1570    // We're done if we reach the end of the explicit initializers, we
1571    // have a zeroed object, and the rest of the fields are
1572    // zero-initializable.
1573    if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1574        CGF.getTypes().isZeroInitializable(E->getType()))
1575      break;
1576
1577
1578    LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1579    // We never generate write-barries for initialized fields.
1580    LV.setNonGC(true);
1581
1582    if (curInitIndex < NumInitElements) {
1583      // Store the initializer into the field.
1584      EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1585    } else {
1586      // We're out of initializers; default-initialize to null
1587      EmitNullInitializationToLValue(LV);
1588    }
1589
1590    // Push a destructor if necessary.
1591    // FIXME: if we have an array of structures, all explicitly
1592    // initialized, we can end up pushing a linear number of cleanups.
1593    bool pushedCleanup = false;
1594    if (QualType::DestructionKind dtorKind
1595          = field->getType().isDestructedType()) {
1596      assert(LV.isSimple());
1597      if (CGF.needsEHCleanup(dtorKind)) {
1598        CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1599                        CGF.getDestroyer(dtorKind), false);
1600        addCleanup(CGF.EHStack.stable_begin());
1601        pushedCleanup = true;
1602      }
1603    }
1604
1605    // If the GEP didn't get used because of a dead zero init or something
1606    // else, clean it up for -O0 builds and general tidiness.
1607    if (!pushedCleanup && LV.isSimple())
1608      if (llvm::GetElementPtrInst *GEP =
1609              dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1610        if (GEP->use_empty())
1611          GEP->eraseFromParent();
1612  }
1613
1614  // Deactivate all the partial cleanups in reverse order, which
1615  // generally means popping them.
1616  assert((cleanupDominator || cleanups.empty()) &&
1617         "Missing cleanupDominator before deactivating cleanup blocks");
1618  for (unsigned i = cleanups.size(); i != 0; --i)
1619    CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1620
1621  // Destroy the placeholder if we made one.
1622  if (cleanupDominator)
1623    cleanupDominator->eraseFromParent();
1624}
1625
1626void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1627                                            llvm::Value *outerBegin) {
1628  // Emit the common subexpression.
1629  CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1630
1631  Address destPtr = EnsureSlot(E->getType()).getAddress();
1632  uint64_t numElements = E->getArraySize().getZExtValue();
1633
1634  if (!numElements)
1635    return;
1636
1637  // destPtr is an array*. Construct an elementType* by drilling down a level.
1638  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1639  llvm::Value *indices[] = {zero, zero};
1640  llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1641                                                 "arrayinit.begin");
1642
1643  // Prepare to special-case multidimensional array initialization: we avoid
1644  // emitting multiple destructor loops in that case.
1645  if (!outerBegin)
1646    outerBegin = begin;
1647  ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1648
1649  QualType elementType =
1650      CGF.getContext().getAsArrayType(E->getType())->getElementType();
1651  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1652  CharUnits elementAlign =
1653      destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1654
1655  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1656  llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1657
1658  // Jump into the body.
1659  CGF.EmitBlock(bodyBB);
1660  llvm::PHINode *index =
1661      Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1662  index->addIncoming(zero, entryBB);
1663  llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1664
1665  // Prepare for a cleanup.
1666  QualType::DestructionKind dtorKind = elementType.isDestructedType();
1667  EHScopeStack::stable_iterator cleanup;
1668  if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1669    if (outerBegin->getType() != element->getType())
1670      outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1671    CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1672                                       elementAlign,
1673                                       CGF.getDestroyer(dtorKind));
1674    cleanup = CGF.EHStack.stable_begin();
1675  } else {
1676    dtorKind = QualType::DK_none;
1677  }
1678
1679  // Emit the actual filler expression.
1680  {
1681    // Temporaries created in an array initialization loop are destroyed
1682    // at the end of each iteration.
1683    CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1684    CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1685    LValue elementLV =
1686        CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1687
1688    if (InnerLoop) {
1689      // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1690      auto elementSlot = AggValueSlot::forLValue(
1691          elementLV, CGF, AggValueSlot::IsDestructed,
1692          AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1693          AggValueSlot::DoesNotOverlap);
1694      AggExprEmitter(CGF, elementSlot, false)
1695          .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1696    } else
1697      EmitInitializationToLValue(E->getSubExpr(), elementLV);
1698  }
1699
1700  // Move on to the next element.
1701  llvm::Value *nextIndex = Builder.CreateNUWAdd(
1702      index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1703  index->addIncoming(nextIndex, Builder.GetInsertBlock());
1704
1705  // Leave the loop if we're done.
1706  llvm::Value *done = Builder.CreateICmpEQ(
1707      nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1708      "arrayinit.done");
1709  llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1710  Builder.CreateCondBr(done, endBB, bodyBB);
1711
1712  CGF.EmitBlock(endBB);
1713
1714  // Leave the partial-array cleanup if we entered one.
1715  if (dtorKind)
1716    CGF.DeactivateCleanupBlock(cleanup, index);
1717}
1718
1719void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1720  AggValueSlot Dest = EnsureSlot(E->getType());
1721
1722  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1723  EmitInitializationToLValue(E->getBase(), DestLV);
1724  VisitInitListExpr(E->getUpdater());
1725}
1726
1727//===----------------------------------------------------------------------===//
1728//                        Entry Points into this File
1729//===----------------------------------------------------------------------===//
1730
1731/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1732/// non-zero bytes that will be stored when outputting the initializer for the
1733/// specified initializer expression.
1734static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1735  E = E->IgnoreParens();
1736
1737  // 0 and 0.0 won't require any non-zero stores!
1738  if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1739
1740  // If this is an initlist expr, sum up the size of sizes of the (present)
1741  // elements.  If this is something weird, assume the whole thing is non-zero.
1742  const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1743  while (ILE && ILE->isTransparent())
1744    ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1745  if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1746    return CGF.getContext().getTypeSizeInChars(E->getType());
1747
1748  // InitListExprs for structs have to be handled carefully.  If there are
1749  // reference members, we need to consider the size of the reference, not the
1750  // referencee.  InitListExprs for unions and arrays can't have references.
1751  if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1752    if (!RT->isUnionType()) {
1753      RecordDecl *SD = RT->getDecl();
1754      CharUnits NumNonZeroBytes = CharUnits::Zero();
1755
1756      unsigned ILEElement = 0;
1757      if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1758        while (ILEElement != CXXRD->getNumBases())
1759          NumNonZeroBytes +=
1760              GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1761      for (const auto *Field : SD->fields()) {
1762        // We're done once we hit the flexible array member or run out of
1763        // InitListExpr elements.
1764        if (Field->getType()->isIncompleteArrayType() ||
1765            ILEElement == ILE->getNumInits())
1766          break;
1767        if (Field->isUnnamedBitfield())
1768          continue;
1769
1770        const Expr *E = ILE->getInit(ILEElement++);
1771
1772        // Reference values are always non-null and have the width of a pointer.
1773        if (Field->getType()->isReferenceType())
1774          NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1775              CGF.getTarget().getPointerWidth(0));
1776        else
1777          NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1778      }
1779
1780      return NumNonZeroBytes;
1781    }
1782  }
1783
1784
1785  CharUnits NumNonZeroBytes = CharUnits::Zero();
1786  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1787    NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1788  return NumNonZeroBytes;
1789}
1790
1791/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1792/// zeros in it, emit a memset and avoid storing the individual zeros.
1793///
1794static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1795                                     CodeGenFunction &CGF) {
1796  // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1797  // volatile stores.
1798  if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1799    return;
1800
1801  // C++ objects with a user-declared constructor don't need zero'ing.
1802  if (CGF.getLangOpts().CPlusPlus)
1803    if (const RecordType *RT = CGF.getContext()
1804                       .getBaseElementType(E->getType())->getAs<RecordType>()) {
1805      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1806      if (RD->hasUserDeclaredConstructor())
1807        return;
1808    }
1809
1810  // If the type is 16-bytes or smaller, prefer individual stores over memset.
1811  CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1812  if (Size <= CharUnits::fromQuantity(16))
1813    return;
1814
1815  // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1816  // we prefer to emit memset + individual stores for the rest.
1817  CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1818  if (NumNonZeroBytes*4 > Size)
1819    return;
1820
1821  // Okay, it seems like a good idea to use an initial memset, emit the call.
1822  llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1823
1824  Address Loc = Slot.getAddress();
1825  Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1826  CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1827
1828  // Tell the AggExprEmitter that the slot is known zero.
1829  Slot.setZeroed();
1830}
1831
1832
1833
1834
1835/// EmitAggExpr - Emit the computation of the specified expression of aggregate
1836/// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1837/// the value of the aggregate expression is not needed.  If VolatileDest is
1838/// true, DestPtr cannot be 0.
1839void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1840  assert(E && hasAggregateEvaluationKind(E->getType()) &&
1841         "Invalid aggregate expression to emit");
1842  assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1843         "slot has bits but no address");
1844
1845  // Optimize the slot if possible.
1846  CheckAggExprForMemSetUse(Slot, E, *this);
1847
1848  AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1849}
1850
1851LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1852  assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1853  Address Temp = CreateMemTemp(E->getType());
1854  LValue LV = MakeAddrLValue(Temp, E->getType());
1855  EmitAggExpr(E, AggValueSlot::forLValue(
1856                     LV, *this, AggValueSlot::IsNotDestructed,
1857                     AggValueSlot::DoesNotNeedGCBarriers,
1858                     AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
1859  return LV;
1860}
1861
1862AggValueSlot::Overlap_t
1863CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
1864  if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
1865    return AggValueSlot::DoesNotOverlap;
1866
1867  // If the field lies entirely within the enclosing class's nvsize, its tail
1868  // padding cannot overlap any already-initialized object. (The only subobjects
1869  // with greater addresses that might already be initialized are vbases.)
1870  const RecordDecl *ClassRD = FD->getParent();
1871  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
1872  if (Layout.getFieldOffset(FD->getFieldIndex()) +
1873          getContext().getTypeSize(FD->getType()) <=
1874      (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
1875    return AggValueSlot::DoesNotOverlap;
1876
1877  // The tail padding may contain values we need to preserve.
1878  return AggValueSlot::MayOverlap;
1879}
1880
1881AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
1882    const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1883  // If the most-derived object is a field declared with [[no_unique_address]],
1884  // the tail padding of any virtual base could be reused for other subobjects
1885  // of that field's class.
1886  if (IsVirtual)
1887    return AggValueSlot::MayOverlap;
1888
1889  // If the base class is laid out entirely within the nvsize of the derived
1890  // class, its tail padding cannot yet be initialized, so we can issue
1891  // stores at the full width of the base class.
1892  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1893  if (Layout.getBaseClassOffset(BaseRD) +
1894          getContext().getASTRecordLayout(BaseRD).getSize() <=
1895      Layout.getNonVirtualSize())
1896    return AggValueSlot::DoesNotOverlap;
1897
1898  // The tail padding may contain values we need to preserve.
1899  return AggValueSlot::MayOverlap;
1900}
1901
1902void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1903                                        AggValueSlot::Overlap_t MayOverlap,
1904                                        bool isVolatile) {
1905  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1906
1907  Address DestPtr = Dest.getAddress(*this);
1908  Address SrcPtr = Src.getAddress(*this);
1909
1910  if (getLangOpts().CPlusPlus) {
1911    if (const RecordType *RT = Ty->getAs<RecordType>()) {
1912      CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1913      assert((Record->hasTrivialCopyConstructor() ||
1914              Record->hasTrivialCopyAssignment() ||
1915              Record->hasTrivialMoveConstructor() ||
1916              Record->hasTrivialMoveAssignment() ||
1917              Record->isUnion()) &&
1918             "Trying to aggregate-copy a type without a trivial copy/move "
1919             "constructor or assignment operator");
1920      // Ignore empty classes in C++.
1921      if (Record->isEmpty())
1922        return;
1923    }
1924  }
1925
1926  // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1927  // C99 6.5.16.1p3, which states "If the value being stored in an object is
1928  // read from another object that overlaps in anyway the storage of the first
1929  // object, then the overlap shall be exact and the two objects shall have
1930  // qualified or unqualified versions of a compatible type."
1931  //
1932  // memcpy is not defined if the source and destination pointers are exactly
1933  // equal, but other compilers do this optimization, and almost every memcpy
1934  // implementation handles this case safely.  If there is a libc that does not
1935  // safely handle this, we can add a target hook.
1936
1937  // Get data size info for this aggregate. Don't copy the tail padding if this
1938  // might be a potentially-overlapping subobject, since the tail padding might
1939  // be occupied by a different object. Otherwise, copying it is fine.
1940  std::pair<CharUnits, CharUnits> TypeInfo;
1941  if (MayOverlap)
1942    TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1943  else
1944    TypeInfo = getContext().getTypeInfoInChars(Ty);
1945
1946  llvm::Value *SizeVal = nullptr;
1947  if (TypeInfo.first.isZero()) {
1948    // But note that getTypeInfo returns 0 for a VLA.
1949    if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1950            getContext().getAsArrayType(Ty))) {
1951      QualType BaseEltTy;
1952      SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1953      TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1954      assert(!TypeInfo.first.isZero());
1955      SizeVal = Builder.CreateNUWMul(
1956          SizeVal,
1957          llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1958    }
1959  }
1960  if (!SizeVal) {
1961    SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1962  }
1963
1964  // FIXME: If we have a volatile struct, the optimizer can remove what might
1965  // appear to be `extra' memory ops:
1966  //
1967  // volatile struct { int i; } a, b;
1968  //
1969  // int main() {
1970  //   a = b;
1971  //   a = b;
1972  // }
1973  //
1974  // we need to use a different call here.  We use isVolatile to indicate when
1975  // either the source or the destination is volatile.
1976
1977  DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1978  SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1979
1980  // Don't do any of the memmove_collectable tests if GC isn't set.
1981  if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1982    // fall through
1983  } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1984    RecordDecl *Record = RecordTy->getDecl();
1985    if (Record->hasObjectMember()) {
1986      CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1987                                                    SizeVal);
1988      return;
1989    }
1990  } else if (Ty->isArrayType()) {
1991    QualType BaseType = getContext().getBaseElementType(Ty);
1992    if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1993      if (RecordTy->getDecl()->hasObjectMember()) {
1994        CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1995                                                      SizeVal);
1996        return;
1997      }
1998    }
1999  }
2000
2001  auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2002
2003  // Determine the metadata to describe the position of any padding in this
2004  // memcpy, as well as the TBAA tags for the members of the struct, in case
2005  // the optimizer wishes to expand it in to scalar memory operations.
2006  if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2007    Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2008
2009  if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2010    TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2011        Dest.getTBAAInfo(), Src.getTBAAInfo());
2012    CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2013  }
2014}
2015