CGBuiltin.cpp revision 360784
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGObjCRuntime.h"
15#include "CGOpenCLRuntime.h"
16#include "CGRecordLayout.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "ConstantEmitter.h"
20#include "PatternInit.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/Attr.h"
24#include "clang/AST/Decl.h"
25#include "clang/AST/OSLog.h"
26#include "clang/Basic/TargetBuiltins.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/CodeGen/CGFunctionInfo.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/InlineAsm.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/IntrinsicsAArch64.h"
35#include "llvm/IR/IntrinsicsAMDGPU.h"
36#include "llvm/IR/IntrinsicsARM.h"
37#include "llvm/IR/IntrinsicsBPF.h"
38#include "llvm/IR/IntrinsicsHexagon.h"
39#include "llvm/IR/IntrinsicsNVPTX.h"
40#include "llvm/IR/IntrinsicsPowerPC.h"
41#include "llvm/IR/IntrinsicsR600.h"
42#include "llvm/IR/IntrinsicsS390.h"
43#include "llvm/IR/IntrinsicsWebAssembly.h"
44#include "llvm/IR/IntrinsicsX86.h"
45#include "llvm/IR/MDBuilder.h"
46#include "llvm/Support/ConvertUTF.h"
47#include "llvm/Support/ScopedPrinter.h"
48#include "llvm/Support/TargetParser.h"
49#include <sstream>
50
51using namespace clang;
52using namespace CodeGen;
53using namespace llvm;
54
55static
56int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
57  return std::min(High, std::max(Low, Value));
58}
59
60static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
61                             Align AlignmentInBytes) {
62  ConstantInt *Byte;
63  switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
64  case LangOptions::TrivialAutoVarInitKind::Uninitialized:
65    // Nothing to initialize.
66    return;
67  case LangOptions::TrivialAutoVarInitKind::Zero:
68    Byte = CGF.Builder.getInt8(0x00);
69    break;
70  case LangOptions::TrivialAutoVarInitKind::Pattern: {
71    llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
72    Byte = llvm::dyn_cast<llvm::ConstantInt>(
73        initializationPatternFor(CGF.CGM, Int8));
74    break;
75  }
76  }
77  CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
78}
79
80/// getBuiltinLibFunction - Given a builtin id for a function like
81/// "__builtin_fabsf", return a Function* for "fabsf".
82llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
83                                                     unsigned BuiltinID) {
84  assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
85
86  // Get the name, skip over the __builtin_ prefix (if necessary).
87  StringRef Name;
88  GlobalDecl D(FD);
89
90  // If the builtin has been declared explicitly with an assembler label,
91  // use the mangled name. This differs from the plain label on platforms
92  // that prefix labels.
93  if (FD->hasAttr<AsmLabelAttr>())
94    Name = getMangledName(D);
95  else
96    Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
97
98  llvm::FunctionType *Ty =
99    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
100
101  return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
102}
103
104/// Emit the conversions required to turn the given value into an
105/// integer of the given size.
106static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
107                        QualType T, llvm::IntegerType *IntType) {
108  V = CGF.EmitToMemory(V, T);
109
110  if (V->getType()->isPointerTy())
111    return CGF.Builder.CreatePtrToInt(V, IntType);
112
113  assert(V->getType() == IntType);
114  return V;
115}
116
117static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
118                          QualType T, llvm::Type *ResultType) {
119  V = CGF.EmitFromMemory(V, T);
120
121  if (ResultType->isPointerTy())
122    return CGF.Builder.CreateIntToPtr(V, ResultType);
123
124  assert(V->getType() == ResultType);
125  return V;
126}
127
128/// Utility to insert an atomic instruction based on Intrinsic::ID
129/// and the expression node.
130static Value *MakeBinaryAtomicValue(
131    CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
132    AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
133  QualType T = E->getType();
134  assert(E->getArg(0)->getType()->isPointerType());
135  assert(CGF.getContext().hasSameUnqualifiedType(T,
136                                  E->getArg(0)->getType()->getPointeeType()));
137  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
138
139  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
140  unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
141
142  llvm::IntegerType *IntType =
143    llvm::IntegerType::get(CGF.getLLVMContext(),
144                           CGF.getContext().getTypeSize(T));
145  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
146
147  llvm::Value *Args[2];
148  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
149  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
150  llvm::Type *ValueType = Args[1]->getType();
151  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
152
153  llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
154      Kind, Args[0], Args[1], Ordering);
155  return EmitFromInt(CGF, Result, T, ValueType);
156}
157
158static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
159  Value *Val = CGF.EmitScalarExpr(E->getArg(0));
160  Value *Address = CGF.EmitScalarExpr(E->getArg(1));
161
162  // Convert the type of the pointer to a pointer to the stored type.
163  Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
164  Value *BC = CGF.Builder.CreateBitCast(
165      Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
166  LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
167  LV.setNontemporal(true);
168  CGF.EmitStoreOfScalar(Val, LV, false);
169  return nullptr;
170}
171
172static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
173  Value *Address = CGF.EmitScalarExpr(E->getArg(0));
174
175  LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
176  LV.setNontemporal(true);
177  return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
178}
179
180static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
181                               llvm::AtomicRMWInst::BinOp Kind,
182                               const CallExpr *E) {
183  return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
184}
185
186/// Utility to insert an atomic instruction based Intrinsic::ID and
187/// the expression node, where the return value is the result of the
188/// operation.
189static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
190                                   llvm::AtomicRMWInst::BinOp Kind,
191                                   const CallExpr *E,
192                                   Instruction::BinaryOps Op,
193                                   bool Invert = false) {
194  QualType T = E->getType();
195  assert(E->getArg(0)->getType()->isPointerType());
196  assert(CGF.getContext().hasSameUnqualifiedType(T,
197                                  E->getArg(0)->getType()->getPointeeType()));
198  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
199
200  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
201  unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
202
203  llvm::IntegerType *IntType =
204    llvm::IntegerType::get(CGF.getLLVMContext(),
205                           CGF.getContext().getTypeSize(T));
206  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
207
208  llvm::Value *Args[2];
209  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
210  llvm::Type *ValueType = Args[1]->getType();
211  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
212  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
213
214  llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
215      Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
216  Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
217  if (Invert)
218    Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
219                                     llvm::ConstantInt::get(IntType, -1));
220  Result = EmitFromInt(CGF, Result, T, ValueType);
221  return RValue::get(Result);
222}
223
224/// Utility to insert an atomic cmpxchg instruction.
225///
226/// @param CGF The current codegen function.
227/// @param E   Builtin call expression to convert to cmpxchg.
228///            arg0 - address to operate on
229///            arg1 - value to compare with
230///            arg2 - new value
231/// @param ReturnBool Specifies whether to return success flag of
232///                   cmpxchg result or the old value.
233///
234/// @returns result of cmpxchg, according to ReturnBool
235///
236/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
237/// invoke the function EmitAtomicCmpXchgForMSIntrin.
238static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
239                                     bool ReturnBool) {
240  QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
241  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
242  unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
243
244  llvm::IntegerType *IntType = llvm::IntegerType::get(
245      CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
246  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
247
248  Value *Args[3];
249  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
250  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
251  llvm::Type *ValueType = Args[1]->getType();
252  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
253  Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
254
255  Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
256      Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
257      llvm::AtomicOrdering::SequentiallyConsistent);
258  if (ReturnBool)
259    // Extract boolean success flag and zext it to int.
260    return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
261                                  CGF.ConvertType(E->getType()));
262  else
263    // Extract old value and emit it using the same type as compare value.
264    return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
265                       ValueType);
266}
267
268/// This function should be invoked to emit atomic cmpxchg for Microsoft's
269/// _InterlockedCompareExchange* intrinsics which have the following signature:
270/// T _InterlockedCompareExchange(T volatile *Destination,
271///                               T Exchange,
272///                               T Comparand);
273///
274/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
275/// cmpxchg *Destination, Comparand, Exchange.
276/// So we need to swap Comparand and Exchange when invoking
277/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
278/// function MakeAtomicCmpXchgValue since it expects the arguments to be
279/// already swapped.
280
281static
282Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
283    AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
284  assert(E->getArg(0)->getType()->isPointerType());
285  assert(CGF.getContext().hasSameUnqualifiedType(
286      E->getType(), E->getArg(0)->getType()->getPointeeType()));
287  assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
288                                                 E->getArg(1)->getType()));
289  assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
290                                                 E->getArg(2)->getType()));
291
292  auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
293  auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
294  auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
295
296  // For Release ordering, the failure ordering should be Monotonic.
297  auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
298                         AtomicOrdering::Monotonic :
299                         SuccessOrdering;
300
301  auto *Result = CGF.Builder.CreateAtomicCmpXchg(
302                   Destination, Comparand, Exchange,
303                   SuccessOrdering, FailureOrdering);
304  Result->setVolatile(true);
305  return CGF.Builder.CreateExtractValue(Result, 0);
306}
307
308static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
309    AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
310  assert(E->getArg(0)->getType()->isPointerType());
311
312  auto *IntTy = CGF.ConvertType(E->getType());
313  auto *Result = CGF.Builder.CreateAtomicRMW(
314                   AtomicRMWInst::Add,
315                   CGF.EmitScalarExpr(E->getArg(0)),
316                   ConstantInt::get(IntTy, 1),
317                   Ordering);
318  return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
319}
320
321static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
322    AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
323  assert(E->getArg(0)->getType()->isPointerType());
324
325  auto *IntTy = CGF.ConvertType(E->getType());
326  auto *Result = CGF.Builder.CreateAtomicRMW(
327                   AtomicRMWInst::Sub,
328                   CGF.EmitScalarExpr(E->getArg(0)),
329                   ConstantInt::get(IntTy, 1),
330                   Ordering);
331  return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
332}
333
334// Build a plain volatile load.
335static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
336  Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
337  QualType ElTy = E->getArg(0)->getType()->getPointeeType();
338  CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
339  llvm::Type *ITy =
340      llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
341  Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
342  llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
343  Load->setVolatile(true);
344  return Load;
345}
346
347// Build a plain volatile store.
348static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
349  Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
350  Value *Value = CGF.EmitScalarExpr(E->getArg(1));
351  QualType ElTy = E->getArg(0)->getType()->getPointeeType();
352  CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
353  llvm::Type *ITy =
354      llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
355  Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
356  llvm::StoreInst *Store =
357      CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
358  Store->setVolatile(true);
359  return Store;
360}
361
362// Emit a simple mangled intrinsic that has 1 argument and a return type
363// matching the argument type. Depending on mode, this may be a constrained
364// floating-point intrinsic.
365static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
366                                const CallExpr *E, unsigned IntrinsicID,
367                                unsigned ConstrainedIntrinsicID) {
368  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
369
370  if (CGF.Builder.getIsFPConstrained()) {
371    Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
372    return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
373  } else {
374    Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
375    return CGF.Builder.CreateCall(F, Src0);
376  }
377}
378
379// Emit an intrinsic that has 2 operands of the same type as its result.
380// Depending on mode, this may be a constrained floating-point intrinsic.
381static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
382                                const CallExpr *E, unsigned IntrinsicID,
383                                unsigned ConstrainedIntrinsicID) {
384  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
385  llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
386
387  if (CGF.Builder.getIsFPConstrained()) {
388    Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
389    return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
390  } else {
391    Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
392    return CGF.Builder.CreateCall(F, { Src0, Src1 });
393  }
394}
395
396// Emit an intrinsic that has 3 operands of the same type as its result.
397// Depending on mode, this may be a constrained floating-point intrinsic.
398static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
399                                 const CallExpr *E, unsigned IntrinsicID,
400                                 unsigned ConstrainedIntrinsicID) {
401  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
402  llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
403  llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
404
405  if (CGF.Builder.getIsFPConstrained()) {
406    Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
407    return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
408  } else {
409    Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
410    return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
411  }
412}
413
414// Emit a simple mangled intrinsic that has 1 argument and a return type
415// matching the argument type.
416static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
417                               const CallExpr *E,
418                               unsigned IntrinsicID) {
419  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
420
421  Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
422  return CGF.Builder.CreateCall(F, Src0);
423}
424
425// Emit an intrinsic that has 2 operands of the same type as its result.
426static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
427                                const CallExpr *E,
428                                unsigned IntrinsicID) {
429  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
430  llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
431
432  Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
433  return CGF.Builder.CreateCall(F, { Src0, Src1 });
434}
435
436// Emit an intrinsic that has 3 operands of the same type as its result.
437static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
438                                 const CallExpr *E,
439                                 unsigned IntrinsicID) {
440  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
441  llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
442  llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
443
444  Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
445  return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
446}
447
448// Emit an intrinsic that has 1 float or double operand, and 1 integer.
449static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
450                               const CallExpr *E,
451                               unsigned IntrinsicID) {
452  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
453  llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
454
455  Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
456  return CGF.Builder.CreateCall(F, {Src0, Src1});
457}
458
459// Emit an intrinsic that has overloaded integer result and fp operand.
460static Value *
461emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
462                                        unsigned IntrinsicID,
463                                        unsigned ConstrainedIntrinsicID) {
464  llvm::Type *ResultType = CGF.ConvertType(E->getType());
465  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
466
467  if (CGF.Builder.getIsFPConstrained()) {
468    Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
469                                       {ResultType, Src0->getType()});
470    return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
471  } else {
472    Function *F =
473        CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
474    return CGF.Builder.CreateCall(F, Src0);
475  }
476}
477
478/// EmitFAbs - Emit a call to @llvm.fabs().
479static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
480  Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
481  llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
482  Call->setDoesNotAccessMemory();
483  return Call;
484}
485
486/// Emit the computation of the sign bit for a floating point value. Returns
487/// the i1 sign bit value.
488static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
489  LLVMContext &C = CGF.CGM.getLLVMContext();
490
491  llvm::Type *Ty = V->getType();
492  int Width = Ty->getPrimitiveSizeInBits();
493  llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
494  V = CGF.Builder.CreateBitCast(V, IntTy);
495  if (Ty->isPPC_FP128Ty()) {
496    // We want the sign bit of the higher-order double. The bitcast we just
497    // did works as if the double-double was stored to memory and then
498    // read as an i128. The "store" will put the higher-order double in the
499    // lower address in both little- and big-Endian modes, but the "load"
500    // will treat those bits as a different part of the i128: the low bits in
501    // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
502    // we need to shift the high bits down to the low before truncating.
503    Width >>= 1;
504    if (CGF.getTarget().isBigEndian()) {
505      Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
506      V = CGF.Builder.CreateLShr(V, ShiftCst);
507    }
508    // We are truncating value in order to extract the higher-order
509    // double, which we will be using to extract the sign from.
510    IntTy = llvm::IntegerType::get(C, Width);
511    V = CGF.Builder.CreateTrunc(V, IntTy);
512  }
513  Value *Zero = llvm::Constant::getNullValue(IntTy);
514  return CGF.Builder.CreateICmpSLT(V, Zero);
515}
516
517static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
518                              const CallExpr *E, llvm::Constant *calleeValue) {
519  CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
520  return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
521}
522
523/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
524/// depending on IntrinsicID.
525///
526/// \arg CGF The current codegen function.
527/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
528/// \arg X The first argument to the llvm.*.with.overflow.*.
529/// \arg Y The second argument to the llvm.*.with.overflow.*.
530/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
531/// \returns The result (i.e. sum/product) returned by the intrinsic.
532static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
533                                          const llvm::Intrinsic::ID IntrinsicID,
534                                          llvm::Value *X, llvm::Value *Y,
535                                          llvm::Value *&Carry) {
536  // Make sure we have integers of the same width.
537  assert(X->getType() == Y->getType() &&
538         "Arguments must be the same type. (Did you forget to make sure both "
539         "arguments have the same integer width?)");
540
541  Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
542  llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
543  Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
544  return CGF.Builder.CreateExtractValue(Tmp, 0);
545}
546
547static Value *emitRangedBuiltin(CodeGenFunction &CGF,
548                                unsigned IntrinsicID,
549                                int low, int high) {
550    llvm::MDBuilder MDHelper(CGF.getLLVMContext());
551    llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
552    Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
553    llvm::Instruction *Call = CGF.Builder.CreateCall(F);
554    Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
555    return Call;
556}
557
558namespace {
559  struct WidthAndSignedness {
560    unsigned Width;
561    bool Signed;
562  };
563}
564
565static WidthAndSignedness
566getIntegerWidthAndSignedness(const clang::ASTContext &context,
567                             const clang::QualType Type) {
568  assert(Type->isIntegerType() && "Given type is not an integer.");
569  unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
570  bool Signed = Type->isSignedIntegerType();
571  return {Width, Signed};
572}
573
574// Given one or more integer types, this function produces an integer type that
575// encompasses them: any value in one of the given types could be expressed in
576// the encompassing type.
577static struct WidthAndSignedness
578EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
579  assert(Types.size() > 0 && "Empty list of types.");
580
581  // If any of the given types is signed, we must return a signed type.
582  bool Signed = false;
583  for (const auto &Type : Types) {
584    Signed |= Type.Signed;
585  }
586
587  // The encompassing type must have a width greater than or equal to the width
588  // of the specified types.  Additionally, if the encompassing type is signed,
589  // its width must be strictly greater than the width of any unsigned types
590  // given.
591  unsigned Width = 0;
592  for (const auto &Type : Types) {
593    unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
594    if (Width < MinWidth) {
595      Width = MinWidth;
596    }
597  }
598
599  return {Width, Signed};
600}
601
602Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
603  llvm::Type *DestType = Int8PtrTy;
604  if (ArgValue->getType() != DestType)
605    ArgValue =
606        Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
607
608  Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
609  return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
610}
611
612/// Checks if using the result of __builtin_object_size(p, @p From) in place of
613/// __builtin_object_size(p, @p To) is correct
614static bool areBOSTypesCompatible(int From, int To) {
615  // Note: Our __builtin_object_size implementation currently treats Type=0 and
616  // Type=2 identically. Encoding this implementation detail here may make
617  // improving __builtin_object_size difficult in the future, so it's omitted.
618  return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
619}
620
621static llvm::Value *
622getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
623  return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
624}
625
626llvm::Value *
627CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
628                                                 llvm::IntegerType *ResType,
629                                                 llvm::Value *EmittedE,
630                                                 bool IsDynamic) {
631  uint64_t ObjectSize;
632  if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
633    return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
634  return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
635}
636
637/// Returns a Value corresponding to the size of the given expression.
638/// This Value may be either of the following:
639///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
640///     it)
641///   - A call to the @llvm.objectsize intrinsic
642///
643/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
644/// and we wouldn't otherwise try to reference a pass_object_size parameter,
645/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
646llvm::Value *
647CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
648                                       llvm::IntegerType *ResType,
649                                       llvm::Value *EmittedE, bool IsDynamic) {
650  // We need to reference an argument if the pointer is a parameter with the
651  // pass_object_size attribute.
652  if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
653    auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
654    auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
655    if (Param != nullptr && PS != nullptr &&
656        areBOSTypesCompatible(PS->getType(), Type)) {
657      auto Iter = SizeArguments.find(Param);
658      assert(Iter != SizeArguments.end());
659
660      const ImplicitParamDecl *D = Iter->second;
661      auto DIter = LocalDeclMap.find(D);
662      assert(DIter != LocalDeclMap.end());
663
664      return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
665                              getContext().getSizeType(), E->getBeginLoc());
666    }
667  }
668
669  // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
670  // evaluate E for side-effects. In either case, we shouldn't lower to
671  // @llvm.objectsize.
672  if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
673    return getDefaultBuiltinObjectSizeResult(Type, ResType);
674
675  Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
676  assert(Ptr->getType()->isPointerTy() &&
677         "Non-pointer passed to __builtin_object_size?");
678
679  Function *F =
680      CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
681
682  // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
683  Value *Min = Builder.getInt1((Type & 2) != 0);
684  // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
685  Value *NullIsUnknown = Builder.getTrue();
686  Value *Dynamic = Builder.getInt1(IsDynamic);
687  return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
688}
689
690namespace {
691/// A struct to generically describe a bit test intrinsic.
692struct BitTest {
693  enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
694  enum InterlockingKind : uint8_t {
695    Unlocked,
696    Sequential,
697    Acquire,
698    Release,
699    NoFence
700  };
701
702  ActionKind Action;
703  InterlockingKind Interlocking;
704  bool Is64Bit;
705
706  static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
707};
708} // namespace
709
710BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
711  switch (BuiltinID) {
712    // Main portable variants.
713  case Builtin::BI_bittest:
714    return {TestOnly, Unlocked, false};
715  case Builtin::BI_bittestandcomplement:
716    return {Complement, Unlocked, false};
717  case Builtin::BI_bittestandreset:
718    return {Reset, Unlocked, false};
719  case Builtin::BI_bittestandset:
720    return {Set, Unlocked, false};
721  case Builtin::BI_interlockedbittestandreset:
722    return {Reset, Sequential, false};
723  case Builtin::BI_interlockedbittestandset:
724    return {Set, Sequential, false};
725
726    // X86-specific 64-bit variants.
727  case Builtin::BI_bittest64:
728    return {TestOnly, Unlocked, true};
729  case Builtin::BI_bittestandcomplement64:
730    return {Complement, Unlocked, true};
731  case Builtin::BI_bittestandreset64:
732    return {Reset, Unlocked, true};
733  case Builtin::BI_bittestandset64:
734    return {Set, Unlocked, true};
735  case Builtin::BI_interlockedbittestandreset64:
736    return {Reset, Sequential, true};
737  case Builtin::BI_interlockedbittestandset64:
738    return {Set, Sequential, true};
739
740    // ARM/AArch64-specific ordering variants.
741  case Builtin::BI_interlockedbittestandset_acq:
742    return {Set, Acquire, false};
743  case Builtin::BI_interlockedbittestandset_rel:
744    return {Set, Release, false};
745  case Builtin::BI_interlockedbittestandset_nf:
746    return {Set, NoFence, false};
747  case Builtin::BI_interlockedbittestandreset_acq:
748    return {Reset, Acquire, false};
749  case Builtin::BI_interlockedbittestandreset_rel:
750    return {Reset, Release, false};
751  case Builtin::BI_interlockedbittestandreset_nf:
752    return {Reset, NoFence, false};
753  }
754  llvm_unreachable("expected only bittest intrinsics");
755}
756
757static char bitActionToX86BTCode(BitTest::ActionKind A) {
758  switch (A) {
759  case BitTest::TestOnly:   return '\0';
760  case BitTest::Complement: return 'c';
761  case BitTest::Reset:      return 'r';
762  case BitTest::Set:        return 's';
763  }
764  llvm_unreachable("invalid action");
765}
766
767static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
768                                            BitTest BT,
769                                            const CallExpr *E, Value *BitBase,
770                                            Value *BitPos) {
771  char Action = bitActionToX86BTCode(BT.Action);
772  char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
773
774  // Build the assembly.
775  SmallString<64> Asm;
776  raw_svector_ostream AsmOS(Asm);
777  if (BT.Interlocking != BitTest::Unlocked)
778    AsmOS << "lock ";
779  AsmOS << "bt";
780  if (Action)
781    AsmOS << Action;
782  AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}";
783
784  // Build the constraints. FIXME: We should support immediates when possible.
785  std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}";
786  llvm::IntegerType *IntType = llvm::IntegerType::get(
787      CGF.getLLVMContext(),
788      CGF.getContext().getTypeSize(E->getArg(1)->getType()));
789  llvm::Type *IntPtrType = IntType->getPointerTo();
790  llvm::FunctionType *FTy =
791      llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
792
793  llvm::InlineAsm *IA =
794      llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
795  return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
796}
797
798static llvm::AtomicOrdering
799getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
800  switch (I) {
801  case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
802  case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
803  case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
804  case BitTest::Release:    return llvm::AtomicOrdering::Release;
805  case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
806  }
807  llvm_unreachable("invalid interlocking");
808}
809
810/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
811/// bits and a bit position and read and optionally modify the bit at that
812/// position. The position index can be arbitrarily large, i.e. it can be larger
813/// than 31 or 63, so we need an indexed load in the general case.
814static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
815                                         unsigned BuiltinID,
816                                         const CallExpr *E) {
817  Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
818  Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
819
820  BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
821
822  // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
823  // indexing operation internally. Use them if possible.
824  if (CGF.getTarget().getTriple().isX86())
825    return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
826
827  // Otherwise, use generic code to load one byte and test the bit. Use all but
828  // the bottom three bits as the array index, and the bottom three bits to form
829  // a mask.
830  // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
831  Value *ByteIndex = CGF.Builder.CreateAShr(
832      BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
833  Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
834  Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
835                                                 ByteIndex, "bittest.byteaddr"),
836                   CharUnits::One());
837  Value *PosLow =
838      CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
839                            llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
840
841  // The updating instructions will need a mask.
842  Value *Mask = nullptr;
843  if (BT.Action != BitTest::TestOnly) {
844    Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
845                                 "bittest.mask");
846  }
847
848  // Check the action and ordering of the interlocked intrinsics.
849  llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
850
851  Value *OldByte = nullptr;
852  if (Ordering != llvm::AtomicOrdering::NotAtomic) {
853    // Emit a combined atomicrmw load/store operation for the interlocked
854    // intrinsics.
855    llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
856    if (BT.Action == BitTest::Reset) {
857      Mask = CGF.Builder.CreateNot(Mask);
858      RMWOp = llvm::AtomicRMWInst::And;
859    }
860    OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
861                                          Ordering);
862  } else {
863    // Emit a plain load for the non-interlocked intrinsics.
864    OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
865    Value *NewByte = nullptr;
866    switch (BT.Action) {
867    case BitTest::TestOnly:
868      // Don't store anything.
869      break;
870    case BitTest::Complement:
871      NewByte = CGF.Builder.CreateXor(OldByte, Mask);
872      break;
873    case BitTest::Reset:
874      NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
875      break;
876    case BitTest::Set:
877      NewByte = CGF.Builder.CreateOr(OldByte, Mask);
878      break;
879    }
880    if (NewByte)
881      CGF.Builder.CreateStore(NewByte, ByteAddr);
882  }
883
884  // However we loaded the old byte, either by plain load or atomicrmw, shift
885  // the bit into the low position and mask it to 0 or 1.
886  Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
887  return CGF.Builder.CreateAnd(
888      ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
889}
890
891namespace {
892enum class MSVCSetJmpKind {
893  _setjmpex,
894  _setjmp3,
895  _setjmp
896};
897}
898
899/// MSVC handles setjmp a bit differently on different platforms. On every
900/// architecture except 32-bit x86, the frame address is passed. On x86, extra
901/// parameters can be passed as variadic arguments, but we always pass none.
902static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
903                               const CallExpr *E) {
904  llvm::Value *Arg1 = nullptr;
905  llvm::Type *Arg1Ty = nullptr;
906  StringRef Name;
907  bool IsVarArg = false;
908  if (SJKind == MSVCSetJmpKind::_setjmp3) {
909    Name = "_setjmp3";
910    Arg1Ty = CGF.Int32Ty;
911    Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
912    IsVarArg = true;
913  } else {
914    Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
915    Arg1Ty = CGF.Int8PtrTy;
916    if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
917      Arg1 = CGF.Builder.CreateCall(
918          CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
919    } else
920      Arg1 = CGF.Builder.CreateCall(
921          CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
922          llvm::ConstantInt::get(CGF.Int32Ty, 0));
923  }
924
925  // Mark the call site and declaration with ReturnsTwice.
926  llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
927  llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
928      CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
929      llvm::Attribute::ReturnsTwice);
930  llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
931      llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
932      ReturnsTwiceAttr, /*Local=*/true);
933
934  llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
935      CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
936  llvm::Value *Args[] = {Buf, Arg1};
937  llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
938  CB->setAttributes(ReturnsTwiceAttr);
939  return RValue::get(CB);
940}
941
942// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
943// we handle them here.
944enum class CodeGenFunction::MSVCIntrin {
945  _BitScanForward,
946  _BitScanReverse,
947  _InterlockedAnd,
948  _InterlockedDecrement,
949  _InterlockedExchange,
950  _InterlockedExchangeAdd,
951  _InterlockedExchangeSub,
952  _InterlockedIncrement,
953  _InterlockedOr,
954  _InterlockedXor,
955  _InterlockedExchangeAdd_acq,
956  _InterlockedExchangeAdd_rel,
957  _InterlockedExchangeAdd_nf,
958  _InterlockedExchange_acq,
959  _InterlockedExchange_rel,
960  _InterlockedExchange_nf,
961  _InterlockedCompareExchange_acq,
962  _InterlockedCompareExchange_rel,
963  _InterlockedCompareExchange_nf,
964  _InterlockedOr_acq,
965  _InterlockedOr_rel,
966  _InterlockedOr_nf,
967  _InterlockedXor_acq,
968  _InterlockedXor_rel,
969  _InterlockedXor_nf,
970  _InterlockedAnd_acq,
971  _InterlockedAnd_rel,
972  _InterlockedAnd_nf,
973  _InterlockedIncrement_acq,
974  _InterlockedIncrement_rel,
975  _InterlockedIncrement_nf,
976  _InterlockedDecrement_acq,
977  _InterlockedDecrement_rel,
978  _InterlockedDecrement_nf,
979  __fastfail,
980};
981
982Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
983                                            const CallExpr *E) {
984  switch (BuiltinID) {
985  case MSVCIntrin::_BitScanForward:
986  case MSVCIntrin::_BitScanReverse: {
987    Value *ArgValue = EmitScalarExpr(E->getArg(1));
988
989    llvm::Type *ArgType = ArgValue->getType();
990    llvm::Type *IndexType =
991      EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
992    llvm::Type *ResultType = ConvertType(E->getType());
993
994    Value *ArgZero = llvm::Constant::getNullValue(ArgType);
995    Value *ResZero = llvm::Constant::getNullValue(ResultType);
996    Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
997
998    BasicBlock *Begin = Builder.GetInsertBlock();
999    BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1000    Builder.SetInsertPoint(End);
1001    PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1002
1003    Builder.SetInsertPoint(Begin);
1004    Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1005    BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1006    Builder.CreateCondBr(IsZero, End, NotZero);
1007    Result->addIncoming(ResZero, Begin);
1008
1009    Builder.SetInsertPoint(NotZero);
1010    Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
1011
1012    if (BuiltinID == MSVCIntrin::_BitScanForward) {
1013      Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1014      Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1015      ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1016      Builder.CreateStore(ZeroCount, IndexAddress, false);
1017    } else {
1018      unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1019      Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1020
1021      Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1022      Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1023      ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1024      Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1025      Builder.CreateStore(Index, IndexAddress, false);
1026    }
1027    Builder.CreateBr(End);
1028    Result->addIncoming(ResOne, NotZero);
1029
1030    Builder.SetInsertPoint(End);
1031    return Result;
1032  }
1033  case MSVCIntrin::_InterlockedAnd:
1034    return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1035  case MSVCIntrin::_InterlockedExchange:
1036    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1037  case MSVCIntrin::_InterlockedExchangeAdd:
1038    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1039  case MSVCIntrin::_InterlockedExchangeSub:
1040    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1041  case MSVCIntrin::_InterlockedOr:
1042    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1043  case MSVCIntrin::_InterlockedXor:
1044    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1045  case MSVCIntrin::_InterlockedExchangeAdd_acq:
1046    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1047                                 AtomicOrdering::Acquire);
1048  case MSVCIntrin::_InterlockedExchangeAdd_rel:
1049    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1050                                 AtomicOrdering::Release);
1051  case MSVCIntrin::_InterlockedExchangeAdd_nf:
1052    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1053                                 AtomicOrdering::Monotonic);
1054  case MSVCIntrin::_InterlockedExchange_acq:
1055    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1056                                 AtomicOrdering::Acquire);
1057  case MSVCIntrin::_InterlockedExchange_rel:
1058    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1059                                 AtomicOrdering::Release);
1060  case MSVCIntrin::_InterlockedExchange_nf:
1061    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1062                                 AtomicOrdering::Monotonic);
1063  case MSVCIntrin::_InterlockedCompareExchange_acq:
1064    return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1065  case MSVCIntrin::_InterlockedCompareExchange_rel:
1066    return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1067  case MSVCIntrin::_InterlockedCompareExchange_nf:
1068    return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1069  case MSVCIntrin::_InterlockedOr_acq:
1070    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1071                                 AtomicOrdering::Acquire);
1072  case MSVCIntrin::_InterlockedOr_rel:
1073    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1074                                 AtomicOrdering::Release);
1075  case MSVCIntrin::_InterlockedOr_nf:
1076    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1077                                 AtomicOrdering::Monotonic);
1078  case MSVCIntrin::_InterlockedXor_acq:
1079    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1080                                 AtomicOrdering::Acquire);
1081  case MSVCIntrin::_InterlockedXor_rel:
1082    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1083                                 AtomicOrdering::Release);
1084  case MSVCIntrin::_InterlockedXor_nf:
1085    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1086                                 AtomicOrdering::Monotonic);
1087  case MSVCIntrin::_InterlockedAnd_acq:
1088    return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1089                                 AtomicOrdering::Acquire);
1090  case MSVCIntrin::_InterlockedAnd_rel:
1091    return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1092                                 AtomicOrdering::Release);
1093  case MSVCIntrin::_InterlockedAnd_nf:
1094    return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1095                                 AtomicOrdering::Monotonic);
1096  case MSVCIntrin::_InterlockedIncrement_acq:
1097    return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1098  case MSVCIntrin::_InterlockedIncrement_rel:
1099    return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1100  case MSVCIntrin::_InterlockedIncrement_nf:
1101    return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1102  case MSVCIntrin::_InterlockedDecrement_acq:
1103    return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1104  case MSVCIntrin::_InterlockedDecrement_rel:
1105    return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1106  case MSVCIntrin::_InterlockedDecrement_nf:
1107    return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1108
1109  case MSVCIntrin::_InterlockedDecrement:
1110    return EmitAtomicDecrementValue(*this, E);
1111  case MSVCIntrin::_InterlockedIncrement:
1112    return EmitAtomicIncrementValue(*this, E);
1113
1114  case MSVCIntrin::__fastfail: {
1115    // Request immediate process termination from the kernel. The instruction
1116    // sequences to do this are documented on MSDN:
1117    // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1118    llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1119    StringRef Asm, Constraints;
1120    switch (ISA) {
1121    default:
1122      ErrorUnsupported(E, "__fastfail call for this architecture");
1123      break;
1124    case llvm::Triple::x86:
1125    case llvm::Triple::x86_64:
1126      Asm = "int $$0x29";
1127      Constraints = "{cx}";
1128      break;
1129    case llvm::Triple::thumb:
1130      Asm = "udf #251";
1131      Constraints = "{r0}";
1132      break;
1133    case llvm::Triple::aarch64:
1134      Asm = "brk #0xF003";
1135      Constraints = "{w0}";
1136    }
1137    llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1138    llvm::InlineAsm *IA =
1139        llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1140    llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1141        getLLVMContext(), llvm::AttributeList::FunctionIndex,
1142        llvm::Attribute::NoReturn);
1143    llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1144    CI->setAttributes(NoReturnAttr);
1145    return CI;
1146  }
1147  }
1148  llvm_unreachable("Incorrect MSVC intrinsic!");
1149}
1150
1151namespace {
1152// ARC cleanup for __builtin_os_log_format
1153struct CallObjCArcUse final : EHScopeStack::Cleanup {
1154  CallObjCArcUse(llvm::Value *object) : object(object) {}
1155  llvm::Value *object;
1156
1157  void Emit(CodeGenFunction &CGF, Flags flags) override {
1158    CGF.EmitARCIntrinsicUse(object);
1159  }
1160};
1161}
1162
1163Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1164                                                 BuiltinCheckKind Kind) {
1165  assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1166          && "Unsupported builtin check kind");
1167
1168  Value *ArgValue = EmitScalarExpr(E);
1169  if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1170    return ArgValue;
1171
1172  SanitizerScope SanScope(this);
1173  Value *Cond = Builder.CreateICmpNE(
1174      ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1175  EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1176            SanitizerHandler::InvalidBuiltin,
1177            {EmitCheckSourceLocation(E->getExprLoc()),
1178             llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1179            None);
1180  return ArgValue;
1181}
1182
1183/// Get the argument type for arguments to os_log_helper.
1184static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1185  QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1186  return C.getCanonicalType(UnsignedTy);
1187}
1188
1189llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1190    const analyze_os_log::OSLogBufferLayout &Layout,
1191    CharUnits BufferAlignment) {
1192  ASTContext &Ctx = getContext();
1193
1194  llvm::SmallString<64> Name;
1195  {
1196    raw_svector_ostream OS(Name);
1197    OS << "__os_log_helper";
1198    OS << "_" << BufferAlignment.getQuantity();
1199    OS << "_" << int(Layout.getSummaryByte());
1200    OS << "_" << int(Layout.getNumArgsByte());
1201    for (const auto &Item : Layout.Items)
1202      OS << "_" << int(Item.getSizeByte()) << "_"
1203         << int(Item.getDescriptorByte());
1204  }
1205
1206  if (llvm::Function *F = CGM.getModule().getFunction(Name))
1207    return F;
1208
1209  llvm::SmallVector<QualType, 4> ArgTys;
1210  FunctionArgList Args;
1211  Args.push_back(ImplicitParamDecl::Create(
1212      Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1213      ImplicitParamDecl::Other));
1214  ArgTys.emplace_back(Ctx.VoidPtrTy);
1215
1216  for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1217    char Size = Layout.Items[I].getSizeByte();
1218    if (!Size)
1219      continue;
1220
1221    QualType ArgTy = getOSLogArgType(Ctx, Size);
1222    Args.push_back(ImplicitParamDecl::Create(
1223        Ctx, nullptr, SourceLocation(),
1224        &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1225        ImplicitParamDecl::Other));
1226    ArgTys.emplace_back(ArgTy);
1227  }
1228
1229  QualType ReturnTy = Ctx.VoidTy;
1230  QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1231
1232  // The helper function has linkonce_odr linkage to enable the linker to merge
1233  // identical functions. To ensure the merging always happens, 'noinline' is
1234  // attached to the function when compiling with -Oz.
1235  const CGFunctionInfo &FI =
1236      CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1237  llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1238  llvm::Function *Fn = llvm::Function::Create(
1239      FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1240  Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1241  CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
1242  CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1243  Fn->setDoesNotThrow();
1244
1245  // Attach 'noinline' at -Oz.
1246  if (CGM.getCodeGenOpts().OptimizeSize == 2)
1247    Fn->addFnAttr(llvm::Attribute::NoInline);
1248
1249  auto NL = ApplyDebugLocation::CreateEmpty(*this);
1250  IdentifierInfo *II = &Ctx.Idents.get(Name);
1251  FunctionDecl *FD = FunctionDecl::Create(
1252      Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1253      FuncionTy, nullptr, SC_PrivateExtern, false, false);
1254
1255  StartFunction(FD, ReturnTy, Fn, FI, Args);
1256
1257  // Create a scope with an artificial location for the body of this function.
1258  auto AL = ApplyDebugLocation::CreateArtificial(*this);
1259
1260  CharUnits Offset;
1261  Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1262                  BufferAlignment);
1263  Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1264                      Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1265  Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1266                      Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1267
1268  unsigned I = 1;
1269  for (const auto &Item : Layout.Items) {
1270    Builder.CreateStore(
1271        Builder.getInt8(Item.getDescriptorByte()),
1272        Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1273    Builder.CreateStore(
1274        Builder.getInt8(Item.getSizeByte()),
1275        Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1276
1277    CharUnits Size = Item.size();
1278    if (!Size.getQuantity())
1279      continue;
1280
1281    Address Arg = GetAddrOfLocalVar(Args[I]);
1282    Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1283    Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1284                                 "argDataCast");
1285    Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1286    Offset += Size;
1287    ++I;
1288  }
1289
1290  FinishFunction();
1291
1292  return Fn;
1293}
1294
1295RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1296  assert(E.getNumArgs() >= 2 &&
1297         "__builtin_os_log_format takes at least 2 arguments");
1298  ASTContext &Ctx = getContext();
1299  analyze_os_log::OSLogBufferLayout Layout;
1300  analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1301  Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1302  llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1303
1304  // Ignore argument 1, the format string. It is not currently used.
1305  CallArgList Args;
1306  Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1307
1308  for (const auto &Item : Layout.Items) {
1309    int Size = Item.getSizeByte();
1310    if (!Size)
1311      continue;
1312
1313    llvm::Value *ArgVal;
1314
1315    if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1316      uint64_t Val = 0;
1317      for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1318        Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1319      ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1320    } else if (const Expr *TheExpr = Item.getExpr()) {
1321      ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1322
1323      // Check if this is a retainable type.
1324      if (TheExpr->getType()->isObjCRetainableType()) {
1325        assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1326               "Only scalar can be a ObjC retainable type");
1327        // Check if the object is constant, if not, save it in
1328        // RetainableOperands.
1329        if (!isa<Constant>(ArgVal))
1330          RetainableOperands.push_back(ArgVal);
1331      }
1332    } else {
1333      ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1334    }
1335
1336    unsigned ArgValSize =
1337        CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1338    llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1339                                                     ArgValSize);
1340    ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1341    CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1342    // If ArgVal has type x86_fp80, zero-extend ArgVal.
1343    ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1344    Args.add(RValue::get(ArgVal), ArgTy);
1345  }
1346
1347  const CGFunctionInfo &FI =
1348      CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1349  llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1350      Layout, BufAddr.getAlignment());
1351  EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1352
1353  // Push a clang.arc.use cleanup for each object in RetainableOperands. The
1354  // cleanup will cause the use to appear after the final log call, keeping
1355  // the object valid while it���s held in the log buffer.  Note that if there���s
1356  // a release cleanup on the object, it will already be active; since
1357  // cleanups are emitted in reverse order, the use will occur before the
1358  // object is released.
1359  if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
1360      CGM.getCodeGenOpts().OptimizationLevel != 0)
1361    for (llvm::Value *Object : RetainableOperands)
1362      pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object);
1363
1364  return RValue::get(BufAddr.getPointer());
1365}
1366
1367/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1368static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1369                                       WidthAndSignedness Op1Info,
1370                                       WidthAndSignedness Op2Info,
1371                                       WidthAndSignedness ResultInfo) {
1372  return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1373         std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1374         Op1Info.Signed != Op2Info.Signed;
1375}
1376
1377/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1378/// the generic checked-binop irgen.
1379static RValue
1380EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1381                             WidthAndSignedness Op1Info, const clang::Expr *Op2,
1382                             WidthAndSignedness Op2Info,
1383                             const clang::Expr *ResultArg, QualType ResultQTy,
1384                             WidthAndSignedness ResultInfo) {
1385  assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1386                                    Op2Info, ResultInfo) &&
1387         "Not a mixed-sign multipliction we can specialize");
1388
1389  // Emit the signed and unsigned operands.
1390  const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1391  const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1392  llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1393  llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1394  unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1395  unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1396
1397  // One of the operands may be smaller than the other. If so, [s|z]ext it.
1398  if (SignedOpWidth < UnsignedOpWidth)
1399    Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1400  if (UnsignedOpWidth < SignedOpWidth)
1401    Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1402
1403  llvm::Type *OpTy = Signed->getType();
1404  llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1405  Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1406  llvm::Type *ResTy = ResultPtr.getElementType();
1407  unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1408
1409  // Take the absolute value of the signed operand.
1410  llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1411  llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1412  llvm::Value *AbsSigned =
1413      CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1414
1415  // Perform a checked unsigned multiplication.
1416  llvm::Value *UnsignedOverflow;
1417  llvm::Value *UnsignedResult =
1418      EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1419                            Unsigned, UnsignedOverflow);
1420
1421  llvm::Value *Overflow, *Result;
1422  if (ResultInfo.Signed) {
1423    // Signed overflow occurs if the result is greater than INT_MAX or lesser
1424    // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1425    auto IntMax =
1426        llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1427    llvm::Value *MaxResult =
1428        CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1429                              CGF.Builder.CreateZExt(IsNegative, OpTy));
1430    llvm::Value *SignedOverflow =
1431        CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1432    Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1433
1434    // Prepare the signed result (possibly by negating it).
1435    llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1436    llvm::Value *SignedResult =
1437        CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1438    Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1439  } else {
1440    // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1441    llvm::Value *Underflow = CGF.Builder.CreateAnd(
1442        IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1443    Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1444    if (ResultInfo.Width < OpWidth) {
1445      auto IntMax =
1446          llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1447      llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1448          UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1449      Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1450    }
1451
1452    // Negate the product if it would be negative in infinite precision.
1453    Result = CGF.Builder.CreateSelect(
1454        IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1455
1456    Result = CGF.Builder.CreateTrunc(Result, ResTy);
1457  }
1458  assert(Overflow && Result && "Missing overflow or result");
1459
1460  bool isVolatile =
1461      ResultArg->getType()->getPointeeType().isVolatileQualified();
1462  CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1463                          isVolatile);
1464  return RValue::get(Overflow);
1465}
1466
1467static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1468                               Value *&RecordPtr, CharUnits Align,
1469                               llvm::FunctionCallee Func, int Lvl) {
1470  ASTContext &Context = CGF.getContext();
1471  RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
1472  std::string Pad = std::string(Lvl * 4, ' ');
1473
1474  Value *GString =
1475      CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1476  Value *Res = CGF.Builder.CreateCall(Func, {GString});
1477
1478  static llvm::DenseMap<QualType, const char *> Types;
1479  if (Types.empty()) {
1480    Types[Context.CharTy] = "%c";
1481    Types[Context.BoolTy] = "%d";
1482    Types[Context.SignedCharTy] = "%hhd";
1483    Types[Context.UnsignedCharTy] = "%hhu";
1484    Types[Context.IntTy] = "%d";
1485    Types[Context.UnsignedIntTy] = "%u";
1486    Types[Context.LongTy] = "%ld";
1487    Types[Context.UnsignedLongTy] = "%lu";
1488    Types[Context.LongLongTy] = "%lld";
1489    Types[Context.UnsignedLongLongTy] = "%llu";
1490    Types[Context.ShortTy] = "%hd";
1491    Types[Context.UnsignedShortTy] = "%hu";
1492    Types[Context.VoidPtrTy] = "%p";
1493    Types[Context.FloatTy] = "%f";
1494    Types[Context.DoubleTy] = "%f";
1495    Types[Context.LongDoubleTy] = "%Lf";
1496    Types[Context.getPointerType(Context.CharTy)] = "%s";
1497    Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
1498  }
1499
1500  for (const auto *FD : RD->fields()) {
1501    Value *FieldPtr = RecordPtr;
1502    if (RD->isUnion())
1503      FieldPtr = CGF.Builder.CreatePointerCast(
1504          FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
1505    else
1506      FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
1507                                             FD->getFieldIndex());
1508
1509    GString = CGF.Builder.CreateGlobalStringPtr(
1510        llvm::Twine(Pad)
1511            .concat(FD->getType().getAsString())
1512            .concat(llvm::Twine(' '))
1513            .concat(FD->getNameAsString())
1514            .concat(" : ")
1515            .str());
1516    Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1517    Res = CGF.Builder.CreateAdd(Res, TmpRes);
1518
1519    QualType CanonicalType =
1520        FD->getType().getUnqualifiedType().getCanonicalType();
1521
1522    // We check whether we are in a recursive type
1523    if (CanonicalType->isRecordType()) {
1524      Value *TmpRes =
1525          dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
1526      Res = CGF.Builder.CreateAdd(TmpRes, Res);
1527      continue;
1528    }
1529
1530    // We try to determine the best format to print the current field
1531    llvm::Twine Format = Types.find(CanonicalType) == Types.end()
1532                             ? Types[Context.VoidPtrTy]
1533                             : Types[CanonicalType];
1534
1535    Address FieldAddress = Address(FieldPtr, Align);
1536    FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
1537
1538    // FIXME Need to handle bitfield here
1539    GString = CGF.Builder.CreateGlobalStringPtr(
1540        Format.concat(llvm::Twine('\n')).str());
1541    TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
1542    Res = CGF.Builder.CreateAdd(Res, TmpRes);
1543  }
1544
1545  GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
1546  Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1547  Res = CGF.Builder.CreateAdd(Res, TmpRes);
1548  return Res;
1549}
1550
1551static bool
1552TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
1553                              llvm::SmallPtrSetImpl<const Decl *> &Seen) {
1554  if (const auto *Arr = Ctx.getAsArrayType(Ty))
1555    Ty = Ctx.getBaseElementType(Arr);
1556
1557  const auto *Record = Ty->getAsCXXRecordDecl();
1558  if (!Record)
1559    return false;
1560
1561  // We've already checked this type, or are in the process of checking it.
1562  if (!Seen.insert(Record).second)
1563    return false;
1564
1565  assert(Record->hasDefinition() &&
1566         "Incomplete types should already be diagnosed");
1567
1568  if (Record->isDynamicClass())
1569    return true;
1570
1571  for (FieldDecl *F : Record->fields()) {
1572    if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
1573      return true;
1574  }
1575  return false;
1576}
1577
1578/// Determine if the specified type requires laundering by checking if it is a
1579/// dynamic class type or contains a subobject which is a dynamic class type.
1580static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
1581  if (!CGM.getCodeGenOpts().StrictVTablePointers)
1582    return false;
1583  llvm::SmallPtrSet<const Decl *, 16> Seen;
1584  return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
1585}
1586
1587RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
1588  llvm::Value *Src = EmitScalarExpr(E->getArg(0));
1589  llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
1590
1591  // The builtin's shift arg may have a different type than the source arg and
1592  // result, but the LLVM intrinsic uses the same type for all values.
1593  llvm::Type *Ty = Src->getType();
1594  ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
1595
1596  // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
1597  unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
1598  Function *F = CGM.getIntrinsic(IID, Ty);
1599  return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
1600}
1601
1602RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
1603                                        const CallExpr *E,
1604                                        ReturnValueSlot ReturnValue) {
1605  const FunctionDecl *FD = GD.getDecl()->getAsFunction();
1606  // See if we can constant fold this builtin.  If so, don't emit it at all.
1607  Expr::EvalResult Result;
1608  if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
1609      !Result.hasSideEffects()) {
1610    if (Result.Val.isInt())
1611      return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
1612                                                Result.Val.getInt()));
1613    if (Result.Val.isFloat())
1614      return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
1615                                               Result.Val.getFloat()));
1616  }
1617
1618  // There are LLVM math intrinsics/instructions corresponding to math library
1619  // functions except the LLVM op will never set errno while the math library
1620  // might. Also, math builtins have the same semantics as their math library
1621  // twins. Thus, we can transform math library and builtin calls to their
1622  // LLVM counterparts if the call is marked 'const' (known to never set errno).
1623  if (FD->hasAttr<ConstAttr>()) {
1624    switch (BuiltinID) {
1625    case Builtin::BIceil:
1626    case Builtin::BIceilf:
1627    case Builtin::BIceill:
1628    case Builtin::BI__builtin_ceil:
1629    case Builtin::BI__builtin_ceilf:
1630    case Builtin::BI__builtin_ceilf16:
1631    case Builtin::BI__builtin_ceill:
1632      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1633                                   Intrinsic::ceil,
1634                                   Intrinsic::experimental_constrained_ceil));
1635
1636    case Builtin::BIcopysign:
1637    case Builtin::BIcopysignf:
1638    case Builtin::BIcopysignl:
1639    case Builtin::BI__builtin_copysign:
1640    case Builtin::BI__builtin_copysignf:
1641    case Builtin::BI__builtin_copysignf16:
1642    case Builtin::BI__builtin_copysignl:
1643    case Builtin::BI__builtin_copysignf128:
1644      return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
1645
1646    case Builtin::BIcos:
1647    case Builtin::BIcosf:
1648    case Builtin::BIcosl:
1649    case Builtin::BI__builtin_cos:
1650    case Builtin::BI__builtin_cosf:
1651    case Builtin::BI__builtin_cosf16:
1652    case Builtin::BI__builtin_cosl:
1653      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1654                                   Intrinsic::cos,
1655                                   Intrinsic::experimental_constrained_cos));
1656
1657    case Builtin::BIexp:
1658    case Builtin::BIexpf:
1659    case Builtin::BIexpl:
1660    case Builtin::BI__builtin_exp:
1661    case Builtin::BI__builtin_expf:
1662    case Builtin::BI__builtin_expf16:
1663    case Builtin::BI__builtin_expl:
1664      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1665                                   Intrinsic::exp,
1666                                   Intrinsic::experimental_constrained_exp));
1667
1668    case Builtin::BIexp2:
1669    case Builtin::BIexp2f:
1670    case Builtin::BIexp2l:
1671    case Builtin::BI__builtin_exp2:
1672    case Builtin::BI__builtin_exp2f:
1673    case Builtin::BI__builtin_exp2f16:
1674    case Builtin::BI__builtin_exp2l:
1675      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1676                                   Intrinsic::exp2,
1677                                   Intrinsic::experimental_constrained_exp2));
1678
1679    case Builtin::BIfabs:
1680    case Builtin::BIfabsf:
1681    case Builtin::BIfabsl:
1682    case Builtin::BI__builtin_fabs:
1683    case Builtin::BI__builtin_fabsf:
1684    case Builtin::BI__builtin_fabsf16:
1685    case Builtin::BI__builtin_fabsl:
1686    case Builtin::BI__builtin_fabsf128:
1687      return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
1688
1689    case Builtin::BIfloor:
1690    case Builtin::BIfloorf:
1691    case Builtin::BIfloorl:
1692    case Builtin::BI__builtin_floor:
1693    case Builtin::BI__builtin_floorf:
1694    case Builtin::BI__builtin_floorf16:
1695    case Builtin::BI__builtin_floorl:
1696      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1697                                   Intrinsic::floor,
1698                                   Intrinsic::experimental_constrained_floor));
1699
1700    case Builtin::BIfma:
1701    case Builtin::BIfmaf:
1702    case Builtin::BIfmal:
1703    case Builtin::BI__builtin_fma:
1704    case Builtin::BI__builtin_fmaf:
1705    case Builtin::BI__builtin_fmaf16:
1706    case Builtin::BI__builtin_fmal:
1707      return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
1708                                   Intrinsic::fma,
1709                                   Intrinsic::experimental_constrained_fma));
1710
1711    case Builtin::BIfmax:
1712    case Builtin::BIfmaxf:
1713    case Builtin::BIfmaxl:
1714    case Builtin::BI__builtin_fmax:
1715    case Builtin::BI__builtin_fmaxf:
1716    case Builtin::BI__builtin_fmaxf16:
1717    case Builtin::BI__builtin_fmaxl:
1718      return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
1719                                   Intrinsic::maxnum,
1720                                   Intrinsic::experimental_constrained_maxnum));
1721
1722    case Builtin::BIfmin:
1723    case Builtin::BIfminf:
1724    case Builtin::BIfminl:
1725    case Builtin::BI__builtin_fmin:
1726    case Builtin::BI__builtin_fminf:
1727    case Builtin::BI__builtin_fminf16:
1728    case Builtin::BI__builtin_fminl:
1729      return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
1730                                   Intrinsic::minnum,
1731                                   Intrinsic::experimental_constrained_minnum));
1732
1733    // fmod() is a special-case. It maps to the frem instruction rather than an
1734    // LLVM intrinsic.
1735    case Builtin::BIfmod:
1736    case Builtin::BIfmodf:
1737    case Builtin::BIfmodl:
1738    case Builtin::BI__builtin_fmod:
1739    case Builtin::BI__builtin_fmodf:
1740    case Builtin::BI__builtin_fmodf16:
1741    case Builtin::BI__builtin_fmodl: {
1742      Value *Arg1 = EmitScalarExpr(E->getArg(0));
1743      Value *Arg2 = EmitScalarExpr(E->getArg(1));
1744      return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
1745    }
1746
1747    case Builtin::BIlog:
1748    case Builtin::BIlogf:
1749    case Builtin::BIlogl:
1750    case Builtin::BI__builtin_log:
1751    case Builtin::BI__builtin_logf:
1752    case Builtin::BI__builtin_logf16:
1753    case Builtin::BI__builtin_logl:
1754      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1755                                   Intrinsic::log,
1756                                   Intrinsic::experimental_constrained_log));
1757
1758    case Builtin::BIlog10:
1759    case Builtin::BIlog10f:
1760    case Builtin::BIlog10l:
1761    case Builtin::BI__builtin_log10:
1762    case Builtin::BI__builtin_log10f:
1763    case Builtin::BI__builtin_log10f16:
1764    case Builtin::BI__builtin_log10l:
1765      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1766                                   Intrinsic::log10,
1767                                   Intrinsic::experimental_constrained_log10));
1768
1769    case Builtin::BIlog2:
1770    case Builtin::BIlog2f:
1771    case Builtin::BIlog2l:
1772    case Builtin::BI__builtin_log2:
1773    case Builtin::BI__builtin_log2f:
1774    case Builtin::BI__builtin_log2f16:
1775    case Builtin::BI__builtin_log2l:
1776      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1777                                   Intrinsic::log2,
1778                                   Intrinsic::experimental_constrained_log2));
1779
1780    case Builtin::BInearbyint:
1781    case Builtin::BInearbyintf:
1782    case Builtin::BInearbyintl:
1783    case Builtin::BI__builtin_nearbyint:
1784    case Builtin::BI__builtin_nearbyintf:
1785    case Builtin::BI__builtin_nearbyintl:
1786      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1787                                Intrinsic::nearbyint,
1788                                Intrinsic::experimental_constrained_nearbyint));
1789
1790    case Builtin::BIpow:
1791    case Builtin::BIpowf:
1792    case Builtin::BIpowl:
1793    case Builtin::BI__builtin_pow:
1794    case Builtin::BI__builtin_powf:
1795    case Builtin::BI__builtin_powf16:
1796    case Builtin::BI__builtin_powl:
1797      return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
1798                                   Intrinsic::pow,
1799                                   Intrinsic::experimental_constrained_pow));
1800
1801    case Builtin::BIrint:
1802    case Builtin::BIrintf:
1803    case Builtin::BIrintl:
1804    case Builtin::BI__builtin_rint:
1805    case Builtin::BI__builtin_rintf:
1806    case Builtin::BI__builtin_rintf16:
1807    case Builtin::BI__builtin_rintl:
1808      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1809                                   Intrinsic::rint,
1810                                   Intrinsic::experimental_constrained_rint));
1811
1812    case Builtin::BIround:
1813    case Builtin::BIroundf:
1814    case Builtin::BIroundl:
1815    case Builtin::BI__builtin_round:
1816    case Builtin::BI__builtin_roundf:
1817    case Builtin::BI__builtin_roundf16:
1818    case Builtin::BI__builtin_roundl:
1819      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1820                                   Intrinsic::round,
1821                                   Intrinsic::experimental_constrained_round));
1822
1823    case Builtin::BIsin:
1824    case Builtin::BIsinf:
1825    case Builtin::BIsinl:
1826    case Builtin::BI__builtin_sin:
1827    case Builtin::BI__builtin_sinf:
1828    case Builtin::BI__builtin_sinf16:
1829    case Builtin::BI__builtin_sinl:
1830      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1831                                   Intrinsic::sin,
1832                                   Intrinsic::experimental_constrained_sin));
1833
1834    case Builtin::BIsqrt:
1835    case Builtin::BIsqrtf:
1836    case Builtin::BIsqrtl:
1837    case Builtin::BI__builtin_sqrt:
1838    case Builtin::BI__builtin_sqrtf:
1839    case Builtin::BI__builtin_sqrtf16:
1840    case Builtin::BI__builtin_sqrtl:
1841      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1842                                   Intrinsic::sqrt,
1843                                   Intrinsic::experimental_constrained_sqrt));
1844
1845    case Builtin::BItrunc:
1846    case Builtin::BItruncf:
1847    case Builtin::BItruncl:
1848    case Builtin::BI__builtin_trunc:
1849    case Builtin::BI__builtin_truncf:
1850    case Builtin::BI__builtin_truncf16:
1851    case Builtin::BI__builtin_truncl:
1852      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1853                                   Intrinsic::trunc,
1854                                   Intrinsic::experimental_constrained_trunc));
1855
1856    case Builtin::BIlround:
1857    case Builtin::BIlroundf:
1858    case Builtin::BIlroundl:
1859    case Builtin::BI__builtin_lround:
1860    case Builtin::BI__builtin_lroundf:
1861    case Builtin::BI__builtin_lroundl:
1862      return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1863          *this, E, Intrinsic::lround,
1864          Intrinsic::experimental_constrained_lround));
1865
1866    case Builtin::BIllround:
1867    case Builtin::BIllroundf:
1868    case Builtin::BIllroundl:
1869    case Builtin::BI__builtin_llround:
1870    case Builtin::BI__builtin_llroundf:
1871    case Builtin::BI__builtin_llroundl:
1872      return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1873          *this, E, Intrinsic::llround,
1874          Intrinsic::experimental_constrained_llround));
1875
1876    case Builtin::BIlrint:
1877    case Builtin::BIlrintf:
1878    case Builtin::BIlrintl:
1879    case Builtin::BI__builtin_lrint:
1880    case Builtin::BI__builtin_lrintf:
1881    case Builtin::BI__builtin_lrintl:
1882      return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1883          *this, E, Intrinsic::lrint,
1884          Intrinsic::experimental_constrained_lrint));
1885
1886    case Builtin::BIllrint:
1887    case Builtin::BIllrintf:
1888    case Builtin::BIllrintl:
1889    case Builtin::BI__builtin_llrint:
1890    case Builtin::BI__builtin_llrintf:
1891    case Builtin::BI__builtin_llrintl:
1892      return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1893          *this, E, Intrinsic::llrint,
1894          Intrinsic::experimental_constrained_llrint));
1895
1896    default:
1897      break;
1898    }
1899  }
1900
1901  switch (BuiltinID) {
1902  default: break;
1903  case Builtin::BI__builtin___CFStringMakeConstantString:
1904  case Builtin::BI__builtin___NSStringMakeConstantString:
1905    return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
1906  case Builtin::BI__builtin_stdarg_start:
1907  case Builtin::BI__builtin_va_start:
1908  case Builtin::BI__va_start:
1909  case Builtin::BI__builtin_va_end:
1910    return RValue::get(
1911        EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
1912                           ? EmitScalarExpr(E->getArg(0))
1913                           : EmitVAListRef(E->getArg(0)).getPointer(),
1914                       BuiltinID != Builtin::BI__builtin_va_end));
1915  case Builtin::BI__builtin_va_copy: {
1916    Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
1917    Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
1918
1919    llvm::Type *Type = Int8PtrTy;
1920
1921    DstPtr = Builder.CreateBitCast(DstPtr, Type);
1922    SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
1923    return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
1924                                          {DstPtr, SrcPtr}));
1925  }
1926  case Builtin::BI__builtin_abs:
1927  case Builtin::BI__builtin_labs:
1928  case Builtin::BI__builtin_llabs: {
1929    // X < 0 ? -X : X
1930    // The negation has 'nsw' because abs of INT_MIN is undefined.
1931    Value *ArgValue = EmitScalarExpr(E->getArg(0));
1932    Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
1933    Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
1934    Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
1935    Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
1936    return RValue::get(Result);
1937  }
1938  case Builtin::BI__builtin_conj:
1939  case Builtin::BI__builtin_conjf:
1940  case Builtin::BI__builtin_conjl:
1941  case Builtin::BIconj:
1942  case Builtin::BIconjf:
1943  case Builtin::BIconjl: {
1944    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1945    Value *Real = ComplexVal.first;
1946    Value *Imag = ComplexVal.second;
1947    Imag = Builder.CreateFNeg(Imag, "neg");
1948    return RValue::getComplex(std::make_pair(Real, Imag));
1949  }
1950  case Builtin::BI__builtin_creal:
1951  case Builtin::BI__builtin_crealf:
1952  case Builtin::BI__builtin_creall:
1953  case Builtin::BIcreal:
1954  case Builtin::BIcrealf:
1955  case Builtin::BIcreall: {
1956    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1957    return RValue::get(ComplexVal.first);
1958  }
1959
1960  case Builtin::BI__builtin_dump_struct: {
1961    llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
1962    llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
1963        LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
1964
1965    Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
1966    CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
1967
1968    const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
1969    QualType Arg0Type = Arg0->getType()->getPointeeType();
1970
1971    Value *RecordPtr = EmitScalarExpr(Arg0);
1972    Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
1973                            {LLVMFuncType, Func}, 0);
1974    return RValue::get(Res);
1975  }
1976
1977  case Builtin::BI__builtin_preserve_access_index: {
1978    // Only enabled preserved access index region when debuginfo
1979    // is available as debuginfo is needed to preserve user-level
1980    // access pattern.
1981    if (!getDebugInfo()) {
1982      CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
1983      return RValue::get(EmitScalarExpr(E->getArg(0)));
1984    }
1985
1986    // Nested builtin_preserve_access_index() not supported
1987    if (IsInPreservedAIRegion) {
1988      CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
1989      return RValue::get(EmitScalarExpr(E->getArg(0)));
1990    }
1991
1992    IsInPreservedAIRegion = true;
1993    Value *Res = EmitScalarExpr(E->getArg(0));
1994    IsInPreservedAIRegion = false;
1995    return RValue::get(Res);
1996  }
1997
1998  case Builtin::BI__builtin_cimag:
1999  case Builtin::BI__builtin_cimagf:
2000  case Builtin::BI__builtin_cimagl:
2001  case Builtin::BIcimag:
2002  case Builtin::BIcimagf:
2003  case Builtin::BIcimagl: {
2004    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2005    return RValue::get(ComplexVal.second);
2006  }
2007
2008  case Builtin::BI__builtin_clrsb:
2009  case Builtin::BI__builtin_clrsbl:
2010  case Builtin::BI__builtin_clrsbll: {
2011    // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2012    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2013
2014    llvm::Type *ArgType = ArgValue->getType();
2015    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2016
2017    llvm::Type *ResultType = ConvertType(E->getType());
2018    Value *Zero = llvm::Constant::getNullValue(ArgType);
2019    Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2020    Value *Inverse = Builder.CreateNot(ArgValue, "not");
2021    Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2022    Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2023    Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2024    Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2025                                   "cast");
2026    return RValue::get(Result);
2027  }
2028  case Builtin::BI__builtin_ctzs:
2029  case Builtin::BI__builtin_ctz:
2030  case Builtin::BI__builtin_ctzl:
2031  case Builtin::BI__builtin_ctzll: {
2032    Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2033
2034    llvm::Type *ArgType = ArgValue->getType();
2035    Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2036
2037    llvm::Type *ResultType = ConvertType(E->getType());
2038    Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2039    Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2040    if (Result->getType() != ResultType)
2041      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2042                                     "cast");
2043    return RValue::get(Result);
2044  }
2045  case Builtin::BI__builtin_clzs:
2046  case Builtin::BI__builtin_clz:
2047  case Builtin::BI__builtin_clzl:
2048  case Builtin::BI__builtin_clzll: {
2049    Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2050
2051    llvm::Type *ArgType = ArgValue->getType();
2052    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2053
2054    llvm::Type *ResultType = ConvertType(E->getType());
2055    Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2056    Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2057    if (Result->getType() != ResultType)
2058      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2059                                     "cast");
2060    return RValue::get(Result);
2061  }
2062  case Builtin::BI__builtin_ffs:
2063  case Builtin::BI__builtin_ffsl:
2064  case Builtin::BI__builtin_ffsll: {
2065    // ffs(x) -> x ? cttz(x) + 1 : 0
2066    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2067
2068    llvm::Type *ArgType = ArgValue->getType();
2069    Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2070
2071    llvm::Type *ResultType = ConvertType(E->getType());
2072    Value *Tmp =
2073        Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2074                          llvm::ConstantInt::get(ArgType, 1));
2075    Value *Zero = llvm::Constant::getNullValue(ArgType);
2076    Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2077    Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2078    if (Result->getType() != ResultType)
2079      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2080                                     "cast");
2081    return RValue::get(Result);
2082  }
2083  case Builtin::BI__builtin_parity:
2084  case Builtin::BI__builtin_parityl:
2085  case Builtin::BI__builtin_parityll: {
2086    // parity(x) -> ctpop(x) & 1
2087    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2088
2089    llvm::Type *ArgType = ArgValue->getType();
2090    Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2091
2092    llvm::Type *ResultType = ConvertType(E->getType());
2093    Value *Tmp = Builder.CreateCall(F, ArgValue);
2094    Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2095    if (Result->getType() != ResultType)
2096      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2097                                     "cast");
2098    return RValue::get(Result);
2099  }
2100  case Builtin::BI__lzcnt16:
2101  case Builtin::BI__lzcnt:
2102  case Builtin::BI__lzcnt64: {
2103    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2104
2105    llvm::Type *ArgType = ArgValue->getType();
2106    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2107
2108    llvm::Type *ResultType = ConvertType(E->getType());
2109    Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2110    if (Result->getType() != ResultType)
2111      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2112                                     "cast");
2113    return RValue::get(Result);
2114  }
2115  case Builtin::BI__popcnt16:
2116  case Builtin::BI__popcnt:
2117  case Builtin::BI__popcnt64:
2118  case Builtin::BI__builtin_popcount:
2119  case Builtin::BI__builtin_popcountl:
2120  case Builtin::BI__builtin_popcountll: {
2121    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2122
2123    llvm::Type *ArgType = ArgValue->getType();
2124    Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2125
2126    llvm::Type *ResultType = ConvertType(E->getType());
2127    Value *Result = Builder.CreateCall(F, ArgValue);
2128    if (Result->getType() != ResultType)
2129      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2130                                     "cast");
2131    return RValue::get(Result);
2132  }
2133  case Builtin::BI__builtin_unpredictable: {
2134    // Always return the argument of __builtin_unpredictable. LLVM does not
2135    // handle this builtin. Metadata for this builtin should be added directly
2136    // to instructions such as branches or switches that use it.
2137    return RValue::get(EmitScalarExpr(E->getArg(0)));
2138  }
2139  case Builtin::BI__builtin_expect: {
2140    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2141    llvm::Type *ArgType = ArgValue->getType();
2142
2143    Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2144    // Don't generate llvm.expect on -O0 as the backend won't use it for
2145    // anything.
2146    // Note, we still IRGen ExpectedValue because it could have side-effects.
2147    if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2148      return RValue::get(ArgValue);
2149
2150    Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2151    Value *Result =
2152        Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2153    return RValue::get(Result);
2154  }
2155  case Builtin::BI__builtin_assume_aligned: {
2156    const Expr *Ptr = E->getArg(0);
2157    Value *PtrValue = EmitScalarExpr(Ptr);
2158    Value *OffsetValue =
2159      (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2160
2161    Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2162    ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2163    if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2164      AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2165                                     llvm::Value::MaximumAlignment);
2166
2167    EmitAlignmentAssumption(PtrValue, Ptr,
2168                            /*The expr loc is sufficient.*/ SourceLocation(),
2169                            AlignmentCI, OffsetValue);
2170    return RValue::get(PtrValue);
2171  }
2172  case Builtin::BI__assume:
2173  case Builtin::BI__builtin_assume: {
2174    if (E->getArg(0)->HasSideEffects(getContext()))
2175      return RValue::get(nullptr);
2176
2177    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2178    Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2179    return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2180  }
2181  case Builtin::BI__builtin_bswap16:
2182  case Builtin::BI__builtin_bswap32:
2183  case Builtin::BI__builtin_bswap64: {
2184    return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2185  }
2186  case Builtin::BI__builtin_bitreverse8:
2187  case Builtin::BI__builtin_bitreverse16:
2188  case Builtin::BI__builtin_bitreverse32:
2189  case Builtin::BI__builtin_bitreverse64: {
2190    return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2191  }
2192  case Builtin::BI__builtin_rotateleft8:
2193  case Builtin::BI__builtin_rotateleft16:
2194  case Builtin::BI__builtin_rotateleft32:
2195  case Builtin::BI__builtin_rotateleft64:
2196  case Builtin::BI_rotl8: // Microsoft variants of rotate left
2197  case Builtin::BI_rotl16:
2198  case Builtin::BI_rotl:
2199  case Builtin::BI_lrotl:
2200  case Builtin::BI_rotl64:
2201    return emitRotate(E, false);
2202
2203  case Builtin::BI__builtin_rotateright8:
2204  case Builtin::BI__builtin_rotateright16:
2205  case Builtin::BI__builtin_rotateright32:
2206  case Builtin::BI__builtin_rotateright64:
2207  case Builtin::BI_rotr8: // Microsoft variants of rotate right
2208  case Builtin::BI_rotr16:
2209  case Builtin::BI_rotr:
2210  case Builtin::BI_lrotr:
2211  case Builtin::BI_rotr64:
2212    return emitRotate(E, true);
2213
2214  case Builtin::BI__builtin_constant_p: {
2215    llvm::Type *ResultType = ConvertType(E->getType());
2216
2217    const Expr *Arg = E->getArg(0);
2218    QualType ArgType = Arg->getType();
2219    // FIXME: The allowance for Obj-C pointers and block pointers is historical
2220    // and likely a mistake.
2221    if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2222        !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2223      // Per the GCC documentation, only numeric constants are recognized after
2224      // inlining.
2225      return RValue::get(ConstantInt::get(ResultType, 0));
2226
2227    if (Arg->HasSideEffects(getContext()))
2228      // The argument is unevaluated, so be conservative if it might have
2229      // side-effects.
2230      return RValue::get(ConstantInt::get(ResultType, 0));
2231
2232    Value *ArgValue = EmitScalarExpr(Arg);
2233    if (ArgType->isObjCObjectPointerType()) {
2234      // Convert Objective-C objects to id because we cannot distinguish between
2235      // LLVM types for Obj-C classes as they are opaque.
2236      ArgType = CGM.getContext().getObjCIdType();
2237      ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2238    }
2239    Function *F =
2240        CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2241    Value *Result = Builder.CreateCall(F, ArgValue);
2242    if (Result->getType() != ResultType)
2243      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2244    return RValue::get(Result);
2245  }
2246  case Builtin::BI__builtin_dynamic_object_size:
2247  case Builtin::BI__builtin_object_size: {
2248    unsigned Type =
2249        E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2250    auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2251
2252    // We pass this builtin onto the optimizer so that it can figure out the
2253    // object size in more complex cases.
2254    bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2255    return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2256                                             /*EmittedE=*/nullptr, IsDynamic));
2257  }
2258  case Builtin::BI__builtin_prefetch: {
2259    Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2260    // FIXME: Technically these constants should of type 'int', yes?
2261    RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2262      llvm::ConstantInt::get(Int32Ty, 0);
2263    Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2264      llvm::ConstantInt::get(Int32Ty, 3);
2265    Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2266    Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2267    return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2268  }
2269  case Builtin::BI__builtin_readcyclecounter: {
2270    Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2271    return RValue::get(Builder.CreateCall(F));
2272  }
2273  case Builtin::BI__builtin___clear_cache: {
2274    Value *Begin = EmitScalarExpr(E->getArg(0));
2275    Value *End = EmitScalarExpr(E->getArg(1));
2276    Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2277    return RValue::get(Builder.CreateCall(F, {Begin, End}));
2278  }
2279  case Builtin::BI__builtin_trap:
2280    return RValue::get(EmitTrapCall(Intrinsic::trap));
2281  case Builtin::BI__debugbreak:
2282    return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2283  case Builtin::BI__builtin_unreachable: {
2284    EmitUnreachable(E->getExprLoc());
2285
2286    // We do need to preserve an insertion point.
2287    EmitBlock(createBasicBlock("unreachable.cont"));
2288
2289    return RValue::get(nullptr);
2290  }
2291
2292  case Builtin::BI__builtin_powi:
2293  case Builtin::BI__builtin_powif:
2294  case Builtin::BI__builtin_powil:
2295    return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(
2296        *this, E, Intrinsic::powi, Intrinsic::experimental_constrained_powi));
2297
2298  case Builtin::BI__builtin_isgreater:
2299  case Builtin::BI__builtin_isgreaterequal:
2300  case Builtin::BI__builtin_isless:
2301  case Builtin::BI__builtin_islessequal:
2302  case Builtin::BI__builtin_islessgreater:
2303  case Builtin::BI__builtin_isunordered: {
2304    // Ordered comparisons: we know the arguments to these are matching scalar
2305    // floating point values.
2306    Value *LHS = EmitScalarExpr(E->getArg(0));
2307    Value *RHS = EmitScalarExpr(E->getArg(1));
2308
2309    switch (BuiltinID) {
2310    default: llvm_unreachable("Unknown ordered comparison");
2311    case Builtin::BI__builtin_isgreater:
2312      LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2313      break;
2314    case Builtin::BI__builtin_isgreaterequal:
2315      LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2316      break;
2317    case Builtin::BI__builtin_isless:
2318      LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2319      break;
2320    case Builtin::BI__builtin_islessequal:
2321      LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2322      break;
2323    case Builtin::BI__builtin_islessgreater:
2324      LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2325      break;
2326    case Builtin::BI__builtin_isunordered:
2327      LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2328      break;
2329    }
2330    // ZExt bool to int type.
2331    return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2332  }
2333  case Builtin::BI__builtin_isnan: {
2334    Value *V = EmitScalarExpr(E->getArg(0));
2335    V = Builder.CreateFCmpUNO(V, V, "cmp");
2336    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2337  }
2338
2339  case Builtin::BIfinite:
2340  case Builtin::BI__finite:
2341  case Builtin::BIfinitef:
2342  case Builtin::BI__finitef:
2343  case Builtin::BIfinitel:
2344  case Builtin::BI__finitel:
2345  case Builtin::BI__builtin_isinf:
2346  case Builtin::BI__builtin_isfinite: {
2347    // isinf(x)    --> fabs(x) == infinity
2348    // isfinite(x) --> fabs(x) != infinity
2349    // x != NaN via the ordered compare in either case.
2350    Value *V = EmitScalarExpr(E->getArg(0));
2351    Value *Fabs = EmitFAbs(*this, V);
2352    Constant *Infinity = ConstantFP::getInfinity(V->getType());
2353    CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
2354                                  ? CmpInst::FCMP_OEQ
2355                                  : CmpInst::FCMP_ONE;
2356    Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
2357    return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
2358  }
2359
2360  case Builtin::BI__builtin_isinf_sign: {
2361    // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
2362    Value *Arg = EmitScalarExpr(E->getArg(0));
2363    Value *AbsArg = EmitFAbs(*this, Arg);
2364    Value *IsInf = Builder.CreateFCmpOEQ(
2365        AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
2366    Value *IsNeg = EmitSignBit(*this, Arg);
2367
2368    llvm::Type *IntTy = ConvertType(E->getType());
2369    Value *Zero = Constant::getNullValue(IntTy);
2370    Value *One = ConstantInt::get(IntTy, 1);
2371    Value *NegativeOne = ConstantInt::get(IntTy, -1);
2372    Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
2373    Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
2374    return RValue::get(Result);
2375  }
2376
2377  case Builtin::BI__builtin_isnormal: {
2378    // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
2379    Value *V = EmitScalarExpr(E->getArg(0));
2380    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
2381
2382    Value *Abs = EmitFAbs(*this, V);
2383    Value *IsLessThanInf =
2384      Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
2385    APFloat Smallest = APFloat::getSmallestNormalized(
2386                   getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
2387    Value *IsNormal =
2388      Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
2389                            "isnormal");
2390    V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
2391    V = Builder.CreateAnd(V, IsNormal, "and");
2392    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2393  }
2394
2395  case Builtin::BI__builtin_flt_rounds: {
2396    Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
2397
2398    llvm::Type *ResultType = ConvertType(E->getType());
2399    Value *Result = Builder.CreateCall(F);
2400    if (Result->getType() != ResultType)
2401      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2402                                     "cast");
2403    return RValue::get(Result);
2404  }
2405
2406  case Builtin::BI__builtin_fpclassify: {
2407    Value *V = EmitScalarExpr(E->getArg(5));
2408    llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
2409
2410    // Create Result
2411    BasicBlock *Begin = Builder.GetInsertBlock();
2412    BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
2413    Builder.SetInsertPoint(End);
2414    PHINode *Result =
2415      Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
2416                        "fpclassify_result");
2417
2418    // if (V==0) return FP_ZERO
2419    Builder.SetInsertPoint(Begin);
2420    Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
2421                                          "iszero");
2422    Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
2423    BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
2424    Builder.CreateCondBr(IsZero, End, NotZero);
2425    Result->addIncoming(ZeroLiteral, Begin);
2426
2427    // if (V != V) return FP_NAN
2428    Builder.SetInsertPoint(NotZero);
2429    Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
2430    Value *NanLiteral = EmitScalarExpr(E->getArg(0));
2431    BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
2432    Builder.CreateCondBr(IsNan, End, NotNan);
2433    Result->addIncoming(NanLiteral, NotZero);
2434
2435    // if (fabs(V) == infinity) return FP_INFINITY
2436    Builder.SetInsertPoint(NotNan);
2437    Value *VAbs = EmitFAbs(*this, V);
2438    Value *IsInf =
2439      Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
2440                            "isinf");
2441    Value *InfLiteral = EmitScalarExpr(E->getArg(1));
2442    BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
2443    Builder.CreateCondBr(IsInf, End, NotInf);
2444    Result->addIncoming(InfLiteral, NotNan);
2445
2446    // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
2447    Builder.SetInsertPoint(NotInf);
2448    APFloat Smallest = APFloat::getSmallestNormalized(
2449        getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
2450    Value *IsNormal =
2451      Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
2452                            "isnormal");
2453    Value *NormalResult =
2454      Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
2455                           EmitScalarExpr(E->getArg(3)));
2456    Builder.CreateBr(End);
2457    Result->addIncoming(NormalResult, NotInf);
2458
2459    // return Result
2460    Builder.SetInsertPoint(End);
2461    return RValue::get(Result);
2462  }
2463
2464  case Builtin::BIalloca:
2465  case Builtin::BI_alloca:
2466  case Builtin::BI__builtin_alloca: {
2467    Value *Size = EmitScalarExpr(E->getArg(0));
2468    const TargetInfo &TI = getContext().getTargetInfo();
2469    // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
2470    const Align SuitableAlignmentInBytes =
2471        CGM.getContext()
2472            .toCharUnitsFromBits(TI.getSuitableAlign())
2473            .getAsAlign();
2474    AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2475    AI->setAlignment(SuitableAlignmentInBytes);
2476    initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
2477    return RValue::get(AI);
2478  }
2479
2480  case Builtin::BI__builtin_alloca_with_align: {
2481    Value *Size = EmitScalarExpr(E->getArg(0));
2482    Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
2483    auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
2484    unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
2485    const Align AlignmentInBytes =
2486        CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
2487    AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2488    AI->setAlignment(AlignmentInBytes);
2489    initializeAlloca(*this, AI, Size, AlignmentInBytes);
2490    return RValue::get(AI);
2491  }
2492
2493  case Builtin::BIbzero:
2494  case Builtin::BI__builtin_bzero: {
2495    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2496    Value *SizeVal = EmitScalarExpr(E->getArg(1));
2497    EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2498                        E->getArg(0)->getExprLoc(), FD, 0);
2499    Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
2500    return RValue::get(nullptr);
2501  }
2502  case Builtin::BImemcpy:
2503  case Builtin::BI__builtin_memcpy:
2504  case Builtin::BImempcpy:
2505  case Builtin::BI__builtin_mempcpy: {
2506    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2507    Address Src = EmitPointerWithAlignment(E->getArg(1));
2508    Value *SizeVal = EmitScalarExpr(E->getArg(2));
2509    EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2510                        E->getArg(0)->getExprLoc(), FD, 0);
2511    EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2512                        E->getArg(1)->getExprLoc(), FD, 1);
2513    Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2514    if (BuiltinID == Builtin::BImempcpy ||
2515        BuiltinID == Builtin::BI__builtin_mempcpy)
2516      return RValue::get(Builder.CreateInBoundsGEP(Dest.getPointer(), SizeVal));
2517    else
2518      return RValue::get(Dest.getPointer());
2519  }
2520
2521  case Builtin::BI__builtin_char_memchr:
2522    BuiltinID = Builtin::BI__builtin_memchr;
2523    break;
2524
2525  case Builtin::BI__builtin___memcpy_chk: {
2526    // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
2527    Expr::EvalResult SizeResult, DstSizeResult;
2528    if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2529        !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2530      break;
2531    llvm::APSInt Size = SizeResult.Val.getInt();
2532    llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2533    if (Size.ugt(DstSize))
2534      break;
2535    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2536    Address Src = EmitPointerWithAlignment(E->getArg(1));
2537    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2538    Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2539    return RValue::get(Dest.getPointer());
2540  }
2541
2542  case Builtin::BI__builtin_objc_memmove_collectable: {
2543    Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
2544    Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
2545    Value *SizeVal = EmitScalarExpr(E->getArg(2));
2546    CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
2547                                                  DestAddr, SrcAddr, SizeVal);
2548    return RValue::get(DestAddr.getPointer());
2549  }
2550
2551  case Builtin::BI__builtin___memmove_chk: {
2552    // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
2553    Expr::EvalResult SizeResult, DstSizeResult;
2554    if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2555        !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2556      break;
2557    llvm::APSInt Size = SizeResult.Val.getInt();
2558    llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2559    if (Size.ugt(DstSize))
2560      break;
2561    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2562    Address Src = EmitPointerWithAlignment(E->getArg(1));
2563    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2564    Builder.CreateMemMove(Dest, Src, SizeVal, false);
2565    return RValue::get(Dest.getPointer());
2566  }
2567
2568  case Builtin::BImemmove:
2569  case Builtin::BI__builtin_memmove: {
2570    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2571    Address Src = EmitPointerWithAlignment(E->getArg(1));
2572    Value *SizeVal = EmitScalarExpr(E->getArg(2));
2573    EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2574                        E->getArg(0)->getExprLoc(), FD, 0);
2575    EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2576                        E->getArg(1)->getExprLoc(), FD, 1);
2577    Builder.CreateMemMove(Dest, Src, SizeVal, false);
2578    return RValue::get(Dest.getPointer());
2579  }
2580  case Builtin::BImemset:
2581  case Builtin::BI__builtin_memset: {
2582    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2583    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2584                                         Builder.getInt8Ty());
2585    Value *SizeVal = EmitScalarExpr(E->getArg(2));
2586    EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2587                        E->getArg(0)->getExprLoc(), FD, 0);
2588    Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2589    return RValue::get(Dest.getPointer());
2590  }
2591  case Builtin::BI__builtin___memset_chk: {
2592    // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
2593    Expr::EvalResult SizeResult, DstSizeResult;
2594    if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2595        !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2596      break;
2597    llvm::APSInt Size = SizeResult.Val.getInt();
2598    llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2599    if (Size.ugt(DstSize))
2600      break;
2601    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2602    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2603                                         Builder.getInt8Ty());
2604    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2605    Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2606    return RValue::get(Dest.getPointer());
2607  }
2608  case Builtin::BI__builtin_wmemcmp: {
2609    // The MSVC runtime library does not provide a definition of wmemcmp, so we
2610    // need an inline implementation.
2611    if (!getTarget().getTriple().isOSMSVCRT())
2612      break;
2613
2614    llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
2615
2616    Value *Dst = EmitScalarExpr(E->getArg(0));
2617    Value *Src = EmitScalarExpr(E->getArg(1));
2618    Value *Size = EmitScalarExpr(E->getArg(2));
2619
2620    BasicBlock *Entry = Builder.GetInsertBlock();
2621    BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
2622    BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
2623    BasicBlock *Next = createBasicBlock("wmemcmp.next");
2624    BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
2625    Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
2626    Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
2627
2628    EmitBlock(CmpGT);
2629    PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
2630    DstPhi->addIncoming(Dst, Entry);
2631    PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
2632    SrcPhi->addIncoming(Src, Entry);
2633    PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
2634    SizePhi->addIncoming(Size, Entry);
2635    CharUnits WCharAlign =
2636        getContext().getTypeAlignInChars(getContext().WCharTy);
2637    Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
2638    Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
2639    Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
2640    Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
2641
2642    EmitBlock(CmpLT);
2643    Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
2644    Builder.CreateCondBr(DstLtSrc, Exit, Next);
2645
2646    EmitBlock(Next);
2647    Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
2648    Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
2649    Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
2650    Value *NextSizeEq0 =
2651        Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
2652    Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
2653    DstPhi->addIncoming(NextDst, Next);
2654    SrcPhi->addIncoming(NextSrc, Next);
2655    SizePhi->addIncoming(NextSize, Next);
2656
2657    EmitBlock(Exit);
2658    PHINode *Ret = Builder.CreatePHI(IntTy, 4);
2659    Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
2660    Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
2661    Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
2662    Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
2663    return RValue::get(Ret);
2664  }
2665  case Builtin::BI__builtin_dwarf_cfa: {
2666    // The offset in bytes from the first argument to the CFA.
2667    //
2668    // Why on earth is this in the frontend?  Is there any reason at
2669    // all that the backend can't reasonably determine this while
2670    // lowering llvm.eh.dwarf.cfa()?
2671    //
2672    // TODO: If there's a satisfactory reason, add a target hook for
2673    // this instead of hard-coding 0, which is correct for most targets.
2674    int32_t Offset = 0;
2675
2676    Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
2677    return RValue::get(Builder.CreateCall(F,
2678                                      llvm::ConstantInt::get(Int32Ty, Offset)));
2679  }
2680  case Builtin::BI__builtin_return_address: {
2681    Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2682                                                   getContext().UnsignedIntTy);
2683    Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2684    return RValue::get(Builder.CreateCall(F, Depth));
2685  }
2686  case Builtin::BI_ReturnAddress: {
2687    Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2688    return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
2689  }
2690  case Builtin::BI__builtin_frame_address: {
2691    Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2692                                                   getContext().UnsignedIntTy);
2693    Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
2694    return RValue::get(Builder.CreateCall(F, Depth));
2695  }
2696  case Builtin::BI__builtin_extract_return_addr: {
2697    Value *Address = EmitScalarExpr(E->getArg(0));
2698    Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
2699    return RValue::get(Result);
2700  }
2701  case Builtin::BI__builtin_frob_return_addr: {
2702    Value *Address = EmitScalarExpr(E->getArg(0));
2703    Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
2704    return RValue::get(Result);
2705  }
2706  case Builtin::BI__builtin_dwarf_sp_column: {
2707    llvm::IntegerType *Ty
2708      = cast<llvm::IntegerType>(ConvertType(E->getType()));
2709    int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
2710    if (Column == -1) {
2711      CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
2712      return RValue::get(llvm::UndefValue::get(Ty));
2713    }
2714    return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
2715  }
2716  case Builtin::BI__builtin_init_dwarf_reg_size_table: {
2717    Value *Address = EmitScalarExpr(E->getArg(0));
2718    if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
2719      CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
2720    return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
2721  }
2722  case Builtin::BI__builtin_eh_return: {
2723    Value *Int = EmitScalarExpr(E->getArg(0));
2724    Value *Ptr = EmitScalarExpr(E->getArg(1));
2725
2726    llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
2727    assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
2728           "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
2729    Function *F =
2730        CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
2731                                                    : Intrinsic::eh_return_i64);
2732    Builder.CreateCall(F, {Int, Ptr});
2733    Builder.CreateUnreachable();
2734
2735    // We do need to preserve an insertion point.
2736    EmitBlock(createBasicBlock("builtin_eh_return.cont"));
2737
2738    return RValue::get(nullptr);
2739  }
2740  case Builtin::BI__builtin_unwind_init: {
2741    Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
2742    return RValue::get(Builder.CreateCall(F));
2743  }
2744  case Builtin::BI__builtin_extend_pointer: {
2745    // Extends a pointer to the size of an _Unwind_Word, which is
2746    // uint64_t on all platforms.  Generally this gets poked into a
2747    // register and eventually used as an address, so if the
2748    // addressing registers are wider than pointers and the platform
2749    // doesn't implicitly ignore high-order bits when doing
2750    // addressing, we need to make sure we zext / sext based on
2751    // the platform's expectations.
2752    //
2753    // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
2754
2755    // Cast the pointer to intptr_t.
2756    Value *Ptr = EmitScalarExpr(E->getArg(0));
2757    Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
2758
2759    // If that's 64 bits, we're done.
2760    if (IntPtrTy->getBitWidth() == 64)
2761      return RValue::get(Result);
2762
2763    // Otherwise, ask the codegen data what to do.
2764    if (getTargetHooks().extendPointerWithSExt())
2765      return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
2766    else
2767      return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
2768  }
2769  case Builtin::BI__builtin_setjmp: {
2770    // Buffer is a void**.
2771    Address Buf = EmitPointerWithAlignment(E->getArg(0));
2772
2773    // Store the frame pointer to the setjmp buffer.
2774    Value *FrameAddr = Builder.CreateCall(
2775        CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
2776        ConstantInt::get(Int32Ty, 0));
2777    Builder.CreateStore(FrameAddr, Buf);
2778
2779    // Store the stack pointer to the setjmp buffer.
2780    Value *StackAddr =
2781        Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
2782    Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
2783    Builder.CreateStore(StackAddr, StackSaveSlot);
2784
2785    // Call LLVM's EH setjmp, which is lightweight.
2786    Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
2787    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2788    return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
2789  }
2790  case Builtin::BI__builtin_longjmp: {
2791    Value *Buf = EmitScalarExpr(E->getArg(0));
2792    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2793
2794    // Call LLVM's EH longjmp, which is lightweight.
2795    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
2796
2797    // longjmp doesn't return; mark this as unreachable.
2798    Builder.CreateUnreachable();
2799
2800    // We do need to preserve an insertion point.
2801    EmitBlock(createBasicBlock("longjmp.cont"));
2802
2803    return RValue::get(nullptr);
2804  }
2805  case Builtin::BI__builtin_launder: {
2806    const Expr *Arg = E->getArg(0);
2807    QualType ArgTy = Arg->getType()->getPointeeType();
2808    Value *Ptr = EmitScalarExpr(Arg);
2809    if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
2810      Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
2811
2812    return RValue::get(Ptr);
2813  }
2814  case Builtin::BI__sync_fetch_and_add:
2815  case Builtin::BI__sync_fetch_and_sub:
2816  case Builtin::BI__sync_fetch_and_or:
2817  case Builtin::BI__sync_fetch_and_and:
2818  case Builtin::BI__sync_fetch_and_xor:
2819  case Builtin::BI__sync_fetch_and_nand:
2820  case Builtin::BI__sync_add_and_fetch:
2821  case Builtin::BI__sync_sub_and_fetch:
2822  case Builtin::BI__sync_and_and_fetch:
2823  case Builtin::BI__sync_or_and_fetch:
2824  case Builtin::BI__sync_xor_and_fetch:
2825  case Builtin::BI__sync_nand_and_fetch:
2826  case Builtin::BI__sync_val_compare_and_swap:
2827  case Builtin::BI__sync_bool_compare_and_swap:
2828  case Builtin::BI__sync_lock_test_and_set:
2829  case Builtin::BI__sync_lock_release:
2830  case Builtin::BI__sync_swap:
2831    llvm_unreachable("Shouldn't make it through sema");
2832  case Builtin::BI__sync_fetch_and_add_1:
2833  case Builtin::BI__sync_fetch_and_add_2:
2834  case Builtin::BI__sync_fetch_and_add_4:
2835  case Builtin::BI__sync_fetch_and_add_8:
2836  case Builtin::BI__sync_fetch_and_add_16:
2837    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
2838  case Builtin::BI__sync_fetch_and_sub_1:
2839  case Builtin::BI__sync_fetch_and_sub_2:
2840  case Builtin::BI__sync_fetch_and_sub_4:
2841  case Builtin::BI__sync_fetch_and_sub_8:
2842  case Builtin::BI__sync_fetch_and_sub_16:
2843    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
2844  case Builtin::BI__sync_fetch_and_or_1:
2845  case Builtin::BI__sync_fetch_and_or_2:
2846  case Builtin::BI__sync_fetch_and_or_4:
2847  case Builtin::BI__sync_fetch_and_or_8:
2848  case Builtin::BI__sync_fetch_and_or_16:
2849    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
2850  case Builtin::BI__sync_fetch_and_and_1:
2851  case Builtin::BI__sync_fetch_and_and_2:
2852  case Builtin::BI__sync_fetch_and_and_4:
2853  case Builtin::BI__sync_fetch_and_and_8:
2854  case Builtin::BI__sync_fetch_and_and_16:
2855    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
2856  case Builtin::BI__sync_fetch_and_xor_1:
2857  case Builtin::BI__sync_fetch_and_xor_2:
2858  case Builtin::BI__sync_fetch_and_xor_4:
2859  case Builtin::BI__sync_fetch_and_xor_8:
2860  case Builtin::BI__sync_fetch_and_xor_16:
2861    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
2862  case Builtin::BI__sync_fetch_and_nand_1:
2863  case Builtin::BI__sync_fetch_and_nand_2:
2864  case Builtin::BI__sync_fetch_and_nand_4:
2865  case Builtin::BI__sync_fetch_and_nand_8:
2866  case Builtin::BI__sync_fetch_and_nand_16:
2867    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
2868
2869  // Clang extensions: not overloaded yet.
2870  case Builtin::BI__sync_fetch_and_min:
2871    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
2872  case Builtin::BI__sync_fetch_and_max:
2873    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
2874  case Builtin::BI__sync_fetch_and_umin:
2875    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
2876  case Builtin::BI__sync_fetch_and_umax:
2877    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
2878
2879  case Builtin::BI__sync_add_and_fetch_1:
2880  case Builtin::BI__sync_add_and_fetch_2:
2881  case Builtin::BI__sync_add_and_fetch_4:
2882  case Builtin::BI__sync_add_and_fetch_8:
2883  case Builtin::BI__sync_add_and_fetch_16:
2884    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
2885                                llvm::Instruction::Add);
2886  case Builtin::BI__sync_sub_and_fetch_1:
2887  case Builtin::BI__sync_sub_and_fetch_2:
2888  case Builtin::BI__sync_sub_and_fetch_4:
2889  case Builtin::BI__sync_sub_and_fetch_8:
2890  case Builtin::BI__sync_sub_and_fetch_16:
2891    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
2892                                llvm::Instruction::Sub);
2893  case Builtin::BI__sync_and_and_fetch_1:
2894  case Builtin::BI__sync_and_and_fetch_2:
2895  case Builtin::BI__sync_and_and_fetch_4:
2896  case Builtin::BI__sync_and_and_fetch_8:
2897  case Builtin::BI__sync_and_and_fetch_16:
2898    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
2899                                llvm::Instruction::And);
2900  case Builtin::BI__sync_or_and_fetch_1:
2901  case Builtin::BI__sync_or_and_fetch_2:
2902  case Builtin::BI__sync_or_and_fetch_4:
2903  case Builtin::BI__sync_or_and_fetch_8:
2904  case Builtin::BI__sync_or_and_fetch_16:
2905    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
2906                                llvm::Instruction::Or);
2907  case Builtin::BI__sync_xor_and_fetch_1:
2908  case Builtin::BI__sync_xor_and_fetch_2:
2909  case Builtin::BI__sync_xor_and_fetch_4:
2910  case Builtin::BI__sync_xor_and_fetch_8:
2911  case Builtin::BI__sync_xor_and_fetch_16:
2912    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
2913                                llvm::Instruction::Xor);
2914  case Builtin::BI__sync_nand_and_fetch_1:
2915  case Builtin::BI__sync_nand_and_fetch_2:
2916  case Builtin::BI__sync_nand_and_fetch_4:
2917  case Builtin::BI__sync_nand_and_fetch_8:
2918  case Builtin::BI__sync_nand_and_fetch_16:
2919    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
2920                                llvm::Instruction::And, true);
2921
2922  case Builtin::BI__sync_val_compare_and_swap_1:
2923  case Builtin::BI__sync_val_compare_and_swap_2:
2924  case Builtin::BI__sync_val_compare_and_swap_4:
2925  case Builtin::BI__sync_val_compare_and_swap_8:
2926  case Builtin::BI__sync_val_compare_and_swap_16:
2927    return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
2928
2929  case Builtin::BI__sync_bool_compare_and_swap_1:
2930  case Builtin::BI__sync_bool_compare_and_swap_2:
2931  case Builtin::BI__sync_bool_compare_and_swap_4:
2932  case Builtin::BI__sync_bool_compare_and_swap_8:
2933  case Builtin::BI__sync_bool_compare_and_swap_16:
2934    return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
2935
2936  case Builtin::BI__sync_swap_1:
2937  case Builtin::BI__sync_swap_2:
2938  case Builtin::BI__sync_swap_4:
2939  case Builtin::BI__sync_swap_8:
2940  case Builtin::BI__sync_swap_16:
2941    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2942
2943  case Builtin::BI__sync_lock_test_and_set_1:
2944  case Builtin::BI__sync_lock_test_and_set_2:
2945  case Builtin::BI__sync_lock_test_and_set_4:
2946  case Builtin::BI__sync_lock_test_and_set_8:
2947  case Builtin::BI__sync_lock_test_and_set_16:
2948    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2949
2950  case Builtin::BI__sync_lock_release_1:
2951  case Builtin::BI__sync_lock_release_2:
2952  case Builtin::BI__sync_lock_release_4:
2953  case Builtin::BI__sync_lock_release_8:
2954  case Builtin::BI__sync_lock_release_16: {
2955    Value *Ptr = EmitScalarExpr(E->getArg(0));
2956    QualType ElTy = E->getArg(0)->getType()->getPointeeType();
2957    CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
2958    llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
2959                                             StoreSize.getQuantity() * 8);
2960    Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
2961    llvm::StoreInst *Store =
2962      Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
2963                                 StoreSize);
2964    Store->setAtomic(llvm::AtomicOrdering::Release);
2965    return RValue::get(nullptr);
2966  }
2967
2968  case Builtin::BI__sync_synchronize: {
2969    // We assume this is supposed to correspond to a C++0x-style
2970    // sequentially-consistent fence (i.e. this is only usable for
2971    // synchronization, not device I/O or anything like that). This intrinsic
2972    // is really badly designed in the sense that in theory, there isn't
2973    // any way to safely use it... but in practice, it mostly works
2974    // to use it with non-atomic loads and stores to get acquire/release
2975    // semantics.
2976    Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
2977    return RValue::get(nullptr);
2978  }
2979
2980  case Builtin::BI__builtin_nontemporal_load:
2981    return RValue::get(EmitNontemporalLoad(*this, E));
2982  case Builtin::BI__builtin_nontemporal_store:
2983    return RValue::get(EmitNontemporalStore(*this, E));
2984  case Builtin::BI__c11_atomic_is_lock_free:
2985  case Builtin::BI__atomic_is_lock_free: {
2986    // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
2987    // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
2988    // _Atomic(T) is always properly-aligned.
2989    const char *LibCallName = "__atomic_is_lock_free";
2990    CallArgList Args;
2991    Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
2992             getContext().getSizeType());
2993    if (BuiltinID == Builtin::BI__atomic_is_lock_free)
2994      Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
2995               getContext().VoidPtrTy);
2996    else
2997      Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
2998               getContext().VoidPtrTy);
2999    const CGFunctionInfo &FuncInfo =
3000        CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
3001    llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3002    llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3003    return EmitCall(FuncInfo, CGCallee::forDirect(Func),
3004                    ReturnValueSlot(), Args);
3005  }
3006
3007  case Builtin::BI__atomic_test_and_set: {
3008    // Look at the argument type to determine whether this is a volatile
3009    // operation. The parameter type is always volatile.
3010    QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3011    bool Volatile =
3012        PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3013
3014    Value *Ptr = EmitScalarExpr(E->getArg(0));
3015    unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
3016    Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3017    Value *NewVal = Builder.getInt8(1);
3018    Value *Order = EmitScalarExpr(E->getArg(1));
3019    if (isa<llvm::ConstantInt>(Order)) {
3020      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3021      AtomicRMWInst *Result = nullptr;
3022      switch (ord) {
3023      case 0:  // memory_order_relaxed
3024      default: // invalid order
3025        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3026                                         llvm::AtomicOrdering::Monotonic);
3027        break;
3028      case 1: // memory_order_consume
3029      case 2: // memory_order_acquire
3030        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3031                                         llvm::AtomicOrdering::Acquire);
3032        break;
3033      case 3: // memory_order_release
3034        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3035                                         llvm::AtomicOrdering::Release);
3036        break;
3037      case 4: // memory_order_acq_rel
3038
3039        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3040                                         llvm::AtomicOrdering::AcquireRelease);
3041        break;
3042      case 5: // memory_order_seq_cst
3043        Result = Builder.CreateAtomicRMW(
3044            llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3045            llvm::AtomicOrdering::SequentiallyConsistent);
3046        break;
3047      }
3048      Result->setVolatile(Volatile);
3049      return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3050    }
3051
3052    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3053
3054    llvm::BasicBlock *BBs[5] = {
3055      createBasicBlock("monotonic", CurFn),
3056      createBasicBlock("acquire", CurFn),
3057      createBasicBlock("release", CurFn),
3058      createBasicBlock("acqrel", CurFn),
3059      createBasicBlock("seqcst", CurFn)
3060    };
3061    llvm::AtomicOrdering Orders[5] = {
3062        llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
3063        llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
3064        llvm::AtomicOrdering::SequentiallyConsistent};
3065
3066    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3067    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3068
3069    Builder.SetInsertPoint(ContBB);
3070    PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
3071
3072    for (unsigned i = 0; i < 5; ++i) {
3073      Builder.SetInsertPoint(BBs[i]);
3074      AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
3075                                                   Ptr, NewVal, Orders[i]);
3076      RMW->setVolatile(Volatile);
3077      Result->addIncoming(RMW, BBs[i]);
3078      Builder.CreateBr(ContBB);
3079    }
3080
3081    SI->addCase(Builder.getInt32(0), BBs[0]);
3082    SI->addCase(Builder.getInt32(1), BBs[1]);
3083    SI->addCase(Builder.getInt32(2), BBs[1]);
3084    SI->addCase(Builder.getInt32(3), BBs[2]);
3085    SI->addCase(Builder.getInt32(4), BBs[3]);
3086    SI->addCase(Builder.getInt32(5), BBs[4]);
3087
3088    Builder.SetInsertPoint(ContBB);
3089    return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3090  }
3091
3092  case Builtin::BI__atomic_clear: {
3093    QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3094    bool Volatile =
3095        PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3096
3097    Address Ptr = EmitPointerWithAlignment(E->getArg(0));
3098    unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
3099    Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3100    Value *NewVal = Builder.getInt8(0);
3101    Value *Order = EmitScalarExpr(E->getArg(1));
3102    if (isa<llvm::ConstantInt>(Order)) {
3103      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3104      StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3105      switch (ord) {
3106      case 0:  // memory_order_relaxed
3107      default: // invalid order
3108        Store->setOrdering(llvm::AtomicOrdering::Monotonic);
3109        break;
3110      case 3:  // memory_order_release
3111        Store->setOrdering(llvm::AtomicOrdering::Release);
3112        break;
3113      case 5:  // memory_order_seq_cst
3114        Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
3115        break;
3116      }
3117      return RValue::get(nullptr);
3118    }
3119
3120    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3121
3122    llvm::BasicBlock *BBs[3] = {
3123      createBasicBlock("monotonic", CurFn),
3124      createBasicBlock("release", CurFn),
3125      createBasicBlock("seqcst", CurFn)
3126    };
3127    llvm::AtomicOrdering Orders[3] = {
3128        llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
3129        llvm::AtomicOrdering::SequentiallyConsistent};
3130
3131    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3132    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3133
3134    for (unsigned i = 0; i < 3; ++i) {
3135      Builder.SetInsertPoint(BBs[i]);
3136      StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3137      Store->setOrdering(Orders[i]);
3138      Builder.CreateBr(ContBB);
3139    }
3140
3141    SI->addCase(Builder.getInt32(0), BBs[0]);
3142    SI->addCase(Builder.getInt32(3), BBs[1]);
3143    SI->addCase(Builder.getInt32(5), BBs[2]);
3144
3145    Builder.SetInsertPoint(ContBB);
3146    return RValue::get(nullptr);
3147  }
3148
3149  case Builtin::BI__atomic_thread_fence:
3150  case Builtin::BI__atomic_signal_fence:
3151  case Builtin::BI__c11_atomic_thread_fence:
3152  case Builtin::BI__c11_atomic_signal_fence: {
3153    llvm::SyncScope::ID SSID;
3154    if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3155        BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3156      SSID = llvm::SyncScope::SingleThread;
3157    else
3158      SSID = llvm::SyncScope::System;
3159    Value *Order = EmitScalarExpr(E->getArg(0));
3160    if (isa<llvm::ConstantInt>(Order)) {
3161      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3162      switch (ord) {
3163      case 0:  // memory_order_relaxed
3164      default: // invalid order
3165        break;
3166      case 1:  // memory_order_consume
3167      case 2:  // memory_order_acquire
3168        Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3169        break;
3170      case 3:  // memory_order_release
3171        Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3172        break;
3173      case 4:  // memory_order_acq_rel
3174        Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3175        break;
3176      case 5:  // memory_order_seq_cst
3177        Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3178        break;
3179      }
3180      return RValue::get(nullptr);
3181    }
3182
3183    llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
3184    AcquireBB = createBasicBlock("acquire", CurFn);
3185    ReleaseBB = createBasicBlock("release", CurFn);
3186    AcqRelBB = createBasicBlock("acqrel", CurFn);
3187    SeqCstBB = createBasicBlock("seqcst", CurFn);
3188    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3189
3190    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3191    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
3192
3193    Builder.SetInsertPoint(AcquireBB);
3194    Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3195    Builder.CreateBr(ContBB);
3196    SI->addCase(Builder.getInt32(1), AcquireBB);
3197    SI->addCase(Builder.getInt32(2), AcquireBB);
3198
3199    Builder.SetInsertPoint(ReleaseBB);
3200    Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3201    Builder.CreateBr(ContBB);
3202    SI->addCase(Builder.getInt32(3), ReleaseBB);
3203
3204    Builder.SetInsertPoint(AcqRelBB);
3205    Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3206    Builder.CreateBr(ContBB);
3207    SI->addCase(Builder.getInt32(4), AcqRelBB);
3208
3209    Builder.SetInsertPoint(SeqCstBB);
3210    Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3211    Builder.CreateBr(ContBB);
3212    SI->addCase(Builder.getInt32(5), SeqCstBB);
3213
3214    Builder.SetInsertPoint(ContBB);
3215    return RValue::get(nullptr);
3216  }
3217
3218  case Builtin::BI__builtin_signbit:
3219  case Builtin::BI__builtin_signbitf:
3220  case Builtin::BI__builtin_signbitl: {
3221    return RValue::get(
3222        Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
3223                           ConvertType(E->getType())));
3224  }
3225  case Builtin::BI__warn_memset_zero_len:
3226    return RValue::getIgnored();
3227  case Builtin::BI__annotation: {
3228    // Re-encode each wide string to UTF8 and make an MDString.
3229    SmallVector<Metadata *, 1> Strings;
3230    for (const Expr *Arg : E->arguments()) {
3231      const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
3232      assert(Str->getCharByteWidth() == 2);
3233      StringRef WideBytes = Str->getBytes();
3234      std::string StrUtf8;
3235      if (!convertUTF16ToUTF8String(
3236              makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
3237        CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
3238        continue;
3239      }
3240      Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
3241    }
3242
3243    // Build and MDTuple of MDStrings and emit the intrinsic call.
3244    llvm::Function *F =
3245        CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
3246    MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
3247    Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
3248    return RValue::getIgnored();
3249  }
3250  case Builtin::BI__builtin_annotation: {
3251    llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
3252    llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
3253                                      AnnVal->getType());
3254
3255    // Get the annotation string, go through casts. Sema requires this to be a
3256    // non-wide string literal, potentially casted, so the cast<> is safe.
3257    const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
3258    StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
3259    return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
3260  }
3261  case Builtin::BI__builtin_addcb:
3262  case Builtin::BI__builtin_addcs:
3263  case Builtin::BI__builtin_addc:
3264  case Builtin::BI__builtin_addcl:
3265  case Builtin::BI__builtin_addcll:
3266  case Builtin::BI__builtin_subcb:
3267  case Builtin::BI__builtin_subcs:
3268  case Builtin::BI__builtin_subc:
3269  case Builtin::BI__builtin_subcl:
3270  case Builtin::BI__builtin_subcll: {
3271
3272    // We translate all of these builtins from expressions of the form:
3273    //   int x = ..., y = ..., carryin = ..., carryout, result;
3274    //   result = __builtin_addc(x, y, carryin, &carryout);
3275    //
3276    // to LLVM IR of the form:
3277    //
3278    //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
3279    //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
3280    //   %carry1 = extractvalue {i32, i1} %tmp1, 1
3281    //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
3282    //                                                       i32 %carryin)
3283    //   %result = extractvalue {i32, i1} %tmp2, 0
3284    //   %carry2 = extractvalue {i32, i1} %tmp2, 1
3285    //   %tmp3 = or i1 %carry1, %carry2
3286    //   %tmp4 = zext i1 %tmp3 to i32
3287    //   store i32 %tmp4, i32* %carryout
3288
3289    // Scalarize our inputs.
3290    llvm::Value *X = EmitScalarExpr(E->getArg(0));
3291    llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3292    llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
3293    Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
3294
3295    // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
3296    llvm::Intrinsic::ID IntrinsicId;
3297    switch (BuiltinID) {
3298    default: llvm_unreachable("Unknown multiprecision builtin id.");
3299    case Builtin::BI__builtin_addcb:
3300    case Builtin::BI__builtin_addcs:
3301    case Builtin::BI__builtin_addc:
3302    case Builtin::BI__builtin_addcl:
3303    case Builtin::BI__builtin_addcll:
3304      IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3305      break;
3306    case Builtin::BI__builtin_subcb:
3307    case Builtin::BI__builtin_subcs:
3308    case Builtin::BI__builtin_subc:
3309    case Builtin::BI__builtin_subcl:
3310    case Builtin::BI__builtin_subcll:
3311      IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3312      break;
3313    }
3314
3315    // Construct our resulting LLVM IR expression.
3316    llvm::Value *Carry1;
3317    llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
3318                                              X, Y, Carry1);
3319    llvm::Value *Carry2;
3320    llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
3321                                              Sum1, Carryin, Carry2);
3322    llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
3323                                               X->getType());
3324    Builder.CreateStore(CarryOut, CarryOutPtr);
3325    return RValue::get(Sum2);
3326  }
3327
3328  case Builtin::BI__builtin_add_overflow:
3329  case Builtin::BI__builtin_sub_overflow:
3330  case Builtin::BI__builtin_mul_overflow: {
3331    const clang::Expr *LeftArg = E->getArg(0);
3332    const clang::Expr *RightArg = E->getArg(1);
3333    const clang::Expr *ResultArg = E->getArg(2);
3334
3335    clang::QualType ResultQTy =
3336        ResultArg->getType()->castAs<PointerType>()->getPointeeType();
3337
3338    WidthAndSignedness LeftInfo =
3339        getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
3340    WidthAndSignedness RightInfo =
3341        getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
3342    WidthAndSignedness ResultInfo =
3343        getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
3344
3345    // Handle mixed-sign multiplication as a special case, because adding
3346    // runtime or backend support for our generic irgen would be too expensive.
3347    if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
3348      return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
3349                                          RightInfo, ResultArg, ResultQTy,
3350                                          ResultInfo);
3351
3352    WidthAndSignedness EncompassingInfo =
3353        EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
3354
3355    llvm::Type *EncompassingLLVMTy =
3356        llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
3357
3358    llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
3359
3360    llvm::Intrinsic::ID IntrinsicId;
3361    switch (BuiltinID) {
3362    default:
3363      llvm_unreachable("Unknown overflow builtin id.");
3364    case Builtin::BI__builtin_add_overflow:
3365      IntrinsicId = EncompassingInfo.Signed
3366                        ? llvm::Intrinsic::sadd_with_overflow
3367                        : llvm::Intrinsic::uadd_with_overflow;
3368      break;
3369    case Builtin::BI__builtin_sub_overflow:
3370      IntrinsicId = EncompassingInfo.Signed
3371                        ? llvm::Intrinsic::ssub_with_overflow
3372                        : llvm::Intrinsic::usub_with_overflow;
3373      break;
3374    case Builtin::BI__builtin_mul_overflow:
3375      IntrinsicId = EncompassingInfo.Signed
3376                        ? llvm::Intrinsic::smul_with_overflow
3377                        : llvm::Intrinsic::umul_with_overflow;
3378      break;
3379    }
3380
3381    llvm::Value *Left = EmitScalarExpr(LeftArg);
3382    llvm::Value *Right = EmitScalarExpr(RightArg);
3383    Address ResultPtr = EmitPointerWithAlignment(ResultArg);
3384
3385    // Extend each operand to the encompassing type.
3386    Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
3387    Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
3388
3389    // Perform the operation on the extended values.
3390    llvm::Value *Overflow, *Result;
3391    Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
3392
3393    if (EncompassingInfo.Width > ResultInfo.Width) {
3394      // The encompassing type is wider than the result type, so we need to
3395      // truncate it.
3396      llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
3397
3398      // To see if the truncation caused an overflow, we will extend
3399      // the result and then compare it to the original result.
3400      llvm::Value *ResultTruncExt = Builder.CreateIntCast(
3401          ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
3402      llvm::Value *TruncationOverflow =
3403          Builder.CreateICmpNE(Result, ResultTruncExt);
3404
3405      Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
3406      Result = ResultTrunc;
3407    }
3408
3409    // Finally, store the result using the pointer.
3410    bool isVolatile =
3411      ResultArg->getType()->getPointeeType().isVolatileQualified();
3412    Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
3413
3414    return RValue::get(Overflow);
3415  }
3416
3417  case Builtin::BI__builtin_uadd_overflow:
3418  case Builtin::BI__builtin_uaddl_overflow:
3419  case Builtin::BI__builtin_uaddll_overflow:
3420  case Builtin::BI__builtin_usub_overflow:
3421  case Builtin::BI__builtin_usubl_overflow:
3422  case Builtin::BI__builtin_usubll_overflow:
3423  case Builtin::BI__builtin_umul_overflow:
3424  case Builtin::BI__builtin_umull_overflow:
3425  case Builtin::BI__builtin_umulll_overflow:
3426  case Builtin::BI__builtin_sadd_overflow:
3427  case Builtin::BI__builtin_saddl_overflow:
3428  case Builtin::BI__builtin_saddll_overflow:
3429  case Builtin::BI__builtin_ssub_overflow:
3430  case Builtin::BI__builtin_ssubl_overflow:
3431  case Builtin::BI__builtin_ssubll_overflow:
3432  case Builtin::BI__builtin_smul_overflow:
3433  case Builtin::BI__builtin_smull_overflow:
3434  case Builtin::BI__builtin_smulll_overflow: {
3435
3436    // We translate all of these builtins directly to the relevant llvm IR node.
3437
3438    // Scalarize our inputs.
3439    llvm::Value *X = EmitScalarExpr(E->getArg(0));
3440    llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3441    Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
3442
3443    // Decide which of the overflow intrinsics we are lowering to:
3444    llvm::Intrinsic::ID IntrinsicId;
3445    switch (BuiltinID) {
3446    default: llvm_unreachable("Unknown overflow builtin id.");
3447    case Builtin::BI__builtin_uadd_overflow:
3448    case Builtin::BI__builtin_uaddl_overflow:
3449    case Builtin::BI__builtin_uaddll_overflow:
3450      IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3451      break;
3452    case Builtin::BI__builtin_usub_overflow:
3453    case Builtin::BI__builtin_usubl_overflow:
3454    case Builtin::BI__builtin_usubll_overflow:
3455      IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3456      break;
3457    case Builtin::BI__builtin_umul_overflow:
3458    case Builtin::BI__builtin_umull_overflow:
3459    case Builtin::BI__builtin_umulll_overflow:
3460      IntrinsicId = llvm::Intrinsic::umul_with_overflow;
3461      break;
3462    case Builtin::BI__builtin_sadd_overflow:
3463    case Builtin::BI__builtin_saddl_overflow:
3464    case Builtin::BI__builtin_saddll_overflow:
3465      IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
3466      break;
3467    case Builtin::BI__builtin_ssub_overflow:
3468    case Builtin::BI__builtin_ssubl_overflow:
3469    case Builtin::BI__builtin_ssubll_overflow:
3470      IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
3471      break;
3472    case Builtin::BI__builtin_smul_overflow:
3473    case Builtin::BI__builtin_smull_overflow:
3474    case Builtin::BI__builtin_smulll_overflow:
3475      IntrinsicId = llvm::Intrinsic::smul_with_overflow;
3476      break;
3477    }
3478
3479
3480    llvm::Value *Carry;
3481    llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
3482    Builder.CreateStore(Sum, SumOutPtr);
3483
3484    return RValue::get(Carry);
3485  }
3486  case Builtin::BI__builtin_addressof:
3487    return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
3488  case Builtin::BI__builtin_operator_new:
3489    return EmitBuiltinNewDeleteCall(
3490        E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
3491  case Builtin::BI__builtin_operator_delete:
3492    return EmitBuiltinNewDeleteCall(
3493        E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
3494
3495  case Builtin::BI__builtin_is_aligned:
3496    return EmitBuiltinIsAligned(E);
3497  case Builtin::BI__builtin_align_up:
3498    return EmitBuiltinAlignTo(E, true);
3499  case Builtin::BI__builtin_align_down:
3500    return EmitBuiltinAlignTo(E, false);
3501
3502  case Builtin::BI__noop:
3503    // __noop always evaluates to an integer literal zero.
3504    return RValue::get(ConstantInt::get(IntTy, 0));
3505  case Builtin::BI__builtin_call_with_static_chain: {
3506    const CallExpr *Call = cast<CallExpr>(E->getArg(0));
3507    const Expr *Chain = E->getArg(1);
3508    return EmitCall(Call->getCallee()->getType(),
3509                    EmitCallee(Call->getCallee()), Call, ReturnValue,
3510                    EmitScalarExpr(Chain));
3511  }
3512  case Builtin::BI_InterlockedExchange8:
3513  case Builtin::BI_InterlockedExchange16:
3514  case Builtin::BI_InterlockedExchange:
3515  case Builtin::BI_InterlockedExchangePointer:
3516    return RValue::get(
3517        EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
3518  case Builtin::BI_InterlockedCompareExchangePointer:
3519  case Builtin::BI_InterlockedCompareExchangePointer_nf: {
3520    llvm::Type *RTy;
3521    llvm::IntegerType *IntType =
3522      IntegerType::get(getLLVMContext(),
3523                       getContext().getTypeSize(E->getType()));
3524    llvm::Type *IntPtrType = IntType->getPointerTo();
3525
3526    llvm::Value *Destination =
3527      Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
3528
3529    llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
3530    RTy = Exchange->getType();
3531    Exchange = Builder.CreatePtrToInt(Exchange, IntType);
3532
3533    llvm::Value *Comparand =
3534      Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
3535
3536    auto Ordering =
3537      BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
3538      AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
3539
3540    auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
3541                                              Ordering, Ordering);
3542    Result->setVolatile(true);
3543
3544    return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
3545                                                                         0),
3546                                              RTy));
3547  }
3548  case Builtin::BI_InterlockedCompareExchange8:
3549  case Builtin::BI_InterlockedCompareExchange16:
3550  case Builtin::BI_InterlockedCompareExchange:
3551  case Builtin::BI_InterlockedCompareExchange64:
3552    return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
3553  case Builtin::BI_InterlockedIncrement16:
3554  case Builtin::BI_InterlockedIncrement:
3555    return RValue::get(
3556        EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
3557  case Builtin::BI_InterlockedDecrement16:
3558  case Builtin::BI_InterlockedDecrement:
3559    return RValue::get(
3560        EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
3561  case Builtin::BI_InterlockedAnd8:
3562  case Builtin::BI_InterlockedAnd16:
3563  case Builtin::BI_InterlockedAnd:
3564    return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
3565  case Builtin::BI_InterlockedExchangeAdd8:
3566  case Builtin::BI_InterlockedExchangeAdd16:
3567  case Builtin::BI_InterlockedExchangeAdd:
3568    return RValue::get(
3569        EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
3570  case Builtin::BI_InterlockedExchangeSub8:
3571  case Builtin::BI_InterlockedExchangeSub16:
3572  case Builtin::BI_InterlockedExchangeSub:
3573    return RValue::get(
3574        EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
3575  case Builtin::BI_InterlockedOr8:
3576  case Builtin::BI_InterlockedOr16:
3577  case Builtin::BI_InterlockedOr:
3578    return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
3579  case Builtin::BI_InterlockedXor8:
3580  case Builtin::BI_InterlockedXor16:
3581  case Builtin::BI_InterlockedXor:
3582    return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
3583
3584  case Builtin::BI_bittest64:
3585  case Builtin::BI_bittest:
3586  case Builtin::BI_bittestandcomplement64:
3587  case Builtin::BI_bittestandcomplement:
3588  case Builtin::BI_bittestandreset64:
3589  case Builtin::BI_bittestandreset:
3590  case Builtin::BI_bittestandset64:
3591  case Builtin::BI_bittestandset:
3592  case Builtin::BI_interlockedbittestandreset:
3593  case Builtin::BI_interlockedbittestandreset64:
3594  case Builtin::BI_interlockedbittestandset64:
3595  case Builtin::BI_interlockedbittestandset:
3596  case Builtin::BI_interlockedbittestandset_acq:
3597  case Builtin::BI_interlockedbittestandset_rel:
3598  case Builtin::BI_interlockedbittestandset_nf:
3599  case Builtin::BI_interlockedbittestandreset_acq:
3600  case Builtin::BI_interlockedbittestandreset_rel:
3601  case Builtin::BI_interlockedbittestandreset_nf:
3602    return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
3603
3604    // These builtins exist to emit regular volatile loads and stores not
3605    // affected by the -fms-volatile setting.
3606  case Builtin::BI__iso_volatile_load8:
3607  case Builtin::BI__iso_volatile_load16:
3608  case Builtin::BI__iso_volatile_load32:
3609  case Builtin::BI__iso_volatile_load64:
3610    return RValue::get(EmitISOVolatileLoad(*this, E));
3611  case Builtin::BI__iso_volatile_store8:
3612  case Builtin::BI__iso_volatile_store16:
3613  case Builtin::BI__iso_volatile_store32:
3614  case Builtin::BI__iso_volatile_store64:
3615    return RValue::get(EmitISOVolatileStore(*this, E));
3616
3617  case Builtin::BI__exception_code:
3618  case Builtin::BI_exception_code:
3619    return RValue::get(EmitSEHExceptionCode());
3620  case Builtin::BI__exception_info:
3621  case Builtin::BI_exception_info:
3622    return RValue::get(EmitSEHExceptionInfo());
3623  case Builtin::BI__abnormal_termination:
3624  case Builtin::BI_abnormal_termination:
3625    return RValue::get(EmitSEHAbnormalTermination());
3626  case Builtin::BI_setjmpex:
3627    if (getTarget().getTriple().isOSMSVCRT())
3628      return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3629    break;
3630  case Builtin::BI_setjmp:
3631    if (getTarget().getTriple().isOSMSVCRT()) {
3632      if (getTarget().getTriple().getArch() == llvm::Triple::x86)
3633        return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
3634      else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
3635        return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3636      return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
3637    }
3638    break;
3639
3640  case Builtin::BI__GetExceptionInfo: {
3641    if (llvm::GlobalVariable *GV =
3642            CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
3643      return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
3644    break;
3645  }
3646
3647  case Builtin::BI__fastfail:
3648    return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
3649
3650  case Builtin::BI__builtin_coro_size: {
3651    auto & Context = getContext();
3652    auto SizeTy = Context.getSizeType();
3653    auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3654    Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
3655    return RValue::get(Builder.CreateCall(F));
3656  }
3657
3658  case Builtin::BI__builtin_coro_id:
3659    return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
3660  case Builtin::BI__builtin_coro_promise:
3661    return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
3662  case Builtin::BI__builtin_coro_resume:
3663    return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
3664  case Builtin::BI__builtin_coro_frame:
3665    return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
3666  case Builtin::BI__builtin_coro_noop:
3667    return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
3668  case Builtin::BI__builtin_coro_free:
3669    return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
3670  case Builtin::BI__builtin_coro_destroy:
3671    return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
3672  case Builtin::BI__builtin_coro_done:
3673    return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
3674  case Builtin::BI__builtin_coro_alloc:
3675    return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
3676  case Builtin::BI__builtin_coro_begin:
3677    return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
3678  case Builtin::BI__builtin_coro_end:
3679    return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
3680  case Builtin::BI__builtin_coro_suspend:
3681    return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
3682  case Builtin::BI__builtin_coro_param:
3683    return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
3684
3685  // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
3686  case Builtin::BIread_pipe:
3687  case Builtin::BIwrite_pipe: {
3688    Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3689          *Arg1 = EmitScalarExpr(E->getArg(1));
3690    CGOpenCLRuntime OpenCLRT(CGM);
3691    Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3692    Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3693
3694    // Type of the generic packet parameter.
3695    unsigned GenericAS =
3696        getContext().getTargetAddressSpace(LangAS::opencl_generic);
3697    llvm::Type *I8PTy = llvm::PointerType::get(
3698        llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
3699
3700    // Testing which overloaded version we should generate the call for.
3701    if (2U == E->getNumArgs()) {
3702      const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
3703                                                             : "__write_pipe_2";
3704      // Creating a generic function type to be able to call with any builtin or
3705      // user defined type.
3706      llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
3707      llvm::FunctionType *FTy = llvm::FunctionType::get(
3708          Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3709      Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
3710      return RValue::get(
3711          Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3712                             {Arg0, BCast, PacketSize, PacketAlign}));
3713    } else {
3714      assert(4 == E->getNumArgs() &&
3715             "Illegal number of parameters to pipe function");
3716      const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
3717                                                             : "__write_pipe_4";
3718
3719      llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
3720                              Int32Ty, Int32Ty};
3721      Value *Arg2 = EmitScalarExpr(E->getArg(2)),
3722            *Arg3 = EmitScalarExpr(E->getArg(3));
3723      llvm::FunctionType *FTy = llvm::FunctionType::get(
3724          Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3725      Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
3726      // We know the third argument is an integer type, but we may need to cast
3727      // it to i32.
3728      if (Arg2->getType() != Int32Ty)
3729        Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
3730      return RValue::get(Builder.CreateCall(
3731          CGM.CreateRuntimeFunction(FTy, Name),
3732          {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
3733    }
3734  }
3735  // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
3736  // functions
3737  case Builtin::BIreserve_read_pipe:
3738  case Builtin::BIreserve_write_pipe:
3739  case Builtin::BIwork_group_reserve_read_pipe:
3740  case Builtin::BIwork_group_reserve_write_pipe:
3741  case Builtin::BIsub_group_reserve_read_pipe:
3742  case Builtin::BIsub_group_reserve_write_pipe: {
3743    // Composing the mangled name for the function.
3744    const char *Name;
3745    if (BuiltinID == Builtin::BIreserve_read_pipe)
3746      Name = "__reserve_read_pipe";
3747    else if (BuiltinID == Builtin::BIreserve_write_pipe)
3748      Name = "__reserve_write_pipe";
3749    else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
3750      Name = "__work_group_reserve_read_pipe";
3751    else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
3752      Name = "__work_group_reserve_write_pipe";
3753    else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
3754      Name = "__sub_group_reserve_read_pipe";
3755    else
3756      Name = "__sub_group_reserve_write_pipe";
3757
3758    Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3759          *Arg1 = EmitScalarExpr(E->getArg(1));
3760    llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
3761    CGOpenCLRuntime OpenCLRT(CGM);
3762    Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3763    Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3764
3765    // Building the generic function prototype.
3766    llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
3767    llvm::FunctionType *FTy = llvm::FunctionType::get(
3768        ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3769    // We know the second argument is an integer type, but we may need to cast
3770    // it to i32.
3771    if (Arg1->getType() != Int32Ty)
3772      Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
3773    return RValue::get(
3774        Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3775                           {Arg0, Arg1, PacketSize, PacketAlign}));
3776  }
3777  // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
3778  // functions
3779  case Builtin::BIcommit_read_pipe:
3780  case Builtin::BIcommit_write_pipe:
3781  case Builtin::BIwork_group_commit_read_pipe:
3782  case Builtin::BIwork_group_commit_write_pipe:
3783  case Builtin::BIsub_group_commit_read_pipe:
3784  case Builtin::BIsub_group_commit_write_pipe: {
3785    const char *Name;
3786    if (BuiltinID == Builtin::BIcommit_read_pipe)
3787      Name = "__commit_read_pipe";
3788    else if (BuiltinID == Builtin::BIcommit_write_pipe)
3789      Name = "__commit_write_pipe";
3790    else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
3791      Name = "__work_group_commit_read_pipe";
3792    else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
3793      Name = "__work_group_commit_write_pipe";
3794    else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
3795      Name = "__sub_group_commit_read_pipe";
3796    else
3797      Name = "__sub_group_commit_write_pipe";
3798
3799    Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3800          *Arg1 = EmitScalarExpr(E->getArg(1));
3801    CGOpenCLRuntime OpenCLRT(CGM);
3802    Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3803    Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3804
3805    // Building the generic function prototype.
3806    llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
3807    llvm::FunctionType *FTy =
3808        llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
3809                                llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3810
3811    return RValue::get(
3812        Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3813                           {Arg0, Arg1, PacketSize, PacketAlign}));
3814  }
3815  // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
3816  case Builtin::BIget_pipe_num_packets:
3817  case Builtin::BIget_pipe_max_packets: {
3818    const char *BaseName;
3819    const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
3820    if (BuiltinID == Builtin::BIget_pipe_num_packets)
3821      BaseName = "__get_pipe_num_packets";
3822    else
3823      BaseName = "__get_pipe_max_packets";
3824    std::string Name = std::string(BaseName) +
3825                       std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
3826
3827    // Building the generic function prototype.
3828    Value *Arg0 = EmitScalarExpr(E->getArg(0));
3829    CGOpenCLRuntime OpenCLRT(CGM);
3830    Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3831    Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3832    llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
3833    llvm::FunctionType *FTy = llvm::FunctionType::get(
3834        Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3835
3836    return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3837                                          {Arg0, PacketSize, PacketAlign}));
3838  }
3839
3840  // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
3841  case Builtin::BIto_global:
3842  case Builtin::BIto_local:
3843  case Builtin::BIto_private: {
3844    auto Arg0 = EmitScalarExpr(E->getArg(0));
3845    auto NewArgT = llvm::PointerType::get(Int8Ty,
3846      CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3847    auto NewRetT = llvm::PointerType::get(Int8Ty,
3848      CGM.getContext().getTargetAddressSpace(
3849        E->getType()->getPointeeType().getAddressSpace()));
3850    auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
3851    llvm::Value *NewArg;
3852    if (Arg0->getType()->getPointerAddressSpace() !=
3853        NewArgT->getPointerAddressSpace())
3854      NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
3855    else
3856      NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
3857    auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
3858    auto NewCall =
3859        Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
3860    return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
3861      ConvertType(E->getType())));
3862  }
3863
3864  // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
3865  // It contains four different overload formats specified in Table 6.13.17.1.
3866  case Builtin::BIenqueue_kernel: {
3867    StringRef Name; // Generated function call name
3868    unsigned NumArgs = E->getNumArgs();
3869
3870    llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
3871    llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3872        getContext().getTargetAddressSpace(LangAS::opencl_generic));
3873
3874    llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
3875    llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
3876    LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
3877    llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
3878    llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
3879
3880    if (NumArgs == 4) {
3881      // The most basic form of the call with parameters:
3882      // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
3883      Name = "__enqueue_kernel_basic";
3884      llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
3885                              GenericVoidPtrTy};
3886      llvm::FunctionType *FTy = llvm::FunctionType::get(
3887          Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3888
3889      auto Info =
3890          CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3891      llvm::Value *Kernel =
3892          Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3893      llvm::Value *Block =
3894          Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3895
3896      AttrBuilder B;
3897      B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
3898      llvm::AttributeList ByValAttrSet =
3899          llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
3900
3901      auto RTCall =
3902          Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
3903                             {Queue, Flags, Range, Kernel, Block});
3904      RTCall->setAttributes(ByValAttrSet);
3905      return RValue::get(RTCall);
3906    }
3907    assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
3908
3909    // Create a temporary array to hold the sizes of local pointer arguments
3910    // for the block. \p First is the position of the first size argument.
3911    auto CreateArrayForSizeVar = [=](unsigned First)
3912        -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
3913      llvm::APInt ArraySize(32, NumArgs - First);
3914      QualType SizeArrayTy = getContext().getConstantArrayType(
3915          getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
3916          /*IndexTypeQuals=*/0);
3917      auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
3918      llvm::Value *TmpPtr = Tmp.getPointer();
3919      llvm::Value *TmpSize = EmitLifetimeStart(
3920          CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
3921      llvm::Value *ElemPtr;
3922      // Each of the following arguments specifies the size of the corresponding
3923      // argument passed to the enqueued block.
3924      auto *Zero = llvm::ConstantInt::get(IntTy, 0);
3925      for (unsigned I = First; I < NumArgs; ++I) {
3926        auto *Index = llvm::ConstantInt::get(IntTy, I - First);
3927        auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
3928        if (I == First)
3929          ElemPtr = GEP;
3930        auto *V =
3931            Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
3932        Builder.CreateAlignedStore(
3933            V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy));
3934      }
3935      return std::tie(ElemPtr, TmpSize, TmpPtr);
3936    };
3937
3938    // Could have events and/or varargs.
3939    if (E->getArg(3)->getType()->isBlockPointerType()) {
3940      // No events passed, but has variadic arguments.
3941      Name = "__enqueue_kernel_varargs";
3942      auto Info =
3943          CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3944      llvm::Value *Kernel =
3945          Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3946      auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3947      llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3948      std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
3949
3950      // Create a vector of the arguments, as well as a constant value to
3951      // express to the runtime the number of variadic arguments.
3952      std::vector<llvm::Value *> Args = {
3953          Queue,  Flags, Range,
3954          Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4),
3955          ElemPtr};
3956      std::vector<llvm::Type *> ArgTys = {
3957          QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
3958          GenericVoidPtrTy, IntTy, ElemPtr->getType()};
3959
3960      llvm::FunctionType *FTy = llvm::FunctionType::get(
3961          Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3962      auto Call =
3963          RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3964                                         llvm::ArrayRef<llvm::Value *>(Args)));
3965      if (TmpSize)
3966        EmitLifetimeEnd(TmpSize, TmpPtr);
3967      return Call;
3968    }
3969    // Any calls now have event arguments passed.
3970    if (NumArgs >= 7) {
3971      llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
3972      llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
3973          CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3974
3975      llvm::Value *NumEvents =
3976          Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
3977
3978      // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
3979      // to be a null pointer constant (including `0` literal), we can take it
3980      // into account and emit null pointer directly.
3981      llvm::Value *EventWaitList = nullptr;
3982      if (E->getArg(4)->isNullPointerConstant(
3983              getContext(), Expr::NPC_ValueDependentIsNotNull)) {
3984        EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
3985      } else {
3986        EventWaitList = E->getArg(4)->getType()->isArrayType()
3987                        ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
3988                        : EmitScalarExpr(E->getArg(4));
3989        // Convert to generic address space.
3990        EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
3991      }
3992      llvm::Value *EventRet = nullptr;
3993      if (E->getArg(5)->isNullPointerConstant(
3994              getContext(), Expr::NPC_ValueDependentIsNotNull)) {
3995        EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
3996      } else {
3997        EventRet =
3998            Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
3999      }
4000
4001      auto Info =
4002          CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
4003      llvm::Value *Kernel =
4004          Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4005      llvm::Value *Block =
4006          Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4007
4008      std::vector<llvm::Type *> ArgTys = {
4009          QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
4010          EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
4011
4012      std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
4013                                         NumEvents, EventWaitList, EventRet,
4014                                         Kernel,    Block};
4015
4016      if (NumArgs == 7) {
4017        // Has events but no variadics.
4018        Name = "__enqueue_kernel_basic_events";
4019        llvm::FunctionType *FTy = llvm::FunctionType::get(
4020            Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4021        return RValue::get(
4022            Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4023                               llvm::ArrayRef<llvm::Value *>(Args)));
4024      }
4025      // Has event info and variadics
4026      // Pass the number of variadics to the runtime function too.
4027      Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
4028      ArgTys.push_back(Int32Ty);
4029      Name = "__enqueue_kernel_events_varargs";
4030
4031      llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4032      std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
4033      Args.push_back(ElemPtr);
4034      ArgTys.push_back(ElemPtr->getType());
4035
4036      llvm::FunctionType *FTy = llvm::FunctionType::get(
4037          Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4038      auto Call =
4039          RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4040                                         llvm::ArrayRef<llvm::Value *>(Args)));
4041      if (TmpSize)
4042        EmitLifetimeEnd(TmpSize, TmpPtr);
4043      return Call;
4044    }
4045    LLVM_FALLTHROUGH;
4046  }
4047  // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
4048  // parameter.
4049  case Builtin::BIget_kernel_work_group_size: {
4050    llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4051        getContext().getTargetAddressSpace(LangAS::opencl_generic));
4052    auto Info =
4053        CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4054    Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4055    Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4056    return RValue::get(Builder.CreateCall(
4057        CGM.CreateRuntimeFunction(
4058            llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4059                                    false),
4060            "__get_kernel_work_group_size_impl"),
4061        {Kernel, Arg}));
4062  }
4063  case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
4064    llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4065        getContext().getTargetAddressSpace(LangAS::opencl_generic));
4066    auto Info =
4067        CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4068    Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4069    Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4070    return RValue::get(Builder.CreateCall(
4071        CGM.CreateRuntimeFunction(
4072            llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4073                                    false),
4074            "__get_kernel_preferred_work_group_size_multiple_impl"),
4075        {Kernel, Arg}));
4076  }
4077  case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
4078  case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
4079    llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4080        getContext().getTargetAddressSpace(LangAS::opencl_generic));
4081    LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
4082    llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
4083    auto Info =
4084        CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
4085    Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4086    Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4087    const char *Name =
4088        BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
4089            ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
4090            : "__get_kernel_sub_group_count_for_ndrange_impl";
4091    return RValue::get(Builder.CreateCall(
4092        CGM.CreateRuntimeFunction(
4093            llvm::FunctionType::get(
4094                IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
4095                false),
4096            Name),
4097        {NDRange, Kernel, Block}));
4098  }
4099
4100  case Builtin::BI__builtin_store_half:
4101  case Builtin::BI__builtin_store_halff: {
4102    Value *Val = EmitScalarExpr(E->getArg(0));
4103    Address Address = EmitPointerWithAlignment(E->getArg(1));
4104    Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
4105    return RValue::get(Builder.CreateStore(HalfVal, Address));
4106  }
4107  case Builtin::BI__builtin_load_half: {
4108    Address Address = EmitPointerWithAlignment(E->getArg(0));
4109    Value *HalfVal = Builder.CreateLoad(Address);
4110    return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
4111  }
4112  case Builtin::BI__builtin_load_halff: {
4113    Address Address = EmitPointerWithAlignment(E->getArg(0));
4114    Value *HalfVal = Builder.CreateLoad(Address);
4115    return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
4116  }
4117  case Builtin::BIprintf:
4118    if (getTarget().getTriple().isNVPTX())
4119      return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
4120    break;
4121  case Builtin::BI__builtin_canonicalize:
4122  case Builtin::BI__builtin_canonicalizef:
4123  case Builtin::BI__builtin_canonicalizef16:
4124  case Builtin::BI__builtin_canonicalizel:
4125    return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
4126
4127  case Builtin::BI__builtin_thread_pointer: {
4128    if (!getContext().getTargetInfo().isTLSSupported())
4129      CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
4130    // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
4131    break;
4132  }
4133  case Builtin::BI__builtin_os_log_format:
4134    return emitBuiltinOSLogFormat(*E);
4135
4136  case Builtin::BI__xray_customevent: {
4137    if (!ShouldXRayInstrumentFunction())
4138      return RValue::getIgnored();
4139
4140    if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4141            XRayInstrKind::Custom))
4142      return RValue::getIgnored();
4143
4144    if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4145      if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
4146        return RValue::getIgnored();
4147
4148    Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
4149    auto FTy = F->getFunctionType();
4150    auto Arg0 = E->getArg(0);
4151    auto Arg0Val = EmitScalarExpr(Arg0);
4152    auto Arg0Ty = Arg0->getType();
4153    auto PTy0 = FTy->getParamType(0);
4154    if (PTy0 != Arg0Val->getType()) {
4155      if (Arg0Ty->isArrayType())
4156        Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
4157      else
4158        Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
4159    }
4160    auto Arg1 = EmitScalarExpr(E->getArg(1));
4161    auto PTy1 = FTy->getParamType(1);
4162    if (PTy1 != Arg1->getType())
4163      Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
4164    return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
4165  }
4166
4167  case Builtin::BI__xray_typedevent: {
4168    // TODO: There should be a way to always emit events even if the current
4169    // function is not instrumented. Losing events in a stream can cripple
4170    // a trace.
4171    if (!ShouldXRayInstrumentFunction())
4172      return RValue::getIgnored();
4173
4174    if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4175            XRayInstrKind::Typed))
4176      return RValue::getIgnored();
4177
4178    if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4179      if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
4180        return RValue::getIgnored();
4181
4182    Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
4183    auto FTy = F->getFunctionType();
4184    auto Arg0 = EmitScalarExpr(E->getArg(0));
4185    auto PTy0 = FTy->getParamType(0);
4186    if (PTy0 != Arg0->getType())
4187      Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
4188    auto Arg1 = E->getArg(1);
4189    auto Arg1Val = EmitScalarExpr(Arg1);
4190    auto Arg1Ty = Arg1->getType();
4191    auto PTy1 = FTy->getParamType(1);
4192    if (PTy1 != Arg1Val->getType()) {
4193      if (Arg1Ty->isArrayType())
4194        Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
4195      else
4196        Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
4197    }
4198    auto Arg2 = EmitScalarExpr(E->getArg(2));
4199    auto PTy2 = FTy->getParamType(2);
4200    if (PTy2 != Arg2->getType())
4201      Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
4202    return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
4203  }
4204
4205  case Builtin::BI__builtin_ms_va_start:
4206  case Builtin::BI__builtin_ms_va_end:
4207    return RValue::get(
4208        EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
4209                       BuiltinID == Builtin::BI__builtin_ms_va_start));
4210
4211  case Builtin::BI__builtin_ms_va_copy: {
4212    // Lower this manually. We can't reliably determine whether or not any
4213    // given va_copy() is for a Win64 va_list from the calling convention
4214    // alone, because it's legal to do this from a System V ABI function.
4215    // With opaque pointer types, we won't have enough information in LLVM
4216    // IR to determine this from the argument types, either. Best to do it
4217    // now, while we have enough information.
4218    Address DestAddr = EmitMSVAListRef(E->getArg(0));
4219    Address SrcAddr = EmitMSVAListRef(E->getArg(1));
4220
4221    llvm::Type *BPP = Int8PtrPtrTy;
4222
4223    DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
4224                       DestAddr.getAlignment());
4225    SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
4226                      SrcAddr.getAlignment());
4227
4228    Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
4229    return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
4230  }
4231  }
4232
4233  // If this is an alias for a lib function (e.g. __builtin_sin), emit
4234  // the call using the normal call path, but using the unmangled
4235  // version of the function name.
4236  if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
4237    return emitLibraryCall(*this, FD, E,
4238                           CGM.getBuiltinLibFunction(FD, BuiltinID));
4239
4240  // If this is a predefined lib function (e.g. malloc), emit the call
4241  // using exactly the normal call path.
4242  if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
4243    return emitLibraryCall(*this, FD, E,
4244                      cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
4245
4246  // Check that a call to a target specific builtin has the correct target
4247  // features.
4248  // This is down here to avoid non-target specific builtins, however, if
4249  // generic builtins start to require generic target features then we
4250  // can move this up to the beginning of the function.
4251  checkTargetFeatures(E, FD);
4252
4253  if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
4254    LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
4255
4256  // See if we have a target specific intrinsic.
4257  const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
4258  Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
4259  StringRef Prefix =
4260      llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
4261  if (!Prefix.empty()) {
4262    IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
4263    // NOTE we don't need to perform a compatibility flag check here since the
4264    // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
4265    // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
4266    if (IntrinsicID == Intrinsic::not_intrinsic)
4267      IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
4268  }
4269
4270  if (IntrinsicID != Intrinsic::not_intrinsic) {
4271    SmallVector<Value*, 16> Args;
4272
4273    // Find out if any arguments are required to be integer constant
4274    // expressions.
4275    unsigned ICEArguments = 0;
4276    ASTContext::GetBuiltinTypeError Error;
4277    getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4278    assert(Error == ASTContext::GE_None && "Should not codegen an error");
4279
4280    Function *F = CGM.getIntrinsic(IntrinsicID);
4281    llvm::FunctionType *FTy = F->getFunctionType();
4282
4283    for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
4284      Value *ArgValue;
4285      // If this is a normal argument, just emit it as a scalar.
4286      if ((ICEArguments & (1 << i)) == 0) {
4287        ArgValue = EmitScalarExpr(E->getArg(i));
4288      } else {
4289        // If this is required to be a constant, constant fold it so that we
4290        // know that the generated intrinsic gets a ConstantInt.
4291        llvm::APSInt Result;
4292        bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
4293        assert(IsConst && "Constant arg isn't actually constant?");
4294        (void)IsConst;
4295        ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
4296      }
4297
4298      // If the intrinsic arg type is different from the builtin arg type
4299      // we need to do a bit cast.
4300      llvm::Type *PTy = FTy->getParamType(i);
4301      if (PTy != ArgValue->getType()) {
4302        // XXX - vector of pointers?
4303        if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
4304          if (PtrTy->getAddressSpace() !=
4305              ArgValue->getType()->getPointerAddressSpace()) {
4306            ArgValue = Builder.CreateAddrSpaceCast(
4307              ArgValue,
4308              ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
4309          }
4310        }
4311
4312        assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
4313               "Must be able to losslessly bit cast to param");
4314        ArgValue = Builder.CreateBitCast(ArgValue, PTy);
4315      }
4316
4317      Args.push_back(ArgValue);
4318    }
4319
4320    Value *V = Builder.CreateCall(F, Args);
4321    QualType BuiltinRetType = E->getType();
4322
4323    llvm::Type *RetTy = VoidTy;
4324    if (!BuiltinRetType->isVoidType())
4325      RetTy = ConvertType(BuiltinRetType);
4326
4327    if (RetTy != V->getType()) {
4328      // XXX - vector of pointers?
4329      if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
4330        if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
4331          V = Builder.CreateAddrSpaceCast(
4332            V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
4333        }
4334      }
4335
4336      assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
4337             "Must be able to losslessly bit cast result type");
4338      V = Builder.CreateBitCast(V, RetTy);
4339    }
4340
4341    return RValue::get(V);
4342  }
4343
4344  // Some target-specific builtins can have aggregate return values, e.g.
4345  // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
4346  // ReturnValue to be non-null, so that the target-specific emission code can
4347  // always just emit into it.
4348  TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
4349  if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
4350    Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
4351    ReturnValue = ReturnValueSlot(DestPtr, false);
4352  }
4353
4354  // Now see if we can emit a target-specific builtin.
4355  if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
4356    switch (EvalKind) {
4357    case TEK_Scalar:
4358      return RValue::get(V);
4359    case TEK_Aggregate:
4360      return RValue::getAggregate(ReturnValue.getValue(),
4361                                  ReturnValue.isVolatile());
4362    case TEK_Complex:
4363      llvm_unreachable("No current target builtin returns complex");
4364    }
4365    llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
4366  }
4367
4368  ErrorUnsupported(E, "builtin function");
4369
4370  // Unknown builtin, for now just dump it out and return undef.
4371  return GetUndefRValue(E->getType());
4372}
4373
4374static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
4375                                        unsigned BuiltinID, const CallExpr *E,
4376                                        ReturnValueSlot ReturnValue,
4377                                        llvm::Triple::ArchType Arch) {
4378  switch (Arch) {
4379  case llvm::Triple::arm:
4380  case llvm::Triple::armeb:
4381  case llvm::Triple::thumb:
4382  case llvm::Triple::thumbeb:
4383    return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
4384  case llvm::Triple::aarch64:
4385  case llvm::Triple::aarch64_32:
4386  case llvm::Triple::aarch64_be:
4387    return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
4388  case llvm::Triple::bpfeb:
4389  case llvm::Triple::bpfel:
4390    return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
4391  case llvm::Triple::x86:
4392  case llvm::Triple::x86_64:
4393    return CGF->EmitX86BuiltinExpr(BuiltinID, E);
4394  case llvm::Triple::ppc:
4395  case llvm::Triple::ppc64:
4396  case llvm::Triple::ppc64le:
4397    return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
4398  case llvm::Triple::r600:
4399  case llvm::Triple::amdgcn:
4400    return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
4401  case llvm::Triple::systemz:
4402    return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
4403  case llvm::Triple::nvptx:
4404  case llvm::Triple::nvptx64:
4405    return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
4406  case llvm::Triple::wasm32:
4407  case llvm::Triple::wasm64:
4408    return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
4409  case llvm::Triple::hexagon:
4410    return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
4411  default:
4412    return nullptr;
4413  }
4414}
4415
4416Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
4417                                              const CallExpr *E,
4418                                              ReturnValueSlot ReturnValue) {
4419  if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
4420    assert(getContext().getAuxTargetInfo() && "Missing aux target info");
4421    return EmitTargetArchBuiltinExpr(
4422        this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
4423        ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
4424  }
4425
4426  return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
4427                                   getTarget().getTriple().getArch());
4428}
4429
4430static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
4431                                     NeonTypeFlags TypeFlags,
4432                                     bool HasLegalHalfType=true,
4433                                     bool V1Ty=false) {
4434  int IsQuad = TypeFlags.isQuad();
4435  switch (TypeFlags.getEltType()) {
4436  case NeonTypeFlags::Int8:
4437  case NeonTypeFlags::Poly8:
4438    return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
4439  case NeonTypeFlags::Int16:
4440  case NeonTypeFlags::Poly16:
4441    return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4442  case NeonTypeFlags::Float16:
4443    if (HasLegalHalfType)
4444      return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
4445    else
4446      return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4447  case NeonTypeFlags::Int32:
4448    return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
4449  case NeonTypeFlags::Int64:
4450  case NeonTypeFlags::Poly64:
4451    return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
4452  case NeonTypeFlags::Poly128:
4453    // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
4454    // There is a lot of i128 and f128 API missing.
4455    // so we use v16i8 to represent poly128 and get pattern matched.
4456    return llvm::VectorType::get(CGF->Int8Ty, 16);
4457  case NeonTypeFlags::Float32:
4458    return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
4459  case NeonTypeFlags::Float64:
4460    return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
4461  }
4462  llvm_unreachable("Unknown vector element type!");
4463}
4464
4465static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
4466                                          NeonTypeFlags IntTypeFlags) {
4467  int IsQuad = IntTypeFlags.isQuad();
4468  switch (IntTypeFlags.getEltType()) {
4469  case NeonTypeFlags::Int16:
4470    return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad));
4471  case NeonTypeFlags::Int32:
4472    return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
4473  case NeonTypeFlags::Int64:
4474    return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
4475  default:
4476    llvm_unreachable("Type can't be converted to floating-point!");
4477  }
4478}
4479
4480Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
4481  unsigned nElts = V->getType()->getVectorNumElements();
4482  Value* SV = llvm::ConstantVector::getSplat(nElts, C);
4483  return Builder.CreateShuffleVector(V, V, SV, "lane");
4484}
4485
4486Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
4487                                     const char *name,
4488                                     unsigned shift, bool rightshift) {
4489  unsigned j = 0;
4490  for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
4491       ai != ae; ++ai, ++j)
4492    if (shift > 0 && shift == j)
4493      Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
4494    else
4495      Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
4496
4497  return Builder.CreateCall(F, Ops, name);
4498}
4499
4500Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
4501                                            bool neg) {
4502  int SV = cast<ConstantInt>(V)->getSExtValue();
4503  return ConstantInt::get(Ty, neg ? -SV : SV);
4504}
4505
4506// Right-shift a vector by a constant.
4507Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
4508                                          llvm::Type *Ty, bool usgn,
4509                                          const char *name) {
4510  llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
4511
4512  int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
4513  int EltSize = VTy->getScalarSizeInBits();
4514
4515  Vec = Builder.CreateBitCast(Vec, Ty);
4516
4517  // lshr/ashr are undefined when the shift amount is equal to the vector
4518  // element size.
4519  if (ShiftAmt == EltSize) {
4520    if (usgn) {
4521      // Right-shifting an unsigned value by its size yields 0.
4522      return llvm::ConstantAggregateZero::get(VTy);
4523    } else {
4524      // Right-shifting a signed value by its size is equivalent
4525      // to a shift of size-1.
4526      --ShiftAmt;
4527      Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
4528    }
4529  }
4530
4531  Shift = EmitNeonShiftVector(Shift, Ty, false);
4532  if (usgn)
4533    return Builder.CreateLShr(Vec, Shift, name);
4534  else
4535    return Builder.CreateAShr(Vec, Shift, name);
4536}
4537
4538enum {
4539  AddRetType = (1 << 0),
4540  Add1ArgType = (1 << 1),
4541  Add2ArgTypes = (1 << 2),
4542
4543  VectorizeRetType = (1 << 3),
4544  VectorizeArgTypes = (1 << 4),
4545
4546  InventFloatType = (1 << 5),
4547  UnsignedAlts = (1 << 6),
4548
4549  Use64BitVectors = (1 << 7),
4550  Use128BitVectors = (1 << 8),
4551
4552  Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
4553  VectorRet = AddRetType | VectorizeRetType,
4554  VectorRetGetArgs01 =
4555      AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
4556  FpCmpzModifiers =
4557      AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
4558};
4559
4560namespace {
4561struct NeonIntrinsicInfo {
4562  const char *NameHint;
4563  unsigned BuiltinID;
4564  unsigned LLVMIntrinsic;
4565  unsigned AltLLVMIntrinsic;
4566  unsigned TypeModifier;
4567
4568  bool operator<(unsigned RHSBuiltinID) const {
4569    return BuiltinID < RHSBuiltinID;
4570  }
4571  bool operator<(const NeonIntrinsicInfo &TE) const {
4572    return BuiltinID < TE.BuiltinID;
4573  }
4574};
4575} // end anonymous namespace
4576
4577#define NEONMAP0(NameBase) \
4578  { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
4579
4580#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
4581  { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4582      Intrinsic::LLVMIntrinsic, 0, TypeModifier }
4583
4584#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
4585  { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4586      Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
4587      TypeModifier }
4588
4589static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
4590  NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4591  NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4592  NEONMAP1(vabs_v, arm_neon_vabs, 0),
4593  NEONMAP1(vabsq_v, arm_neon_vabs, 0),
4594  NEONMAP0(vaddhn_v),
4595  NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
4596  NEONMAP1(vaeseq_v, arm_neon_aese, 0),
4597  NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
4598  NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
4599  NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
4600  NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
4601  NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
4602  NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
4603  NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
4604  NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
4605  NEONMAP1(vcage_v, arm_neon_vacge, 0),
4606  NEONMAP1(vcageq_v, arm_neon_vacge, 0),
4607  NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
4608  NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
4609  NEONMAP1(vcale_v, arm_neon_vacge, 0),
4610  NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
4611  NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
4612  NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
4613  NEONMAP0(vceqz_v),
4614  NEONMAP0(vceqzq_v),
4615  NEONMAP0(vcgez_v),
4616  NEONMAP0(vcgezq_v),
4617  NEONMAP0(vcgtz_v),
4618  NEONMAP0(vcgtzq_v),
4619  NEONMAP0(vclez_v),
4620  NEONMAP0(vclezq_v),
4621  NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
4622  NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
4623  NEONMAP0(vcltz_v),
4624  NEONMAP0(vcltzq_v),
4625  NEONMAP1(vclz_v, ctlz, Add1ArgType),
4626  NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4627  NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4628  NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4629  NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
4630  NEONMAP0(vcvt_f16_v),
4631  NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
4632  NEONMAP0(vcvt_f32_v),
4633  NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4634  NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4635  NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4636  NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4637  NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4638  NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4639  NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4640  NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4641  NEONMAP0(vcvt_s16_v),
4642  NEONMAP0(vcvt_s32_v),
4643  NEONMAP0(vcvt_s64_v),
4644  NEONMAP0(vcvt_u16_v),
4645  NEONMAP0(vcvt_u32_v),
4646  NEONMAP0(vcvt_u64_v),
4647  NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
4648  NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
4649  NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
4650  NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
4651  NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
4652  NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
4653  NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
4654  NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
4655  NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
4656  NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
4657  NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
4658  NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
4659  NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
4660  NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
4661  NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
4662  NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
4663  NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
4664  NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
4665  NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
4666  NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
4667  NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
4668  NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
4669  NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
4670  NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
4671  NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
4672  NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
4673  NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
4674  NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
4675  NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
4676  NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
4677  NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
4678  NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
4679  NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
4680  NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
4681  NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
4682  NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
4683  NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
4684  NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
4685  NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
4686  NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
4687  NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
4688  NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
4689  NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
4690  NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
4691  NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
4692  NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
4693  NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
4694  NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
4695  NEONMAP0(vcvtq_f16_v),
4696  NEONMAP0(vcvtq_f32_v),
4697  NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4698  NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4699  NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4700  NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4701  NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4702  NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4703  NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4704  NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4705  NEONMAP0(vcvtq_s16_v),
4706  NEONMAP0(vcvtq_s32_v),
4707  NEONMAP0(vcvtq_s64_v),
4708  NEONMAP0(vcvtq_u16_v),
4709  NEONMAP0(vcvtq_u32_v),
4710  NEONMAP0(vcvtq_u64_v),
4711  NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
4712  NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
4713  NEONMAP0(vext_v),
4714  NEONMAP0(vextq_v),
4715  NEONMAP0(vfma_v),
4716  NEONMAP0(vfmaq_v),
4717  NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4718  NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4719  NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4720  NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4721  NEONMAP0(vld1_dup_v),
4722  NEONMAP1(vld1_v, arm_neon_vld1, 0),
4723  NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
4724  NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
4725  NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
4726  NEONMAP0(vld1q_dup_v),
4727  NEONMAP1(vld1q_v, arm_neon_vld1, 0),
4728  NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
4729  NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
4730  NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
4731  NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
4732  NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
4733  NEONMAP1(vld2_v, arm_neon_vld2, 0),
4734  NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
4735  NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
4736  NEONMAP1(vld2q_v, arm_neon_vld2, 0),
4737  NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
4738  NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
4739  NEONMAP1(vld3_v, arm_neon_vld3, 0),
4740  NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
4741  NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
4742  NEONMAP1(vld3q_v, arm_neon_vld3, 0),
4743  NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
4744  NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
4745  NEONMAP1(vld4_v, arm_neon_vld4, 0),
4746  NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
4747  NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
4748  NEONMAP1(vld4q_v, arm_neon_vld4, 0),
4749  NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4750  NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
4751  NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
4752  NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4753  NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4754  NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
4755  NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
4756  NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4757  NEONMAP0(vmovl_v),
4758  NEONMAP0(vmovn_v),
4759  NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
4760  NEONMAP0(vmull_v),
4761  NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
4762  NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4763  NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4764  NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
4765  NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4766  NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4767  NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
4768  NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
4769  NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
4770  NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
4771  NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
4772  NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
4773  NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
4774  NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
4775  NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
4776  NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
4777  NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
4778  NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
4779  NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
4780  NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
4781  NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
4782  NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
4783  NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
4784  NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
4785  NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4786  NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4787  NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4788  NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4789  NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4790  NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4791  NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
4792  NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
4793  NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
4794  NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
4795  NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
4796  NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4797  NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4798  NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
4799  NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
4800  NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4801  NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4802  NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
4803  NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
4804  NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
4805  NEONMAP0(vrndi_v),
4806  NEONMAP0(vrndiq_v),
4807  NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
4808  NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
4809  NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
4810  NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
4811  NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
4812  NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
4813  NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
4814  NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
4815  NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
4816  NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4817  NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4818  NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4819  NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4820  NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4821  NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4822  NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
4823  NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
4824  NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
4825  NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
4826  NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
4827  NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
4828  NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
4829  NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
4830  NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
4831  NEONMAP0(vshl_n_v),
4832  NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4833  NEONMAP0(vshll_n_v),
4834  NEONMAP0(vshlq_n_v),
4835  NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4836  NEONMAP0(vshr_n_v),
4837  NEONMAP0(vshrn_n_v),
4838  NEONMAP0(vshrq_n_v),
4839  NEONMAP1(vst1_v, arm_neon_vst1, 0),
4840  NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
4841  NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
4842  NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
4843  NEONMAP1(vst1q_v, arm_neon_vst1, 0),
4844  NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
4845  NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
4846  NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
4847  NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
4848  NEONMAP1(vst2_v, arm_neon_vst2, 0),
4849  NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
4850  NEONMAP1(vst2q_v, arm_neon_vst2, 0),
4851  NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
4852  NEONMAP1(vst3_v, arm_neon_vst3, 0),
4853  NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
4854  NEONMAP1(vst3q_v, arm_neon_vst3, 0),
4855  NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
4856  NEONMAP1(vst4_v, arm_neon_vst4, 0),
4857  NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
4858  NEONMAP1(vst4q_v, arm_neon_vst4, 0),
4859  NEONMAP0(vsubhn_v),
4860  NEONMAP0(vtrn_v),
4861  NEONMAP0(vtrnq_v),
4862  NEONMAP0(vtst_v),
4863  NEONMAP0(vtstq_v),
4864  NEONMAP0(vuzp_v),
4865  NEONMAP0(vuzpq_v),
4866  NEONMAP0(vzip_v),
4867  NEONMAP0(vzipq_v)
4868};
4869
4870static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
4871  NEONMAP1(vabs_v, aarch64_neon_abs, 0),
4872  NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
4873  NEONMAP0(vaddhn_v),
4874  NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
4875  NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
4876  NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
4877  NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
4878  NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
4879  NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
4880  NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
4881  NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
4882  NEONMAP1(vcage_v, aarch64_neon_facge, 0),
4883  NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
4884  NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
4885  NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
4886  NEONMAP1(vcale_v, aarch64_neon_facge, 0),
4887  NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
4888  NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
4889  NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
4890  NEONMAP0(vceqz_v),
4891  NEONMAP0(vceqzq_v),
4892  NEONMAP0(vcgez_v),
4893  NEONMAP0(vcgezq_v),
4894  NEONMAP0(vcgtz_v),
4895  NEONMAP0(vcgtzq_v),
4896  NEONMAP0(vclez_v),
4897  NEONMAP0(vclezq_v),
4898  NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
4899  NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
4900  NEONMAP0(vcltz_v),
4901  NEONMAP0(vcltzq_v),
4902  NEONMAP1(vclz_v, ctlz, Add1ArgType),
4903  NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4904  NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4905  NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4906  NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
4907  NEONMAP0(vcvt_f16_v),
4908  NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
4909  NEONMAP0(vcvt_f32_v),
4910  NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4911  NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4912  NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4913  NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4914  NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4915  NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4916  NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4917  NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4918  NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4919  NEONMAP0(vcvtq_f16_v),
4920  NEONMAP0(vcvtq_f32_v),
4921  NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4922  NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4923  NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4924  NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4925  NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4926  NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4927  NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4928  NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4929  NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4930  NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
4931  NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4932  NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4933  NEONMAP0(vext_v),
4934  NEONMAP0(vextq_v),
4935  NEONMAP0(vfma_v),
4936  NEONMAP0(vfmaq_v),
4937  NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
4938  NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
4939  NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
4940  NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
4941  NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
4942  NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
4943  NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
4944  NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
4945  NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4946  NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4947  NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4948  NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4949  NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
4950  NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
4951  NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
4952  NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
4953  NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
4954  NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
4955  NEONMAP0(vmovl_v),
4956  NEONMAP0(vmovn_v),
4957  NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
4958  NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
4959  NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
4960  NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4961  NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4962  NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
4963  NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
4964  NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
4965  NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4966  NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4967  NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
4968  NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
4969  NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
4970  NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
4971  NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
4972  NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
4973  NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
4974  NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
4975  NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
4976  NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
4977  NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
4978  NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4979  NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4980  NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
4981  NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4982  NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
4983  NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4984  NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
4985  NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
4986  NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4987  NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4988  NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
4989  NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4990  NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4991  NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
4992  NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
4993  NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4994  NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4995  NEONMAP0(vrndi_v),
4996  NEONMAP0(vrndiq_v),
4997  NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4998  NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4999  NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5000  NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5001  NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5002  NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5003  NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
5004  NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
5005  NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
5006  NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
5007  NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
5008  NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
5009  NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
5010  NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
5011  NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
5012  NEONMAP0(vshl_n_v),
5013  NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5014  NEONMAP0(vshll_n_v),
5015  NEONMAP0(vshlq_n_v),
5016  NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5017  NEONMAP0(vshr_n_v),
5018  NEONMAP0(vshrn_n_v),
5019  NEONMAP0(vshrq_n_v),
5020  NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
5021  NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
5022  NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
5023  NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
5024  NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
5025  NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
5026  NEONMAP0(vsubhn_v),
5027  NEONMAP0(vtst_v),
5028  NEONMAP0(vtstq_v),
5029};
5030
5031static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
5032  NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
5033  NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
5034  NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
5035  NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5036  NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5037  NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5038  NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5039  NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5040  NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5041  NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5042  NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5043  NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
5044  NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5045  NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
5046  NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5047  NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5048  NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5049  NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5050  NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5051  NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5052  NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5053  NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5054  NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5055  NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5056  NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5057  NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5058  NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5059  NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5060  NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5061  NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5062  NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5063  NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5064  NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5065  NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5066  NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5067  NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5068  NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5069  NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5070  NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5071  NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5072  NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5073  NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5074  NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5075  NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5076  NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5077  NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5078  NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5079  NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5080  NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
5081  NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5082  NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5083  NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5084  NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5085  NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
5086  NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
5087  NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5088  NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5089  NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
5090  NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
5091  NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5092  NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5093  NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5094  NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5095  NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
5096  NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
5097  NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5098  NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
5099  NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
5100  NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
5101  NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
5102  NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
5103  NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
5104  NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5105  NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5106  NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5107  NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5108  NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5109  NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5110  NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5111  NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5112  NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
5113  NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5114  NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
5115  NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
5116  NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
5117  NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
5118  NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
5119  NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
5120  NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
5121  NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
5122  NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
5123  NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
5124  NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
5125  NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
5126  NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
5127  NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
5128  NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
5129  NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
5130  NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
5131  NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
5132  NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
5133  NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
5134  NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
5135  NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
5136  NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
5137  NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
5138  NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
5139  NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
5140  NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
5141  NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
5142  NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
5143  NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
5144  NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
5145  NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
5146  NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
5147  NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
5148  NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
5149  NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
5150  NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
5151  NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
5152  NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
5153  NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
5154  NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
5155  NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5156  NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5157  NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5158  NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5159  NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
5160  NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5161  NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5162  NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5163  NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5164  NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5165  NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5166  NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
5167  NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
5168  NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5169  NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5170  NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5171  NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5172  NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
5173  NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
5174  NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
5175  NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
5176  NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5177  NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5178  NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
5179  NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
5180  NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
5181  NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5182  NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5183  NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5184  NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5185  NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
5186  NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5187  NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5188  NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5189  NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5190  NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
5191  NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
5192  NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5193  NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5194  NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
5195  NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
5196  NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
5197  NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
5198  NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
5199  NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
5200  NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
5201  NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
5202  NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
5203  NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
5204  NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
5205  NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
5206  NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
5207  NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
5208  NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
5209  NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
5210  NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
5211  NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
5212  NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
5213  NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
5214  NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5215  NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
5216  NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5217  NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
5218  NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
5219  NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
5220  NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5221  NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
5222  NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5223  NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
5224  // FP16 scalar intrinisics go here.
5225  NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
5226  NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5227  NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5228  NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5229  NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5230  NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5231  NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5232  NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5233  NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5234  NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5235  NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5236  NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5237  NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5238  NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5239  NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5240  NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5241  NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5242  NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5243  NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5244  NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5245  NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5246  NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5247  NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5248  NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5249  NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5250  NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
5251  NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
5252  NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
5253  NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
5254  NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
5255};
5256
5257#undef NEONMAP0
5258#undef NEONMAP1
5259#undef NEONMAP2
5260
5261static bool NEONSIMDIntrinsicsProvenSorted = false;
5262
5263static bool AArch64SIMDIntrinsicsProvenSorted = false;
5264static bool AArch64SISDIntrinsicsProvenSorted = false;
5265
5266
5267static const NeonIntrinsicInfo *
5268findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
5269                       unsigned BuiltinID, bool &MapProvenSorted) {
5270
5271#ifndef NDEBUG
5272  if (!MapProvenSorted) {
5273    assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)));
5274    MapProvenSorted = true;
5275  }
5276#endif
5277
5278  const NeonIntrinsicInfo *Builtin = llvm::lower_bound(IntrinsicMap, BuiltinID);
5279
5280  if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
5281    return Builtin;
5282
5283  return nullptr;
5284}
5285
5286Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
5287                                                   unsigned Modifier,
5288                                                   llvm::Type *ArgType,
5289                                                   const CallExpr *E) {
5290  int VectorSize = 0;
5291  if (Modifier & Use64BitVectors)
5292    VectorSize = 64;
5293  else if (Modifier & Use128BitVectors)
5294    VectorSize = 128;
5295
5296  // Return type.
5297  SmallVector<llvm::Type *, 3> Tys;
5298  if (Modifier & AddRetType) {
5299    llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
5300    if (Modifier & VectorizeRetType)
5301      Ty = llvm::VectorType::get(
5302          Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
5303
5304    Tys.push_back(Ty);
5305  }
5306
5307  // Arguments.
5308  if (Modifier & VectorizeArgTypes) {
5309    int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
5310    ArgType = llvm::VectorType::get(ArgType, Elts);
5311  }
5312
5313  if (Modifier & (Add1ArgType | Add2ArgTypes))
5314    Tys.push_back(ArgType);
5315
5316  if (Modifier & Add2ArgTypes)
5317    Tys.push_back(ArgType);
5318
5319  if (Modifier & InventFloatType)
5320    Tys.push_back(FloatTy);
5321
5322  return CGM.getIntrinsic(IntrinsicID, Tys);
5323}
5324
5325static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
5326                                            const NeonIntrinsicInfo &SISDInfo,
5327                                            SmallVectorImpl<Value *> &Ops,
5328                                            const CallExpr *E) {
5329  unsigned BuiltinID = SISDInfo.BuiltinID;
5330  unsigned int Int = SISDInfo.LLVMIntrinsic;
5331  unsigned Modifier = SISDInfo.TypeModifier;
5332  const char *s = SISDInfo.NameHint;
5333
5334  switch (BuiltinID) {
5335  case NEON::BI__builtin_neon_vcled_s64:
5336  case NEON::BI__builtin_neon_vcled_u64:
5337  case NEON::BI__builtin_neon_vcles_f32:
5338  case NEON::BI__builtin_neon_vcled_f64:
5339  case NEON::BI__builtin_neon_vcltd_s64:
5340  case NEON::BI__builtin_neon_vcltd_u64:
5341  case NEON::BI__builtin_neon_vclts_f32:
5342  case NEON::BI__builtin_neon_vcltd_f64:
5343  case NEON::BI__builtin_neon_vcales_f32:
5344  case NEON::BI__builtin_neon_vcaled_f64:
5345  case NEON::BI__builtin_neon_vcalts_f32:
5346  case NEON::BI__builtin_neon_vcaltd_f64:
5347    // Only one direction of comparisons actually exist, cmle is actually a cmge
5348    // with swapped operands. The table gives us the right intrinsic but we
5349    // still need to do the swap.
5350    std::swap(Ops[0], Ops[1]);
5351    break;
5352  }
5353
5354  assert(Int && "Generic code assumes a valid intrinsic");
5355
5356  // Determine the type(s) of this overloaded AArch64 intrinsic.
5357  const Expr *Arg = E->getArg(0);
5358  llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
5359  Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
5360
5361  int j = 0;
5362  ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
5363  for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5364       ai != ae; ++ai, ++j) {
5365    llvm::Type *ArgTy = ai->getType();
5366    if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
5367             ArgTy->getPrimitiveSizeInBits())
5368      continue;
5369
5370    assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
5371    // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
5372    // it before inserting.
5373    Ops[j] =
5374        CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
5375    Ops[j] =
5376        CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
5377  }
5378
5379  Value *Result = CGF.EmitNeonCall(F, Ops, s);
5380  llvm::Type *ResultType = CGF.ConvertType(E->getType());
5381  if (ResultType->getPrimitiveSizeInBits() <
5382      Result->getType()->getPrimitiveSizeInBits())
5383    return CGF.Builder.CreateExtractElement(Result, C0);
5384
5385  return CGF.Builder.CreateBitCast(Result, ResultType, s);
5386}
5387
5388Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
5389    unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
5390    const char *NameHint, unsigned Modifier, const CallExpr *E,
5391    SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
5392    llvm::Triple::ArchType Arch) {
5393  // Get the last argument, which specifies the vector type.
5394  llvm::APSInt NeonTypeConst;
5395  const Expr *Arg = E->getArg(E->getNumArgs() - 1);
5396  if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
5397    return nullptr;
5398
5399  // Determine the type of this overloaded NEON intrinsic.
5400  NeonTypeFlags Type(NeonTypeConst.getZExtValue());
5401  bool Usgn = Type.isUnsigned();
5402  bool Quad = Type.isQuad();
5403  const bool HasLegalHalfType = getTarget().hasLegalHalfType();
5404
5405  llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType);
5406  llvm::Type *Ty = VTy;
5407  if (!Ty)
5408    return nullptr;
5409
5410  auto getAlignmentValue32 = [&](Address addr) -> Value* {
5411    return Builder.getInt32(addr.getAlignment().getQuantity());
5412  };
5413
5414  unsigned Int = LLVMIntrinsic;
5415  if ((Modifier & UnsignedAlts) && !Usgn)
5416    Int = AltLLVMIntrinsic;
5417
5418  switch (BuiltinID) {
5419  default: break;
5420  case NEON::BI__builtin_neon_vpadd_v:
5421  case NEON::BI__builtin_neon_vpaddq_v:
5422    // We don't allow fp/int overloading of intrinsics.
5423    if (VTy->getElementType()->isFloatingPointTy() &&
5424        Int == Intrinsic::aarch64_neon_addp)
5425      Int = Intrinsic::aarch64_neon_faddp;
5426    break;
5427  case NEON::BI__builtin_neon_vabs_v:
5428  case NEON::BI__builtin_neon_vabsq_v:
5429    if (VTy->getElementType()->isFloatingPointTy())
5430      return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
5431    return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
5432  case NEON::BI__builtin_neon_vaddhn_v: {
5433    llvm::VectorType *SrcTy =
5434        llvm::VectorType::getExtendedElementVectorType(VTy);
5435
5436    // %sum = add <4 x i32> %lhs, %rhs
5437    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5438    Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5439    Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
5440
5441    // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5442    Constant *ShiftAmt =
5443        ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5444    Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
5445
5446    // %res = trunc <4 x i32> %high to <4 x i16>
5447    return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
5448  }
5449  case NEON::BI__builtin_neon_vcale_v:
5450  case NEON::BI__builtin_neon_vcaleq_v:
5451  case NEON::BI__builtin_neon_vcalt_v:
5452  case NEON::BI__builtin_neon_vcaltq_v:
5453    std::swap(Ops[0], Ops[1]);
5454    LLVM_FALLTHROUGH;
5455  case NEON::BI__builtin_neon_vcage_v:
5456  case NEON::BI__builtin_neon_vcageq_v:
5457  case NEON::BI__builtin_neon_vcagt_v:
5458  case NEON::BI__builtin_neon_vcagtq_v: {
5459    llvm::Type *Ty;
5460    switch (VTy->getScalarSizeInBits()) {
5461    default: llvm_unreachable("unexpected type");
5462    case 32:
5463      Ty = FloatTy;
5464      break;
5465    case 64:
5466      Ty = DoubleTy;
5467      break;
5468    case 16:
5469      Ty = HalfTy;
5470      break;
5471    }
5472    llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements());
5473    llvm::Type *Tys[] = { VTy, VecFlt };
5474    Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5475    return EmitNeonCall(F, Ops, NameHint);
5476  }
5477  case NEON::BI__builtin_neon_vceqz_v:
5478  case NEON::BI__builtin_neon_vceqzq_v:
5479    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
5480                                         ICmpInst::ICMP_EQ, "vceqz");
5481  case NEON::BI__builtin_neon_vcgez_v:
5482  case NEON::BI__builtin_neon_vcgezq_v:
5483    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
5484                                         ICmpInst::ICMP_SGE, "vcgez");
5485  case NEON::BI__builtin_neon_vclez_v:
5486  case NEON::BI__builtin_neon_vclezq_v:
5487    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
5488                                         ICmpInst::ICMP_SLE, "vclez");
5489  case NEON::BI__builtin_neon_vcgtz_v:
5490  case NEON::BI__builtin_neon_vcgtzq_v:
5491    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
5492                                         ICmpInst::ICMP_SGT, "vcgtz");
5493  case NEON::BI__builtin_neon_vcltz_v:
5494  case NEON::BI__builtin_neon_vcltzq_v:
5495    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
5496                                         ICmpInst::ICMP_SLT, "vcltz");
5497  case NEON::BI__builtin_neon_vclz_v:
5498  case NEON::BI__builtin_neon_vclzq_v:
5499    // We generate target-independent intrinsic, which needs a second argument
5500    // for whether or not clz of zero is undefined; on ARM it isn't.
5501    Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
5502    break;
5503  case NEON::BI__builtin_neon_vcvt_f32_v:
5504  case NEON::BI__builtin_neon_vcvtq_f32_v:
5505    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5506    Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
5507                     HasLegalHalfType);
5508    return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5509                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5510  case NEON::BI__builtin_neon_vcvt_f16_v:
5511  case NEON::BI__builtin_neon_vcvtq_f16_v:
5512    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5513    Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
5514                     HasLegalHalfType);
5515    return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5516                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5517  case NEON::BI__builtin_neon_vcvt_n_f16_v:
5518  case NEON::BI__builtin_neon_vcvt_n_f32_v:
5519  case NEON::BI__builtin_neon_vcvt_n_f64_v:
5520  case NEON::BI__builtin_neon_vcvtq_n_f16_v:
5521  case NEON::BI__builtin_neon_vcvtq_n_f32_v:
5522  case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
5523    llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
5524    Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5525    Function *F = CGM.getIntrinsic(Int, Tys);
5526    return EmitNeonCall(F, Ops, "vcvt_n");
5527  }
5528  case NEON::BI__builtin_neon_vcvt_n_s16_v:
5529  case NEON::BI__builtin_neon_vcvt_n_s32_v:
5530  case NEON::BI__builtin_neon_vcvt_n_u16_v:
5531  case NEON::BI__builtin_neon_vcvt_n_u32_v:
5532  case NEON::BI__builtin_neon_vcvt_n_s64_v:
5533  case NEON::BI__builtin_neon_vcvt_n_u64_v:
5534  case NEON::BI__builtin_neon_vcvtq_n_s16_v:
5535  case NEON::BI__builtin_neon_vcvtq_n_s32_v:
5536  case NEON::BI__builtin_neon_vcvtq_n_u16_v:
5537  case NEON::BI__builtin_neon_vcvtq_n_u32_v:
5538  case NEON::BI__builtin_neon_vcvtq_n_s64_v:
5539  case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
5540    llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5541    Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5542    return EmitNeonCall(F, Ops, "vcvt_n");
5543  }
5544  case NEON::BI__builtin_neon_vcvt_s32_v:
5545  case NEON::BI__builtin_neon_vcvt_u32_v:
5546  case NEON::BI__builtin_neon_vcvt_s64_v:
5547  case NEON::BI__builtin_neon_vcvt_u64_v:
5548  case NEON::BI__builtin_neon_vcvt_s16_v:
5549  case NEON::BI__builtin_neon_vcvt_u16_v:
5550  case NEON::BI__builtin_neon_vcvtq_s32_v:
5551  case NEON::BI__builtin_neon_vcvtq_u32_v:
5552  case NEON::BI__builtin_neon_vcvtq_s64_v:
5553  case NEON::BI__builtin_neon_vcvtq_u64_v:
5554  case NEON::BI__builtin_neon_vcvtq_s16_v:
5555  case NEON::BI__builtin_neon_vcvtq_u16_v: {
5556    Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
5557    return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
5558                : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
5559  }
5560  case NEON::BI__builtin_neon_vcvta_s16_v:
5561  case NEON::BI__builtin_neon_vcvta_s32_v:
5562  case NEON::BI__builtin_neon_vcvta_s64_v:
5563  case NEON::BI__builtin_neon_vcvta_u16_v:
5564  case NEON::BI__builtin_neon_vcvta_u32_v:
5565  case NEON::BI__builtin_neon_vcvta_u64_v:
5566  case NEON::BI__builtin_neon_vcvtaq_s16_v:
5567  case NEON::BI__builtin_neon_vcvtaq_s32_v:
5568  case NEON::BI__builtin_neon_vcvtaq_s64_v:
5569  case NEON::BI__builtin_neon_vcvtaq_u16_v:
5570  case NEON::BI__builtin_neon_vcvtaq_u32_v:
5571  case NEON::BI__builtin_neon_vcvtaq_u64_v:
5572  case NEON::BI__builtin_neon_vcvtn_s16_v:
5573  case NEON::BI__builtin_neon_vcvtn_s32_v:
5574  case NEON::BI__builtin_neon_vcvtn_s64_v:
5575  case NEON::BI__builtin_neon_vcvtn_u16_v:
5576  case NEON::BI__builtin_neon_vcvtn_u32_v:
5577  case NEON::BI__builtin_neon_vcvtn_u64_v:
5578  case NEON::BI__builtin_neon_vcvtnq_s16_v:
5579  case NEON::BI__builtin_neon_vcvtnq_s32_v:
5580  case NEON::BI__builtin_neon_vcvtnq_s64_v:
5581  case NEON::BI__builtin_neon_vcvtnq_u16_v:
5582  case NEON::BI__builtin_neon_vcvtnq_u32_v:
5583  case NEON::BI__builtin_neon_vcvtnq_u64_v:
5584  case NEON::BI__builtin_neon_vcvtp_s16_v:
5585  case NEON::BI__builtin_neon_vcvtp_s32_v:
5586  case NEON::BI__builtin_neon_vcvtp_s64_v:
5587  case NEON::BI__builtin_neon_vcvtp_u16_v:
5588  case NEON::BI__builtin_neon_vcvtp_u32_v:
5589  case NEON::BI__builtin_neon_vcvtp_u64_v:
5590  case NEON::BI__builtin_neon_vcvtpq_s16_v:
5591  case NEON::BI__builtin_neon_vcvtpq_s32_v:
5592  case NEON::BI__builtin_neon_vcvtpq_s64_v:
5593  case NEON::BI__builtin_neon_vcvtpq_u16_v:
5594  case NEON::BI__builtin_neon_vcvtpq_u32_v:
5595  case NEON::BI__builtin_neon_vcvtpq_u64_v:
5596  case NEON::BI__builtin_neon_vcvtm_s16_v:
5597  case NEON::BI__builtin_neon_vcvtm_s32_v:
5598  case NEON::BI__builtin_neon_vcvtm_s64_v:
5599  case NEON::BI__builtin_neon_vcvtm_u16_v:
5600  case NEON::BI__builtin_neon_vcvtm_u32_v:
5601  case NEON::BI__builtin_neon_vcvtm_u64_v:
5602  case NEON::BI__builtin_neon_vcvtmq_s16_v:
5603  case NEON::BI__builtin_neon_vcvtmq_s32_v:
5604  case NEON::BI__builtin_neon_vcvtmq_s64_v:
5605  case NEON::BI__builtin_neon_vcvtmq_u16_v:
5606  case NEON::BI__builtin_neon_vcvtmq_u32_v:
5607  case NEON::BI__builtin_neon_vcvtmq_u64_v: {
5608    llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5609    return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5610  }
5611  case NEON::BI__builtin_neon_vcvtx_f32_v: {
5612    llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
5613    return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5614
5615  }
5616  case NEON::BI__builtin_neon_vext_v:
5617  case NEON::BI__builtin_neon_vextq_v: {
5618    int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
5619    SmallVector<uint32_t, 16> Indices;
5620    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5621      Indices.push_back(i+CV);
5622
5623    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5624    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5625    return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
5626  }
5627  case NEON::BI__builtin_neon_vfma_v:
5628  case NEON::BI__builtin_neon_vfmaq_v: {
5629    Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
5630    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5631    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5632    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5633
5634    // NEON intrinsic puts accumulator first, unlike the LLVM fma.
5635    return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
5636  }
5637  case NEON::BI__builtin_neon_vld1_v:
5638  case NEON::BI__builtin_neon_vld1q_v: {
5639    llvm::Type *Tys[] = {Ty, Int8PtrTy};
5640    Ops.push_back(getAlignmentValue32(PtrOp0));
5641    return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
5642  }
5643  case NEON::BI__builtin_neon_vld1_x2_v:
5644  case NEON::BI__builtin_neon_vld1q_x2_v:
5645  case NEON::BI__builtin_neon_vld1_x3_v:
5646  case NEON::BI__builtin_neon_vld1q_x3_v:
5647  case NEON::BI__builtin_neon_vld1_x4_v:
5648  case NEON::BI__builtin_neon_vld1q_x4_v: {
5649    llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5650    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5651    llvm::Type *Tys[2] = { VTy, PTy };
5652    Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5653    Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5654    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5655    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5656    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5657  }
5658  case NEON::BI__builtin_neon_vld2_v:
5659  case NEON::BI__builtin_neon_vld2q_v:
5660  case NEON::BI__builtin_neon_vld3_v:
5661  case NEON::BI__builtin_neon_vld3q_v:
5662  case NEON::BI__builtin_neon_vld4_v:
5663  case NEON::BI__builtin_neon_vld4q_v:
5664  case NEON::BI__builtin_neon_vld2_dup_v:
5665  case NEON::BI__builtin_neon_vld2q_dup_v:
5666  case NEON::BI__builtin_neon_vld3_dup_v:
5667  case NEON::BI__builtin_neon_vld3q_dup_v:
5668  case NEON::BI__builtin_neon_vld4_dup_v:
5669  case NEON::BI__builtin_neon_vld4q_dup_v: {
5670    llvm::Type *Tys[] = {Ty, Int8PtrTy};
5671    Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5672    Value *Align = getAlignmentValue32(PtrOp1);
5673    Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
5674    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5675    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5676    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5677  }
5678  case NEON::BI__builtin_neon_vld1_dup_v:
5679  case NEON::BI__builtin_neon_vld1q_dup_v: {
5680    Value *V = UndefValue::get(Ty);
5681    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5682    PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
5683    LoadInst *Ld = Builder.CreateLoad(PtrOp0);
5684    llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
5685    Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
5686    return EmitNeonSplat(Ops[0], CI);
5687  }
5688  case NEON::BI__builtin_neon_vld2_lane_v:
5689  case NEON::BI__builtin_neon_vld2q_lane_v:
5690  case NEON::BI__builtin_neon_vld3_lane_v:
5691  case NEON::BI__builtin_neon_vld3q_lane_v:
5692  case NEON::BI__builtin_neon_vld4_lane_v:
5693  case NEON::BI__builtin_neon_vld4q_lane_v: {
5694    llvm::Type *Tys[] = {Ty, Int8PtrTy};
5695    Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5696    for (unsigned I = 2; I < Ops.size() - 1; ++I)
5697      Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
5698    Ops.push_back(getAlignmentValue32(PtrOp1));
5699    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
5700    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5701    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5702    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5703  }
5704  case NEON::BI__builtin_neon_vmovl_v: {
5705    llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
5706    Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
5707    if (Usgn)
5708      return Builder.CreateZExt(Ops[0], Ty, "vmovl");
5709    return Builder.CreateSExt(Ops[0], Ty, "vmovl");
5710  }
5711  case NEON::BI__builtin_neon_vmovn_v: {
5712    llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5713    Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
5714    return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
5715  }
5716  case NEON::BI__builtin_neon_vmull_v:
5717    // FIXME: the integer vmull operations could be emitted in terms of pure
5718    // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
5719    // hoisting the exts outside loops. Until global ISel comes along that can
5720    // see through such movement this leads to bad CodeGen. So we need an
5721    // intrinsic for now.
5722    Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
5723    Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
5724    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
5725  case NEON::BI__builtin_neon_vpadal_v:
5726  case NEON::BI__builtin_neon_vpadalq_v: {
5727    // The source operand type has twice as many elements of half the size.
5728    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5729    llvm::Type *EltTy =
5730      llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5731    llvm::Type *NarrowTy =
5732      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5733    llvm::Type *Tys[2] = { Ty, NarrowTy };
5734    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
5735  }
5736  case NEON::BI__builtin_neon_vpaddl_v:
5737  case NEON::BI__builtin_neon_vpaddlq_v: {
5738    // The source operand type has twice as many elements of half the size.
5739    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5740    llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5741    llvm::Type *NarrowTy =
5742      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5743    llvm::Type *Tys[2] = { Ty, NarrowTy };
5744    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
5745  }
5746  case NEON::BI__builtin_neon_vqdmlal_v:
5747  case NEON::BI__builtin_neon_vqdmlsl_v: {
5748    SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
5749    Ops[1] =
5750        EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
5751    Ops.resize(2);
5752    return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
5753  }
5754  case NEON::BI__builtin_neon_vqshl_n_v:
5755  case NEON::BI__builtin_neon_vqshlq_n_v:
5756    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
5757                        1, false);
5758  case NEON::BI__builtin_neon_vqshlu_n_v:
5759  case NEON::BI__builtin_neon_vqshluq_n_v:
5760    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
5761                        1, false);
5762  case NEON::BI__builtin_neon_vrecpe_v:
5763  case NEON::BI__builtin_neon_vrecpeq_v:
5764  case NEON::BI__builtin_neon_vrsqrte_v:
5765  case NEON::BI__builtin_neon_vrsqrteq_v:
5766    Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
5767    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5768  case NEON::BI__builtin_neon_vrndi_v:
5769  case NEON::BI__builtin_neon_vrndiq_v:
5770    Int = Intrinsic::nearbyint;
5771    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5772  case NEON::BI__builtin_neon_vrshr_n_v:
5773  case NEON::BI__builtin_neon_vrshrq_n_v:
5774    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
5775                        1, true);
5776  case NEON::BI__builtin_neon_vshl_n_v:
5777  case NEON::BI__builtin_neon_vshlq_n_v:
5778    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
5779    return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
5780                             "vshl_n");
5781  case NEON::BI__builtin_neon_vshll_n_v: {
5782    llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
5783    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5784    if (Usgn)
5785      Ops[0] = Builder.CreateZExt(Ops[0], VTy);
5786    else
5787      Ops[0] = Builder.CreateSExt(Ops[0], VTy);
5788    Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
5789    return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
5790  }
5791  case NEON::BI__builtin_neon_vshrn_n_v: {
5792    llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5793    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5794    Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
5795    if (Usgn)
5796      Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
5797    else
5798      Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
5799    return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
5800  }
5801  case NEON::BI__builtin_neon_vshr_n_v:
5802  case NEON::BI__builtin_neon_vshrq_n_v:
5803    return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
5804  case NEON::BI__builtin_neon_vst1_v:
5805  case NEON::BI__builtin_neon_vst1q_v:
5806  case NEON::BI__builtin_neon_vst2_v:
5807  case NEON::BI__builtin_neon_vst2q_v:
5808  case NEON::BI__builtin_neon_vst3_v:
5809  case NEON::BI__builtin_neon_vst3q_v:
5810  case NEON::BI__builtin_neon_vst4_v:
5811  case NEON::BI__builtin_neon_vst4q_v:
5812  case NEON::BI__builtin_neon_vst2_lane_v:
5813  case NEON::BI__builtin_neon_vst2q_lane_v:
5814  case NEON::BI__builtin_neon_vst3_lane_v:
5815  case NEON::BI__builtin_neon_vst3q_lane_v:
5816  case NEON::BI__builtin_neon_vst4_lane_v:
5817  case NEON::BI__builtin_neon_vst4q_lane_v: {
5818    llvm::Type *Tys[] = {Int8PtrTy, Ty};
5819    Ops.push_back(getAlignmentValue32(PtrOp0));
5820    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
5821  }
5822  case NEON::BI__builtin_neon_vst1_x2_v:
5823  case NEON::BI__builtin_neon_vst1q_x2_v:
5824  case NEON::BI__builtin_neon_vst1_x3_v:
5825  case NEON::BI__builtin_neon_vst1q_x3_v:
5826  case NEON::BI__builtin_neon_vst1_x4_v:
5827  case NEON::BI__builtin_neon_vst1q_x4_v: {
5828    llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5829    // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
5830    // in AArch64 it comes last. We may want to stick to one or another.
5831    if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
5832        Arch == llvm::Triple::aarch64_32) {
5833      llvm::Type *Tys[2] = { VTy, PTy };
5834      std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
5835      return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5836    }
5837    llvm::Type *Tys[2] = { PTy, VTy };
5838    return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5839  }
5840  case NEON::BI__builtin_neon_vsubhn_v: {
5841    llvm::VectorType *SrcTy =
5842        llvm::VectorType::getExtendedElementVectorType(VTy);
5843
5844    // %sum = add <4 x i32> %lhs, %rhs
5845    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5846    Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5847    Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
5848
5849    // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5850    Constant *ShiftAmt =
5851        ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5852    Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
5853
5854    // %res = trunc <4 x i32> %high to <4 x i16>
5855    return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
5856  }
5857  case NEON::BI__builtin_neon_vtrn_v:
5858  case NEON::BI__builtin_neon_vtrnq_v: {
5859    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5860    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5861    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5862    Value *SV = nullptr;
5863
5864    for (unsigned vi = 0; vi != 2; ++vi) {
5865      SmallVector<uint32_t, 16> Indices;
5866      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5867        Indices.push_back(i+vi);
5868        Indices.push_back(i+e+vi);
5869      }
5870      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5871      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
5872      SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5873    }
5874    return SV;
5875  }
5876  case NEON::BI__builtin_neon_vtst_v:
5877  case NEON::BI__builtin_neon_vtstq_v: {
5878    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5879    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5880    Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
5881    Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
5882                                ConstantAggregateZero::get(Ty));
5883    return Builder.CreateSExt(Ops[0], Ty, "vtst");
5884  }
5885  case NEON::BI__builtin_neon_vuzp_v:
5886  case NEON::BI__builtin_neon_vuzpq_v: {
5887    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5888    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5889    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5890    Value *SV = nullptr;
5891
5892    for (unsigned vi = 0; vi != 2; ++vi) {
5893      SmallVector<uint32_t, 16> Indices;
5894      for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5895        Indices.push_back(2*i+vi);
5896
5897      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5898      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
5899      SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5900    }
5901    return SV;
5902  }
5903  case NEON::BI__builtin_neon_vzip_v:
5904  case NEON::BI__builtin_neon_vzipq_v: {
5905    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5906    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5907    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5908    Value *SV = nullptr;
5909
5910    for (unsigned vi = 0; vi != 2; ++vi) {
5911      SmallVector<uint32_t, 16> Indices;
5912      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5913        Indices.push_back((i + vi*e) >> 1);
5914        Indices.push_back(((i + vi*e) >> 1)+e);
5915      }
5916      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5917      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
5918      SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5919    }
5920    return SV;
5921  }
5922  case NEON::BI__builtin_neon_vdot_v:
5923  case NEON::BI__builtin_neon_vdotq_v: {
5924    llvm::Type *InputTy =
5925        llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
5926    llvm::Type *Tys[2] = { Ty, InputTy };
5927    Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5928    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
5929  }
5930  case NEON::BI__builtin_neon_vfmlal_low_v:
5931  case NEON::BI__builtin_neon_vfmlalq_low_v: {
5932    llvm::Type *InputTy =
5933        llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5934    llvm::Type *Tys[2] = { Ty, InputTy };
5935    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
5936  }
5937  case NEON::BI__builtin_neon_vfmlsl_low_v:
5938  case NEON::BI__builtin_neon_vfmlslq_low_v: {
5939    llvm::Type *InputTy =
5940        llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5941    llvm::Type *Tys[2] = { Ty, InputTy };
5942    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
5943  }
5944  case NEON::BI__builtin_neon_vfmlal_high_v:
5945  case NEON::BI__builtin_neon_vfmlalq_high_v: {
5946    llvm::Type *InputTy =
5947           llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5948    llvm::Type *Tys[2] = { Ty, InputTy };
5949    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
5950  }
5951  case NEON::BI__builtin_neon_vfmlsl_high_v:
5952  case NEON::BI__builtin_neon_vfmlslq_high_v: {
5953    llvm::Type *InputTy =
5954           llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5955    llvm::Type *Tys[2] = { Ty, InputTy };
5956    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
5957  }
5958  }
5959
5960  assert(Int && "Expected valid intrinsic number");
5961
5962  // Determine the type(s) of this overloaded AArch64 intrinsic.
5963  Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
5964
5965  Value *Result = EmitNeonCall(F, Ops, NameHint);
5966  llvm::Type *ResultType = ConvertType(E->getType());
5967  // AArch64 intrinsic one-element vector type cast to
5968  // scalar type expected by the builtin
5969  return Builder.CreateBitCast(Result, ResultType, NameHint);
5970}
5971
5972Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
5973    Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
5974    const CmpInst::Predicate Ip, const Twine &Name) {
5975  llvm::Type *OTy = Op->getType();
5976
5977  // FIXME: this is utterly horrific. We should not be looking at previous
5978  // codegen context to find out what needs doing. Unfortunately TableGen
5979  // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
5980  // (etc).
5981  if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
5982    OTy = BI->getOperand(0)->getType();
5983
5984  Op = Builder.CreateBitCast(Op, OTy);
5985  if (OTy->getScalarType()->isFloatingPointTy()) {
5986    Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
5987  } else {
5988    Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
5989  }
5990  return Builder.CreateSExt(Op, Ty, Name);
5991}
5992
5993static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
5994                                 Value *ExtOp, Value *IndexOp,
5995                                 llvm::Type *ResTy, unsigned IntID,
5996                                 const char *Name) {
5997  SmallVector<Value *, 2> TblOps;
5998  if (ExtOp)
5999    TblOps.push_back(ExtOp);
6000
6001  // Build a vector containing sequential number like (0, 1, 2, ..., 15)
6002  SmallVector<uint32_t, 16> Indices;
6003  llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
6004  for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
6005    Indices.push_back(2*i);
6006    Indices.push_back(2*i+1);
6007  }
6008
6009  int PairPos = 0, End = Ops.size() - 1;
6010  while (PairPos < End) {
6011    TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
6012                                                     Ops[PairPos+1], Indices,
6013                                                     Name));
6014    PairPos += 2;
6015  }
6016
6017  // If there's an odd number of 64-bit lookup table, fill the high 64-bit
6018  // of the 128-bit lookup table with zero.
6019  if (PairPos == End) {
6020    Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
6021    TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
6022                                                     ZeroTbl, Indices, Name));
6023  }
6024
6025  Function *TblF;
6026  TblOps.push_back(IndexOp);
6027  TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
6028
6029  return CGF.EmitNeonCall(TblF, TblOps, Name);
6030}
6031
6032Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
6033  unsigned Value;
6034  switch (BuiltinID) {
6035  default:
6036    return nullptr;
6037  case ARM::BI__builtin_arm_nop:
6038    Value = 0;
6039    break;
6040  case ARM::BI__builtin_arm_yield:
6041  case ARM::BI__yield:
6042    Value = 1;
6043    break;
6044  case ARM::BI__builtin_arm_wfe:
6045  case ARM::BI__wfe:
6046    Value = 2;
6047    break;
6048  case ARM::BI__builtin_arm_wfi:
6049  case ARM::BI__wfi:
6050    Value = 3;
6051    break;
6052  case ARM::BI__builtin_arm_sev:
6053  case ARM::BI__sev:
6054    Value = 4;
6055    break;
6056  case ARM::BI__builtin_arm_sevl:
6057  case ARM::BI__sevl:
6058    Value = 5;
6059    break;
6060  }
6061
6062  return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
6063                            llvm::ConstantInt::get(Int32Ty, Value));
6064}
6065
6066// Generates the IR for the read/write special register builtin,
6067// ValueType is the type of the value that is to be written or read,
6068// RegisterType is the type of the register being written to or read from.
6069static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
6070                                         const CallExpr *E,
6071                                         llvm::Type *RegisterType,
6072                                         llvm::Type *ValueType,
6073                                         bool IsRead,
6074                                         StringRef SysReg = "") {
6075  // write and register intrinsics only support 32 and 64 bit operations.
6076  assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
6077          && "Unsupported size for register.");
6078
6079  CodeGen::CGBuilderTy &Builder = CGF.Builder;
6080  CodeGen::CodeGenModule &CGM = CGF.CGM;
6081  LLVMContext &Context = CGM.getLLVMContext();
6082
6083  if (SysReg.empty()) {
6084    const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
6085    SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
6086  }
6087
6088  llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
6089  llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
6090  llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
6091
6092  llvm::Type *Types[] = { RegisterType };
6093
6094  bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
6095  assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
6096            && "Can't fit 64-bit value in 32-bit register");
6097
6098  if (IsRead) {
6099    llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
6100    llvm::Value *Call = Builder.CreateCall(F, Metadata);
6101
6102    if (MixedTypes)
6103      // Read into 64 bit register and then truncate result to 32 bit.
6104      return Builder.CreateTrunc(Call, ValueType);
6105
6106    if (ValueType->isPointerTy())
6107      // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
6108      return Builder.CreateIntToPtr(Call, ValueType);
6109
6110    return Call;
6111  }
6112
6113  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
6114  llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
6115  if (MixedTypes) {
6116    // Extend 32 bit write value to 64 bit to pass to write.
6117    ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
6118    return Builder.CreateCall(F, { Metadata, ArgValue });
6119  }
6120
6121  if (ValueType->isPointerTy()) {
6122    // Have VoidPtrTy ArgValue but want to return an i32/i64.
6123    ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
6124    return Builder.CreateCall(F, { Metadata, ArgValue });
6125  }
6126
6127  return Builder.CreateCall(F, { Metadata, ArgValue });
6128}
6129
6130/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
6131/// argument that specifies the vector type.
6132static bool HasExtraNeonArgument(unsigned BuiltinID) {
6133  switch (BuiltinID) {
6134  default: break;
6135  case NEON::BI__builtin_neon_vget_lane_i8:
6136  case NEON::BI__builtin_neon_vget_lane_i16:
6137  case NEON::BI__builtin_neon_vget_lane_i32:
6138  case NEON::BI__builtin_neon_vget_lane_i64:
6139  case NEON::BI__builtin_neon_vget_lane_f32:
6140  case NEON::BI__builtin_neon_vgetq_lane_i8:
6141  case NEON::BI__builtin_neon_vgetq_lane_i16:
6142  case NEON::BI__builtin_neon_vgetq_lane_i32:
6143  case NEON::BI__builtin_neon_vgetq_lane_i64:
6144  case NEON::BI__builtin_neon_vgetq_lane_f32:
6145  case NEON::BI__builtin_neon_vset_lane_i8:
6146  case NEON::BI__builtin_neon_vset_lane_i16:
6147  case NEON::BI__builtin_neon_vset_lane_i32:
6148  case NEON::BI__builtin_neon_vset_lane_i64:
6149  case NEON::BI__builtin_neon_vset_lane_f32:
6150  case NEON::BI__builtin_neon_vsetq_lane_i8:
6151  case NEON::BI__builtin_neon_vsetq_lane_i16:
6152  case NEON::BI__builtin_neon_vsetq_lane_i32:
6153  case NEON::BI__builtin_neon_vsetq_lane_i64:
6154  case NEON::BI__builtin_neon_vsetq_lane_f32:
6155  case NEON::BI__builtin_neon_vsha1h_u32:
6156  case NEON::BI__builtin_neon_vsha1cq_u32:
6157  case NEON::BI__builtin_neon_vsha1pq_u32:
6158  case NEON::BI__builtin_neon_vsha1mq_u32:
6159  case clang::ARM::BI_MoveToCoprocessor:
6160  case clang::ARM::BI_MoveToCoprocessor2:
6161    return false;
6162  }
6163  return true;
6164}
6165
6166Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
6167                                           const CallExpr *E,
6168                                           ReturnValueSlot ReturnValue,
6169                                           llvm::Triple::ArchType Arch) {
6170  if (auto Hint = GetValueForARMHint(BuiltinID))
6171    return Hint;
6172
6173  if (BuiltinID == ARM::BI__emit) {
6174    bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
6175    llvm::FunctionType *FTy =
6176        llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
6177
6178    Expr::EvalResult Result;
6179    if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
6180      llvm_unreachable("Sema will ensure that the parameter is constant");
6181
6182    llvm::APSInt Value = Result.Val.getInt();
6183    uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
6184
6185    llvm::InlineAsm *Emit =
6186        IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
6187                                 /*hasSideEffects=*/true)
6188                : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
6189                                 /*hasSideEffects=*/true);
6190
6191    return Builder.CreateCall(Emit);
6192  }
6193
6194  if (BuiltinID == ARM::BI__builtin_arm_dbg) {
6195    Value *Option = EmitScalarExpr(E->getArg(0));
6196    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
6197  }
6198
6199  if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
6200    Value *Address = EmitScalarExpr(E->getArg(0));
6201    Value *RW      = EmitScalarExpr(E->getArg(1));
6202    Value *IsData  = EmitScalarExpr(E->getArg(2));
6203
6204    // Locality is not supported on ARM target
6205    Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
6206
6207    Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
6208    return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6209  }
6210
6211  if (BuiltinID == ARM::BI__builtin_arm_rbit) {
6212    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6213    return Builder.CreateCall(
6214        CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6215  }
6216
6217  if (BuiltinID == ARM::BI__builtin_arm_cls) {
6218    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6219    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
6220  }
6221  if (BuiltinID == ARM::BI__builtin_arm_cls64) {
6222    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6223    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
6224                              "cls");
6225  }
6226
6227  if (BuiltinID == ARM::BI__clear_cache) {
6228    assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
6229    const FunctionDecl *FD = E->getDirectCallee();
6230    Value *Ops[2];
6231    for (unsigned i = 0; i < 2; i++)
6232      Ops[i] = EmitScalarExpr(E->getArg(i));
6233    llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
6234    llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
6235    StringRef Name = FD->getName();
6236    return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
6237  }
6238
6239  if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
6240      BuiltinID == ARM::BI__builtin_arm_mcrr2) {
6241    Function *F;
6242
6243    switch (BuiltinID) {
6244    default: llvm_unreachable("unexpected builtin");
6245    case ARM::BI__builtin_arm_mcrr:
6246      F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
6247      break;
6248    case ARM::BI__builtin_arm_mcrr2:
6249      F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
6250      break;
6251    }
6252
6253    // MCRR{2} instruction has 5 operands but
6254    // the intrinsic has 4 because Rt and Rt2
6255    // are represented as a single unsigned 64
6256    // bit integer in the intrinsic definition
6257    // but internally it's represented as 2 32
6258    // bit integers.
6259
6260    Value *Coproc = EmitScalarExpr(E->getArg(0));
6261    Value *Opc1 = EmitScalarExpr(E->getArg(1));
6262    Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
6263    Value *CRm = EmitScalarExpr(E->getArg(3));
6264
6265    Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6266    Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
6267    Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
6268    Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
6269
6270    return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
6271  }
6272
6273  if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
6274      BuiltinID == ARM::BI__builtin_arm_mrrc2) {
6275    Function *F;
6276
6277    switch (BuiltinID) {
6278    default: llvm_unreachable("unexpected builtin");
6279    case ARM::BI__builtin_arm_mrrc:
6280      F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
6281      break;
6282    case ARM::BI__builtin_arm_mrrc2:
6283      F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
6284      break;
6285    }
6286
6287    Value *Coproc = EmitScalarExpr(E->getArg(0));
6288    Value *Opc1 = EmitScalarExpr(E->getArg(1));
6289    Value *CRm  = EmitScalarExpr(E->getArg(2));
6290    Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
6291
6292    // Returns an unsigned 64 bit integer, represented
6293    // as two 32 bit integers.
6294
6295    Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
6296    Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
6297    Rt = Builder.CreateZExt(Rt, Int64Ty);
6298    Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
6299
6300    Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
6301    RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
6302    RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
6303
6304    return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
6305  }
6306
6307  if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
6308      ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
6309        BuiltinID == ARM::BI__builtin_arm_ldaex) &&
6310       getContext().getTypeSize(E->getType()) == 64) ||
6311      BuiltinID == ARM::BI__ldrexd) {
6312    Function *F;
6313
6314    switch (BuiltinID) {
6315    default: llvm_unreachable("unexpected builtin");
6316    case ARM::BI__builtin_arm_ldaex:
6317      F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
6318      break;
6319    case ARM::BI__builtin_arm_ldrexd:
6320    case ARM::BI__builtin_arm_ldrex:
6321    case ARM::BI__ldrexd:
6322      F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
6323      break;
6324    }
6325
6326    Value *LdPtr = EmitScalarExpr(E->getArg(0));
6327    Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
6328                                    "ldrexd");
6329
6330    Value *Val0 = Builder.CreateExtractValue(Val, 1);
6331    Value *Val1 = Builder.CreateExtractValue(Val, 0);
6332    Val0 = Builder.CreateZExt(Val0, Int64Ty);
6333    Val1 = Builder.CreateZExt(Val1, Int64Ty);
6334
6335    Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
6336    Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6337    Val = Builder.CreateOr(Val, Val1);
6338    return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6339  }
6340
6341  if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
6342      BuiltinID == ARM::BI__builtin_arm_ldaex) {
6343    Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6344
6345    QualType Ty = E->getType();
6346    llvm::Type *RealResTy = ConvertType(Ty);
6347    llvm::Type *PtrTy = llvm::IntegerType::get(
6348        getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6349    LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6350
6351    Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
6352                                       ? Intrinsic::arm_ldaex
6353                                       : Intrinsic::arm_ldrex,
6354                                   PtrTy);
6355    Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
6356
6357    if (RealResTy->isPointerTy())
6358      return Builder.CreateIntToPtr(Val, RealResTy);
6359    else {
6360      llvm::Type *IntResTy = llvm::IntegerType::get(
6361          getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
6362      Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
6363      return Builder.CreateBitCast(Val, RealResTy);
6364    }
6365  }
6366
6367  if (BuiltinID == ARM::BI__builtin_arm_strexd ||
6368      ((BuiltinID == ARM::BI__builtin_arm_stlex ||
6369        BuiltinID == ARM::BI__builtin_arm_strex) &&
6370       getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
6371    Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6372                                       ? Intrinsic::arm_stlexd
6373                                       : Intrinsic::arm_strexd);
6374    llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
6375
6376    Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6377    Value *Val = EmitScalarExpr(E->getArg(0));
6378    Builder.CreateStore(Val, Tmp);
6379
6380    Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
6381    Val = Builder.CreateLoad(LdPtr);
6382
6383    Value *Arg0 = Builder.CreateExtractValue(Val, 0);
6384    Value *Arg1 = Builder.CreateExtractValue(Val, 1);
6385    Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
6386    return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
6387  }
6388
6389  if (BuiltinID == ARM::BI__builtin_arm_strex ||
6390      BuiltinID == ARM::BI__builtin_arm_stlex) {
6391    Value *StoreVal = EmitScalarExpr(E->getArg(0));
6392    Value *StoreAddr = EmitScalarExpr(E->getArg(1));
6393
6394    QualType Ty = E->getArg(0)->getType();
6395    llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
6396                                                 getContext().getTypeSize(Ty));
6397    StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
6398
6399    if (StoreVal->getType()->isPointerTy())
6400      StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
6401    else {
6402      llvm::Type *IntTy = llvm::IntegerType::get(
6403          getLLVMContext(),
6404          CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
6405      StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
6406      StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
6407    }
6408
6409    Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6410                                       ? Intrinsic::arm_stlex
6411                                       : Intrinsic::arm_strex,
6412                                   StoreAddr->getType());
6413    return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
6414  }
6415
6416  if (BuiltinID == ARM::BI__builtin_arm_clrex) {
6417    Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
6418    return Builder.CreateCall(F);
6419  }
6420
6421  // CRC32
6422  Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
6423  switch (BuiltinID) {
6424  case ARM::BI__builtin_arm_crc32b:
6425    CRCIntrinsicID = Intrinsic::arm_crc32b; break;
6426  case ARM::BI__builtin_arm_crc32cb:
6427    CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
6428  case ARM::BI__builtin_arm_crc32h:
6429    CRCIntrinsicID = Intrinsic::arm_crc32h; break;
6430  case ARM::BI__builtin_arm_crc32ch:
6431    CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
6432  case ARM::BI__builtin_arm_crc32w:
6433  case ARM::BI__builtin_arm_crc32d:
6434    CRCIntrinsicID = Intrinsic::arm_crc32w; break;
6435  case ARM::BI__builtin_arm_crc32cw:
6436  case ARM::BI__builtin_arm_crc32cd:
6437    CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
6438  }
6439
6440  if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
6441    Value *Arg0 = EmitScalarExpr(E->getArg(0));
6442    Value *Arg1 = EmitScalarExpr(E->getArg(1));
6443
6444    // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
6445    // intrinsics, hence we need different codegen for these cases.
6446    if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
6447        BuiltinID == ARM::BI__builtin_arm_crc32cd) {
6448      Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6449      Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
6450      Value *Arg1b = Builder.CreateLShr(Arg1, C1);
6451      Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
6452
6453      Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6454      Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
6455      return Builder.CreateCall(F, {Res, Arg1b});
6456    } else {
6457      Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
6458
6459      Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6460      return Builder.CreateCall(F, {Arg0, Arg1});
6461    }
6462  }
6463
6464  if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6465      BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6466      BuiltinID == ARM::BI__builtin_arm_rsrp ||
6467      BuiltinID == ARM::BI__builtin_arm_wsr ||
6468      BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6469      BuiltinID == ARM::BI__builtin_arm_wsrp) {
6470
6471    bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
6472                  BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6473                  BuiltinID == ARM::BI__builtin_arm_rsrp;
6474
6475    bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
6476                            BuiltinID == ARM::BI__builtin_arm_wsrp;
6477
6478    bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6479                   BuiltinID == ARM::BI__builtin_arm_wsr64;
6480
6481    llvm::Type *ValueType;
6482    llvm::Type *RegisterType;
6483    if (IsPointerBuiltin) {
6484      ValueType = VoidPtrTy;
6485      RegisterType = Int32Ty;
6486    } else if (Is64Bit) {
6487      ValueType = RegisterType = Int64Ty;
6488    } else {
6489      ValueType = RegisterType = Int32Ty;
6490    }
6491
6492    return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
6493  }
6494
6495  // Deal with MVE builtins
6496  if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
6497    return Result;
6498
6499  // Find out if any arguments are required to be integer constant
6500  // expressions.
6501  unsigned ICEArguments = 0;
6502  ASTContext::GetBuiltinTypeError Error;
6503  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6504  assert(Error == ASTContext::GE_None && "Should not codegen an error");
6505
6506  auto getAlignmentValue32 = [&](Address addr) -> Value* {
6507    return Builder.getInt32(addr.getAlignment().getQuantity());
6508  };
6509
6510  Address PtrOp0 = Address::invalid();
6511  Address PtrOp1 = Address::invalid();
6512  SmallVector<Value*, 4> Ops;
6513  bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
6514  unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
6515  for (unsigned i = 0, e = NumArgs; i != e; i++) {
6516    if (i == 0) {
6517      switch (BuiltinID) {
6518      case NEON::BI__builtin_neon_vld1_v:
6519      case NEON::BI__builtin_neon_vld1q_v:
6520      case NEON::BI__builtin_neon_vld1q_lane_v:
6521      case NEON::BI__builtin_neon_vld1_lane_v:
6522      case NEON::BI__builtin_neon_vld1_dup_v:
6523      case NEON::BI__builtin_neon_vld1q_dup_v:
6524      case NEON::BI__builtin_neon_vst1_v:
6525      case NEON::BI__builtin_neon_vst1q_v:
6526      case NEON::BI__builtin_neon_vst1q_lane_v:
6527      case NEON::BI__builtin_neon_vst1_lane_v:
6528      case NEON::BI__builtin_neon_vst2_v:
6529      case NEON::BI__builtin_neon_vst2q_v:
6530      case NEON::BI__builtin_neon_vst2_lane_v:
6531      case NEON::BI__builtin_neon_vst2q_lane_v:
6532      case NEON::BI__builtin_neon_vst3_v:
6533      case NEON::BI__builtin_neon_vst3q_v:
6534      case NEON::BI__builtin_neon_vst3_lane_v:
6535      case NEON::BI__builtin_neon_vst3q_lane_v:
6536      case NEON::BI__builtin_neon_vst4_v:
6537      case NEON::BI__builtin_neon_vst4q_v:
6538      case NEON::BI__builtin_neon_vst4_lane_v:
6539      case NEON::BI__builtin_neon_vst4q_lane_v:
6540        // Get the alignment for the argument in addition to the value;
6541        // we'll use it later.
6542        PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
6543        Ops.push_back(PtrOp0.getPointer());
6544        continue;
6545      }
6546    }
6547    if (i == 1) {
6548      switch (BuiltinID) {
6549      case NEON::BI__builtin_neon_vld2_v:
6550      case NEON::BI__builtin_neon_vld2q_v:
6551      case NEON::BI__builtin_neon_vld3_v:
6552      case NEON::BI__builtin_neon_vld3q_v:
6553      case NEON::BI__builtin_neon_vld4_v:
6554      case NEON::BI__builtin_neon_vld4q_v:
6555      case NEON::BI__builtin_neon_vld2_lane_v:
6556      case NEON::BI__builtin_neon_vld2q_lane_v:
6557      case NEON::BI__builtin_neon_vld3_lane_v:
6558      case NEON::BI__builtin_neon_vld3q_lane_v:
6559      case NEON::BI__builtin_neon_vld4_lane_v:
6560      case NEON::BI__builtin_neon_vld4q_lane_v:
6561      case NEON::BI__builtin_neon_vld2_dup_v:
6562      case NEON::BI__builtin_neon_vld2q_dup_v:
6563      case NEON::BI__builtin_neon_vld3_dup_v:
6564      case NEON::BI__builtin_neon_vld3q_dup_v:
6565      case NEON::BI__builtin_neon_vld4_dup_v:
6566      case NEON::BI__builtin_neon_vld4q_dup_v:
6567        // Get the alignment for the argument in addition to the value;
6568        // we'll use it later.
6569        PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
6570        Ops.push_back(PtrOp1.getPointer());
6571        continue;
6572      }
6573    }
6574
6575    if ((ICEArguments & (1 << i)) == 0) {
6576      Ops.push_back(EmitScalarExpr(E->getArg(i)));
6577    } else {
6578      // If this is required to be a constant, constant fold it so that we know
6579      // that the generated intrinsic gets a ConstantInt.
6580      llvm::APSInt Result;
6581      bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6582      assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
6583      Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6584    }
6585  }
6586
6587  switch (BuiltinID) {
6588  default: break;
6589
6590  case NEON::BI__builtin_neon_vget_lane_i8:
6591  case NEON::BI__builtin_neon_vget_lane_i16:
6592  case NEON::BI__builtin_neon_vget_lane_i32:
6593  case NEON::BI__builtin_neon_vget_lane_i64:
6594  case NEON::BI__builtin_neon_vget_lane_f32:
6595  case NEON::BI__builtin_neon_vgetq_lane_i8:
6596  case NEON::BI__builtin_neon_vgetq_lane_i16:
6597  case NEON::BI__builtin_neon_vgetq_lane_i32:
6598  case NEON::BI__builtin_neon_vgetq_lane_i64:
6599  case NEON::BI__builtin_neon_vgetq_lane_f32:
6600    return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
6601
6602  case NEON::BI__builtin_neon_vrndns_f32: {
6603    Value *Arg = EmitScalarExpr(E->getArg(0));
6604    llvm::Type *Tys[] = {Arg->getType()};
6605    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
6606    return Builder.CreateCall(F, {Arg}, "vrndn"); }
6607
6608  case NEON::BI__builtin_neon_vset_lane_i8:
6609  case NEON::BI__builtin_neon_vset_lane_i16:
6610  case NEON::BI__builtin_neon_vset_lane_i32:
6611  case NEON::BI__builtin_neon_vset_lane_i64:
6612  case NEON::BI__builtin_neon_vset_lane_f32:
6613  case NEON::BI__builtin_neon_vsetq_lane_i8:
6614  case NEON::BI__builtin_neon_vsetq_lane_i16:
6615  case NEON::BI__builtin_neon_vsetq_lane_i32:
6616  case NEON::BI__builtin_neon_vsetq_lane_i64:
6617  case NEON::BI__builtin_neon_vsetq_lane_f32:
6618    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6619
6620  case NEON::BI__builtin_neon_vsha1h_u32:
6621    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
6622                        "vsha1h");
6623  case NEON::BI__builtin_neon_vsha1cq_u32:
6624    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
6625                        "vsha1h");
6626  case NEON::BI__builtin_neon_vsha1pq_u32:
6627    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
6628                        "vsha1h");
6629  case NEON::BI__builtin_neon_vsha1mq_u32:
6630    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
6631                        "vsha1h");
6632
6633  // The ARM _MoveToCoprocessor builtins put the input register value as
6634  // the first argument, but the LLVM intrinsic expects it as the third one.
6635  case ARM::BI_MoveToCoprocessor:
6636  case ARM::BI_MoveToCoprocessor2: {
6637    Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
6638                                   Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
6639    return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
6640                                  Ops[3], Ops[4], Ops[5]});
6641  }
6642  case ARM::BI_BitScanForward:
6643  case ARM::BI_BitScanForward64:
6644    return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
6645  case ARM::BI_BitScanReverse:
6646  case ARM::BI_BitScanReverse64:
6647    return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
6648
6649  case ARM::BI_InterlockedAnd64:
6650    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
6651  case ARM::BI_InterlockedExchange64:
6652    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
6653  case ARM::BI_InterlockedExchangeAdd64:
6654    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
6655  case ARM::BI_InterlockedExchangeSub64:
6656    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
6657  case ARM::BI_InterlockedOr64:
6658    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
6659  case ARM::BI_InterlockedXor64:
6660    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
6661  case ARM::BI_InterlockedDecrement64:
6662    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
6663  case ARM::BI_InterlockedIncrement64:
6664    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
6665  case ARM::BI_InterlockedExchangeAdd8_acq:
6666  case ARM::BI_InterlockedExchangeAdd16_acq:
6667  case ARM::BI_InterlockedExchangeAdd_acq:
6668  case ARM::BI_InterlockedExchangeAdd64_acq:
6669    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
6670  case ARM::BI_InterlockedExchangeAdd8_rel:
6671  case ARM::BI_InterlockedExchangeAdd16_rel:
6672  case ARM::BI_InterlockedExchangeAdd_rel:
6673  case ARM::BI_InterlockedExchangeAdd64_rel:
6674    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
6675  case ARM::BI_InterlockedExchangeAdd8_nf:
6676  case ARM::BI_InterlockedExchangeAdd16_nf:
6677  case ARM::BI_InterlockedExchangeAdd_nf:
6678  case ARM::BI_InterlockedExchangeAdd64_nf:
6679    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
6680  case ARM::BI_InterlockedExchange8_acq:
6681  case ARM::BI_InterlockedExchange16_acq:
6682  case ARM::BI_InterlockedExchange_acq:
6683  case ARM::BI_InterlockedExchange64_acq:
6684    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
6685  case ARM::BI_InterlockedExchange8_rel:
6686  case ARM::BI_InterlockedExchange16_rel:
6687  case ARM::BI_InterlockedExchange_rel:
6688  case ARM::BI_InterlockedExchange64_rel:
6689    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
6690  case ARM::BI_InterlockedExchange8_nf:
6691  case ARM::BI_InterlockedExchange16_nf:
6692  case ARM::BI_InterlockedExchange_nf:
6693  case ARM::BI_InterlockedExchange64_nf:
6694    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
6695  case ARM::BI_InterlockedCompareExchange8_acq:
6696  case ARM::BI_InterlockedCompareExchange16_acq:
6697  case ARM::BI_InterlockedCompareExchange_acq:
6698  case ARM::BI_InterlockedCompareExchange64_acq:
6699    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
6700  case ARM::BI_InterlockedCompareExchange8_rel:
6701  case ARM::BI_InterlockedCompareExchange16_rel:
6702  case ARM::BI_InterlockedCompareExchange_rel:
6703  case ARM::BI_InterlockedCompareExchange64_rel:
6704    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
6705  case ARM::BI_InterlockedCompareExchange8_nf:
6706  case ARM::BI_InterlockedCompareExchange16_nf:
6707  case ARM::BI_InterlockedCompareExchange_nf:
6708  case ARM::BI_InterlockedCompareExchange64_nf:
6709    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
6710  case ARM::BI_InterlockedOr8_acq:
6711  case ARM::BI_InterlockedOr16_acq:
6712  case ARM::BI_InterlockedOr_acq:
6713  case ARM::BI_InterlockedOr64_acq:
6714    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
6715  case ARM::BI_InterlockedOr8_rel:
6716  case ARM::BI_InterlockedOr16_rel:
6717  case ARM::BI_InterlockedOr_rel:
6718  case ARM::BI_InterlockedOr64_rel:
6719    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
6720  case ARM::BI_InterlockedOr8_nf:
6721  case ARM::BI_InterlockedOr16_nf:
6722  case ARM::BI_InterlockedOr_nf:
6723  case ARM::BI_InterlockedOr64_nf:
6724    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
6725  case ARM::BI_InterlockedXor8_acq:
6726  case ARM::BI_InterlockedXor16_acq:
6727  case ARM::BI_InterlockedXor_acq:
6728  case ARM::BI_InterlockedXor64_acq:
6729    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
6730  case ARM::BI_InterlockedXor8_rel:
6731  case ARM::BI_InterlockedXor16_rel:
6732  case ARM::BI_InterlockedXor_rel:
6733  case ARM::BI_InterlockedXor64_rel:
6734    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
6735  case ARM::BI_InterlockedXor8_nf:
6736  case ARM::BI_InterlockedXor16_nf:
6737  case ARM::BI_InterlockedXor_nf:
6738  case ARM::BI_InterlockedXor64_nf:
6739    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
6740  case ARM::BI_InterlockedAnd8_acq:
6741  case ARM::BI_InterlockedAnd16_acq:
6742  case ARM::BI_InterlockedAnd_acq:
6743  case ARM::BI_InterlockedAnd64_acq:
6744    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
6745  case ARM::BI_InterlockedAnd8_rel:
6746  case ARM::BI_InterlockedAnd16_rel:
6747  case ARM::BI_InterlockedAnd_rel:
6748  case ARM::BI_InterlockedAnd64_rel:
6749    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
6750  case ARM::BI_InterlockedAnd8_nf:
6751  case ARM::BI_InterlockedAnd16_nf:
6752  case ARM::BI_InterlockedAnd_nf:
6753  case ARM::BI_InterlockedAnd64_nf:
6754    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
6755  case ARM::BI_InterlockedIncrement16_acq:
6756  case ARM::BI_InterlockedIncrement_acq:
6757  case ARM::BI_InterlockedIncrement64_acq:
6758    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
6759  case ARM::BI_InterlockedIncrement16_rel:
6760  case ARM::BI_InterlockedIncrement_rel:
6761  case ARM::BI_InterlockedIncrement64_rel:
6762    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
6763  case ARM::BI_InterlockedIncrement16_nf:
6764  case ARM::BI_InterlockedIncrement_nf:
6765  case ARM::BI_InterlockedIncrement64_nf:
6766    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
6767  case ARM::BI_InterlockedDecrement16_acq:
6768  case ARM::BI_InterlockedDecrement_acq:
6769  case ARM::BI_InterlockedDecrement64_acq:
6770    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
6771  case ARM::BI_InterlockedDecrement16_rel:
6772  case ARM::BI_InterlockedDecrement_rel:
6773  case ARM::BI_InterlockedDecrement64_rel:
6774    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
6775  case ARM::BI_InterlockedDecrement16_nf:
6776  case ARM::BI_InterlockedDecrement_nf:
6777  case ARM::BI_InterlockedDecrement64_nf:
6778    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
6779  }
6780
6781  // Get the last argument, which specifies the vector type.
6782  assert(HasExtraArg);
6783  llvm::APSInt Result;
6784  const Expr *Arg = E->getArg(E->getNumArgs()-1);
6785  if (!Arg->isIntegerConstantExpr(Result, getContext()))
6786    return nullptr;
6787
6788  if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
6789      BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
6790    // Determine the overloaded type of this builtin.
6791    llvm::Type *Ty;
6792    if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
6793      Ty = FloatTy;
6794    else
6795      Ty = DoubleTy;
6796
6797    // Determine whether this is an unsigned conversion or not.
6798    bool usgn = Result.getZExtValue() == 1;
6799    unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
6800
6801    // Call the appropriate intrinsic.
6802    Function *F = CGM.getIntrinsic(Int, Ty);
6803    return Builder.CreateCall(F, Ops, "vcvtr");
6804  }
6805
6806  // Determine the type of this overloaded NEON intrinsic.
6807  NeonTypeFlags Type(Result.getZExtValue());
6808  bool usgn = Type.isUnsigned();
6809  bool rightShift = false;
6810
6811  llvm::VectorType *VTy = GetNeonType(this, Type,
6812                                      getTarget().hasLegalHalfType());
6813  llvm::Type *Ty = VTy;
6814  if (!Ty)
6815    return nullptr;
6816
6817  // Many NEON builtins have identical semantics and uses in ARM and
6818  // AArch64. Emit these in a single function.
6819  auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
6820  const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
6821      IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
6822  if (Builtin)
6823    return EmitCommonNeonBuiltinExpr(
6824        Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
6825        Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
6826
6827  unsigned Int;
6828  switch (BuiltinID) {
6829  default: return nullptr;
6830  case NEON::BI__builtin_neon_vld1q_lane_v:
6831    // Handle 64-bit integer elements as a special case.  Use shuffles of
6832    // one-element vectors to avoid poor code for i64 in the backend.
6833    if (VTy->getElementType()->isIntegerTy(64)) {
6834      // Extract the other lane.
6835      Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6836      uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
6837      Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
6838      Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6839      // Load the value as a one-element vector.
6840      Ty = llvm::VectorType::get(VTy->getElementType(), 1);
6841      llvm::Type *Tys[] = {Ty, Int8PtrTy};
6842      Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
6843      Value *Align = getAlignmentValue32(PtrOp0);
6844      Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
6845      // Combine them.
6846      uint32_t Indices[] = {1 - Lane, Lane};
6847      SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
6848      return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
6849    }
6850    LLVM_FALLTHROUGH;
6851  case NEON::BI__builtin_neon_vld1_lane_v: {
6852    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6853    PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
6854    Value *Ld = Builder.CreateLoad(PtrOp0);
6855    return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
6856  }
6857  case NEON::BI__builtin_neon_vqrshrn_n_v:
6858    Int =
6859      usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
6860    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
6861                        1, true);
6862  case NEON::BI__builtin_neon_vqrshrun_n_v:
6863    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
6864                        Ops, "vqrshrun_n", 1, true);
6865  case NEON::BI__builtin_neon_vqshrn_n_v:
6866    Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
6867    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
6868                        1, true);
6869  case NEON::BI__builtin_neon_vqshrun_n_v:
6870    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
6871                        Ops, "vqshrun_n", 1, true);
6872  case NEON::BI__builtin_neon_vrecpe_v:
6873  case NEON::BI__builtin_neon_vrecpeq_v:
6874    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
6875                        Ops, "vrecpe");
6876  case NEON::BI__builtin_neon_vrshrn_n_v:
6877    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
6878                        Ops, "vrshrn_n", 1, true);
6879  case NEON::BI__builtin_neon_vrsra_n_v:
6880  case NEON::BI__builtin_neon_vrsraq_n_v:
6881    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6882    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6883    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
6884    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
6885    Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
6886    return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
6887  case NEON::BI__builtin_neon_vsri_n_v:
6888  case NEON::BI__builtin_neon_vsriq_n_v:
6889    rightShift = true;
6890    LLVM_FALLTHROUGH;
6891  case NEON::BI__builtin_neon_vsli_n_v:
6892  case NEON::BI__builtin_neon_vsliq_n_v:
6893    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
6894    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
6895                        Ops, "vsli_n");
6896  case NEON::BI__builtin_neon_vsra_n_v:
6897  case NEON::BI__builtin_neon_vsraq_n_v:
6898    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6899    Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
6900    return Builder.CreateAdd(Ops[0], Ops[1]);
6901  case NEON::BI__builtin_neon_vst1q_lane_v:
6902    // Handle 64-bit integer elements as a special case.  Use a shuffle to get
6903    // a one-element vector and avoid poor code for i64 in the backend.
6904    if (VTy->getElementType()->isIntegerTy(64)) {
6905      Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6906      Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
6907      Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6908      Ops[2] = getAlignmentValue32(PtrOp0);
6909      llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
6910      return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
6911                                                 Tys), Ops);
6912    }
6913    LLVM_FALLTHROUGH;
6914  case NEON::BI__builtin_neon_vst1_lane_v: {
6915    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6916    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
6917    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6918    auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
6919    return St;
6920  }
6921  case NEON::BI__builtin_neon_vtbl1_v:
6922    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
6923                        Ops, "vtbl1");
6924  case NEON::BI__builtin_neon_vtbl2_v:
6925    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
6926                        Ops, "vtbl2");
6927  case NEON::BI__builtin_neon_vtbl3_v:
6928    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
6929                        Ops, "vtbl3");
6930  case NEON::BI__builtin_neon_vtbl4_v:
6931    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
6932                        Ops, "vtbl4");
6933  case NEON::BI__builtin_neon_vtbx1_v:
6934    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
6935                        Ops, "vtbx1");
6936  case NEON::BI__builtin_neon_vtbx2_v:
6937    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
6938                        Ops, "vtbx2");
6939  case NEON::BI__builtin_neon_vtbx3_v:
6940    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
6941                        Ops, "vtbx3");
6942  case NEON::BI__builtin_neon_vtbx4_v:
6943    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
6944                        Ops, "vtbx4");
6945  }
6946}
6947
6948template<typename Integer>
6949static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
6950  llvm::APSInt IntVal;
6951  bool IsConst = E->isIntegerConstantExpr(IntVal, Context);
6952  assert(IsConst && "Sema should have checked this was a constant");
6953  (void)IsConst;
6954  return IntVal.getExtValue();
6955}
6956
6957static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
6958                                     llvm::Type *T, bool Unsigned) {
6959  // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
6960  // which finds it convenient to specify signed/unsigned as a boolean flag.
6961  return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
6962}
6963
6964static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
6965                                    uint32_t Shift, bool Unsigned) {
6966  // MVE helper function for integer shift right. This must handle signed vs
6967  // unsigned, and also deal specially with the case where the shift count is
6968  // equal to the lane size. In LLVM IR, an LShr with that parameter would be
6969  // undefined behavior, but in MVE it's legal, so we must convert it to code
6970  // that is not undefined in IR.
6971  unsigned LaneBits =
6972      V->getType()->getVectorElementType()->getPrimitiveSizeInBits();
6973  if (Shift == LaneBits) {
6974    // An unsigned shift of the full lane size always generates zero, so we can
6975    // simply emit a zero vector. A signed shift of the full lane size does the
6976    // same thing as shifting by one bit fewer.
6977    if (Unsigned)
6978      return llvm::Constant::getNullValue(V->getType());
6979    else
6980      --Shift;
6981  }
6982  return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
6983}
6984
6985static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
6986  // MVE-specific helper function for a vector splat, which infers the element
6987  // count of the output vector by knowing that MVE vectors are all 128 bits
6988  // wide.
6989  unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
6990  return Builder.CreateVectorSplat(Elements, V);
6991}
6992
6993Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
6994                                              const CallExpr *E,
6995                                              ReturnValueSlot ReturnValue,
6996                                              llvm::Triple::ArchType Arch) {
6997  enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
6998  Intrinsic::ID IRIntr;
6999  unsigned NumVectors;
7000
7001  // Code autogenerated by Tablegen will handle all the simple builtins.
7002  switch (BuiltinID) {
7003    #include "clang/Basic/arm_mve_builtin_cg.inc"
7004
7005    // If we didn't match an MVE builtin id at all, go back to the
7006    // main EmitARMBuiltinExpr.
7007  default:
7008    return nullptr;
7009  }
7010
7011  // Anything that breaks from that switch is an MVE builtin that
7012  // needs handwritten code to generate.
7013
7014  switch (CustomCodeGenType) {
7015
7016  case CustomCodeGen::VLD24: {
7017    llvm::SmallVector<Value *, 4> Ops;
7018    llvm::SmallVector<llvm::Type *, 4> Tys;
7019
7020    auto MvecCType = E->getType();
7021    auto MvecLType = ConvertType(MvecCType);
7022    assert(MvecLType->isStructTy() &&
7023           "Return type for vld[24]q should be a struct");
7024    assert(MvecLType->getStructNumElements() == 1 &&
7025           "Return-type struct for vld[24]q should have one element");
7026    auto MvecLTypeInner = MvecLType->getStructElementType(0);
7027    assert(MvecLTypeInner->isArrayTy() &&
7028           "Return-type struct for vld[24]q should contain an array");
7029    assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
7030           "Array member of return-type struct vld[24]q has wrong length");
7031    auto VecLType = MvecLTypeInner->getArrayElementType();
7032
7033    Tys.push_back(VecLType);
7034
7035    auto Addr = E->getArg(0);
7036    Ops.push_back(EmitScalarExpr(Addr));
7037    Tys.push_back(ConvertType(Addr->getType()));
7038
7039    Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
7040    Value *LoadResult = Builder.CreateCall(F, Ops);
7041    Value *MvecOut = UndefValue::get(MvecLType);
7042    for (unsigned i = 0; i < NumVectors; ++i) {
7043      Value *Vec = Builder.CreateExtractValue(LoadResult, i);
7044      MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
7045    }
7046
7047    if (ReturnValue.isNull())
7048      return MvecOut;
7049    else
7050      return Builder.CreateStore(MvecOut, ReturnValue.getValue());
7051  }
7052
7053  case CustomCodeGen::VST24: {
7054    llvm::SmallVector<Value *, 4> Ops;
7055    llvm::SmallVector<llvm::Type *, 4> Tys;
7056
7057    auto Addr = E->getArg(0);
7058    Ops.push_back(EmitScalarExpr(Addr));
7059    Tys.push_back(ConvertType(Addr->getType()));
7060
7061    auto MvecCType = E->getArg(1)->getType();
7062    auto MvecLType = ConvertType(MvecCType);
7063    assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
7064    assert(MvecLType->getStructNumElements() == 1 &&
7065           "Data-type struct for vst2q should have one element");
7066    auto MvecLTypeInner = MvecLType->getStructElementType(0);
7067    assert(MvecLTypeInner->isArrayTy() &&
7068           "Data-type struct for vst2q should contain an array");
7069    assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
7070           "Array member of return-type struct vld[24]q has wrong length");
7071    auto VecLType = MvecLTypeInner->getArrayElementType();
7072
7073    Tys.push_back(VecLType);
7074
7075    AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
7076    EmitAggExpr(E->getArg(1), MvecSlot);
7077    auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
7078    for (unsigned i = 0; i < NumVectors; i++)
7079      Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
7080
7081    Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
7082    Value *ToReturn = nullptr;
7083    for (unsigned i = 0; i < NumVectors; i++) {
7084      Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
7085      ToReturn = Builder.CreateCall(F, Ops);
7086      Ops.pop_back();
7087    }
7088    return ToReturn;
7089  }
7090  }
7091  llvm_unreachable("unknown custom codegen type.");
7092}
7093
7094static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
7095                                      const CallExpr *E,
7096                                      SmallVectorImpl<Value *> &Ops,
7097                                      llvm::Triple::ArchType Arch) {
7098  unsigned int Int = 0;
7099  const char *s = nullptr;
7100
7101  switch (BuiltinID) {
7102  default:
7103    return nullptr;
7104  case NEON::BI__builtin_neon_vtbl1_v:
7105  case NEON::BI__builtin_neon_vqtbl1_v:
7106  case NEON::BI__builtin_neon_vqtbl1q_v:
7107  case NEON::BI__builtin_neon_vtbl2_v:
7108  case NEON::BI__builtin_neon_vqtbl2_v:
7109  case NEON::BI__builtin_neon_vqtbl2q_v:
7110  case NEON::BI__builtin_neon_vtbl3_v:
7111  case NEON::BI__builtin_neon_vqtbl3_v:
7112  case NEON::BI__builtin_neon_vqtbl3q_v:
7113  case NEON::BI__builtin_neon_vtbl4_v:
7114  case NEON::BI__builtin_neon_vqtbl4_v:
7115  case NEON::BI__builtin_neon_vqtbl4q_v:
7116    break;
7117  case NEON::BI__builtin_neon_vtbx1_v:
7118  case NEON::BI__builtin_neon_vqtbx1_v:
7119  case NEON::BI__builtin_neon_vqtbx1q_v:
7120  case NEON::BI__builtin_neon_vtbx2_v:
7121  case NEON::BI__builtin_neon_vqtbx2_v:
7122  case NEON::BI__builtin_neon_vqtbx2q_v:
7123  case NEON::BI__builtin_neon_vtbx3_v:
7124  case NEON::BI__builtin_neon_vqtbx3_v:
7125  case NEON::BI__builtin_neon_vqtbx3q_v:
7126  case NEON::BI__builtin_neon_vtbx4_v:
7127  case NEON::BI__builtin_neon_vqtbx4_v:
7128  case NEON::BI__builtin_neon_vqtbx4q_v:
7129    break;
7130  }
7131
7132  assert(E->getNumArgs() >= 3);
7133
7134  // Get the last argument, which specifies the vector type.
7135  llvm::APSInt Result;
7136  const Expr *Arg = E->getArg(E->getNumArgs() - 1);
7137  if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
7138    return nullptr;
7139
7140  // Determine the type of this overloaded NEON intrinsic.
7141  NeonTypeFlags Type(Result.getZExtValue());
7142  llvm::VectorType *Ty = GetNeonType(&CGF, Type);
7143  if (!Ty)
7144    return nullptr;
7145
7146  CodeGen::CGBuilderTy &Builder = CGF.Builder;
7147
7148  // AArch64 scalar builtins are not overloaded, they do not have an extra
7149  // argument that specifies the vector type, need to handle each case.
7150  switch (BuiltinID) {
7151  case NEON::BI__builtin_neon_vtbl1_v: {
7152    return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
7153                              Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
7154                              "vtbl1");
7155  }
7156  case NEON::BI__builtin_neon_vtbl2_v: {
7157    return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
7158                              Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
7159                              "vtbl1");
7160  }
7161  case NEON::BI__builtin_neon_vtbl3_v: {
7162    return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
7163                              Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
7164                              "vtbl2");
7165  }
7166  case NEON::BI__builtin_neon_vtbl4_v: {
7167    return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
7168                              Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
7169                              "vtbl2");
7170  }
7171  case NEON::BI__builtin_neon_vtbx1_v: {
7172    Value *TblRes =
7173        packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
7174                           Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
7175
7176    llvm::Constant *EightV = ConstantInt::get(Ty, 8);
7177    Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
7178    CmpRes = Builder.CreateSExt(CmpRes, Ty);
7179
7180    Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
7181    Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
7182    return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
7183  }
7184  case NEON::BI__builtin_neon_vtbx2_v: {
7185    return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
7186                              Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
7187                              "vtbx1");
7188  }
7189  case NEON::BI__builtin_neon_vtbx3_v: {
7190    Value *TblRes =
7191        packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
7192                           Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
7193
7194    llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
7195    Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
7196                                           TwentyFourV);
7197    CmpRes = Builder.CreateSExt(CmpRes, Ty);
7198
7199    Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
7200    Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
7201    return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
7202  }
7203  case NEON::BI__builtin_neon_vtbx4_v: {
7204    return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
7205                              Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
7206                              "vtbx2");
7207  }
7208  case NEON::BI__builtin_neon_vqtbl1_v:
7209  case NEON::BI__builtin_neon_vqtbl1q_v:
7210    Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
7211  case NEON::BI__builtin_neon_vqtbl2_v:
7212  case NEON::BI__builtin_neon_vqtbl2q_v: {
7213    Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
7214  case NEON::BI__builtin_neon_vqtbl3_v:
7215  case NEON::BI__builtin_neon_vqtbl3q_v:
7216    Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
7217  case NEON::BI__builtin_neon_vqtbl4_v:
7218  case NEON::BI__builtin_neon_vqtbl4q_v:
7219    Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
7220  case NEON::BI__builtin_neon_vqtbx1_v:
7221  case NEON::BI__builtin_neon_vqtbx1q_v:
7222    Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
7223  case NEON::BI__builtin_neon_vqtbx2_v:
7224  case NEON::BI__builtin_neon_vqtbx2q_v:
7225    Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
7226  case NEON::BI__builtin_neon_vqtbx3_v:
7227  case NEON::BI__builtin_neon_vqtbx3q_v:
7228    Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
7229  case NEON::BI__builtin_neon_vqtbx4_v:
7230  case NEON::BI__builtin_neon_vqtbx4q_v:
7231    Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
7232  }
7233  }
7234
7235  if (!Int)
7236    return nullptr;
7237
7238  Function *F = CGF.CGM.getIntrinsic(Int, Ty);
7239  return CGF.EmitNeonCall(F, Ops, s);
7240}
7241
7242Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
7243  llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
7244  Op = Builder.CreateBitCast(Op, Int16Ty);
7245  Value *V = UndefValue::get(VTy);
7246  llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
7247  Op = Builder.CreateInsertElement(V, Op, CI);
7248  return Op;
7249}
7250
7251Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
7252                                               const CallExpr *E,
7253                                               llvm::Triple::ArchType Arch) {
7254  unsigned HintID = static_cast<unsigned>(-1);
7255  switch (BuiltinID) {
7256  default: break;
7257  case AArch64::BI__builtin_arm_nop:
7258    HintID = 0;
7259    break;
7260  case AArch64::BI__builtin_arm_yield:
7261  case AArch64::BI__yield:
7262    HintID = 1;
7263    break;
7264  case AArch64::BI__builtin_arm_wfe:
7265  case AArch64::BI__wfe:
7266    HintID = 2;
7267    break;
7268  case AArch64::BI__builtin_arm_wfi:
7269  case AArch64::BI__wfi:
7270    HintID = 3;
7271    break;
7272  case AArch64::BI__builtin_arm_sev:
7273  case AArch64::BI__sev:
7274    HintID = 4;
7275    break;
7276  case AArch64::BI__builtin_arm_sevl:
7277  case AArch64::BI__sevl:
7278    HintID = 5;
7279    break;
7280  }
7281
7282  if (HintID != static_cast<unsigned>(-1)) {
7283    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
7284    return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
7285  }
7286
7287  if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
7288    Value *Address         = EmitScalarExpr(E->getArg(0));
7289    Value *RW              = EmitScalarExpr(E->getArg(1));
7290    Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
7291    Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
7292    Value *IsData          = EmitScalarExpr(E->getArg(4));
7293
7294    Value *Locality = nullptr;
7295    if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
7296      // Temporal fetch, needs to convert cache level to locality.
7297      Locality = llvm::ConstantInt::get(Int32Ty,
7298        -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
7299    } else {
7300      // Streaming fetch.
7301      Locality = llvm::ConstantInt::get(Int32Ty, 0);
7302    }
7303
7304    // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
7305    // PLDL3STRM or PLDL2STRM.
7306    Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7307    return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7308  }
7309
7310  if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
7311    assert((getContext().getTypeSize(E->getType()) == 32) &&
7312           "rbit of unusual size!");
7313    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7314    return Builder.CreateCall(
7315        CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7316  }
7317  if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
7318    assert((getContext().getTypeSize(E->getType()) == 64) &&
7319           "rbit of unusual size!");
7320    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7321    return Builder.CreateCall(
7322        CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7323  }
7324
7325  if (BuiltinID == AArch64::BI__builtin_arm_cls) {
7326    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7327    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
7328                              "cls");
7329  }
7330  if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
7331    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7332    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
7333                              "cls");
7334  }
7335
7336  if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
7337    assert((getContext().getTypeSize(E->getType()) == 32) &&
7338           "__jcvt of unusual size!");
7339    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7340    return Builder.CreateCall(
7341        CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
7342  }
7343
7344  if (BuiltinID == AArch64::BI__clear_cache) {
7345    assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
7346    const FunctionDecl *FD = E->getDirectCallee();
7347    Value *Ops[2];
7348    for (unsigned i = 0; i < 2; i++)
7349      Ops[i] = EmitScalarExpr(E->getArg(i));
7350    llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7351    llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7352    StringRef Name = FD->getName();
7353    return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7354  }
7355
7356  if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
7357      BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
7358      getContext().getTypeSize(E->getType()) == 128) {
7359    Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
7360                                       ? Intrinsic::aarch64_ldaxp
7361                                       : Intrinsic::aarch64_ldxp);
7362
7363    Value *LdPtr = EmitScalarExpr(E->getArg(0));
7364    Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7365                                    "ldxp");
7366
7367    Value *Val0 = Builder.CreateExtractValue(Val, 1);
7368    Value *Val1 = Builder.CreateExtractValue(Val, 0);
7369    llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
7370    Val0 = Builder.CreateZExt(Val0, Int128Ty);
7371    Val1 = Builder.CreateZExt(Val1, Int128Ty);
7372
7373    Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
7374    Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7375    Val = Builder.CreateOr(Val, Val1);
7376    return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7377  } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
7378             BuiltinID == AArch64::BI__builtin_arm_ldaex) {
7379    Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7380
7381    QualType Ty = E->getType();
7382    llvm::Type *RealResTy = ConvertType(Ty);
7383    llvm::Type *PtrTy = llvm::IntegerType::get(
7384        getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7385    LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7386
7387    Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
7388                                       ? Intrinsic::aarch64_ldaxr
7389                                       : Intrinsic::aarch64_ldxr,
7390                                   PtrTy);
7391    Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
7392
7393    if (RealResTy->isPointerTy())
7394      return Builder.CreateIntToPtr(Val, RealResTy);
7395
7396    llvm::Type *IntResTy = llvm::IntegerType::get(
7397        getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7398    Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7399    return Builder.CreateBitCast(Val, RealResTy);
7400  }
7401
7402  if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
7403       BuiltinID == AArch64::BI__builtin_arm_stlex) &&
7404      getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
7405    Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
7406                                       ? Intrinsic::aarch64_stlxp
7407                                       : Intrinsic::aarch64_stxp);
7408    llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
7409
7410    Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7411    EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
7412
7413    Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
7414    llvm::Value *Val = Builder.CreateLoad(Tmp);
7415
7416    Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7417    Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7418    Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
7419                                         Int8PtrTy);
7420    return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
7421  }
7422
7423  if (BuiltinID == AArch64::BI__builtin_arm_strex ||
7424      BuiltinID == AArch64::BI__builtin_arm_stlex) {
7425    Value *StoreVal = EmitScalarExpr(E->getArg(0));
7426    Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7427
7428    QualType Ty = E->getArg(0)->getType();
7429    llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7430                                                 getContext().getTypeSize(Ty));
7431    StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7432
7433    if (StoreVal->getType()->isPointerTy())
7434      StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
7435    else {
7436      llvm::Type *IntTy = llvm::IntegerType::get(
7437          getLLVMContext(),
7438          CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7439      StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7440      StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
7441    }
7442
7443    Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
7444                                       ? Intrinsic::aarch64_stlxr
7445                                       : Intrinsic::aarch64_stxr,
7446                                   StoreAddr->getType());
7447    return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
7448  }
7449
7450  if (BuiltinID == AArch64::BI__getReg) {
7451    Expr::EvalResult Result;
7452    if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7453      llvm_unreachable("Sema will ensure that the parameter is constant");
7454
7455    llvm::APSInt Value = Result.Val.getInt();
7456    LLVMContext &Context = CGM.getLLVMContext();
7457    std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
7458
7459    llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
7460    llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7461    llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7462
7463    llvm::Function *F =
7464        CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
7465    return Builder.CreateCall(F, Metadata);
7466  }
7467
7468  if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
7469    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
7470    return Builder.CreateCall(F);
7471  }
7472
7473  if (BuiltinID == AArch64::BI_ReadWriteBarrier)
7474    return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
7475                               llvm::SyncScope::SingleThread);
7476
7477  // CRC32
7478  Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7479  switch (BuiltinID) {
7480  case AArch64::BI__builtin_arm_crc32b:
7481    CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
7482  case AArch64::BI__builtin_arm_crc32cb:
7483    CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
7484  case AArch64::BI__builtin_arm_crc32h:
7485    CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
7486  case AArch64::BI__builtin_arm_crc32ch:
7487    CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
7488  case AArch64::BI__builtin_arm_crc32w:
7489    CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
7490  case AArch64::BI__builtin_arm_crc32cw:
7491    CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
7492  case AArch64::BI__builtin_arm_crc32d:
7493    CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
7494  case AArch64::BI__builtin_arm_crc32cd:
7495    CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
7496  }
7497
7498  if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7499    Value *Arg0 = EmitScalarExpr(E->getArg(0));
7500    Value *Arg1 = EmitScalarExpr(E->getArg(1));
7501    Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7502
7503    llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
7504    Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
7505
7506    return Builder.CreateCall(F, {Arg0, Arg1});
7507  }
7508
7509  // Memory Tagging Extensions (MTE) Intrinsics
7510  Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
7511  switch (BuiltinID) {
7512  case AArch64::BI__builtin_arm_irg:
7513    MTEIntrinsicID = Intrinsic::aarch64_irg; break;
7514  case  AArch64::BI__builtin_arm_addg:
7515    MTEIntrinsicID = Intrinsic::aarch64_addg; break;
7516  case  AArch64::BI__builtin_arm_gmi:
7517    MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
7518  case  AArch64::BI__builtin_arm_ldg:
7519    MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
7520  case AArch64::BI__builtin_arm_stg:
7521    MTEIntrinsicID = Intrinsic::aarch64_stg; break;
7522  case AArch64::BI__builtin_arm_subp:
7523    MTEIntrinsicID = Intrinsic::aarch64_subp; break;
7524  }
7525
7526  if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
7527    llvm::Type *T = ConvertType(E->getType());
7528
7529    if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
7530      Value *Pointer = EmitScalarExpr(E->getArg(0));
7531      Value *Mask = EmitScalarExpr(E->getArg(1));
7532
7533      Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7534      Mask = Builder.CreateZExt(Mask, Int64Ty);
7535      Value *RV = Builder.CreateCall(
7536                       CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
7537       return Builder.CreatePointerCast(RV, T);
7538    }
7539    if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
7540      Value *Pointer = EmitScalarExpr(E->getArg(0));
7541      Value *TagOffset = EmitScalarExpr(E->getArg(1));
7542
7543      Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7544      TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
7545      Value *RV = Builder.CreateCall(
7546                       CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
7547      return Builder.CreatePointerCast(RV, T);
7548    }
7549    if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
7550      Value *Pointer = EmitScalarExpr(E->getArg(0));
7551      Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
7552
7553      ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
7554      Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7555      return Builder.CreateCall(
7556                       CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
7557    }
7558    // Although it is possible to supply a different return
7559    // address (first arg) to this intrinsic, for now we set
7560    // return address same as input address.
7561    if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
7562      Value *TagAddress = EmitScalarExpr(E->getArg(0));
7563      TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
7564      Value *RV = Builder.CreateCall(
7565                    CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
7566      return Builder.CreatePointerCast(RV, T);
7567    }
7568    // Although it is possible to supply a different tag (to set)
7569    // to this intrinsic (as first arg), for now we supply
7570    // the tag that is in input address arg (common use case).
7571    if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
7572        Value *TagAddress = EmitScalarExpr(E->getArg(0));
7573        TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
7574        return Builder.CreateCall(
7575                 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
7576    }
7577    if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
7578      Value *PointerA = EmitScalarExpr(E->getArg(0));
7579      Value *PointerB = EmitScalarExpr(E->getArg(1));
7580      PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
7581      PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
7582      return Builder.CreateCall(
7583                       CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
7584    }
7585  }
7586
7587  if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
7588      BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7589      BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7590      BuiltinID == AArch64::BI__builtin_arm_wsr ||
7591      BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7592      BuiltinID == AArch64::BI__builtin_arm_wsrp) {
7593
7594    bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
7595                  BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7596                  BuiltinID == AArch64::BI__builtin_arm_rsrp;
7597
7598    bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7599                            BuiltinID == AArch64::BI__builtin_arm_wsrp;
7600
7601    bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
7602                   BuiltinID != AArch64::BI__builtin_arm_wsr;
7603
7604    llvm::Type *ValueType;
7605    llvm::Type *RegisterType = Int64Ty;
7606    if (IsPointerBuiltin) {
7607      ValueType = VoidPtrTy;
7608    } else if (Is64Bit) {
7609      ValueType = Int64Ty;
7610    } else {
7611      ValueType = Int32Ty;
7612    }
7613
7614    return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
7615  }
7616
7617  if (BuiltinID == AArch64::BI_ReadStatusReg ||
7618      BuiltinID == AArch64::BI_WriteStatusReg) {
7619    LLVMContext &Context = CGM.getLLVMContext();
7620
7621    unsigned SysReg =
7622      E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
7623
7624    std::string SysRegStr;
7625    llvm::raw_string_ostream(SysRegStr) <<
7626                       ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
7627                       ((SysReg >> 11) & 7)               << ":" <<
7628                       ((SysReg >> 7)  & 15)              << ":" <<
7629                       ((SysReg >> 3)  & 15)              << ":" <<
7630                       ( SysReg        & 7);
7631
7632    llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
7633    llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7634    llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7635
7636    llvm::Type *RegisterType = Int64Ty;
7637    llvm::Type *Types[] = { RegisterType };
7638
7639    if (BuiltinID == AArch64::BI_ReadStatusReg) {
7640      llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
7641
7642      return Builder.CreateCall(F, Metadata);
7643    }
7644
7645    llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7646    llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
7647
7648    return Builder.CreateCall(F, { Metadata, ArgValue });
7649  }
7650
7651  if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
7652    llvm::Function *F =
7653        CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
7654    return Builder.CreateCall(F);
7655  }
7656
7657  if (BuiltinID == AArch64::BI__builtin_sponentry) {
7658    llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
7659    return Builder.CreateCall(F);
7660  }
7661
7662  // Find out if any arguments are required to be integer constant
7663  // expressions.
7664  unsigned ICEArguments = 0;
7665  ASTContext::GetBuiltinTypeError Error;
7666  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7667  assert(Error == ASTContext::GE_None && "Should not codegen an error");
7668
7669  llvm::SmallVector<Value*, 4> Ops;
7670  for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
7671    if ((ICEArguments & (1 << i)) == 0) {
7672      Ops.push_back(EmitScalarExpr(E->getArg(i)));
7673    } else {
7674      // If this is required to be a constant, constant fold it so that we know
7675      // that the generated intrinsic gets a ConstantInt.
7676      llvm::APSInt Result;
7677      bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
7678      assert(IsConst && "Constant arg isn't actually constant?");
7679      (void)IsConst;
7680      Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
7681    }
7682  }
7683
7684  auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
7685  const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
7686      SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
7687
7688  if (Builtin) {
7689    Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
7690    Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
7691    assert(Result && "SISD intrinsic should have been handled");
7692    return Result;
7693  }
7694
7695  llvm::APSInt Result;
7696  const Expr *Arg = E->getArg(E->getNumArgs()-1);
7697  NeonTypeFlags Type(0);
7698  if (Arg->isIntegerConstantExpr(Result, getContext()))
7699    // Determine the type of this overloaded NEON intrinsic.
7700    Type = NeonTypeFlags(Result.getZExtValue());
7701
7702  bool usgn = Type.isUnsigned();
7703  bool quad = Type.isQuad();
7704
7705  // Handle non-overloaded intrinsics first.
7706  switch (BuiltinID) {
7707  default: break;
7708  case NEON::BI__builtin_neon_vabsh_f16:
7709    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7710    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
7711  case NEON::BI__builtin_neon_vldrq_p128: {
7712    llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
7713    llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
7714    Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
7715    return Builder.CreateAlignedLoad(Int128Ty, Ptr,
7716                                     CharUnits::fromQuantity(16));
7717  }
7718  case NEON::BI__builtin_neon_vstrq_p128: {
7719    llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
7720    Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
7721    return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
7722  }
7723  case NEON::BI__builtin_neon_vcvts_u32_f32:
7724  case NEON::BI__builtin_neon_vcvtd_u64_f64:
7725    usgn = true;
7726    LLVM_FALLTHROUGH;
7727  case NEON::BI__builtin_neon_vcvts_s32_f32:
7728  case NEON::BI__builtin_neon_vcvtd_s64_f64: {
7729    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7730    bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7731    llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7732    llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7733    Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
7734    if (usgn)
7735      return Builder.CreateFPToUI(Ops[0], InTy);
7736    return Builder.CreateFPToSI(Ops[0], InTy);
7737  }
7738  case NEON::BI__builtin_neon_vcvts_f32_u32:
7739  case NEON::BI__builtin_neon_vcvtd_f64_u64:
7740    usgn = true;
7741    LLVM_FALLTHROUGH;
7742  case NEON::BI__builtin_neon_vcvts_f32_s32:
7743  case NEON::BI__builtin_neon_vcvtd_f64_s64: {
7744    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7745    bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7746    llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7747    llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7748    Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7749    if (usgn)
7750      return Builder.CreateUIToFP(Ops[0], FTy);
7751    return Builder.CreateSIToFP(Ops[0], FTy);
7752  }
7753  case NEON::BI__builtin_neon_vcvth_f16_u16:
7754  case NEON::BI__builtin_neon_vcvth_f16_u32:
7755  case NEON::BI__builtin_neon_vcvth_f16_u64:
7756    usgn = true;
7757    LLVM_FALLTHROUGH;
7758  case NEON::BI__builtin_neon_vcvth_f16_s16:
7759  case NEON::BI__builtin_neon_vcvth_f16_s32:
7760  case NEON::BI__builtin_neon_vcvth_f16_s64: {
7761    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7762    llvm::Type *FTy = HalfTy;
7763    llvm::Type *InTy;
7764    if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
7765      InTy = Int64Ty;
7766    else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
7767      InTy = Int32Ty;
7768    else
7769      InTy = Int16Ty;
7770    Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7771    if (usgn)
7772      return Builder.CreateUIToFP(Ops[0], FTy);
7773    return Builder.CreateSIToFP(Ops[0], FTy);
7774  }
7775  case NEON::BI__builtin_neon_vcvth_u16_f16:
7776    usgn = true;
7777    LLVM_FALLTHROUGH;
7778  case NEON::BI__builtin_neon_vcvth_s16_f16: {
7779    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7780    Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7781    if (usgn)
7782      return Builder.CreateFPToUI(Ops[0], Int16Ty);
7783    return Builder.CreateFPToSI(Ops[0], Int16Ty);
7784  }
7785  case NEON::BI__builtin_neon_vcvth_u32_f16:
7786    usgn = true;
7787    LLVM_FALLTHROUGH;
7788  case NEON::BI__builtin_neon_vcvth_s32_f16: {
7789    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7790    Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7791    if (usgn)
7792      return Builder.CreateFPToUI(Ops[0], Int32Ty);
7793    return Builder.CreateFPToSI(Ops[0], Int32Ty);
7794  }
7795  case NEON::BI__builtin_neon_vcvth_u64_f16:
7796    usgn = true;
7797    LLVM_FALLTHROUGH;
7798  case NEON::BI__builtin_neon_vcvth_s64_f16: {
7799    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7800    Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7801    if (usgn)
7802      return Builder.CreateFPToUI(Ops[0], Int64Ty);
7803    return Builder.CreateFPToSI(Ops[0], Int64Ty);
7804  }
7805  case NEON::BI__builtin_neon_vcvtah_u16_f16:
7806  case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7807  case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7808  case NEON::BI__builtin_neon_vcvtph_u16_f16:
7809  case NEON::BI__builtin_neon_vcvtah_s16_f16:
7810  case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7811  case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7812  case NEON::BI__builtin_neon_vcvtph_s16_f16: {
7813    unsigned Int;
7814    llvm::Type* InTy = Int32Ty;
7815    llvm::Type* FTy  = HalfTy;
7816    llvm::Type *Tys[2] = {InTy, FTy};
7817    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7818    switch (BuiltinID) {
7819    default: llvm_unreachable("missing builtin ID in switch!");
7820    case NEON::BI__builtin_neon_vcvtah_u16_f16:
7821      Int = Intrinsic::aarch64_neon_fcvtau; break;
7822    case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7823      Int = Intrinsic::aarch64_neon_fcvtmu; break;
7824    case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7825      Int = Intrinsic::aarch64_neon_fcvtnu; break;
7826    case NEON::BI__builtin_neon_vcvtph_u16_f16:
7827      Int = Intrinsic::aarch64_neon_fcvtpu; break;
7828    case NEON::BI__builtin_neon_vcvtah_s16_f16:
7829      Int = Intrinsic::aarch64_neon_fcvtas; break;
7830    case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7831      Int = Intrinsic::aarch64_neon_fcvtms; break;
7832    case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7833      Int = Intrinsic::aarch64_neon_fcvtns; break;
7834    case NEON::BI__builtin_neon_vcvtph_s16_f16:
7835      Int = Intrinsic::aarch64_neon_fcvtps; break;
7836    }
7837    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
7838    return Builder.CreateTrunc(Ops[0], Int16Ty);
7839  }
7840  case NEON::BI__builtin_neon_vcaleh_f16:
7841  case NEON::BI__builtin_neon_vcalth_f16:
7842  case NEON::BI__builtin_neon_vcageh_f16:
7843  case NEON::BI__builtin_neon_vcagth_f16: {
7844    unsigned Int;
7845    llvm::Type* InTy = Int32Ty;
7846    llvm::Type* FTy  = HalfTy;
7847    llvm::Type *Tys[2] = {InTy, FTy};
7848    Ops.push_back(EmitScalarExpr(E->getArg(1)));
7849    switch (BuiltinID) {
7850    default: llvm_unreachable("missing builtin ID in switch!");
7851    case NEON::BI__builtin_neon_vcageh_f16:
7852      Int = Intrinsic::aarch64_neon_facge; break;
7853    case NEON::BI__builtin_neon_vcagth_f16:
7854      Int = Intrinsic::aarch64_neon_facgt; break;
7855    case NEON::BI__builtin_neon_vcaleh_f16:
7856      Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
7857    case NEON::BI__builtin_neon_vcalth_f16:
7858      Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
7859    }
7860    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
7861    return Builder.CreateTrunc(Ops[0], Int16Ty);
7862  }
7863  case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7864  case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
7865    unsigned Int;
7866    llvm::Type* InTy = Int32Ty;
7867    llvm::Type* FTy  = HalfTy;
7868    llvm::Type *Tys[2] = {InTy, FTy};
7869    Ops.push_back(EmitScalarExpr(E->getArg(1)));
7870    switch (BuiltinID) {
7871    default: llvm_unreachable("missing builtin ID in switch!");
7872    case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7873      Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
7874    case NEON::BI__builtin_neon_vcvth_n_u16_f16:
7875      Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
7876    }
7877    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7878    return Builder.CreateTrunc(Ops[0], Int16Ty);
7879  }
7880  case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7881  case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
7882    unsigned Int;
7883    llvm::Type* FTy  = HalfTy;
7884    llvm::Type* InTy = Int32Ty;
7885    llvm::Type *Tys[2] = {FTy, InTy};
7886    Ops.push_back(EmitScalarExpr(E->getArg(1)));
7887    switch (BuiltinID) {
7888    default: llvm_unreachable("missing builtin ID in switch!");
7889    case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7890      Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
7891      Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
7892      break;
7893    case NEON::BI__builtin_neon_vcvth_n_f16_u16:
7894      Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
7895      Ops[0] = Builder.CreateZExt(Ops[0], InTy);
7896      break;
7897    }
7898    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7899  }
7900  case NEON::BI__builtin_neon_vpaddd_s64: {
7901    llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
7902    Value *Vec = EmitScalarExpr(E->getArg(0));
7903    // The vector is v2f64, so make sure it's bitcast to that.
7904    Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
7905    llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7906    llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7907    Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7908    Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7909    // Pairwise addition of a v2f64 into a scalar f64.
7910    return Builder.CreateAdd(Op0, Op1, "vpaddd");
7911  }
7912  case NEON::BI__builtin_neon_vpaddd_f64: {
7913    llvm::Type *Ty =
7914      llvm::VectorType::get(DoubleTy, 2);
7915    Value *Vec = EmitScalarExpr(E->getArg(0));
7916    // The vector is v2f64, so make sure it's bitcast to that.
7917    Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
7918    llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7919    llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7920    Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7921    Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7922    // Pairwise addition of a v2f64 into a scalar f64.
7923    return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7924  }
7925  case NEON::BI__builtin_neon_vpadds_f32: {
7926    llvm::Type *Ty =
7927      llvm::VectorType::get(FloatTy, 2);
7928    Value *Vec = EmitScalarExpr(E->getArg(0));
7929    // The vector is v2f32, so make sure it's bitcast to that.
7930    Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
7931    llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7932    llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7933    Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7934    Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7935    // Pairwise addition of a v2f32 into a scalar f32.
7936    return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7937  }
7938  case NEON::BI__builtin_neon_vceqzd_s64:
7939  case NEON::BI__builtin_neon_vceqzd_f64:
7940  case NEON::BI__builtin_neon_vceqzs_f32:
7941  case NEON::BI__builtin_neon_vceqzh_f16:
7942    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7943    return EmitAArch64CompareBuiltinExpr(
7944        Ops[0], ConvertType(E->getCallReturnType(getContext())),
7945        ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
7946  case NEON::BI__builtin_neon_vcgezd_s64:
7947  case NEON::BI__builtin_neon_vcgezd_f64:
7948  case NEON::BI__builtin_neon_vcgezs_f32:
7949  case NEON::BI__builtin_neon_vcgezh_f16:
7950    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7951    return EmitAArch64CompareBuiltinExpr(
7952        Ops[0], ConvertType(E->getCallReturnType(getContext())),
7953        ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
7954  case NEON::BI__builtin_neon_vclezd_s64:
7955  case NEON::BI__builtin_neon_vclezd_f64:
7956  case NEON::BI__builtin_neon_vclezs_f32:
7957  case NEON::BI__builtin_neon_vclezh_f16:
7958    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7959    return EmitAArch64CompareBuiltinExpr(
7960        Ops[0], ConvertType(E->getCallReturnType(getContext())),
7961        ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
7962  case NEON::BI__builtin_neon_vcgtzd_s64:
7963  case NEON::BI__builtin_neon_vcgtzd_f64:
7964  case NEON::BI__builtin_neon_vcgtzs_f32:
7965  case NEON::BI__builtin_neon_vcgtzh_f16:
7966    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7967    return EmitAArch64CompareBuiltinExpr(
7968        Ops[0], ConvertType(E->getCallReturnType(getContext())),
7969        ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
7970  case NEON::BI__builtin_neon_vcltzd_s64:
7971  case NEON::BI__builtin_neon_vcltzd_f64:
7972  case NEON::BI__builtin_neon_vcltzs_f32:
7973  case NEON::BI__builtin_neon_vcltzh_f16:
7974    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7975    return EmitAArch64CompareBuiltinExpr(
7976        Ops[0], ConvertType(E->getCallReturnType(getContext())),
7977        ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
7978
7979  case NEON::BI__builtin_neon_vceqzd_u64: {
7980    Ops.push_back(EmitScalarExpr(E->getArg(0)));
7981    Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7982    Ops[0] =
7983        Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
7984    return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
7985  }
7986  case NEON::BI__builtin_neon_vceqd_f64:
7987  case NEON::BI__builtin_neon_vcled_f64:
7988  case NEON::BI__builtin_neon_vcltd_f64:
7989  case NEON::BI__builtin_neon_vcged_f64:
7990  case NEON::BI__builtin_neon_vcgtd_f64: {
7991    llvm::CmpInst::Predicate P;
7992    switch (BuiltinID) {
7993    default: llvm_unreachable("missing builtin ID in switch!");
7994    case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
7995    case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
7996    case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
7997    case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
7998    case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
7999    }
8000    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8001    Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8002    Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
8003    Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
8004    return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
8005  }
8006  case NEON::BI__builtin_neon_vceqs_f32:
8007  case NEON::BI__builtin_neon_vcles_f32:
8008  case NEON::BI__builtin_neon_vclts_f32:
8009  case NEON::BI__builtin_neon_vcges_f32:
8010  case NEON::BI__builtin_neon_vcgts_f32: {
8011    llvm::CmpInst::Predicate P;
8012    switch (BuiltinID) {
8013    default: llvm_unreachable("missing builtin ID in switch!");
8014    case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
8015    case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
8016    case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
8017    case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
8018    case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
8019    }
8020    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8021    Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
8022    Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
8023    Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
8024    return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
8025  }
8026  case NEON::BI__builtin_neon_vceqh_f16:
8027  case NEON::BI__builtin_neon_vcleh_f16:
8028  case NEON::BI__builtin_neon_vclth_f16:
8029  case NEON::BI__builtin_neon_vcgeh_f16:
8030  case NEON::BI__builtin_neon_vcgth_f16: {
8031    llvm::CmpInst::Predicate P;
8032    switch (BuiltinID) {
8033    default: llvm_unreachable("missing builtin ID in switch!");
8034    case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
8035    case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
8036    case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
8037    case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
8038    case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
8039    }
8040    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8041    Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
8042    Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
8043    Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
8044    return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
8045  }
8046  case NEON::BI__builtin_neon_vceqd_s64:
8047  case NEON::BI__builtin_neon_vceqd_u64:
8048  case NEON::BI__builtin_neon_vcgtd_s64:
8049  case NEON::BI__builtin_neon_vcgtd_u64:
8050  case NEON::BI__builtin_neon_vcltd_s64:
8051  case NEON::BI__builtin_neon_vcltd_u64:
8052  case NEON::BI__builtin_neon_vcged_u64:
8053  case NEON::BI__builtin_neon_vcged_s64:
8054  case NEON::BI__builtin_neon_vcled_u64:
8055  case NEON::BI__builtin_neon_vcled_s64: {
8056    llvm::CmpInst::Predicate P;
8057    switch (BuiltinID) {
8058    default: llvm_unreachable("missing builtin ID in switch!");
8059    case NEON::BI__builtin_neon_vceqd_s64:
8060    case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
8061    case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
8062    case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
8063    case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
8064    case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
8065    case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
8066    case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
8067    case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
8068    case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
8069    }
8070    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8071    Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
8072    Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
8073    Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
8074    return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
8075  }
8076  case NEON::BI__builtin_neon_vtstd_s64:
8077  case NEON::BI__builtin_neon_vtstd_u64: {
8078    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8079    Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
8080    Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
8081    Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
8082    Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
8083                                llvm::Constant::getNullValue(Int64Ty));
8084    return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
8085  }
8086  case NEON::BI__builtin_neon_vset_lane_i8:
8087  case NEON::BI__builtin_neon_vset_lane_i16:
8088  case NEON::BI__builtin_neon_vset_lane_i32:
8089  case NEON::BI__builtin_neon_vset_lane_i64:
8090  case NEON::BI__builtin_neon_vset_lane_f32:
8091  case NEON::BI__builtin_neon_vsetq_lane_i8:
8092  case NEON::BI__builtin_neon_vsetq_lane_i16:
8093  case NEON::BI__builtin_neon_vsetq_lane_i32:
8094  case NEON::BI__builtin_neon_vsetq_lane_i64:
8095  case NEON::BI__builtin_neon_vsetq_lane_f32:
8096    Ops.push_back(EmitScalarExpr(E->getArg(2)));
8097    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
8098  case NEON::BI__builtin_neon_vset_lane_f64:
8099    // The vector type needs a cast for the v1f64 variant.
8100    Ops[1] = Builder.CreateBitCast(Ops[1],
8101                                   llvm::VectorType::get(DoubleTy, 1));
8102    Ops.push_back(EmitScalarExpr(E->getArg(2)));
8103    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
8104  case NEON::BI__builtin_neon_vsetq_lane_f64:
8105    // The vector type needs a cast for the v2f64 variant.
8106    Ops[1] = Builder.CreateBitCast(Ops[1],
8107        llvm::VectorType::get(DoubleTy, 2));
8108    Ops.push_back(EmitScalarExpr(E->getArg(2)));
8109    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
8110
8111  case NEON::BI__builtin_neon_vget_lane_i8:
8112  case NEON::BI__builtin_neon_vdupb_lane_i8:
8113    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
8114    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8115                                        "vget_lane");
8116  case NEON::BI__builtin_neon_vgetq_lane_i8:
8117  case NEON::BI__builtin_neon_vdupb_laneq_i8:
8118    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
8119    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8120                                        "vgetq_lane");
8121  case NEON::BI__builtin_neon_vget_lane_i16:
8122  case NEON::BI__builtin_neon_vduph_lane_i16:
8123    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
8124    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8125                                        "vget_lane");
8126  case NEON::BI__builtin_neon_vgetq_lane_i16:
8127  case NEON::BI__builtin_neon_vduph_laneq_i16:
8128    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
8129    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8130                                        "vgetq_lane");
8131  case NEON::BI__builtin_neon_vget_lane_i32:
8132  case NEON::BI__builtin_neon_vdups_lane_i32:
8133    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
8134    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8135                                        "vget_lane");
8136  case NEON::BI__builtin_neon_vdups_lane_f32:
8137    Ops[0] = Builder.CreateBitCast(Ops[0],
8138        llvm::VectorType::get(FloatTy, 2));
8139    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8140                                        "vdups_lane");
8141  case NEON::BI__builtin_neon_vgetq_lane_i32:
8142  case NEON::BI__builtin_neon_vdups_laneq_i32:
8143    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
8144    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8145                                        "vgetq_lane");
8146  case NEON::BI__builtin_neon_vget_lane_i64:
8147  case NEON::BI__builtin_neon_vdupd_lane_i64:
8148    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
8149    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8150                                        "vget_lane");
8151  case NEON::BI__builtin_neon_vdupd_lane_f64:
8152    Ops[0] = Builder.CreateBitCast(Ops[0],
8153        llvm::VectorType::get(DoubleTy, 1));
8154    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8155                                        "vdupd_lane");
8156  case NEON::BI__builtin_neon_vgetq_lane_i64:
8157  case NEON::BI__builtin_neon_vdupd_laneq_i64:
8158    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
8159    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8160                                        "vgetq_lane");
8161  case NEON::BI__builtin_neon_vget_lane_f32:
8162    Ops[0] = Builder.CreateBitCast(Ops[0],
8163        llvm::VectorType::get(FloatTy, 2));
8164    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8165                                        "vget_lane");
8166  case NEON::BI__builtin_neon_vget_lane_f64:
8167    Ops[0] = Builder.CreateBitCast(Ops[0],
8168        llvm::VectorType::get(DoubleTy, 1));
8169    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8170                                        "vget_lane");
8171  case NEON::BI__builtin_neon_vgetq_lane_f32:
8172  case NEON::BI__builtin_neon_vdups_laneq_f32:
8173    Ops[0] = Builder.CreateBitCast(Ops[0],
8174        llvm::VectorType::get(FloatTy, 4));
8175    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8176                                        "vgetq_lane");
8177  case NEON::BI__builtin_neon_vgetq_lane_f64:
8178  case NEON::BI__builtin_neon_vdupd_laneq_f64:
8179    Ops[0] = Builder.CreateBitCast(Ops[0],
8180        llvm::VectorType::get(DoubleTy, 2));
8181    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8182                                        "vgetq_lane");
8183  case NEON::BI__builtin_neon_vaddh_f16:
8184    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8185    return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
8186  case NEON::BI__builtin_neon_vsubh_f16:
8187    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8188    return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
8189  case NEON::BI__builtin_neon_vmulh_f16:
8190    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8191    return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
8192  case NEON::BI__builtin_neon_vdivh_f16:
8193    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8194    return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
8195  case NEON::BI__builtin_neon_vfmah_f16: {
8196    Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
8197    // NEON intrinsic puts accumulator first, unlike the LLVM fma.
8198    return Builder.CreateCall(F,
8199      {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
8200  }
8201  case NEON::BI__builtin_neon_vfmsh_f16: {
8202    Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
8203    Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
8204    Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
8205    // NEON intrinsic puts accumulator first, unlike the LLVM fma.
8206    return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
8207  }
8208  case NEON::BI__builtin_neon_vaddd_s64:
8209  case NEON::BI__builtin_neon_vaddd_u64:
8210    return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
8211  case NEON::BI__builtin_neon_vsubd_s64:
8212  case NEON::BI__builtin_neon_vsubd_u64:
8213    return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
8214  case NEON::BI__builtin_neon_vqdmlalh_s16:
8215  case NEON::BI__builtin_neon_vqdmlslh_s16: {
8216    SmallVector<Value *, 2> ProductOps;
8217    ProductOps.push_back(vectorWrapScalar16(Ops[1]));
8218    ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
8219    llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
8220    Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
8221                          ProductOps, "vqdmlXl");
8222    Constant *CI = ConstantInt::get(SizeTy, 0);
8223    Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
8224
8225    unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
8226                                        ? Intrinsic::aarch64_neon_sqadd
8227                                        : Intrinsic::aarch64_neon_sqsub;
8228    return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
8229  }
8230  case NEON::BI__builtin_neon_vqshlud_n_s64: {
8231    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8232    Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
8233    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
8234                        Ops, "vqshlu_n");
8235  }
8236  case NEON::BI__builtin_neon_vqshld_n_u64:
8237  case NEON::BI__builtin_neon_vqshld_n_s64: {
8238    unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
8239                                   ? Intrinsic::aarch64_neon_uqshl
8240                                   : Intrinsic::aarch64_neon_sqshl;
8241    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8242    Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
8243    return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
8244  }
8245  case NEON::BI__builtin_neon_vrshrd_n_u64:
8246  case NEON::BI__builtin_neon_vrshrd_n_s64: {
8247    unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
8248                                   ? Intrinsic::aarch64_neon_urshl
8249                                   : Intrinsic::aarch64_neon_srshl;
8250    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8251    int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
8252    Ops[1] = ConstantInt::get(Int64Ty, -SV);
8253    return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
8254  }
8255  case NEON::BI__builtin_neon_vrsrad_n_u64:
8256  case NEON::BI__builtin_neon_vrsrad_n_s64: {
8257    unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
8258                                   ? Intrinsic::aarch64_neon_urshl
8259                                   : Intrinsic::aarch64_neon_srshl;
8260    Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
8261    Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
8262    Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
8263                                {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
8264    return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
8265  }
8266  case NEON::BI__builtin_neon_vshld_n_s64:
8267  case NEON::BI__builtin_neon_vshld_n_u64: {
8268    llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
8269    return Builder.CreateShl(
8270        Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
8271  }
8272  case NEON::BI__builtin_neon_vshrd_n_s64: {
8273    llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
8274    return Builder.CreateAShr(
8275        Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
8276                                                   Amt->getZExtValue())),
8277        "shrd_n");
8278  }
8279  case NEON::BI__builtin_neon_vshrd_n_u64: {
8280    llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
8281    uint64_t ShiftAmt = Amt->getZExtValue();
8282    // Right-shifting an unsigned value by its size yields 0.
8283    if (ShiftAmt == 64)
8284      return ConstantInt::get(Int64Ty, 0);
8285    return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
8286                              "shrd_n");
8287  }
8288  case NEON::BI__builtin_neon_vsrad_n_s64: {
8289    llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
8290    Ops[1] = Builder.CreateAShr(
8291        Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
8292                                                   Amt->getZExtValue())),
8293        "shrd_n");
8294    return Builder.CreateAdd(Ops[0], Ops[1]);
8295  }
8296  case NEON::BI__builtin_neon_vsrad_n_u64: {
8297    llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
8298    uint64_t ShiftAmt = Amt->getZExtValue();
8299    // Right-shifting an unsigned value by its size yields 0.
8300    // As Op + 0 = Op, return Ops[0] directly.
8301    if (ShiftAmt == 64)
8302      return Ops[0];
8303    Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
8304                                "shrd_n");
8305    return Builder.CreateAdd(Ops[0], Ops[1]);
8306  }
8307  case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
8308  case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
8309  case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
8310  case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
8311    Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
8312                                          "lane");
8313    SmallVector<Value *, 2> ProductOps;
8314    ProductOps.push_back(vectorWrapScalar16(Ops[1]));
8315    ProductOps.push_back(vectorWrapScalar16(Ops[2]));
8316    llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
8317    Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
8318                          ProductOps, "vqdmlXl");
8319    Constant *CI = ConstantInt::get(SizeTy, 0);
8320    Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
8321    Ops.pop_back();
8322
8323    unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
8324                       BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
8325                          ? Intrinsic::aarch64_neon_sqadd
8326                          : Intrinsic::aarch64_neon_sqsub;
8327    return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
8328  }
8329  case NEON::BI__builtin_neon_vqdmlals_s32:
8330  case NEON::BI__builtin_neon_vqdmlsls_s32: {
8331    SmallVector<Value *, 2> ProductOps;
8332    ProductOps.push_back(Ops[1]);
8333    ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
8334    Ops[1] =
8335        EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
8336                     ProductOps, "vqdmlXl");
8337
8338    unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
8339                                        ? Intrinsic::aarch64_neon_sqadd
8340                                        : Intrinsic::aarch64_neon_sqsub;
8341    return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
8342  }
8343  case NEON::BI__builtin_neon_vqdmlals_lane_s32:
8344  case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
8345  case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
8346  case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
8347    Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
8348                                          "lane");
8349    SmallVector<Value *, 2> ProductOps;
8350    ProductOps.push_back(Ops[1]);
8351    ProductOps.push_back(Ops[2]);
8352    Ops[1] =
8353        EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
8354                     ProductOps, "vqdmlXl");
8355    Ops.pop_back();
8356
8357    unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
8358                       BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
8359                          ? Intrinsic::aarch64_neon_sqadd
8360                          : Intrinsic::aarch64_neon_sqsub;
8361    return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
8362  }
8363  case NEON::BI__builtin_neon_vduph_lane_f16: {
8364    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8365                                        "vget_lane");
8366  }
8367  case NEON::BI__builtin_neon_vduph_laneq_f16: {
8368    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8369                                        "vgetq_lane");
8370  }
8371  case AArch64::BI_BitScanForward:
8372  case AArch64::BI_BitScanForward64:
8373    return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
8374  case AArch64::BI_BitScanReverse:
8375  case AArch64::BI_BitScanReverse64:
8376    return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
8377  case AArch64::BI_InterlockedAnd64:
8378    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
8379  case AArch64::BI_InterlockedExchange64:
8380    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
8381  case AArch64::BI_InterlockedExchangeAdd64:
8382    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
8383  case AArch64::BI_InterlockedExchangeSub64:
8384    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
8385  case AArch64::BI_InterlockedOr64:
8386    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
8387  case AArch64::BI_InterlockedXor64:
8388    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
8389  case AArch64::BI_InterlockedDecrement64:
8390    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
8391  case AArch64::BI_InterlockedIncrement64:
8392    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
8393  case AArch64::BI_InterlockedExchangeAdd8_acq:
8394  case AArch64::BI_InterlockedExchangeAdd16_acq:
8395  case AArch64::BI_InterlockedExchangeAdd_acq:
8396  case AArch64::BI_InterlockedExchangeAdd64_acq:
8397    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
8398  case AArch64::BI_InterlockedExchangeAdd8_rel:
8399  case AArch64::BI_InterlockedExchangeAdd16_rel:
8400  case AArch64::BI_InterlockedExchangeAdd_rel:
8401  case AArch64::BI_InterlockedExchangeAdd64_rel:
8402    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
8403  case AArch64::BI_InterlockedExchangeAdd8_nf:
8404  case AArch64::BI_InterlockedExchangeAdd16_nf:
8405  case AArch64::BI_InterlockedExchangeAdd_nf:
8406  case AArch64::BI_InterlockedExchangeAdd64_nf:
8407    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
8408  case AArch64::BI_InterlockedExchange8_acq:
8409  case AArch64::BI_InterlockedExchange16_acq:
8410  case AArch64::BI_InterlockedExchange_acq:
8411  case AArch64::BI_InterlockedExchange64_acq:
8412    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
8413  case AArch64::BI_InterlockedExchange8_rel:
8414  case AArch64::BI_InterlockedExchange16_rel:
8415  case AArch64::BI_InterlockedExchange_rel:
8416  case AArch64::BI_InterlockedExchange64_rel:
8417    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
8418  case AArch64::BI_InterlockedExchange8_nf:
8419  case AArch64::BI_InterlockedExchange16_nf:
8420  case AArch64::BI_InterlockedExchange_nf:
8421  case AArch64::BI_InterlockedExchange64_nf:
8422    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
8423  case AArch64::BI_InterlockedCompareExchange8_acq:
8424  case AArch64::BI_InterlockedCompareExchange16_acq:
8425  case AArch64::BI_InterlockedCompareExchange_acq:
8426  case AArch64::BI_InterlockedCompareExchange64_acq:
8427    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
8428  case AArch64::BI_InterlockedCompareExchange8_rel:
8429  case AArch64::BI_InterlockedCompareExchange16_rel:
8430  case AArch64::BI_InterlockedCompareExchange_rel:
8431  case AArch64::BI_InterlockedCompareExchange64_rel:
8432    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
8433  case AArch64::BI_InterlockedCompareExchange8_nf:
8434  case AArch64::BI_InterlockedCompareExchange16_nf:
8435  case AArch64::BI_InterlockedCompareExchange_nf:
8436  case AArch64::BI_InterlockedCompareExchange64_nf:
8437    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
8438  case AArch64::BI_InterlockedOr8_acq:
8439  case AArch64::BI_InterlockedOr16_acq:
8440  case AArch64::BI_InterlockedOr_acq:
8441  case AArch64::BI_InterlockedOr64_acq:
8442    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
8443  case AArch64::BI_InterlockedOr8_rel:
8444  case AArch64::BI_InterlockedOr16_rel:
8445  case AArch64::BI_InterlockedOr_rel:
8446  case AArch64::BI_InterlockedOr64_rel:
8447    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
8448  case AArch64::BI_InterlockedOr8_nf:
8449  case AArch64::BI_InterlockedOr16_nf:
8450  case AArch64::BI_InterlockedOr_nf:
8451  case AArch64::BI_InterlockedOr64_nf:
8452    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
8453  case AArch64::BI_InterlockedXor8_acq:
8454  case AArch64::BI_InterlockedXor16_acq:
8455  case AArch64::BI_InterlockedXor_acq:
8456  case AArch64::BI_InterlockedXor64_acq:
8457    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
8458  case AArch64::BI_InterlockedXor8_rel:
8459  case AArch64::BI_InterlockedXor16_rel:
8460  case AArch64::BI_InterlockedXor_rel:
8461  case AArch64::BI_InterlockedXor64_rel:
8462    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
8463  case AArch64::BI_InterlockedXor8_nf:
8464  case AArch64::BI_InterlockedXor16_nf:
8465  case AArch64::BI_InterlockedXor_nf:
8466  case AArch64::BI_InterlockedXor64_nf:
8467    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
8468  case AArch64::BI_InterlockedAnd8_acq:
8469  case AArch64::BI_InterlockedAnd16_acq:
8470  case AArch64::BI_InterlockedAnd_acq:
8471  case AArch64::BI_InterlockedAnd64_acq:
8472    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
8473  case AArch64::BI_InterlockedAnd8_rel:
8474  case AArch64::BI_InterlockedAnd16_rel:
8475  case AArch64::BI_InterlockedAnd_rel:
8476  case AArch64::BI_InterlockedAnd64_rel:
8477    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
8478  case AArch64::BI_InterlockedAnd8_nf:
8479  case AArch64::BI_InterlockedAnd16_nf:
8480  case AArch64::BI_InterlockedAnd_nf:
8481  case AArch64::BI_InterlockedAnd64_nf:
8482    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
8483  case AArch64::BI_InterlockedIncrement16_acq:
8484  case AArch64::BI_InterlockedIncrement_acq:
8485  case AArch64::BI_InterlockedIncrement64_acq:
8486    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
8487  case AArch64::BI_InterlockedIncrement16_rel:
8488  case AArch64::BI_InterlockedIncrement_rel:
8489  case AArch64::BI_InterlockedIncrement64_rel:
8490    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
8491  case AArch64::BI_InterlockedIncrement16_nf:
8492  case AArch64::BI_InterlockedIncrement_nf:
8493  case AArch64::BI_InterlockedIncrement64_nf:
8494    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
8495  case AArch64::BI_InterlockedDecrement16_acq:
8496  case AArch64::BI_InterlockedDecrement_acq:
8497  case AArch64::BI_InterlockedDecrement64_acq:
8498    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
8499  case AArch64::BI_InterlockedDecrement16_rel:
8500  case AArch64::BI_InterlockedDecrement_rel:
8501  case AArch64::BI_InterlockedDecrement64_rel:
8502    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
8503  case AArch64::BI_InterlockedDecrement16_nf:
8504  case AArch64::BI_InterlockedDecrement_nf:
8505  case AArch64::BI_InterlockedDecrement64_nf:
8506    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
8507
8508  case AArch64::BI_InterlockedAdd: {
8509    Value *Arg0 = EmitScalarExpr(E->getArg(0));
8510    Value *Arg1 = EmitScalarExpr(E->getArg(1));
8511    AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
8512      AtomicRMWInst::Add, Arg0, Arg1,
8513      llvm::AtomicOrdering::SequentiallyConsistent);
8514    return Builder.CreateAdd(RMWI, Arg1);
8515  }
8516  }
8517
8518  llvm::VectorType *VTy = GetNeonType(this, Type);
8519  llvm::Type *Ty = VTy;
8520  if (!Ty)
8521    return nullptr;
8522
8523  // Not all intrinsics handled by the common case work for AArch64 yet, so only
8524  // defer to common code if it's been added to our special map.
8525  Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
8526                                   AArch64SIMDIntrinsicsProvenSorted);
8527
8528  if (Builtin)
8529    return EmitCommonNeonBuiltinExpr(
8530        Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
8531        Builtin->NameHint, Builtin->TypeModifier, E, Ops,
8532        /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
8533
8534  if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
8535    return V;
8536
8537  unsigned Int;
8538  switch (BuiltinID) {
8539  default: return nullptr;
8540  case NEON::BI__builtin_neon_vbsl_v:
8541  case NEON::BI__builtin_neon_vbslq_v: {
8542    llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
8543    Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
8544    Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
8545    Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
8546
8547    Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
8548    Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
8549    Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
8550    return Builder.CreateBitCast(Ops[0], Ty);
8551  }
8552  case NEON::BI__builtin_neon_vfma_lane_v:
8553  case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
8554    // The ARM builtins (and instructions) have the addend as the first
8555    // operand, but the 'fma' intrinsics have it last. Swap it around here.
8556    Value *Addend = Ops[0];
8557    Value *Multiplicand = Ops[1];
8558    Value *LaneSource = Ops[2];
8559    Ops[0] = Multiplicand;
8560    Ops[1] = LaneSource;
8561    Ops[2] = Addend;
8562
8563    // Now adjust things to handle the lane access.
8564    llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
8565      llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
8566      VTy;
8567    llvm::Constant *cst = cast<Constant>(Ops[3]);
8568    Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
8569    Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
8570    Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
8571
8572    Ops.pop_back();
8573    Int = Intrinsic::fma;
8574    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
8575  }
8576  case NEON::BI__builtin_neon_vfma_laneq_v: {
8577    llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
8578    // v1f64 fma should be mapped to Neon scalar f64 fma
8579    if (VTy && VTy->getElementType() == DoubleTy) {
8580      Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8581      Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
8582      llvm::Type *VTy = GetNeonType(this,
8583        NeonTypeFlags(NeonTypeFlags::Float64, false, true));
8584      Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
8585      Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
8586      Function *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
8587      Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
8588      return Builder.CreateBitCast(Result, Ty);
8589    }
8590    Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8591    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8592    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8593
8594    llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
8595                                            VTy->getNumElements() * 2);
8596    Ops[2] = Builder.CreateBitCast(Ops[2], STy);
8597    Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
8598                                               cast<ConstantInt>(Ops[3]));
8599    Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
8600
8601    return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
8602  }
8603  case NEON::BI__builtin_neon_vfmaq_laneq_v: {
8604    Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8605    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8606    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8607
8608    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8609    Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
8610    return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
8611  }
8612  case NEON::BI__builtin_neon_vfmah_lane_f16:
8613  case NEON::BI__builtin_neon_vfmas_lane_f32:
8614  case NEON::BI__builtin_neon_vfmah_laneq_f16:
8615  case NEON::BI__builtin_neon_vfmas_laneq_f32:
8616  case NEON::BI__builtin_neon_vfmad_lane_f64:
8617  case NEON::BI__builtin_neon_vfmad_laneq_f64: {
8618    Ops.push_back(EmitScalarExpr(E->getArg(3)));
8619    llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
8620    Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8621    Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
8622    return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
8623  }
8624  case NEON::BI__builtin_neon_vmull_v:
8625    // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8626    Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
8627    if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
8628    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
8629  case NEON::BI__builtin_neon_vmax_v:
8630  case NEON::BI__builtin_neon_vmaxq_v:
8631    // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8632    Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
8633    if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
8634    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
8635  case NEON::BI__builtin_neon_vmaxh_f16: {
8636    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8637    Int = Intrinsic::aarch64_neon_fmax;
8638    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
8639  }
8640  case NEON::BI__builtin_neon_vmin_v:
8641  case NEON::BI__builtin_neon_vminq_v:
8642    // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8643    Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
8644    if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
8645    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
8646  case NEON::BI__builtin_neon_vminh_f16: {
8647    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8648    Int = Intrinsic::aarch64_neon_fmin;
8649    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
8650  }
8651  case NEON::BI__builtin_neon_vabd_v:
8652  case NEON::BI__builtin_neon_vabdq_v:
8653    // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8654    Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
8655    if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
8656    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
8657  case NEON::BI__builtin_neon_vpadal_v:
8658  case NEON::BI__builtin_neon_vpadalq_v: {
8659    unsigned ArgElts = VTy->getNumElements();
8660    llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
8661    unsigned BitWidth = EltTy->getBitWidth();
8662    llvm::Type *ArgTy = llvm::VectorType::get(
8663        llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
8664    llvm::Type* Tys[2] = { VTy, ArgTy };
8665    Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
8666    SmallVector<llvm::Value*, 1> TmpOps;
8667    TmpOps.push_back(Ops[1]);
8668    Function *F = CGM.getIntrinsic(Int, Tys);
8669    llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
8670    llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
8671    return Builder.CreateAdd(tmp, addend);
8672  }
8673  case NEON::BI__builtin_neon_vpmin_v:
8674  case NEON::BI__builtin_neon_vpminq_v:
8675    // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8676    Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
8677    if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
8678    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
8679  case NEON::BI__builtin_neon_vpmax_v:
8680  case NEON::BI__builtin_neon_vpmaxq_v:
8681    // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8682    Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
8683    if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
8684    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
8685  case NEON::BI__builtin_neon_vminnm_v:
8686  case NEON::BI__builtin_neon_vminnmq_v:
8687    Int = Intrinsic::aarch64_neon_fminnm;
8688    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
8689  case NEON::BI__builtin_neon_vminnmh_f16:
8690    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8691    Int = Intrinsic::aarch64_neon_fminnm;
8692    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
8693  case NEON::BI__builtin_neon_vmaxnm_v:
8694  case NEON::BI__builtin_neon_vmaxnmq_v:
8695    Int = Intrinsic::aarch64_neon_fmaxnm;
8696    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
8697  case NEON::BI__builtin_neon_vmaxnmh_f16:
8698    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8699    Int = Intrinsic::aarch64_neon_fmaxnm;
8700    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
8701  case NEON::BI__builtin_neon_vrecpss_f32: {
8702    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8703    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
8704                        Ops, "vrecps");
8705  }
8706  case NEON::BI__builtin_neon_vrecpsd_f64:
8707    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8708    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
8709                        Ops, "vrecps");
8710  case NEON::BI__builtin_neon_vrecpsh_f16:
8711    Ops.push_back(EmitScalarExpr(E->getArg(1)));
8712    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
8713                        Ops, "vrecps");
8714  case NEON::BI__builtin_neon_vqshrun_n_v:
8715    Int = Intrinsic::aarch64_neon_sqshrun;
8716    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
8717  case NEON::BI__builtin_neon_vqrshrun_n_v:
8718    Int = Intrinsic::aarch64_neon_sqrshrun;
8719    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
8720  case NEON::BI__builtin_neon_vqshrn_n_v:
8721    Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
8722    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
8723  case NEON::BI__builtin_neon_vrshrn_n_v:
8724    Int = Intrinsic::aarch64_neon_rshrn;
8725    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
8726  case NEON::BI__builtin_neon_vqrshrn_n_v:
8727    Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
8728    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
8729  case NEON::BI__builtin_neon_vrndah_f16: {
8730    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8731    Int = Intrinsic::round;
8732    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
8733  }
8734  case NEON::BI__builtin_neon_vrnda_v:
8735  case NEON::BI__builtin_neon_vrndaq_v: {
8736    Int = Intrinsic::round;
8737    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
8738  }
8739  case NEON::BI__builtin_neon_vrndih_f16: {
8740    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8741    Int = Intrinsic::nearbyint;
8742    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
8743  }
8744  case NEON::BI__builtin_neon_vrndmh_f16: {
8745    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8746    Int = Intrinsic::floor;
8747    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
8748  }
8749  case NEON::BI__builtin_neon_vrndm_v:
8750  case NEON::BI__builtin_neon_vrndmq_v: {
8751    Int = Intrinsic::floor;
8752    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
8753  }
8754  case NEON::BI__builtin_neon_vrndnh_f16: {
8755    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8756    Int = Intrinsic::aarch64_neon_frintn;
8757    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
8758  }
8759  case NEON::BI__builtin_neon_vrndn_v:
8760  case NEON::BI__builtin_neon_vrndnq_v: {
8761    Int = Intrinsic::aarch64_neon_frintn;
8762    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
8763  }
8764  case NEON::BI__builtin_neon_vrndns_f32: {
8765    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8766    Int = Intrinsic::aarch64_neon_frintn;
8767    return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
8768  }
8769  case NEON::BI__builtin_neon_vrndph_f16: {
8770    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8771    Int = Intrinsic::ceil;
8772    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
8773  }
8774  case NEON::BI__builtin_neon_vrndp_v:
8775  case NEON::BI__builtin_neon_vrndpq_v: {
8776    Int = Intrinsic::ceil;
8777    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
8778  }
8779  case NEON::BI__builtin_neon_vrndxh_f16: {
8780    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8781    Int = Intrinsic::rint;
8782    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
8783  }
8784  case NEON::BI__builtin_neon_vrndx_v:
8785  case NEON::BI__builtin_neon_vrndxq_v: {
8786    Int = Intrinsic::rint;
8787    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
8788  }
8789  case NEON::BI__builtin_neon_vrndh_f16: {
8790    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8791    Int = Intrinsic::trunc;
8792    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
8793  }
8794  case NEON::BI__builtin_neon_vrnd_v:
8795  case NEON::BI__builtin_neon_vrndq_v: {
8796    Int = Intrinsic::trunc;
8797    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
8798  }
8799  case NEON::BI__builtin_neon_vcvt_f64_v:
8800  case NEON::BI__builtin_neon_vcvtq_f64_v:
8801    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8802    Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
8803    return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
8804                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
8805  case NEON::BI__builtin_neon_vcvt_f64_f32: {
8806    assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
8807           "unexpected vcvt_f64_f32 builtin");
8808    NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
8809    Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8810
8811    return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
8812  }
8813  case NEON::BI__builtin_neon_vcvt_f32_f64: {
8814    assert(Type.getEltType() == NeonTypeFlags::Float32 &&
8815           "unexpected vcvt_f32_f64 builtin");
8816    NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
8817    Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8818
8819    return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
8820  }
8821  case NEON::BI__builtin_neon_vcvt_s32_v:
8822  case NEON::BI__builtin_neon_vcvt_u32_v:
8823  case NEON::BI__builtin_neon_vcvt_s64_v:
8824  case NEON::BI__builtin_neon_vcvt_u64_v:
8825  case NEON::BI__builtin_neon_vcvt_s16_v:
8826  case NEON::BI__builtin_neon_vcvt_u16_v:
8827  case NEON::BI__builtin_neon_vcvtq_s32_v:
8828  case NEON::BI__builtin_neon_vcvtq_u32_v:
8829  case NEON::BI__builtin_neon_vcvtq_s64_v:
8830  case NEON::BI__builtin_neon_vcvtq_u64_v:
8831  case NEON::BI__builtin_neon_vcvtq_s16_v:
8832  case NEON::BI__builtin_neon_vcvtq_u16_v: {
8833    Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
8834    if (usgn)
8835      return Builder.CreateFPToUI(Ops[0], Ty);
8836    return Builder.CreateFPToSI(Ops[0], Ty);
8837  }
8838  case NEON::BI__builtin_neon_vcvta_s16_v:
8839  case NEON::BI__builtin_neon_vcvta_u16_v:
8840  case NEON::BI__builtin_neon_vcvta_s32_v:
8841  case NEON::BI__builtin_neon_vcvtaq_s16_v:
8842  case NEON::BI__builtin_neon_vcvtaq_s32_v:
8843  case NEON::BI__builtin_neon_vcvta_u32_v:
8844  case NEON::BI__builtin_neon_vcvtaq_u16_v:
8845  case NEON::BI__builtin_neon_vcvtaq_u32_v:
8846  case NEON::BI__builtin_neon_vcvta_s64_v:
8847  case NEON::BI__builtin_neon_vcvtaq_s64_v:
8848  case NEON::BI__builtin_neon_vcvta_u64_v:
8849  case NEON::BI__builtin_neon_vcvtaq_u64_v: {
8850    Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
8851    llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8852    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
8853  }
8854  case NEON::BI__builtin_neon_vcvtm_s16_v:
8855  case NEON::BI__builtin_neon_vcvtm_s32_v:
8856  case NEON::BI__builtin_neon_vcvtmq_s16_v:
8857  case NEON::BI__builtin_neon_vcvtmq_s32_v:
8858  case NEON::BI__builtin_neon_vcvtm_u16_v:
8859  case NEON::BI__builtin_neon_vcvtm_u32_v:
8860  case NEON::BI__builtin_neon_vcvtmq_u16_v:
8861  case NEON::BI__builtin_neon_vcvtmq_u32_v:
8862  case NEON::BI__builtin_neon_vcvtm_s64_v:
8863  case NEON::BI__builtin_neon_vcvtmq_s64_v:
8864  case NEON::BI__builtin_neon_vcvtm_u64_v:
8865  case NEON::BI__builtin_neon_vcvtmq_u64_v: {
8866    Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
8867    llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8868    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
8869  }
8870  case NEON::BI__builtin_neon_vcvtn_s16_v:
8871  case NEON::BI__builtin_neon_vcvtn_s32_v:
8872  case NEON::BI__builtin_neon_vcvtnq_s16_v:
8873  case NEON::BI__builtin_neon_vcvtnq_s32_v:
8874  case NEON::BI__builtin_neon_vcvtn_u16_v:
8875  case NEON::BI__builtin_neon_vcvtn_u32_v:
8876  case NEON::BI__builtin_neon_vcvtnq_u16_v:
8877  case NEON::BI__builtin_neon_vcvtnq_u32_v:
8878  case NEON::BI__builtin_neon_vcvtn_s64_v:
8879  case NEON::BI__builtin_neon_vcvtnq_s64_v:
8880  case NEON::BI__builtin_neon_vcvtn_u64_v:
8881  case NEON::BI__builtin_neon_vcvtnq_u64_v: {
8882    Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
8883    llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8884    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
8885  }
8886  case NEON::BI__builtin_neon_vcvtp_s16_v:
8887  case NEON::BI__builtin_neon_vcvtp_s32_v:
8888  case NEON::BI__builtin_neon_vcvtpq_s16_v:
8889  case NEON::BI__builtin_neon_vcvtpq_s32_v:
8890  case NEON::BI__builtin_neon_vcvtp_u16_v:
8891  case NEON::BI__builtin_neon_vcvtp_u32_v:
8892  case NEON::BI__builtin_neon_vcvtpq_u16_v:
8893  case NEON::BI__builtin_neon_vcvtpq_u32_v:
8894  case NEON::BI__builtin_neon_vcvtp_s64_v:
8895  case NEON::BI__builtin_neon_vcvtpq_s64_v:
8896  case NEON::BI__builtin_neon_vcvtp_u64_v:
8897  case NEON::BI__builtin_neon_vcvtpq_u64_v: {
8898    Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
8899    llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8900    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
8901  }
8902  case NEON::BI__builtin_neon_vmulx_v:
8903  case NEON::BI__builtin_neon_vmulxq_v: {
8904    Int = Intrinsic::aarch64_neon_fmulx;
8905    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
8906  }
8907  case NEON::BI__builtin_neon_vmulxh_lane_f16:
8908  case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
8909    // vmulx_lane should be mapped to Neon scalar mulx after
8910    // extracting the scalar element
8911    Ops.push_back(EmitScalarExpr(E->getArg(2)));
8912    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8913    Ops.pop_back();
8914    Int = Intrinsic::aarch64_neon_fmulx;
8915    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
8916  }
8917  case NEON::BI__builtin_neon_vmul_lane_v:
8918  case NEON::BI__builtin_neon_vmul_laneq_v: {
8919    // v1f64 vmul_lane should be mapped to Neon scalar mul lane
8920    bool Quad = false;
8921    if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
8922      Quad = true;
8923    Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8924    llvm::Type *VTy = GetNeonType(this,
8925      NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
8926    Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
8927    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8928    Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
8929    return Builder.CreateBitCast(Result, Ty);
8930  }
8931  case NEON::BI__builtin_neon_vnegd_s64:
8932    return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
8933  case NEON::BI__builtin_neon_vnegh_f16:
8934    return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
8935  case NEON::BI__builtin_neon_vpmaxnm_v:
8936  case NEON::BI__builtin_neon_vpmaxnmq_v: {
8937    Int = Intrinsic::aarch64_neon_fmaxnmp;
8938    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
8939  }
8940  case NEON::BI__builtin_neon_vpminnm_v:
8941  case NEON::BI__builtin_neon_vpminnmq_v: {
8942    Int = Intrinsic::aarch64_neon_fminnmp;
8943    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
8944  }
8945  case NEON::BI__builtin_neon_vsqrth_f16: {
8946    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8947    Int = Intrinsic::sqrt;
8948    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
8949  }
8950  case NEON::BI__builtin_neon_vsqrt_v:
8951  case NEON::BI__builtin_neon_vsqrtq_v: {
8952    Int = Intrinsic::sqrt;
8953    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8954    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
8955  }
8956  case NEON::BI__builtin_neon_vrbit_v:
8957  case NEON::BI__builtin_neon_vrbitq_v: {
8958    Int = Intrinsic::aarch64_neon_rbit;
8959    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
8960  }
8961  case NEON::BI__builtin_neon_vaddv_u8:
8962    // FIXME: These are handled by the AArch64 scalar code.
8963    usgn = true;
8964    LLVM_FALLTHROUGH;
8965  case NEON::BI__builtin_neon_vaddv_s8: {
8966    Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8967    Ty = Int32Ty;
8968    VTy = llvm::VectorType::get(Int8Ty, 8);
8969    llvm::Type *Tys[2] = { Ty, VTy };
8970    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8971    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8972    return Builder.CreateTrunc(Ops[0], Int8Ty);
8973  }
8974  case NEON::BI__builtin_neon_vaddv_u16:
8975    usgn = true;
8976    LLVM_FALLTHROUGH;
8977  case NEON::BI__builtin_neon_vaddv_s16: {
8978    Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8979    Ty = Int32Ty;
8980    VTy = llvm::VectorType::get(Int16Ty, 4);
8981    llvm::Type *Tys[2] = { Ty, VTy };
8982    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8983    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8984    return Builder.CreateTrunc(Ops[0], Int16Ty);
8985  }
8986  case NEON::BI__builtin_neon_vaddvq_u8:
8987    usgn = true;
8988    LLVM_FALLTHROUGH;
8989  case NEON::BI__builtin_neon_vaddvq_s8: {
8990    Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8991    Ty = Int32Ty;
8992    VTy = llvm::VectorType::get(Int8Ty, 16);
8993    llvm::Type *Tys[2] = { Ty, VTy };
8994    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8995    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8996    return Builder.CreateTrunc(Ops[0], Int8Ty);
8997  }
8998  case NEON::BI__builtin_neon_vaddvq_u16:
8999    usgn = true;
9000    LLVM_FALLTHROUGH;
9001  case NEON::BI__builtin_neon_vaddvq_s16: {
9002    Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
9003    Ty = Int32Ty;
9004    VTy = llvm::VectorType::get(Int16Ty, 8);
9005    llvm::Type *Tys[2] = { Ty, VTy };
9006    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9007    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
9008    return Builder.CreateTrunc(Ops[0], Int16Ty);
9009  }
9010  case NEON::BI__builtin_neon_vmaxv_u8: {
9011    Int = Intrinsic::aarch64_neon_umaxv;
9012    Ty = Int32Ty;
9013    VTy = llvm::VectorType::get(Int8Ty, 8);
9014    llvm::Type *Tys[2] = { Ty, VTy };
9015    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9016    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
9017    return Builder.CreateTrunc(Ops[0], Int8Ty);
9018  }
9019  case NEON::BI__builtin_neon_vmaxv_u16: {
9020    Int = Intrinsic::aarch64_neon_umaxv;
9021    Ty = Int32Ty;
9022    VTy = llvm::VectorType::get(Int16Ty, 4);
9023    llvm::Type *Tys[2] = { Ty, VTy };
9024    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9025    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
9026    return Builder.CreateTrunc(Ops[0], Int16Ty);
9027  }
9028  case NEON::BI__builtin_neon_vmaxvq_u8: {
9029    Int = Intrinsic::aarch64_neon_umaxv;
9030    Ty = Int32Ty;
9031    VTy = llvm::VectorType::get(Int8Ty, 16);
9032    llvm::Type *Tys[2] = { Ty, VTy };
9033    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9034    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
9035    return Builder.CreateTrunc(Ops[0], Int8Ty);
9036  }
9037  case NEON::BI__builtin_neon_vmaxvq_u16: {
9038    Int = Intrinsic::aarch64_neon_umaxv;
9039    Ty = Int32Ty;
9040    VTy = llvm::VectorType::get(Int16Ty, 8);
9041    llvm::Type *Tys[2] = { Ty, VTy };
9042    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9043    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
9044    return Builder.CreateTrunc(Ops[0], Int16Ty);
9045  }
9046  case NEON::BI__builtin_neon_vmaxv_s8: {
9047    Int = Intrinsic::aarch64_neon_smaxv;
9048    Ty = Int32Ty;
9049    VTy = llvm::VectorType::get(Int8Ty, 8);
9050    llvm::Type *Tys[2] = { Ty, VTy };
9051    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9052    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
9053    return Builder.CreateTrunc(Ops[0], Int8Ty);
9054  }
9055  case NEON::BI__builtin_neon_vmaxv_s16: {
9056    Int = Intrinsic::aarch64_neon_smaxv;
9057    Ty = Int32Ty;
9058    VTy = llvm::VectorType::get(Int16Ty, 4);
9059    llvm::Type *Tys[2] = { Ty, VTy };
9060    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9061    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
9062    return Builder.CreateTrunc(Ops[0], Int16Ty);
9063  }
9064  case NEON::BI__builtin_neon_vmaxvq_s8: {
9065    Int = Intrinsic::aarch64_neon_smaxv;
9066    Ty = Int32Ty;
9067    VTy = llvm::VectorType::get(Int8Ty, 16);
9068    llvm::Type *Tys[2] = { Ty, VTy };
9069    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9070    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
9071    return Builder.CreateTrunc(Ops[0], Int8Ty);
9072  }
9073  case NEON::BI__builtin_neon_vmaxvq_s16: {
9074    Int = Intrinsic::aarch64_neon_smaxv;
9075    Ty = Int32Ty;
9076    VTy = llvm::VectorType::get(Int16Ty, 8);
9077    llvm::Type *Tys[2] = { Ty, VTy };
9078    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9079    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
9080    return Builder.CreateTrunc(Ops[0], Int16Ty);
9081  }
9082  case NEON::BI__builtin_neon_vmaxv_f16: {
9083    Int = Intrinsic::aarch64_neon_fmaxv;
9084    Ty = HalfTy;
9085    VTy = llvm::VectorType::get(HalfTy, 4);
9086    llvm::Type *Tys[2] = { Ty, VTy };
9087    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9088    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
9089    return Builder.CreateTrunc(Ops[0], HalfTy);
9090  }
9091  case NEON::BI__builtin_neon_vmaxvq_f16: {
9092    Int = Intrinsic::aarch64_neon_fmaxv;
9093    Ty = HalfTy;
9094    VTy = llvm::VectorType::get(HalfTy, 8);
9095    llvm::Type *Tys[2] = { Ty, VTy };
9096    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9097    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
9098    return Builder.CreateTrunc(Ops[0], HalfTy);
9099  }
9100  case NEON::BI__builtin_neon_vminv_u8: {
9101    Int = Intrinsic::aarch64_neon_uminv;
9102    Ty = Int32Ty;
9103    VTy = llvm::VectorType::get(Int8Ty, 8);
9104    llvm::Type *Tys[2] = { Ty, VTy };
9105    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9106    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
9107    return Builder.CreateTrunc(Ops[0], Int8Ty);
9108  }
9109  case NEON::BI__builtin_neon_vminv_u16: {
9110    Int = Intrinsic::aarch64_neon_uminv;
9111    Ty = Int32Ty;
9112    VTy = llvm::VectorType::get(Int16Ty, 4);
9113    llvm::Type *Tys[2] = { Ty, VTy };
9114    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9115    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
9116    return Builder.CreateTrunc(Ops[0], Int16Ty);
9117  }
9118  case NEON::BI__builtin_neon_vminvq_u8: {
9119    Int = Intrinsic::aarch64_neon_uminv;
9120    Ty = Int32Ty;
9121    VTy = llvm::VectorType::get(Int8Ty, 16);
9122    llvm::Type *Tys[2] = { Ty, VTy };
9123    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9124    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
9125    return Builder.CreateTrunc(Ops[0], Int8Ty);
9126  }
9127  case NEON::BI__builtin_neon_vminvq_u16: {
9128    Int = Intrinsic::aarch64_neon_uminv;
9129    Ty = Int32Ty;
9130    VTy = llvm::VectorType::get(Int16Ty, 8);
9131    llvm::Type *Tys[2] = { Ty, VTy };
9132    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9133    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
9134    return Builder.CreateTrunc(Ops[0], Int16Ty);
9135  }
9136  case NEON::BI__builtin_neon_vminv_s8: {
9137    Int = Intrinsic::aarch64_neon_sminv;
9138    Ty = Int32Ty;
9139    VTy = llvm::VectorType::get(Int8Ty, 8);
9140    llvm::Type *Tys[2] = { Ty, VTy };
9141    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9142    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
9143    return Builder.CreateTrunc(Ops[0], Int8Ty);
9144  }
9145  case NEON::BI__builtin_neon_vminv_s16: {
9146    Int = Intrinsic::aarch64_neon_sminv;
9147    Ty = Int32Ty;
9148    VTy = llvm::VectorType::get(Int16Ty, 4);
9149    llvm::Type *Tys[2] = { Ty, VTy };
9150    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9151    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
9152    return Builder.CreateTrunc(Ops[0], Int16Ty);
9153  }
9154  case NEON::BI__builtin_neon_vminvq_s8: {
9155    Int = Intrinsic::aarch64_neon_sminv;
9156    Ty = Int32Ty;
9157    VTy = llvm::VectorType::get(Int8Ty, 16);
9158    llvm::Type *Tys[2] = { Ty, VTy };
9159    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9160    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
9161    return Builder.CreateTrunc(Ops[0], Int8Ty);
9162  }
9163  case NEON::BI__builtin_neon_vminvq_s16: {
9164    Int = Intrinsic::aarch64_neon_sminv;
9165    Ty = Int32Ty;
9166    VTy = llvm::VectorType::get(Int16Ty, 8);
9167    llvm::Type *Tys[2] = { Ty, VTy };
9168    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9169    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
9170    return Builder.CreateTrunc(Ops[0], Int16Ty);
9171  }
9172  case NEON::BI__builtin_neon_vminv_f16: {
9173    Int = Intrinsic::aarch64_neon_fminv;
9174    Ty = HalfTy;
9175    VTy = llvm::VectorType::get(HalfTy, 4);
9176    llvm::Type *Tys[2] = { Ty, VTy };
9177    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9178    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
9179    return Builder.CreateTrunc(Ops[0], HalfTy);
9180  }
9181  case NEON::BI__builtin_neon_vminvq_f16: {
9182    Int = Intrinsic::aarch64_neon_fminv;
9183    Ty = HalfTy;
9184    VTy = llvm::VectorType::get(HalfTy, 8);
9185    llvm::Type *Tys[2] = { Ty, VTy };
9186    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9187    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
9188    return Builder.CreateTrunc(Ops[0], HalfTy);
9189  }
9190  case NEON::BI__builtin_neon_vmaxnmv_f16: {
9191    Int = Intrinsic::aarch64_neon_fmaxnmv;
9192    Ty = HalfTy;
9193    VTy = llvm::VectorType::get(HalfTy, 4);
9194    llvm::Type *Tys[2] = { Ty, VTy };
9195    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9196    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
9197    return Builder.CreateTrunc(Ops[0], HalfTy);
9198  }
9199  case NEON::BI__builtin_neon_vmaxnmvq_f16: {
9200    Int = Intrinsic::aarch64_neon_fmaxnmv;
9201    Ty = HalfTy;
9202    VTy = llvm::VectorType::get(HalfTy, 8);
9203    llvm::Type *Tys[2] = { Ty, VTy };
9204    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9205    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
9206    return Builder.CreateTrunc(Ops[0], HalfTy);
9207  }
9208  case NEON::BI__builtin_neon_vminnmv_f16: {
9209    Int = Intrinsic::aarch64_neon_fminnmv;
9210    Ty = HalfTy;
9211    VTy = llvm::VectorType::get(HalfTy, 4);
9212    llvm::Type *Tys[2] = { Ty, VTy };
9213    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9214    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
9215    return Builder.CreateTrunc(Ops[0], HalfTy);
9216  }
9217  case NEON::BI__builtin_neon_vminnmvq_f16: {
9218    Int = Intrinsic::aarch64_neon_fminnmv;
9219    Ty = HalfTy;
9220    VTy = llvm::VectorType::get(HalfTy, 8);
9221    llvm::Type *Tys[2] = { Ty, VTy };
9222    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9223    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
9224    return Builder.CreateTrunc(Ops[0], HalfTy);
9225  }
9226  case NEON::BI__builtin_neon_vmul_n_f64: {
9227    Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9228    Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
9229    return Builder.CreateFMul(Ops[0], RHS);
9230  }
9231  case NEON::BI__builtin_neon_vaddlv_u8: {
9232    Int = Intrinsic::aarch64_neon_uaddlv;
9233    Ty = Int32Ty;
9234    VTy = llvm::VectorType::get(Int8Ty, 8);
9235    llvm::Type *Tys[2] = { Ty, VTy };
9236    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9237    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9238    return Builder.CreateTrunc(Ops[0], Int16Ty);
9239  }
9240  case NEON::BI__builtin_neon_vaddlv_u16: {
9241    Int = Intrinsic::aarch64_neon_uaddlv;
9242    Ty = Int32Ty;
9243    VTy = llvm::VectorType::get(Int16Ty, 4);
9244    llvm::Type *Tys[2] = { Ty, VTy };
9245    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9246    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9247  }
9248  case NEON::BI__builtin_neon_vaddlvq_u8: {
9249    Int = Intrinsic::aarch64_neon_uaddlv;
9250    Ty = Int32Ty;
9251    VTy = llvm::VectorType::get(Int8Ty, 16);
9252    llvm::Type *Tys[2] = { Ty, VTy };
9253    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9254    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9255    return Builder.CreateTrunc(Ops[0], Int16Ty);
9256  }
9257  case NEON::BI__builtin_neon_vaddlvq_u16: {
9258    Int = Intrinsic::aarch64_neon_uaddlv;
9259    Ty = Int32Ty;
9260    VTy = llvm::VectorType::get(Int16Ty, 8);
9261    llvm::Type *Tys[2] = { Ty, VTy };
9262    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9263    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9264  }
9265  case NEON::BI__builtin_neon_vaddlv_s8: {
9266    Int = Intrinsic::aarch64_neon_saddlv;
9267    Ty = Int32Ty;
9268    VTy = llvm::VectorType::get(Int8Ty, 8);
9269    llvm::Type *Tys[2] = { Ty, VTy };
9270    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9271    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9272    return Builder.CreateTrunc(Ops[0], Int16Ty);
9273  }
9274  case NEON::BI__builtin_neon_vaddlv_s16: {
9275    Int = Intrinsic::aarch64_neon_saddlv;
9276    Ty = Int32Ty;
9277    VTy = llvm::VectorType::get(Int16Ty, 4);
9278    llvm::Type *Tys[2] = { Ty, VTy };
9279    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9280    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9281  }
9282  case NEON::BI__builtin_neon_vaddlvq_s8: {
9283    Int = Intrinsic::aarch64_neon_saddlv;
9284    Ty = Int32Ty;
9285    VTy = llvm::VectorType::get(Int8Ty, 16);
9286    llvm::Type *Tys[2] = { Ty, VTy };
9287    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9288    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9289    return Builder.CreateTrunc(Ops[0], Int16Ty);
9290  }
9291  case NEON::BI__builtin_neon_vaddlvq_s16: {
9292    Int = Intrinsic::aarch64_neon_saddlv;
9293    Ty = Int32Ty;
9294    VTy = llvm::VectorType::get(Int16Ty, 8);
9295    llvm::Type *Tys[2] = { Ty, VTy };
9296    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9297    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9298  }
9299  case NEON::BI__builtin_neon_vsri_n_v:
9300  case NEON::BI__builtin_neon_vsriq_n_v: {
9301    Int = Intrinsic::aarch64_neon_vsri;
9302    llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
9303    return EmitNeonCall(Intrin, Ops, "vsri_n");
9304  }
9305  case NEON::BI__builtin_neon_vsli_n_v:
9306  case NEON::BI__builtin_neon_vsliq_n_v: {
9307    Int = Intrinsic::aarch64_neon_vsli;
9308    llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
9309    return EmitNeonCall(Intrin, Ops, "vsli_n");
9310  }
9311  case NEON::BI__builtin_neon_vsra_n_v:
9312  case NEON::BI__builtin_neon_vsraq_n_v:
9313    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9314    Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
9315    return Builder.CreateAdd(Ops[0], Ops[1]);
9316  case NEON::BI__builtin_neon_vrsra_n_v:
9317  case NEON::BI__builtin_neon_vrsraq_n_v: {
9318    Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
9319    SmallVector<llvm::Value*,2> TmpOps;
9320    TmpOps.push_back(Ops[1]);
9321    TmpOps.push_back(Ops[2]);
9322    Function* F = CGM.getIntrinsic(Int, Ty);
9323    llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
9324    Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
9325    return Builder.CreateAdd(Ops[0], tmp);
9326  }
9327  case NEON::BI__builtin_neon_vld1_v:
9328  case NEON::BI__builtin_neon_vld1q_v: {
9329    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
9330    auto Alignment = CharUnits::fromQuantity(
9331        BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
9332    return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
9333  }
9334  case NEON::BI__builtin_neon_vst1_v:
9335  case NEON::BI__builtin_neon_vst1q_v:
9336    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
9337    Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
9338    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9339  case NEON::BI__builtin_neon_vld1_lane_v:
9340  case NEON::BI__builtin_neon_vld1q_lane_v: {
9341    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9342    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
9343    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9344    auto Alignment = CharUnits::fromQuantity(
9345        BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
9346    Ops[0] =
9347        Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
9348    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
9349  }
9350  case NEON::BI__builtin_neon_vld1_dup_v:
9351  case NEON::BI__builtin_neon_vld1q_dup_v: {
9352    Value *V = UndefValue::get(Ty);
9353    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
9354    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9355    auto Alignment = CharUnits::fromQuantity(
9356        BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
9357    Ops[0] =
9358        Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
9359    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
9360    Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
9361    return EmitNeonSplat(Ops[0], CI);
9362  }
9363  case NEON::BI__builtin_neon_vst1_lane_v:
9364  case NEON::BI__builtin_neon_vst1q_lane_v:
9365    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9366    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
9367    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9368    return Builder.CreateDefaultAlignedStore(Ops[1],
9369                                             Builder.CreateBitCast(Ops[0], Ty));
9370  case NEON::BI__builtin_neon_vld2_v:
9371  case NEON::BI__builtin_neon_vld2q_v: {
9372    llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
9373    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9374    llvm::Type *Tys[2] = { VTy, PTy };
9375    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
9376    Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
9377    Ops[0] = Builder.CreateBitCast(Ops[0],
9378                llvm::PointerType::getUnqual(Ops[1]->getType()));
9379    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9380  }
9381  case NEON::BI__builtin_neon_vld3_v:
9382  case NEON::BI__builtin_neon_vld3q_v: {
9383    llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
9384    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9385    llvm::Type *Tys[2] = { VTy, PTy };
9386    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
9387    Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
9388    Ops[0] = Builder.CreateBitCast(Ops[0],
9389                llvm::PointerType::getUnqual(Ops[1]->getType()));
9390    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9391  }
9392  case NEON::BI__builtin_neon_vld4_v:
9393  case NEON::BI__builtin_neon_vld4q_v: {
9394    llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
9395    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9396    llvm::Type *Tys[2] = { VTy, PTy };
9397    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
9398    Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
9399    Ops[0] = Builder.CreateBitCast(Ops[0],
9400                llvm::PointerType::getUnqual(Ops[1]->getType()));
9401    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9402  }
9403  case NEON::BI__builtin_neon_vld2_dup_v:
9404  case NEON::BI__builtin_neon_vld2q_dup_v: {
9405    llvm::Type *PTy =
9406      llvm::PointerType::getUnqual(VTy->getElementType());
9407    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9408    llvm::Type *Tys[2] = { VTy, PTy };
9409    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
9410    Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
9411    Ops[0] = Builder.CreateBitCast(Ops[0],
9412                llvm::PointerType::getUnqual(Ops[1]->getType()));
9413    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9414  }
9415  case NEON::BI__builtin_neon_vld3_dup_v:
9416  case NEON::BI__builtin_neon_vld3q_dup_v: {
9417    llvm::Type *PTy =
9418      llvm::PointerType::getUnqual(VTy->getElementType());
9419    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9420    llvm::Type *Tys[2] = { VTy, PTy };
9421    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
9422    Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
9423    Ops[0] = Builder.CreateBitCast(Ops[0],
9424                llvm::PointerType::getUnqual(Ops[1]->getType()));
9425    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9426  }
9427  case NEON::BI__builtin_neon_vld4_dup_v:
9428  case NEON::BI__builtin_neon_vld4q_dup_v: {
9429    llvm::Type *PTy =
9430      llvm::PointerType::getUnqual(VTy->getElementType());
9431    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9432    llvm::Type *Tys[2] = { VTy, PTy };
9433    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
9434    Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
9435    Ops[0] = Builder.CreateBitCast(Ops[0],
9436                llvm::PointerType::getUnqual(Ops[1]->getType()));
9437    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9438  }
9439  case NEON::BI__builtin_neon_vld2_lane_v:
9440  case NEON::BI__builtin_neon_vld2q_lane_v: {
9441    llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
9442    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
9443    Ops.push_back(Ops[1]);
9444    Ops.erase(Ops.begin()+1);
9445    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9446    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9447    Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
9448    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
9449    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9450    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9451    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9452  }
9453  case NEON::BI__builtin_neon_vld3_lane_v:
9454  case NEON::BI__builtin_neon_vld3q_lane_v: {
9455    llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
9456    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
9457    Ops.push_back(Ops[1]);
9458    Ops.erase(Ops.begin()+1);
9459    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9460    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9461    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
9462    Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
9463    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
9464    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9465    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9466    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9467  }
9468  case NEON::BI__builtin_neon_vld4_lane_v:
9469  case NEON::BI__builtin_neon_vld4q_lane_v: {
9470    llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
9471    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
9472    Ops.push_back(Ops[1]);
9473    Ops.erase(Ops.begin()+1);
9474    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9475    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9476    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
9477    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
9478    Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
9479    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
9480    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9481    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9482    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9483  }
9484  case NEON::BI__builtin_neon_vst2_v:
9485  case NEON::BI__builtin_neon_vst2q_v: {
9486    Ops.push_back(Ops[0]);
9487    Ops.erase(Ops.begin());
9488    llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
9489    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
9490                        Ops, "");
9491  }
9492  case NEON::BI__builtin_neon_vst2_lane_v:
9493  case NEON::BI__builtin_neon_vst2q_lane_v: {
9494    Ops.push_back(Ops[0]);
9495    Ops.erase(Ops.begin());
9496    Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
9497    llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
9498    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
9499                        Ops, "");
9500  }
9501  case NEON::BI__builtin_neon_vst3_v:
9502  case NEON::BI__builtin_neon_vst3q_v: {
9503    Ops.push_back(Ops[0]);
9504    Ops.erase(Ops.begin());
9505    llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
9506    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
9507                        Ops, "");
9508  }
9509  case NEON::BI__builtin_neon_vst3_lane_v:
9510  case NEON::BI__builtin_neon_vst3q_lane_v: {
9511    Ops.push_back(Ops[0]);
9512    Ops.erase(Ops.begin());
9513    Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
9514    llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
9515    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
9516                        Ops, "");
9517  }
9518  case NEON::BI__builtin_neon_vst4_v:
9519  case NEON::BI__builtin_neon_vst4q_v: {
9520    Ops.push_back(Ops[0]);
9521    Ops.erase(Ops.begin());
9522    llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
9523    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
9524                        Ops, "");
9525  }
9526  case NEON::BI__builtin_neon_vst4_lane_v:
9527  case NEON::BI__builtin_neon_vst4q_lane_v: {
9528    Ops.push_back(Ops[0]);
9529    Ops.erase(Ops.begin());
9530    Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
9531    llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
9532    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
9533                        Ops, "");
9534  }
9535  case NEON::BI__builtin_neon_vtrn_v:
9536  case NEON::BI__builtin_neon_vtrnq_v: {
9537    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9538    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9539    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9540    Value *SV = nullptr;
9541
9542    for (unsigned vi = 0; vi != 2; ++vi) {
9543      SmallVector<uint32_t, 16> Indices;
9544      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
9545        Indices.push_back(i+vi);
9546        Indices.push_back(i+e+vi);
9547      }
9548      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9549      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
9550      SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9551    }
9552    return SV;
9553  }
9554  case NEON::BI__builtin_neon_vuzp_v:
9555  case NEON::BI__builtin_neon_vuzpq_v: {
9556    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9557    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9558    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9559    Value *SV = nullptr;
9560
9561    for (unsigned vi = 0; vi != 2; ++vi) {
9562      SmallVector<uint32_t, 16> Indices;
9563      for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
9564        Indices.push_back(2*i+vi);
9565
9566      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9567      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
9568      SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9569    }
9570    return SV;
9571  }
9572  case NEON::BI__builtin_neon_vzip_v:
9573  case NEON::BI__builtin_neon_vzipq_v: {
9574    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9575    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9576    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9577    Value *SV = nullptr;
9578
9579    for (unsigned vi = 0; vi != 2; ++vi) {
9580      SmallVector<uint32_t, 16> Indices;
9581      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
9582        Indices.push_back((i + vi*e) >> 1);
9583        Indices.push_back(((i + vi*e) >> 1)+e);
9584      }
9585      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9586      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
9587      SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9588    }
9589    return SV;
9590  }
9591  case NEON::BI__builtin_neon_vqtbl1q_v: {
9592    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
9593                        Ops, "vtbl1");
9594  }
9595  case NEON::BI__builtin_neon_vqtbl2q_v: {
9596    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
9597                        Ops, "vtbl2");
9598  }
9599  case NEON::BI__builtin_neon_vqtbl3q_v: {
9600    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
9601                        Ops, "vtbl3");
9602  }
9603  case NEON::BI__builtin_neon_vqtbl4q_v: {
9604    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
9605                        Ops, "vtbl4");
9606  }
9607  case NEON::BI__builtin_neon_vqtbx1q_v: {
9608    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
9609                        Ops, "vtbx1");
9610  }
9611  case NEON::BI__builtin_neon_vqtbx2q_v: {
9612    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
9613                        Ops, "vtbx2");
9614  }
9615  case NEON::BI__builtin_neon_vqtbx3q_v: {
9616    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
9617                        Ops, "vtbx3");
9618  }
9619  case NEON::BI__builtin_neon_vqtbx4q_v: {
9620    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
9621                        Ops, "vtbx4");
9622  }
9623  case NEON::BI__builtin_neon_vsqadd_v:
9624  case NEON::BI__builtin_neon_vsqaddq_v: {
9625    Int = Intrinsic::aarch64_neon_usqadd;
9626    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
9627  }
9628  case NEON::BI__builtin_neon_vuqadd_v:
9629  case NEON::BI__builtin_neon_vuqaddq_v: {
9630    Int = Intrinsic::aarch64_neon_suqadd;
9631    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
9632  }
9633  }
9634}
9635
9636Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
9637                                           const CallExpr *E) {
9638  assert(BuiltinID == BPF::BI__builtin_preserve_field_info &&
9639         "unexpected ARM builtin");
9640
9641  const Expr *Arg = E->getArg(0);
9642  bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
9643
9644  if (!getDebugInfo()) {
9645    CGM.Error(E->getExprLoc(), "using builtin_preserve_field_info() without -g");
9646    return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
9647                      : EmitLValue(Arg).getPointer(*this);
9648  }
9649
9650  // Enable underlying preserve_*_access_index() generation.
9651  bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
9652  IsInPreservedAIRegion = true;
9653  Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
9654                                : EmitLValue(Arg).getPointer(*this);
9655  IsInPreservedAIRegion = OldIsInPreservedAIRegion;
9656
9657  ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9658  Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
9659
9660  // Built the IR for the preserve_field_info intrinsic.
9661  llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
9662      &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
9663      {FieldAddr->getType()});
9664  return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
9665}
9666
9667llvm::Value *CodeGenFunction::
9668BuildVector(ArrayRef<llvm::Value*> Ops) {
9669  assert((Ops.size() & (Ops.size() - 1)) == 0 &&
9670         "Not a power-of-two sized vector!");
9671  bool AllConstants = true;
9672  for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
9673    AllConstants &= isa<Constant>(Ops[i]);
9674
9675  // If this is a constant vector, create a ConstantVector.
9676  if (AllConstants) {
9677    SmallVector<llvm::Constant*, 16> CstOps;
9678    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9679      CstOps.push_back(cast<Constant>(Ops[i]));
9680    return llvm::ConstantVector::get(CstOps);
9681  }
9682
9683  // Otherwise, insertelement the values to build the vector.
9684  Value *Result =
9685    llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
9686
9687  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9688    Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
9689
9690  return Result;
9691}
9692
9693// Convert the mask from an integer type to a vector of i1.
9694static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
9695                              unsigned NumElts) {
9696
9697  llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9698                         cast<IntegerType>(Mask->getType())->getBitWidth());
9699  Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
9700
9701  // If we have less than 8 elements, then the starting mask was an i8 and
9702  // we need to extract down to the right number of elements.
9703  if (NumElts < 8) {
9704    uint32_t Indices[4];
9705    for (unsigned i = 0; i != NumElts; ++i)
9706      Indices[i] = i;
9707    MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
9708                                             makeArrayRef(Indices, NumElts),
9709                                             "extract");
9710  }
9711  return MaskVec;
9712}
9713
9714static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
9715                                 ArrayRef<Value *> Ops,
9716                                 unsigned Align) {
9717  // Cast the pointer to right type.
9718  Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9719                               llvm::PointerType::getUnqual(Ops[1]->getType()));
9720
9721  Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9722                                   Ops[1]->getType()->getVectorNumElements());
9723
9724  return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec);
9725}
9726
9727static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
9728                                ArrayRef<Value *> Ops, unsigned Align) {
9729  // Cast the pointer to right type.
9730  Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9731                               llvm::PointerType::getUnqual(Ops[1]->getType()));
9732
9733  Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9734                                   Ops[1]->getType()->getVectorNumElements());
9735
9736  return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]);
9737}
9738
9739static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
9740                                ArrayRef<Value *> Ops) {
9741  llvm::Type *ResultTy = Ops[1]->getType();
9742  llvm::Type *PtrTy = ResultTy->getVectorElementType();
9743
9744  // Cast the pointer to element type.
9745  Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9746                                         llvm::PointerType::getUnqual(PtrTy));
9747
9748  Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9749                                   ResultTy->getVectorNumElements());
9750
9751  llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
9752                                           ResultTy);
9753  return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
9754}
9755
9756static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
9757                                    ArrayRef<Value *> Ops,
9758                                    bool IsCompress) {
9759  llvm::Type *ResultTy = Ops[1]->getType();
9760
9761  Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9762                                   ResultTy->getVectorNumElements());
9763
9764  Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
9765                                 : Intrinsic::x86_avx512_mask_expand;
9766  llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
9767  return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
9768}
9769
9770static Value *EmitX86CompressStore(CodeGenFunction &CGF,
9771                                   ArrayRef<Value *> Ops) {
9772  llvm::Type *ResultTy = Ops[1]->getType();
9773  llvm::Type *PtrTy = ResultTy->getVectorElementType();
9774
9775  // Cast the pointer to element type.
9776  Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9777                                         llvm::PointerType::getUnqual(PtrTy));
9778
9779  Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9780                                   ResultTy->getVectorNumElements());
9781
9782  llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
9783                                           ResultTy);
9784  return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
9785}
9786
9787static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
9788                              ArrayRef<Value *> Ops,
9789                              bool InvertLHS = false) {
9790  unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
9791  Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
9792  Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
9793
9794  if (InvertLHS)
9795    LHS = CGF.Builder.CreateNot(LHS);
9796
9797  return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
9798                                   Ops[0]->getType());
9799}
9800
9801static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
9802                                 Value *Amt, bool IsRight) {
9803  llvm::Type *Ty = Op0->getType();
9804
9805  // Amount may be scalar immediate, in which case create a splat vector.
9806  // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
9807  // we only care about the lowest log2 bits anyway.
9808  if (Amt->getType() != Ty) {
9809    unsigned NumElts = Ty->getVectorNumElements();
9810    Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
9811    Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
9812  }
9813
9814  unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
9815  Function *F = CGF.CGM.getIntrinsic(IID, Ty);
9816  return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
9817}
9818
9819static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9820                           bool IsSigned) {
9821  Value *Op0 = Ops[0];
9822  Value *Op1 = Ops[1];
9823  llvm::Type *Ty = Op0->getType();
9824  uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
9825
9826  CmpInst::Predicate Pred;
9827  switch (Imm) {
9828  case 0x0:
9829    Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
9830    break;
9831  case 0x1:
9832    Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9833    break;
9834  case 0x2:
9835    Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
9836    break;
9837  case 0x3:
9838    Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
9839    break;
9840  case 0x4:
9841    Pred = ICmpInst::ICMP_EQ;
9842    break;
9843  case 0x5:
9844    Pred = ICmpInst::ICMP_NE;
9845    break;
9846  case 0x6:
9847    return llvm::Constant::getNullValue(Ty); // FALSE
9848  case 0x7:
9849    return llvm::Constant::getAllOnesValue(Ty); // TRUE
9850  default:
9851    llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
9852  }
9853
9854  Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
9855  Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
9856  return Res;
9857}
9858
9859static Value *EmitX86Select(CodeGenFunction &CGF,
9860                            Value *Mask, Value *Op0, Value *Op1) {
9861
9862  // If the mask is all ones just return first argument.
9863  if (const auto *C = dyn_cast<Constant>(Mask))
9864    if (C->isAllOnesValue())
9865      return Op0;
9866
9867  Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
9868
9869  return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9870}
9871
9872static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
9873                                  Value *Mask, Value *Op0, Value *Op1) {
9874  // If the mask is all ones just return first argument.
9875  if (const auto *C = dyn_cast<Constant>(Mask))
9876    if (C->isAllOnesValue())
9877      return Op0;
9878
9879  llvm::VectorType *MaskTy =
9880    llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9881                          Mask->getType()->getIntegerBitWidth());
9882  Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
9883  Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
9884  return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9885}
9886
9887static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
9888                                         unsigned NumElts, Value *MaskIn) {
9889  if (MaskIn) {
9890    const auto *C = dyn_cast<Constant>(MaskIn);
9891    if (!C || !C->isAllOnesValue())
9892      Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
9893  }
9894
9895  if (NumElts < 8) {
9896    uint32_t Indices[8];
9897    for (unsigned i = 0; i != NumElts; ++i)
9898      Indices[i] = i;
9899    for (unsigned i = NumElts; i != 8; ++i)
9900      Indices[i] = i % NumElts + NumElts;
9901    Cmp = CGF.Builder.CreateShuffleVector(
9902        Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
9903  }
9904
9905  return CGF.Builder.CreateBitCast(Cmp,
9906                                   IntegerType::get(CGF.getLLVMContext(),
9907                                                    std::max(NumElts, 8U)));
9908}
9909
9910static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
9911                                   bool Signed, ArrayRef<Value *> Ops) {
9912  assert((Ops.size() == 2 || Ops.size() == 4) &&
9913         "Unexpected number of arguments");
9914  unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
9915  Value *Cmp;
9916
9917  if (CC == 3) {
9918    Cmp = Constant::getNullValue(
9919                       llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9920  } else if (CC == 7) {
9921    Cmp = Constant::getAllOnesValue(
9922                       llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9923  } else {
9924    ICmpInst::Predicate Pred;
9925    switch (CC) {
9926    default: llvm_unreachable("Unknown condition code");
9927    case 0: Pred = ICmpInst::ICMP_EQ;  break;
9928    case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
9929    case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
9930    case 4: Pred = ICmpInst::ICMP_NE;  break;
9931    case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
9932    case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
9933    }
9934    Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9935  }
9936
9937  Value *MaskIn = nullptr;
9938  if (Ops.size() == 4)
9939    MaskIn = Ops[3];
9940
9941  return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
9942}
9943
9944static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
9945  Value *Zero = Constant::getNullValue(In->getType());
9946  return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
9947}
9948
9949static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
9950                                    ArrayRef<Value *> Ops, bool IsSigned) {
9951  unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
9952  llvm::Type *Ty = Ops[1]->getType();
9953
9954  Value *Res;
9955  if (Rnd != 4) {
9956    Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
9957                                 : Intrinsic::x86_avx512_uitofp_round;
9958    Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
9959    Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
9960  } else {
9961    Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
9962                   : CGF.Builder.CreateUIToFP(Ops[0], Ty);
9963  }
9964
9965  return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
9966}
9967
9968static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
9969
9970  llvm::Type *Ty = Ops[0]->getType();
9971  Value *Zero = llvm::Constant::getNullValue(Ty);
9972  Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
9973  Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
9974  Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
9975  return Res;
9976}
9977
9978static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
9979                            ArrayRef<Value *> Ops) {
9980  Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9981  Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
9982
9983  assert(Ops.size() == 2);
9984  return Res;
9985}
9986
9987// Lowers X86 FMA intrinsics to IR.
9988static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9989                             unsigned BuiltinID, bool IsAddSub) {
9990
9991  bool Subtract = false;
9992  Intrinsic::ID IID = Intrinsic::not_intrinsic;
9993  switch (BuiltinID) {
9994  default: break;
9995  case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9996    Subtract = true;
9997    LLVM_FALLTHROUGH;
9998  case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9999  case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
10000  case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
10001    IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
10002  case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
10003    Subtract = true;
10004    LLVM_FALLTHROUGH;
10005  case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
10006  case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
10007  case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
10008    IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
10009  case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
10010    Subtract = true;
10011    LLVM_FALLTHROUGH;
10012  case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
10013  case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
10014  case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
10015    IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
10016    break;
10017  case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
10018    Subtract = true;
10019    LLVM_FALLTHROUGH;
10020  case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
10021  case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
10022  case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
10023    IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
10024    break;
10025  }
10026
10027  Value *A = Ops[0];
10028  Value *B = Ops[1];
10029  Value *C = Ops[2];
10030
10031  if (Subtract)
10032    C = CGF.Builder.CreateFNeg(C);
10033
10034  Value *Res;
10035
10036  // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
10037  if (IID != Intrinsic::not_intrinsic &&
10038      cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) {
10039    Function *Intr = CGF.CGM.getIntrinsic(IID);
10040    Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
10041  } else {
10042    llvm::Type *Ty = A->getType();
10043    Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
10044    Res = CGF.Builder.CreateCall(FMA, {A, B, C} );
10045
10046    if (IsAddSub) {
10047      // Negate even elts in C using a mask.
10048      unsigned NumElts = Ty->getVectorNumElements();
10049      SmallVector<uint32_t, 16> Indices(NumElts);
10050      for (unsigned i = 0; i != NumElts; ++i)
10051        Indices[i] = i + (i % 2) * NumElts;
10052
10053      Value *NegC = CGF.Builder.CreateFNeg(C);
10054      Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} );
10055      Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices);
10056    }
10057  }
10058
10059  // Handle any required masking.
10060  Value *MaskFalseVal = nullptr;
10061  switch (BuiltinID) {
10062  case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
10063  case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
10064  case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
10065  case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
10066    MaskFalseVal = Ops[0];
10067    break;
10068  case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
10069  case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
10070  case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
10071  case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
10072    MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
10073    break;
10074  case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
10075  case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
10076  case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
10077  case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
10078  case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
10079  case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
10080  case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
10081  case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
10082    MaskFalseVal = Ops[2];
10083    break;
10084  }
10085
10086  if (MaskFalseVal)
10087    return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
10088
10089  return Res;
10090}
10091
10092static Value *
10093EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
10094                  Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
10095                  bool NegAcc = false) {
10096  unsigned Rnd = 4;
10097  if (Ops.size() > 4)
10098    Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
10099
10100  if (NegAcc)
10101    Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
10102
10103  Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
10104  Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
10105  Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
10106  Value *Res;
10107  if (Rnd != 4) {
10108    Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
10109                        Intrinsic::x86_avx512_vfmadd_f32 :
10110                        Intrinsic::x86_avx512_vfmadd_f64;
10111    Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
10112                                 {Ops[0], Ops[1], Ops[2], Ops[4]});
10113  } else {
10114    Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
10115    Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
10116  }
10117  // If we have more than 3 arguments, we need to do masking.
10118  if (Ops.size() > 3) {
10119    Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
10120                               : Ops[PTIdx];
10121
10122    // If we negated the accumulator and the its the PassThru value we need to
10123    // bypass the negate. Conveniently Upper should be the same thing in this
10124    // case.
10125    if (NegAcc && PTIdx == 2)
10126      PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
10127
10128    Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
10129  }
10130  return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
10131}
10132
10133static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
10134                           ArrayRef<Value *> Ops) {
10135  llvm::Type *Ty = Ops[0]->getType();
10136  // Arguments have a vXi32 type so cast to vXi64.
10137  Ty = llvm::VectorType::get(CGF.Int64Ty,
10138                             Ty->getPrimitiveSizeInBits() / 64);
10139  Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
10140  Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
10141
10142  if (IsSigned) {
10143    // Shift left then arithmetic shift right.
10144    Constant *ShiftAmt = ConstantInt::get(Ty, 32);
10145    LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
10146    LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
10147    RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
10148    RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
10149  } else {
10150    // Clear the upper bits.
10151    Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
10152    LHS = CGF.Builder.CreateAnd(LHS, Mask);
10153    RHS = CGF.Builder.CreateAnd(RHS, Mask);
10154  }
10155
10156  return CGF.Builder.CreateMul(LHS, RHS);
10157}
10158
10159// Emit a masked pternlog intrinsic. This only exists because the header has to
10160// use a macro and we aren't able to pass the input argument to a pternlog
10161// builtin and a select builtin without evaluating it twice.
10162static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
10163                             ArrayRef<Value *> Ops) {
10164  llvm::Type *Ty = Ops[0]->getType();
10165
10166  unsigned VecWidth = Ty->getPrimitiveSizeInBits();
10167  unsigned EltWidth = Ty->getScalarSizeInBits();
10168  Intrinsic::ID IID;
10169  if (VecWidth == 128 && EltWidth == 32)
10170    IID = Intrinsic::x86_avx512_pternlog_d_128;
10171  else if (VecWidth == 256 && EltWidth == 32)
10172    IID = Intrinsic::x86_avx512_pternlog_d_256;
10173  else if (VecWidth == 512 && EltWidth == 32)
10174    IID = Intrinsic::x86_avx512_pternlog_d_512;
10175  else if (VecWidth == 128 && EltWidth == 64)
10176    IID = Intrinsic::x86_avx512_pternlog_q_128;
10177  else if (VecWidth == 256 && EltWidth == 64)
10178    IID = Intrinsic::x86_avx512_pternlog_q_256;
10179  else if (VecWidth == 512 && EltWidth == 64)
10180    IID = Intrinsic::x86_avx512_pternlog_q_512;
10181  else
10182    llvm_unreachable("Unexpected intrinsic");
10183
10184  Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
10185                                          Ops.drop_back());
10186  Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
10187  return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
10188}
10189
10190static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
10191                              llvm::Type *DstTy) {
10192  unsigned NumberOfElements = DstTy->getVectorNumElements();
10193  Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
10194  return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
10195}
10196
10197// Emit addition or subtraction with signed/unsigned saturation.
10198static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF,
10199                                   ArrayRef<Value *> Ops, bool IsSigned,
10200                                   bool IsAddition) {
10201  Intrinsic::ID IID =
10202      IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat)
10203               : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat);
10204  llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
10205  return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
10206}
10207
10208Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
10209  const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
10210  StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
10211  return EmitX86CpuIs(CPUStr);
10212}
10213
10214// Convert a BF16 to a float.
10215static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
10216                                        const CallExpr *E,
10217                                        ArrayRef<Value *> Ops) {
10218  llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
10219  Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
10220  Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
10221  llvm::Type *ResultType = CGF.ConvertType(E->getType());
10222  Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
10223  return BitCast;
10224}
10225
10226Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
10227
10228  llvm::Type *Int32Ty = Builder.getInt32Ty();
10229
10230  // Matching the struct layout from the compiler-rt/libgcc structure that is
10231  // filled in:
10232  // unsigned int __cpu_vendor;
10233  // unsigned int __cpu_type;
10234  // unsigned int __cpu_subtype;
10235  // unsigned int __cpu_features[1];
10236  llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
10237                                          llvm::ArrayType::get(Int32Ty, 1));
10238
10239  // Grab the global __cpu_model.
10240  llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
10241  cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
10242
10243  // Calculate the index needed to access the correct field based on the
10244  // range. Also adjust the expected value.
10245  unsigned Index;
10246  unsigned Value;
10247  std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
10248#define X86_VENDOR(ENUM, STRING)                                               \
10249  .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
10250#define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS)             \
10251  .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
10252#define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR)                               \
10253  .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
10254#define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR)                            \
10255  .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
10256#include "llvm/Support/X86TargetParser.def"
10257                               .Default({0, 0});
10258  assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
10259
10260  // Grab the appropriate field from __cpu_model.
10261  llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
10262                         ConstantInt::get(Int32Ty, Index)};
10263  llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
10264  CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
10265
10266  // Check the value of the field against the requested value.
10267  return Builder.CreateICmpEQ(CpuValue,
10268                                  llvm::ConstantInt::get(Int32Ty, Value));
10269}
10270
10271Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
10272  const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
10273  StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
10274  return EmitX86CpuSupports(FeatureStr);
10275}
10276
10277uint64_t
10278CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
10279  // Processor features and mapping to processor feature value.
10280  uint64_t FeaturesMask = 0;
10281  for (const StringRef &FeatureStr : FeatureStrs) {
10282    unsigned Feature =
10283        StringSwitch<unsigned>(FeatureStr)
10284#define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL)
10285#include "llvm/Support/X86TargetParser.def"
10286        ;
10287    FeaturesMask |= (1ULL << Feature);
10288  }
10289  return FeaturesMask;
10290}
10291
10292Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
10293  return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
10294}
10295
10296llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
10297  uint32_t Features1 = Lo_32(FeaturesMask);
10298  uint32_t Features2 = Hi_32(FeaturesMask);
10299
10300  Value *Result = Builder.getTrue();
10301
10302  if (Features1 != 0) {
10303    // Matching the struct layout from the compiler-rt/libgcc structure that is
10304    // filled in:
10305    // unsigned int __cpu_vendor;
10306    // unsigned int __cpu_type;
10307    // unsigned int __cpu_subtype;
10308    // unsigned int __cpu_features[1];
10309    llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
10310                                            llvm::ArrayType::get(Int32Ty, 1));
10311
10312    // Grab the global __cpu_model.
10313    llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
10314    cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
10315
10316    // Grab the first (0th) element from the field __cpu_features off of the
10317    // global in the struct STy.
10318    Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
10319                     Builder.getInt32(0)};
10320    Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
10321    Value *Features =
10322        Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
10323
10324    // Check the value of the bit corresponding to the feature requested.
10325    Value *Mask = Builder.getInt32(Features1);
10326    Value *Bitset = Builder.CreateAnd(Features, Mask);
10327    Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
10328    Result = Builder.CreateAnd(Result, Cmp);
10329  }
10330
10331  if (Features2 != 0) {
10332    llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
10333                                                             "__cpu_features2");
10334    cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
10335
10336    Value *Features =
10337        Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
10338
10339    // Check the value of the bit corresponding to the feature requested.
10340    Value *Mask = Builder.getInt32(Features2);
10341    Value *Bitset = Builder.CreateAnd(Features, Mask);
10342    Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
10343    Result = Builder.CreateAnd(Result, Cmp);
10344  }
10345
10346  return Result;
10347}
10348
10349Value *CodeGenFunction::EmitX86CpuInit() {
10350  llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
10351                                                    /*Variadic*/ false);
10352  llvm::FunctionCallee Func =
10353      CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
10354  cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
10355  cast<llvm::GlobalValue>(Func.getCallee())
10356      ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
10357  return Builder.CreateCall(Func);
10358}
10359
10360Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
10361                                           const CallExpr *E) {
10362  if (BuiltinID == X86::BI__builtin_cpu_is)
10363    return EmitX86CpuIs(E);
10364  if (BuiltinID == X86::BI__builtin_cpu_supports)
10365    return EmitX86CpuSupports(E);
10366  if (BuiltinID == X86::BI__builtin_cpu_init)
10367    return EmitX86CpuInit();
10368
10369  SmallVector<Value*, 4> Ops;
10370
10371  // Find out if any arguments are required to be integer constant expressions.
10372  unsigned ICEArguments = 0;
10373  ASTContext::GetBuiltinTypeError Error;
10374  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10375  assert(Error == ASTContext::GE_None && "Should not codegen an error");
10376
10377  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
10378    // If this is a normal argument, just emit it as a scalar.
10379    if ((ICEArguments & (1 << i)) == 0) {
10380      Ops.push_back(EmitScalarExpr(E->getArg(i)));
10381      continue;
10382    }
10383
10384    // If this is required to be a constant, constant fold it so that we know
10385    // that the generated intrinsic gets a ConstantInt.
10386    llvm::APSInt Result;
10387    bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
10388    assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
10389    Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
10390  }
10391
10392  // These exist so that the builtin that takes an immediate can be bounds
10393  // checked by clang to avoid passing bad immediates to the backend. Since
10394  // AVX has a larger immediate than SSE we would need separate builtins to
10395  // do the different bounds checking. Rather than create a clang specific
10396  // SSE only builtin, this implements eight separate builtins to match gcc
10397  // implementation.
10398  auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
10399    Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
10400    llvm::Function *F = CGM.getIntrinsic(ID);
10401    return Builder.CreateCall(F, Ops);
10402  };
10403
10404  // For the vector forms of FP comparisons, translate the builtins directly to
10405  // IR.
10406  // TODO: The builtins could be removed if the SSE header files used vector
10407  // extension comparisons directly (vector ordered/unordered may need
10408  // additional support via __builtin_isnan()).
10409  auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
10410    Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
10411    llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
10412    llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
10413    Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
10414    return Builder.CreateBitCast(Sext, FPVecTy);
10415  };
10416
10417  switch (BuiltinID) {
10418  default: return nullptr;
10419  case X86::BI_mm_prefetch: {
10420    Value *Address = Ops[0];
10421    ConstantInt *C = cast<ConstantInt>(Ops[1]);
10422    Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
10423    Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
10424    Value *Data = ConstantInt::get(Int32Ty, 1);
10425    Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
10426    return Builder.CreateCall(F, {Address, RW, Locality, Data});
10427  }
10428  case X86::BI_mm_clflush: {
10429    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
10430                              Ops[0]);
10431  }
10432  case X86::BI_mm_lfence: {
10433    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
10434  }
10435  case X86::BI_mm_mfence: {
10436    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
10437  }
10438  case X86::BI_mm_sfence: {
10439    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
10440  }
10441  case X86::BI_mm_pause: {
10442    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
10443  }
10444  case X86::BI__rdtsc: {
10445    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
10446  }
10447  case X86::BI__builtin_ia32_rdtscp: {
10448    Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
10449    Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
10450                                      Ops[0]);
10451    return Builder.CreateExtractValue(Call, 0);
10452  }
10453  case X86::BI__builtin_ia32_lzcnt_u16:
10454  case X86::BI__builtin_ia32_lzcnt_u32:
10455  case X86::BI__builtin_ia32_lzcnt_u64: {
10456    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
10457    return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
10458  }
10459  case X86::BI__builtin_ia32_tzcnt_u16:
10460  case X86::BI__builtin_ia32_tzcnt_u32:
10461  case X86::BI__builtin_ia32_tzcnt_u64: {
10462    Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
10463    return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
10464  }
10465  case X86::BI__builtin_ia32_undef128:
10466  case X86::BI__builtin_ia32_undef256:
10467  case X86::BI__builtin_ia32_undef512:
10468    // The x86 definition of "undef" is not the same as the LLVM definition
10469    // (PR32176). We leave optimizing away an unnecessary zero constant to the
10470    // IR optimizer and backend.
10471    // TODO: If we had a "freeze" IR instruction to generate a fixed undef
10472    // value, we should use that here instead of a zero.
10473    return llvm::Constant::getNullValue(ConvertType(E->getType()));
10474  case X86::BI__builtin_ia32_vec_init_v8qi:
10475  case X86::BI__builtin_ia32_vec_init_v4hi:
10476  case X86::BI__builtin_ia32_vec_init_v2si:
10477    return Builder.CreateBitCast(BuildVector(Ops),
10478                                 llvm::Type::getX86_MMXTy(getLLVMContext()));
10479  case X86::BI__builtin_ia32_vec_ext_v2si:
10480  case X86::BI__builtin_ia32_vec_ext_v16qi:
10481  case X86::BI__builtin_ia32_vec_ext_v8hi:
10482  case X86::BI__builtin_ia32_vec_ext_v4si:
10483  case X86::BI__builtin_ia32_vec_ext_v4sf:
10484  case X86::BI__builtin_ia32_vec_ext_v2di:
10485  case X86::BI__builtin_ia32_vec_ext_v32qi:
10486  case X86::BI__builtin_ia32_vec_ext_v16hi:
10487  case X86::BI__builtin_ia32_vec_ext_v8si:
10488  case X86::BI__builtin_ia32_vec_ext_v4di: {
10489    unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10490    uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
10491    Index &= NumElts - 1;
10492    // These builtins exist so we can ensure the index is an ICE and in range.
10493    // Otherwise we could just do this in the header file.
10494    return Builder.CreateExtractElement(Ops[0], Index);
10495  }
10496  case X86::BI__builtin_ia32_vec_set_v16qi:
10497  case X86::BI__builtin_ia32_vec_set_v8hi:
10498  case X86::BI__builtin_ia32_vec_set_v4si:
10499  case X86::BI__builtin_ia32_vec_set_v2di:
10500  case X86::BI__builtin_ia32_vec_set_v32qi:
10501  case X86::BI__builtin_ia32_vec_set_v16hi:
10502  case X86::BI__builtin_ia32_vec_set_v8si:
10503  case X86::BI__builtin_ia32_vec_set_v4di: {
10504    unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10505    unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
10506    Index &= NumElts - 1;
10507    // These builtins exist so we can ensure the index is an ICE and in range.
10508    // Otherwise we could just do this in the header file.
10509    return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
10510  }
10511  case X86::BI_mm_setcsr:
10512  case X86::BI__builtin_ia32_ldmxcsr: {
10513    Address Tmp = CreateMemTemp(E->getArg(0)->getType());
10514    Builder.CreateStore(Ops[0], Tmp);
10515    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
10516                          Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
10517  }
10518  case X86::BI_mm_getcsr:
10519  case X86::BI__builtin_ia32_stmxcsr: {
10520    Address Tmp = CreateMemTemp(E->getType());
10521    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
10522                       Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
10523    return Builder.CreateLoad(Tmp, "stmxcsr");
10524  }
10525  case X86::BI__builtin_ia32_xsave:
10526  case X86::BI__builtin_ia32_xsave64:
10527  case X86::BI__builtin_ia32_xrstor:
10528  case X86::BI__builtin_ia32_xrstor64:
10529  case X86::BI__builtin_ia32_xsaveopt:
10530  case X86::BI__builtin_ia32_xsaveopt64:
10531  case X86::BI__builtin_ia32_xrstors:
10532  case X86::BI__builtin_ia32_xrstors64:
10533  case X86::BI__builtin_ia32_xsavec:
10534  case X86::BI__builtin_ia32_xsavec64:
10535  case X86::BI__builtin_ia32_xsaves:
10536  case X86::BI__builtin_ia32_xsaves64:
10537  case X86::BI__builtin_ia32_xsetbv:
10538  case X86::BI_xsetbv: {
10539    Intrinsic::ID ID;
10540#define INTRINSIC_X86_XSAVE_ID(NAME) \
10541    case X86::BI__builtin_ia32_##NAME: \
10542      ID = Intrinsic::x86_##NAME; \
10543      break
10544    switch (BuiltinID) {
10545    default: llvm_unreachable("Unsupported intrinsic!");
10546    INTRINSIC_X86_XSAVE_ID(xsave);
10547    INTRINSIC_X86_XSAVE_ID(xsave64);
10548    INTRINSIC_X86_XSAVE_ID(xrstor);
10549    INTRINSIC_X86_XSAVE_ID(xrstor64);
10550    INTRINSIC_X86_XSAVE_ID(xsaveopt);
10551    INTRINSIC_X86_XSAVE_ID(xsaveopt64);
10552    INTRINSIC_X86_XSAVE_ID(xrstors);
10553    INTRINSIC_X86_XSAVE_ID(xrstors64);
10554    INTRINSIC_X86_XSAVE_ID(xsavec);
10555    INTRINSIC_X86_XSAVE_ID(xsavec64);
10556    INTRINSIC_X86_XSAVE_ID(xsaves);
10557    INTRINSIC_X86_XSAVE_ID(xsaves64);
10558    INTRINSIC_X86_XSAVE_ID(xsetbv);
10559    case X86::BI_xsetbv:
10560      ID = Intrinsic::x86_xsetbv;
10561      break;
10562    }
10563#undef INTRINSIC_X86_XSAVE_ID
10564    Value *Mhi = Builder.CreateTrunc(
10565      Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
10566    Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
10567    Ops[1] = Mhi;
10568    Ops.push_back(Mlo);
10569    return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
10570  }
10571  case X86::BI__builtin_ia32_xgetbv:
10572  case X86::BI_xgetbv:
10573    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
10574  case X86::BI__builtin_ia32_storedqudi128_mask:
10575  case X86::BI__builtin_ia32_storedqusi128_mask:
10576  case X86::BI__builtin_ia32_storedquhi128_mask:
10577  case X86::BI__builtin_ia32_storedquqi128_mask:
10578  case X86::BI__builtin_ia32_storeupd128_mask:
10579  case X86::BI__builtin_ia32_storeups128_mask:
10580  case X86::BI__builtin_ia32_storedqudi256_mask:
10581  case X86::BI__builtin_ia32_storedqusi256_mask:
10582  case X86::BI__builtin_ia32_storedquhi256_mask:
10583  case X86::BI__builtin_ia32_storedquqi256_mask:
10584  case X86::BI__builtin_ia32_storeupd256_mask:
10585  case X86::BI__builtin_ia32_storeups256_mask:
10586  case X86::BI__builtin_ia32_storedqudi512_mask:
10587  case X86::BI__builtin_ia32_storedqusi512_mask:
10588  case X86::BI__builtin_ia32_storedquhi512_mask:
10589  case X86::BI__builtin_ia32_storedquqi512_mask:
10590  case X86::BI__builtin_ia32_storeupd512_mask:
10591  case X86::BI__builtin_ia32_storeups512_mask:
10592    return EmitX86MaskedStore(*this, Ops, 1);
10593
10594  case X86::BI__builtin_ia32_storess128_mask:
10595  case X86::BI__builtin_ia32_storesd128_mask: {
10596    return EmitX86MaskedStore(*this, Ops, 1);
10597  }
10598  case X86::BI__builtin_ia32_vpopcntb_128:
10599  case X86::BI__builtin_ia32_vpopcntd_128:
10600  case X86::BI__builtin_ia32_vpopcntq_128:
10601  case X86::BI__builtin_ia32_vpopcntw_128:
10602  case X86::BI__builtin_ia32_vpopcntb_256:
10603  case X86::BI__builtin_ia32_vpopcntd_256:
10604  case X86::BI__builtin_ia32_vpopcntq_256:
10605  case X86::BI__builtin_ia32_vpopcntw_256:
10606  case X86::BI__builtin_ia32_vpopcntb_512:
10607  case X86::BI__builtin_ia32_vpopcntd_512:
10608  case X86::BI__builtin_ia32_vpopcntq_512:
10609  case X86::BI__builtin_ia32_vpopcntw_512: {
10610    llvm::Type *ResultType = ConvertType(E->getType());
10611    llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
10612    return Builder.CreateCall(F, Ops);
10613  }
10614  case X86::BI__builtin_ia32_cvtmask2b128:
10615  case X86::BI__builtin_ia32_cvtmask2b256:
10616  case X86::BI__builtin_ia32_cvtmask2b512:
10617  case X86::BI__builtin_ia32_cvtmask2w128:
10618  case X86::BI__builtin_ia32_cvtmask2w256:
10619  case X86::BI__builtin_ia32_cvtmask2w512:
10620  case X86::BI__builtin_ia32_cvtmask2d128:
10621  case X86::BI__builtin_ia32_cvtmask2d256:
10622  case X86::BI__builtin_ia32_cvtmask2d512:
10623  case X86::BI__builtin_ia32_cvtmask2q128:
10624  case X86::BI__builtin_ia32_cvtmask2q256:
10625  case X86::BI__builtin_ia32_cvtmask2q512:
10626    return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
10627
10628  case X86::BI__builtin_ia32_cvtb2mask128:
10629  case X86::BI__builtin_ia32_cvtb2mask256:
10630  case X86::BI__builtin_ia32_cvtb2mask512:
10631  case X86::BI__builtin_ia32_cvtw2mask128:
10632  case X86::BI__builtin_ia32_cvtw2mask256:
10633  case X86::BI__builtin_ia32_cvtw2mask512:
10634  case X86::BI__builtin_ia32_cvtd2mask128:
10635  case X86::BI__builtin_ia32_cvtd2mask256:
10636  case X86::BI__builtin_ia32_cvtd2mask512:
10637  case X86::BI__builtin_ia32_cvtq2mask128:
10638  case X86::BI__builtin_ia32_cvtq2mask256:
10639  case X86::BI__builtin_ia32_cvtq2mask512:
10640    return EmitX86ConvertToMask(*this, Ops[0]);
10641
10642  case X86::BI__builtin_ia32_cvtdq2ps512_mask:
10643  case X86::BI__builtin_ia32_cvtqq2ps512_mask:
10644  case X86::BI__builtin_ia32_cvtqq2pd512_mask:
10645    return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
10646  case X86::BI__builtin_ia32_cvtudq2ps512_mask:
10647  case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
10648  case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
10649    return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
10650
10651  case X86::BI__builtin_ia32_vfmaddss3:
10652  case X86::BI__builtin_ia32_vfmaddsd3:
10653  case X86::BI__builtin_ia32_vfmaddss3_mask:
10654  case X86::BI__builtin_ia32_vfmaddsd3_mask:
10655    return EmitScalarFMAExpr(*this, Ops, Ops[0]);
10656  case X86::BI__builtin_ia32_vfmaddss:
10657  case X86::BI__builtin_ia32_vfmaddsd:
10658    return EmitScalarFMAExpr(*this, Ops,
10659                             Constant::getNullValue(Ops[0]->getType()));
10660  case X86::BI__builtin_ia32_vfmaddss3_maskz:
10661  case X86::BI__builtin_ia32_vfmaddsd3_maskz:
10662    return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
10663  case X86::BI__builtin_ia32_vfmaddss3_mask3:
10664  case X86::BI__builtin_ia32_vfmaddsd3_mask3:
10665    return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
10666  case X86::BI__builtin_ia32_vfmsubss3_mask3:
10667  case X86::BI__builtin_ia32_vfmsubsd3_mask3:
10668    return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
10669                             /*NegAcc*/true);
10670  case X86::BI__builtin_ia32_vfmaddps:
10671  case X86::BI__builtin_ia32_vfmaddpd:
10672  case X86::BI__builtin_ia32_vfmaddps256:
10673  case X86::BI__builtin_ia32_vfmaddpd256:
10674  case X86::BI__builtin_ia32_vfmaddps512_mask:
10675  case X86::BI__builtin_ia32_vfmaddps512_maskz:
10676  case X86::BI__builtin_ia32_vfmaddps512_mask3:
10677  case X86::BI__builtin_ia32_vfmsubps512_mask3:
10678  case X86::BI__builtin_ia32_vfmaddpd512_mask:
10679  case X86::BI__builtin_ia32_vfmaddpd512_maskz:
10680  case X86::BI__builtin_ia32_vfmaddpd512_mask3:
10681  case X86::BI__builtin_ia32_vfmsubpd512_mask3:
10682    return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
10683  case X86::BI__builtin_ia32_vfmaddsubps:
10684  case X86::BI__builtin_ia32_vfmaddsubpd:
10685  case X86::BI__builtin_ia32_vfmaddsubps256:
10686  case X86::BI__builtin_ia32_vfmaddsubpd256:
10687  case X86::BI__builtin_ia32_vfmaddsubps512_mask:
10688  case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
10689  case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
10690  case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
10691  case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
10692  case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
10693  case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
10694  case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
10695    return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
10696
10697  case X86::BI__builtin_ia32_movdqa32store128_mask:
10698  case X86::BI__builtin_ia32_movdqa64store128_mask:
10699  case X86::BI__builtin_ia32_storeaps128_mask:
10700  case X86::BI__builtin_ia32_storeapd128_mask:
10701  case X86::BI__builtin_ia32_movdqa32store256_mask:
10702  case X86::BI__builtin_ia32_movdqa64store256_mask:
10703  case X86::BI__builtin_ia32_storeaps256_mask:
10704  case X86::BI__builtin_ia32_storeapd256_mask:
10705  case X86::BI__builtin_ia32_movdqa32store512_mask:
10706  case X86::BI__builtin_ia32_movdqa64store512_mask:
10707  case X86::BI__builtin_ia32_storeaps512_mask:
10708  case X86::BI__builtin_ia32_storeapd512_mask: {
10709    unsigned Align =
10710      getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10711    return EmitX86MaskedStore(*this, Ops, Align);
10712  }
10713  case X86::BI__builtin_ia32_loadups128_mask:
10714  case X86::BI__builtin_ia32_loadups256_mask:
10715  case X86::BI__builtin_ia32_loadups512_mask:
10716  case X86::BI__builtin_ia32_loadupd128_mask:
10717  case X86::BI__builtin_ia32_loadupd256_mask:
10718  case X86::BI__builtin_ia32_loadupd512_mask:
10719  case X86::BI__builtin_ia32_loaddquqi128_mask:
10720  case X86::BI__builtin_ia32_loaddquqi256_mask:
10721  case X86::BI__builtin_ia32_loaddquqi512_mask:
10722  case X86::BI__builtin_ia32_loaddquhi128_mask:
10723  case X86::BI__builtin_ia32_loaddquhi256_mask:
10724  case X86::BI__builtin_ia32_loaddquhi512_mask:
10725  case X86::BI__builtin_ia32_loaddqusi128_mask:
10726  case X86::BI__builtin_ia32_loaddqusi256_mask:
10727  case X86::BI__builtin_ia32_loaddqusi512_mask:
10728  case X86::BI__builtin_ia32_loaddqudi128_mask:
10729  case X86::BI__builtin_ia32_loaddqudi256_mask:
10730  case X86::BI__builtin_ia32_loaddqudi512_mask:
10731    return EmitX86MaskedLoad(*this, Ops, 1);
10732
10733  case X86::BI__builtin_ia32_loadss128_mask:
10734  case X86::BI__builtin_ia32_loadsd128_mask:
10735    return EmitX86MaskedLoad(*this, Ops, 1);
10736
10737  case X86::BI__builtin_ia32_loadaps128_mask:
10738  case X86::BI__builtin_ia32_loadaps256_mask:
10739  case X86::BI__builtin_ia32_loadaps512_mask:
10740  case X86::BI__builtin_ia32_loadapd128_mask:
10741  case X86::BI__builtin_ia32_loadapd256_mask:
10742  case X86::BI__builtin_ia32_loadapd512_mask:
10743  case X86::BI__builtin_ia32_movdqa32load128_mask:
10744  case X86::BI__builtin_ia32_movdqa32load256_mask:
10745  case X86::BI__builtin_ia32_movdqa32load512_mask:
10746  case X86::BI__builtin_ia32_movdqa64load128_mask:
10747  case X86::BI__builtin_ia32_movdqa64load256_mask:
10748  case X86::BI__builtin_ia32_movdqa64load512_mask: {
10749    unsigned Align =
10750      getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10751    return EmitX86MaskedLoad(*this, Ops, Align);
10752  }
10753
10754  case X86::BI__builtin_ia32_expandloaddf128_mask:
10755  case X86::BI__builtin_ia32_expandloaddf256_mask:
10756  case X86::BI__builtin_ia32_expandloaddf512_mask:
10757  case X86::BI__builtin_ia32_expandloadsf128_mask:
10758  case X86::BI__builtin_ia32_expandloadsf256_mask:
10759  case X86::BI__builtin_ia32_expandloadsf512_mask:
10760  case X86::BI__builtin_ia32_expandloaddi128_mask:
10761  case X86::BI__builtin_ia32_expandloaddi256_mask:
10762  case X86::BI__builtin_ia32_expandloaddi512_mask:
10763  case X86::BI__builtin_ia32_expandloadsi128_mask:
10764  case X86::BI__builtin_ia32_expandloadsi256_mask:
10765  case X86::BI__builtin_ia32_expandloadsi512_mask:
10766  case X86::BI__builtin_ia32_expandloadhi128_mask:
10767  case X86::BI__builtin_ia32_expandloadhi256_mask:
10768  case X86::BI__builtin_ia32_expandloadhi512_mask:
10769  case X86::BI__builtin_ia32_expandloadqi128_mask:
10770  case X86::BI__builtin_ia32_expandloadqi256_mask:
10771  case X86::BI__builtin_ia32_expandloadqi512_mask:
10772    return EmitX86ExpandLoad(*this, Ops);
10773
10774  case X86::BI__builtin_ia32_compressstoredf128_mask:
10775  case X86::BI__builtin_ia32_compressstoredf256_mask:
10776  case X86::BI__builtin_ia32_compressstoredf512_mask:
10777  case X86::BI__builtin_ia32_compressstoresf128_mask:
10778  case X86::BI__builtin_ia32_compressstoresf256_mask:
10779  case X86::BI__builtin_ia32_compressstoresf512_mask:
10780  case X86::BI__builtin_ia32_compressstoredi128_mask:
10781  case X86::BI__builtin_ia32_compressstoredi256_mask:
10782  case X86::BI__builtin_ia32_compressstoredi512_mask:
10783  case X86::BI__builtin_ia32_compressstoresi128_mask:
10784  case X86::BI__builtin_ia32_compressstoresi256_mask:
10785  case X86::BI__builtin_ia32_compressstoresi512_mask:
10786  case X86::BI__builtin_ia32_compressstorehi128_mask:
10787  case X86::BI__builtin_ia32_compressstorehi256_mask:
10788  case X86::BI__builtin_ia32_compressstorehi512_mask:
10789  case X86::BI__builtin_ia32_compressstoreqi128_mask:
10790  case X86::BI__builtin_ia32_compressstoreqi256_mask:
10791  case X86::BI__builtin_ia32_compressstoreqi512_mask:
10792    return EmitX86CompressStore(*this, Ops);
10793
10794  case X86::BI__builtin_ia32_expanddf128_mask:
10795  case X86::BI__builtin_ia32_expanddf256_mask:
10796  case X86::BI__builtin_ia32_expanddf512_mask:
10797  case X86::BI__builtin_ia32_expandsf128_mask:
10798  case X86::BI__builtin_ia32_expandsf256_mask:
10799  case X86::BI__builtin_ia32_expandsf512_mask:
10800  case X86::BI__builtin_ia32_expanddi128_mask:
10801  case X86::BI__builtin_ia32_expanddi256_mask:
10802  case X86::BI__builtin_ia32_expanddi512_mask:
10803  case X86::BI__builtin_ia32_expandsi128_mask:
10804  case X86::BI__builtin_ia32_expandsi256_mask:
10805  case X86::BI__builtin_ia32_expandsi512_mask:
10806  case X86::BI__builtin_ia32_expandhi128_mask:
10807  case X86::BI__builtin_ia32_expandhi256_mask:
10808  case X86::BI__builtin_ia32_expandhi512_mask:
10809  case X86::BI__builtin_ia32_expandqi128_mask:
10810  case X86::BI__builtin_ia32_expandqi256_mask:
10811  case X86::BI__builtin_ia32_expandqi512_mask:
10812    return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
10813
10814  case X86::BI__builtin_ia32_compressdf128_mask:
10815  case X86::BI__builtin_ia32_compressdf256_mask:
10816  case X86::BI__builtin_ia32_compressdf512_mask:
10817  case X86::BI__builtin_ia32_compresssf128_mask:
10818  case X86::BI__builtin_ia32_compresssf256_mask:
10819  case X86::BI__builtin_ia32_compresssf512_mask:
10820  case X86::BI__builtin_ia32_compressdi128_mask:
10821  case X86::BI__builtin_ia32_compressdi256_mask:
10822  case X86::BI__builtin_ia32_compressdi512_mask:
10823  case X86::BI__builtin_ia32_compresssi128_mask:
10824  case X86::BI__builtin_ia32_compresssi256_mask:
10825  case X86::BI__builtin_ia32_compresssi512_mask:
10826  case X86::BI__builtin_ia32_compresshi128_mask:
10827  case X86::BI__builtin_ia32_compresshi256_mask:
10828  case X86::BI__builtin_ia32_compresshi512_mask:
10829  case X86::BI__builtin_ia32_compressqi128_mask:
10830  case X86::BI__builtin_ia32_compressqi256_mask:
10831  case X86::BI__builtin_ia32_compressqi512_mask:
10832    return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
10833
10834  case X86::BI__builtin_ia32_gather3div2df:
10835  case X86::BI__builtin_ia32_gather3div2di:
10836  case X86::BI__builtin_ia32_gather3div4df:
10837  case X86::BI__builtin_ia32_gather3div4di:
10838  case X86::BI__builtin_ia32_gather3div4sf:
10839  case X86::BI__builtin_ia32_gather3div4si:
10840  case X86::BI__builtin_ia32_gather3div8sf:
10841  case X86::BI__builtin_ia32_gather3div8si:
10842  case X86::BI__builtin_ia32_gather3siv2df:
10843  case X86::BI__builtin_ia32_gather3siv2di:
10844  case X86::BI__builtin_ia32_gather3siv4df:
10845  case X86::BI__builtin_ia32_gather3siv4di:
10846  case X86::BI__builtin_ia32_gather3siv4sf:
10847  case X86::BI__builtin_ia32_gather3siv4si:
10848  case X86::BI__builtin_ia32_gather3siv8sf:
10849  case X86::BI__builtin_ia32_gather3siv8si:
10850  case X86::BI__builtin_ia32_gathersiv8df:
10851  case X86::BI__builtin_ia32_gathersiv16sf:
10852  case X86::BI__builtin_ia32_gatherdiv8df:
10853  case X86::BI__builtin_ia32_gatherdiv16sf:
10854  case X86::BI__builtin_ia32_gathersiv8di:
10855  case X86::BI__builtin_ia32_gathersiv16si:
10856  case X86::BI__builtin_ia32_gatherdiv8di:
10857  case X86::BI__builtin_ia32_gatherdiv16si: {
10858    Intrinsic::ID IID;
10859    switch (BuiltinID) {
10860    default: llvm_unreachable("Unexpected builtin");
10861    case X86::BI__builtin_ia32_gather3div2df:
10862      IID = Intrinsic::x86_avx512_mask_gather3div2_df;
10863      break;
10864    case X86::BI__builtin_ia32_gather3div2di:
10865      IID = Intrinsic::x86_avx512_mask_gather3div2_di;
10866      break;
10867    case X86::BI__builtin_ia32_gather3div4df:
10868      IID = Intrinsic::x86_avx512_mask_gather3div4_df;
10869      break;
10870    case X86::BI__builtin_ia32_gather3div4di:
10871      IID = Intrinsic::x86_avx512_mask_gather3div4_di;
10872      break;
10873    case X86::BI__builtin_ia32_gather3div4sf:
10874      IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
10875      break;
10876    case X86::BI__builtin_ia32_gather3div4si:
10877      IID = Intrinsic::x86_avx512_mask_gather3div4_si;
10878      break;
10879    case X86::BI__builtin_ia32_gather3div8sf:
10880      IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
10881      break;
10882    case X86::BI__builtin_ia32_gather3div8si:
10883      IID = Intrinsic::x86_avx512_mask_gather3div8_si;
10884      break;
10885    case X86::BI__builtin_ia32_gather3siv2df:
10886      IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
10887      break;
10888    case X86::BI__builtin_ia32_gather3siv2di:
10889      IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
10890      break;
10891    case X86::BI__builtin_ia32_gather3siv4df:
10892      IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
10893      break;
10894    case X86::BI__builtin_ia32_gather3siv4di:
10895      IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
10896      break;
10897    case X86::BI__builtin_ia32_gather3siv4sf:
10898      IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
10899      break;
10900    case X86::BI__builtin_ia32_gather3siv4si:
10901      IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
10902      break;
10903    case X86::BI__builtin_ia32_gather3siv8sf:
10904      IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
10905      break;
10906    case X86::BI__builtin_ia32_gather3siv8si:
10907      IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
10908      break;
10909    case X86::BI__builtin_ia32_gathersiv8df:
10910      IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
10911      break;
10912    case X86::BI__builtin_ia32_gathersiv16sf:
10913      IID = Intrinsic::x86_avx512_mask_gather_dps_512;
10914      break;
10915    case X86::BI__builtin_ia32_gatherdiv8df:
10916      IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
10917      break;
10918    case X86::BI__builtin_ia32_gatherdiv16sf:
10919      IID = Intrinsic::x86_avx512_mask_gather_qps_512;
10920      break;
10921    case X86::BI__builtin_ia32_gathersiv8di:
10922      IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
10923      break;
10924    case X86::BI__builtin_ia32_gathersiv16si:
10925      IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
10926      break;
10927    case X86::BI__builtin_ia32_gatherdiv8di:
10928      IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
10929      break;
10930    case X86::BI__builtin_ia32_gatherdiv16si:
10931      IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
10932      break;
10933    }
10934
10935    unsigned MinElts = std::min(Ops[0]->getType()->getVectorNumElements(),
10936                                Ops[2]->getType()->getVectorNumElements());
10937    Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
10938    Function *Intr = CGM.getIntrinsic(IID);
10939    return Builder.CreateCall(Intr, Ops);
10940  }
10941
10942  case X86::BI__builtin_ia32_scattersiv8df:
10943  case X86::BI__builtin_ia32_scattersiv16sf:
10944  case X86::BI__builtin_ia32_scatterdiv8df:
10945  case X86::BI__builtin_ia32_scatterdiv16sf:
10946  case X86::BI__builtin_ia32_scattersiv8di:
10947  case X86::BI__builtin_ia32_scattersiv16si:
10948  case X86::BI__builtin_ia32_scatterdiv8di:
10949  case X86::BI__builtin_ia32_scatterdiv16si:
10950  case X86::BI__builtin_ia32_scatterdiv2df:
10951  case X86::BI__builtin_ia32_scatterdiv2di:
10952  case X86::BI__builtin_ia32_scatterdiv4df:
10953  case X86::BI__builtin_ia32_scatterdiv4di:
10954  case X86::BI__builtin_ia32_scatterdiv4sf:
10955  case X86::BI__builtin_ia32_scatterdiv4si:
10956  case X86::BI__builtin_ia32_scatterdiv8sf:
10957  case X86::BI__builtin_ia32_scatterdiv8si:
10958  case X86::BI__builtin_ia32_scattersiv2df:
10959  case X86::BI__builtin_ia32_scattersiv2di:
10960  case X86::BI__builtin_ia32_scattersiv4df:
10961  case X86::BI__builtin_ia32_scattersiv4di:
10962  case X86::BI__builtin_ia32_scattersiv4sf:
10963  case X86::BI__builtin_ia32_scattersiv4si:
10964  case X86::BI__builtin_ia32_scattersiv8sf:
10965  case X86::BI__builtin_ia32_scattersiv8si: {
10966    Intrinsic::ID IID;
10967    switch (BuiltinID) {
10968    default: llvm_unreachable("Unexpected builtin");
10969    case X86::BI__builtin_ia32_scattersiv8df:
10970      IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
10971      break;
10972    case X86::BI__builtin_ia32_scattersiv16sf:
10973      IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
10974      break;
10975    case X86::BI__builtin_ia32_scatterdiv8df:
10976      IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
10977      break;
10978    case X86::BI__builtin_ia32_scatterdiv16sf:
10979      IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
10980      break;
10981    case X86::BI__builtin_ia32_scattersiv8di:
10982      IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
10983      break;
10984    case X86::BI__builtin_ia32_scattersiv16si:
10985      IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
10986      break;
10987    case X86::BI__builtin_ia32_scatterdiv8di:
10988      IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
10989      break;
10990    case X86::BI__builtin_ia32_scatterdiv16si:
10991      IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
10992      break;
10993    case X86::BI__builtin_ia32_scatterdiv2df:
10994      IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
10995      break;
10996    case X86::BI__builtin_ia32_scatterdiv2di:
10997      IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
10998      break;
10999    case X86::BI__builtin_ia32_scatterdiv4df:
11000      IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
11001      break;
11002    case X86::BI__builtin_ia32_scatterdiv4di:
11003      IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
11004      break;
11005    case X86::BI__builtin_ia32_scatterdiv4sf:
11006      IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
11007      break;
11008    case X86::BI__builtin_ia32_scatterdiv4si:
11009      IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
11010      break;
11011    case X86::BI__builtin_ia32_scatterdiv8sf:
11012      IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
11013      break;
11014    case X86::BI__builtin_ia32_scatterdiv8si:
11015      IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
11016      break;
11017    case X86::BI__builtin_ia32_scattersiv2df:
11018      IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
11019      break;
11020    case X86::BI__builtin_ia32_scattersiv2di:
11021      IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
11022      break;
11023    case X86::BI__builtin_ia32_scattersiv4df:
11024      IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
11025      break;
11026    case X86::BI__builtin_ia32_scattersiv4di:
11027      IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
11028      break;
11029    case X86::BI__builtin_ia32_scattersiv4sf:
11030      IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
11031      break;
11032    case X86::BI__builtin_ia32_scattersiv4si:
11033      IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
11034      break;
11035    case X86::BI__builtin_ia32_scattersiv8sf:
11036      IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
11037      break;
11038    case X86::BI__builtin_ia32_scattersiv8si:
11039      IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
11040      break;
11041    }
11042
11043    unsigned MinElts = std::min(Ops[2]->getType()->getVectorNumElements(),
11044                                Ops[3]->getType()->getVectorNumElements());
11045    Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
11046    Function *Intr = CGM.getIntrinsic(IID);
11047    return Builder.CreateCall(Intr, Ops);
11048  }
11049
11050  case X86::BI__builtin_ia32_vextractf128_pd256:
11051  case X86::BI__builtin_ia32_vextractf128_ps256:
11052  case X86::BI__builtin_ia32_vextractf128_si256:
11053  case X86::BI__builtin_ia32_extract128i256:
11054  case X86::BI__builtin_ia32_extractf64x4_mask:
11055  case X86::BI__builtin_ia32_extractf32x4_mask:
11056  case X86::BI__builtin_ia32_extracti64x4_mask:
11057  case X86::BI__builtin_ia32_extracti32x4_mask:
11058  case X86::BI__builtin_ia32_extractf32x8_mask:
11059  case X86::BI__builtin_ia32_extracti32x8_mask:
11060  case X86::BI__builtin_ia32_extractf32x4_256_mask:
11061  case X86::BI__builtin_ia32_extracti32x4_256_mask:
11062  case X86::BI__builtin_ia32_extractf64x2_256_mask:
11063  case X86::BI__builtin_ia32_extracti64x2_256_mask:
11064  case X86::BI__builtin_ia32_extractf64x2_512_mask:
11065  case X86::BI__builtin_ia32_extracti64x2_512_mask: {
11066    llvm::Type *DstTy = ConvertType(E->getType());
11067    unsigned NumElts = DstTy->getVectorNumElements();
11068    unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements();
11069    unsigned SubVectors = SrcNumElts / NumElts;
11070    unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
11071    assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
11072    Index &= SubVectors - 1; // Remove any extra bits.
11073    Index *= NumElts;
11074
11075    uint32_t Indices[16];
11076    for (unsigned i = 0; i != NumElts; ++i)
11077      Indices[i] = i + Index;
11078
11079    Value *Res = Builder.CreateShuffleVector(Ops[0],
11080                                             UndefValue::get(Ops[0]->getType()),
11081                                             makeArrayRef(Indices, NumElts),
11082                                             "extract");
11083
11084    if (Ops.size() == 4)
11085      Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
11086
11087    return Res;
11088  }
11089  case X86::BI__builtin_ia32_vinsertf128_pd256:
11090  case X86::BI__builtin_ia32_vinsertf128_ps256:
11091  case X86::BI__builtin_ia32_vinsertf128_si256:
11092  case X86::BI__builtin_ia32_insert128i256:
11093  case X86::BI__builtin_ia32_insertf64x4:
11094  case X86::BI__builtin_ia32_insertf32x4:
11095  case X86::BI__builtin_ia32_inserti64x4:
11096  case X86::BI__builtin_ia32_inserti32x4:
11097  case X86::BI__builtin_ia32_insertf32x8:
11098  case X86::BI__builtin_ia32_inserti32x8:
11099  case X86::BI__builtin_ia32_insertf32x4_256:
11100  case X86::BI__builtin_ia32_inserti32x4_256:
11101  case X86::BI__builtin_ia32_insertf64x2_256:
11102  case X86::BI__builtin_ia32_inserti64x2_256:
11103  case X86::BI__builtin_ia32_insertf64x2_512:
11104  case X86::BI__builtin_ia32_inserti64x2_512: {
11105    unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements();
11106    unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements();
11107    unsigned SubVectors = DstNumElts / SrcNumElts;
11108    unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
11109    assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
11110    Index &= SubVectors - 1; // Remove any extra bits.
11111    Index *= SrcNumElts;
11112
11113    uint32_t Indices[16];
11114    for (unsigned i = 0; i != DstNumElts; ++i)
11115      Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
11116
11117    Value *Op1 = Builder.CreateShuffleVector(Ops[1],
11118                                             UndefValue::get(Ops[1]->getType()),
11119                                             makeArrayRef(Indices, DstNumElts),
11120                                             "widen");
11121
11122    for (unsigned i = 0; i != DstNumElts; ++i) {
11123      if (i >= Index && i < (Index + SrcNumElts))
11124        Indices[i] = (i - Index) + DstNumElts;
11125      else
11126        Indices[i] = i;
11127    }
11128
11129    return Builder.CreateShuffleVector(Ops[0], Op1,
11130                                       makeArrayRef(Indices, DstNumElts),
11131                                       "insert");
11132  }
11133  case X86::BI__builtin_ia32_pmovqd512_mask:
11134  case X86::BI__builtin_ia32_pmovwb512_mask: {
11135    Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
11136    return EmitX86Select(*this, Ops[2], Res, Ops[1]);
11137  }
11138  case X86::BI__builtin_ia32_pmovdb512_mask:
11139  case X86::BI__builtin_ia32_pmovdw512_mask:
11140  case X86::BI__builtin_ia32_pmovqw512_mask: {
11141    if (const auto *C = dyn_cast<Constant>(Ops[2]))
11142      if (C->isAllOnesValue())
11143        return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
11144
11145    Intrinsic::ID IID;
11146    switch (BuiltinID) {
11147    default: llvm_unreachable("Unsupported intrinsic!");
11148    case X86::BI__builtin_ia32_pmovdb512_mask:
11149      IID = Intrinsic::x86_avx512_mask_pmov_db_512;
11150      break;
11151    case X86::BI__builtin_ia32_pmovdw512_mask:
11152      IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
11153      break;
11154    case X86::BI__builtin_ia32_pmovqw512_mask:
11155      IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
11156      break;
11157    }
11158
11159    Function *Intr = CGM.getIntrinsic(IID);
11160    return Builder.CreateCall(Intr, Ops);
11161  }
11162  case X86::BI__builtin_ia32_pblendw128:
11163  case X86::BI__builtin_ia32_blendpd:
11164  case X86::BI__builtin_ia32_blendps:
11165  case X86::BI__builtin_ia32_blendpd256:
11166  case X86::BI__builtin_ia32_blendps256:
11167  case X86::BI__builtin_ia32_pblendw256:
11168  case X86::BI__builtin_ia32_pblendd128:
11169  case X86::BI__builtin_ia32_pblendd256: {
11170    unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11171    unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
11172
11173    uint32_t Indices[16];
11174    // If there are more than 8 elements, the immediate is used twice so make
11175    // sure we handle that.
11176    for (unsigned i = 0; i != NumElts; ++i)
11177      Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
11178
11179    return Builder.CreateShuffleVector(Ops[0], Ops[1],
11180                                       makeArrayRef(Indices, NumElts),
11181                                       "blend");
11182  }
11183  case X86::BI__builtin_ia32_pshuflw:
11184  case X86::BI__builtin_ia32_pshuflw256:
11185  case X86::BI__builtin_ia32_pshuflw512: {
11186    uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11187    llvm::Type *Ty = Ops[0]->getType();
11188    unsigned NumElts = Ty->getVectorNumElements();
11189
11190    // Splat the 8-bits of immediate 4 times to help the loop wrap around.
11191    Imm = (Imm & 0xff) * 0x01010101;
11192
11193    uint32_t Indices[32];
11194    for (unsigned l = 0; l != NumElts; l += 8) {
11195      for (unsigned i = 0; i != 4; ++i) {
11196        Indices[l + i] = l + (Imm & 3);
11197        Imm >>= 2;
11198      }
11199      for (unsigned i = 4; i != 8; ++i)
11200        Indices[l + i] = l + i;
11201    }
11202
11203    return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
11204                                       makeArrayRef(Indices, NumElts),
11205                                       "pshuflw");
11206  }
11207  case X86::BI__builtin_ia32_pshufhw:
11208  case X86::BI__builtin_ia32_pshufhw256:
11209  case X86::BI__builtin_ia32_pshufhw512: {
11210    uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11211    llvm::Type *Ty = Ops[0]->getType();
11212    unsigned NumElts = Ty->getVectorNumElements();
11213
11214    // Splat the 8-bits of immediate 4 times to help the loop wrap around.
11215    Imm = (Imm & 0xff) * 0x01010101;
11216
11217    uint32_t Indices[32];
11218    for (unsigned l = 0; l != NumElts; l += 8) {
11219      for (unsigned i = 0; i != 4; ++i)
11220        Indices[l + i] = l + i;
11221      for (unsigned i = 4; i != 8; ++i) {
11222        Indices[l + i] = l + 4 + (Imm & 3);
11223        Imm >>= 2;
11224      }
11225    }
11226
11227    return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
11228                                       makeArrayRef(Indices, NumElts),
11229                                       "pshufhw");
11230  }
11231  case X86::BI__builtin_ia32_pshufd:
11232  case X86::BI__builtin_ia32_pshufd256:
11233  case X86::BI__builtin_ia32_pshufd512:
11234  case X86::BI__builtin_ia32_vpermilpd:
11235  case X86::BI__builtin_ia32_vpermilps:
11236  case X86::BI__builtin_ia32_vpermilpd256:
11237  case X86::BI__builtin_ia32_vpermilps256:
11238  case X86::BI__builtin_ia32_vpermilpd512:
11239  case X86::BI__builtin_ia32_vpermilps512: {
11240    uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11241    llvm::Type *Ty = Ops[0]->getType();
11242    unsigned NumElts = Ty->getVectorNumElements();
11243    unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
11244    unsigned NumLaneElts = NumElts / NumLanes;
11245
11246    // Splat the 8-bits of immediate 4 times to help the loop wrap around.
11247    Imm = (Imm & 0xff) * 0x01010101;
11248
11249    uint32_t Indices[16];
11250    for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
11251      for (unsigned i = 0; i != NumLaneElts; ++i) {
11252        Indices[i + l] = (Imm % NumLaneElts) + l;
11253        Imm /= NumLaneElts;
11254      }
11255    }
11256
11257    return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
11258                                       makeArrayRef(Indices, NumElts),
11259                                       "permil");
11260  }
11261  case X86::BI__builtin_ia32_shufpd:
11262  case X86::BI__builtin_ia32_shufpd256:
11263  case X86::BI__builtin_ia32_shufpd512:
11264  case X86::BI__builtin_ia32_shufps:
11265  case X86::BI__builtin_ia32_shufps256:
11266  case X86::BI__builtin_ia32_shufps512: {
11267    uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
11268    llvm::Type *Ty = Ops[0]->getType();
11269    unsigned NumElts = Ty->getVectorNumElements();
11270    unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
11271    unsigned NumLaneElts = NumElts / NumLanes;
11272
11273    // Splat the 8-bits of immediate 4 times to help the loop wrap around.
11274    Imm = (Imm & 0xff) * 0x01010101;
11275
11276    uint32_t Indices[16];
11277    for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
11278      for (unsigned i = 0; i != NumLaneElts; ++i) {
11279        unsigned Index = Imm % NumLaneElts;
11280        Imm /= NumLaneElts;
11281        if (i >= (NumLaneElts / 2))
11282          Index += NumElts;
11283        Indices[l + i] = l + Index;
11284      }
11285    }
11286
11287    return Builder.CreateShuffleVector(Ops[0], Ops[1],
11288                                       makeArrayRef(Indices, NumElts),
11289                                       "shufp");
11290  }
11291  case X86::BI__builtin_ia32_permdi256:
11292  case X86::BI__builtin_ia32_permdf256:
11293  case X86::BI__builtin_ia32_permdi512:
11294  case X86::BI__builtin_ia32_permdf512: {
11295    unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11296    llvm::Type *Ty = Ops[0]->getType();
11297    unsigned NumElts = Ty->getVectorNumElements();
11298
11299    // These intrinsics operate on 256-bit lanes of four 64-bit elements.
11300    uint32_t Indices[8];
11301    for (unsigned l = 0; l != NumElts; l += 4)
11302      for (unsigned i = 0; i != 4; ++i)
11303        Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
11304
11305    return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
11306                                       makeArrayRef(Indices, NumElts),
11307                                       "perm");
11308  }
11309  case X86::BI__builtin_ia32_palignr128:
11310  case X86::BI__builtin_ia32_palignr256:
11311  case X86::BI__builtin_ia32_palignr512: {
11312    unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
11313
11314    unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11315    assert(NumElts % 16 == 0);
11316
11317    // If palignr is shifting the pair of vectors more than the size of two
11318    // lanes, emit zero.
11319    if (ShiftVal >= 32)
11320      return llvm::Constant::getNullValue(ConvertType(E->getType()));
11321
11322    // If palignr is shifting the pair of input vectors more than one lane,
11323    // but less than two lanes, convert to shifting in zeroes.
11324    if (ShiftVal > 16) {
11325      ShiftVal -= 16;
11326      Ops[1] = Ops[0];
11327      Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
11328    }
11329
11330    uint32_t Indices[64];
11331    // 256-bit palignr operates on 128-bit lanes so we need to handle that
11332    for (unsigned l = 0; l != NumElts; l += 16) {
11333      for (unsigned i = 0; i != 16; ++i) {
11334        unsigned Idx = ShiftVal + i;
11335        if (Idx >= 16)
11336          Idx += NumElts - 16; // End of lane, switch operand.
11337        Indices[l + i] = Idx + l;
11338      }
11339    }
11340
11341    return Builder.CreateShuffleVector(Ops[1], Ops[0],
11342                                       makeArrayRef(Indices, NumElts),
11343                                       "palignr");
11344  }
11345  case X86::BI__builtin_ia32_alignd128:
11346  case X86::BI__builtin_ia32_alignd256:
11347  case X86::BI__builtin_ia32_alignd512:
11348  case X86::BI__builtin_ia32_alignq128:
11349  case X86::BI__builtin_ia32_alignq256:
11350  case X86::BI__builtin_ia32_alignq512: {
11351    unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11352    unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
11353
11354    // Mask the shift amount to width of two vectors.
11355    ShiftVal &= (2 * NumElts) - 1;
11356
11357    uint32_t Indices[16];
11358    for (unsigned i = 0; i != NumElts; ++i)
11359      Indices[i] = i + ShiftVal;
11360
11361    return Builder.CreateShuffleVector(Ops[1], Ops[0],
11362                                       makeArrayRef(Indices, NumElts),
11363                                       "valign");
11364  }
11365  case X86::BI__builtin_ia32_shuf_f32x4_256:
11366  case X86::BI__builtin_ia32_shuf_f64x2_256:
11367  case X86::BI__builtin_ia32_shuf_i32x4_256:
11368  case X86::BI__builtin_ia32_shuf_i64x2_256:
11369  case X86::BI__builtin_ia32_shuf_f32x4:
11370  case X86::BI__builtin_ia32_shuf_f64x2:
11371  case X86::BI__builtin_ia32_shuf_i32x4:
11372  case X86::BI__builtin_ia32_shuf_i64x2: {
11373    unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
11374    llvm::Type *Ty = Ops[0]->getType();
11375    unsigned NumElts = Ty->getVectorNumElements();
11376    unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
11377    unsigned NumLaneElts = NumElts / NumLanes;
11378
11379    uint32_t Indices[16];
11380    for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
11381      unsigned Index = (Imm % NumLanes) * NumLaneElts;
11382      Imm /= NumLanes; // Discard the bits we just used.
11383      if (l >= (NumElts / 2))
11384        Index += NumElts; // Switch to other source.
11385      for (unsigned i = 0; i != NumLaneElts; ++i) {
11386        Indices[l + i] = Index + i;
11387      }
11388    }
11389
11390    return Builder.CreateShuffleVector(Ops[0], Ops[1],
11391                                       makeArrayRef(Indices, NumElts),
11392                                       "shuf");
11393  }
11394
11395  case X86::BI__builtin_ia32_vperm2f128_pd256:
11396  case X86::BI__builtin_ia32_vperm2f128_ps256:
11397  case X86::BI__builtin_ia32_vperm2f128_si256:
11398  case X86::BI__builtin_ia32_permti256: {
11399    unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
11400    unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11401
11402    // This takes a very simple approach since there are two lanes and a
11403    // shuffle can have 2 inputs. So we reserve the first input for the first
11404    // lane and the second input for the second lane. This may result in
11405    // duplicate sources, but this can be dealt with in the backend.
11406
11407    Value *OutOps[2];
11408    uint32_t Indices[8];
11409    for (unsigned l = 0; l != 2; ++l) {
11410      // Determine the source for this lane.
11411      if (Imm & (1 << ((l * 4) + 3)))
11412        OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
11413      else if (Imm & (1 << ((l * 4) + 1)))
11414        OutOps[l] = Ops[1];
11415      else
11416        OutOps[l] = Ops[0];
11417
11418      for (unsigned i = 0; i != NumElts/2; ++i) {
11419        // Start with ith element of the source for this lane.
11420        unsigned Idx = (l * NumElts) + i;
11421        // If bit 0 of the immediate half is set, switch to the high half of
11422        // the source.
11423        if (Imm & (1 << (l * 4)))
11424          Idx += NumElts/2;
11425        Indices[(l * (NumElts/2)) + i] = Idx;
11426      }
11427    }
11428
11429    return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
11430                                       makeArrayRef(Indices, NumElts),
11431                                       "vperm");
11432  }
11433
11434  case X86::BI__builtin_ia32_pslldqi128_byteshift:
11435  case X86::BI__builtin_ia32_pslldqi256_byteshift:
11436  case X86::BI__builtin_ia32_pslldqi512_byteshift: {
11437    unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11438    llvm::Type *ResultType = Ops[0]->getType();
11439    // Builtin type is vXi64 so multiply by 8 to get bytes.
11440    unsigned NumElts = ResultType->getVectorNumElements() * 8;
11441
11442    // If pslldq is shifting the vector more than 15 bytes, emit zero.
11443    if (ShiftVal >= 16)
11444      return llvm::Constant::getNullValue(ResultType);
11445
11446    uint32_t Indices[64];
11447    // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
11448    for (unsigned l = 0; l != NumElts; l += 16) {
11449      for (unsigned i = 0; i != 16; ++i) {
11450        unsigned Idx = NumElts + i - ShiftVal;
11451        if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
11452        Indices[l + i] = Idx + l;
11453      }
11454    }
11455
11456    llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
11457    Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
11458    Value *Zero = llvm::Constant::getNullValue(VecTy);
11459    Value *SV = Builder.CreateShuffleVector(Zero, Cast,
11460                                            makeArrayRef(Indices, NumElts),
11461                                            "pslldq");
11462    return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
11463  }
11464  case X86::BI__builtin_ia32_psrldqi128_byteshift:
11465  case X86::BI__builtin_ia32_psrldqi256_byteshift:
11466  case X86::BI__builtin_ia32_psrldqi512_byteshift: {
11467    unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11468    llvm::Type *ResultType = Ops[0]->getType();
11469    // Builtin type is vXi64 so multiply by 8 to get bytes.
11470    unsigned NumElts = ResultType->getVectorNumElements() * 8;
11471
11472    // If psrldq is shifting the vector more than 15 bytes, emit zero.
11473    if (ShiftVal >= 16)
11474      return llvm::Constant::getNullValue(ResultType);
11475
11476    uint32_t Indices[64];
11477    // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
11478    for (unsigned l = 0; l != NumElts; l += 16) {
11479      for (unsigned i = 0; i != 16; ++i) {
11480        unsigned Idx = i + ShiftVal;
11481        if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
11482        Indices[l + i] = Idx + l;
11483      }
11484    }
11485
11486    llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
11487    Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
11488    Value *Zero = llvm::Constant::getNullValue(VecTy);
11489    Value *SV = Builder.CreateShuffleVector(Cast, Zero,
11490                                            makeArrayRef(Indices, NumElts),
11491                                            "psrldq");
11492    return Builder.CreateBitCast(SV, ResultType, "cast");
11493  }
11494  case X86::BI__builtin_ia32_kshiftliqi:
11495  case X86::BI__builtin_ia32_kshiftlihi:
11496  case X86::BI__builtin_ia32_kshiftlisi:
11497  case X86::BI__builtin_ia32_kshiftlidi: {
11498    unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11499    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11500
11501    if (ShiftVal >= NumElts)
11502      return llvm::Constant::getNullValue(Ops[0]->getType());
11503
11504    Value *In = getMaskVecValue(*this, Ops[0], NumElts);
11505
11506    uint32_t Indices[64];
11507    for (unsigned i = 0; i != NumElts; ++i)
11508      Indices[i] = NumElts + i - ShiftVal;
11509
11510    Value *Zero = llvm::Constant::getNullValue(In->getType());
11511    Value *SV = Builder.CreateShuffleVector(Zero, In,
11512                                            makeArrayRef(Indices, NumElts),
11513                                            "kshiftl");
11514    return Builder.CreateBitCast(SV, Ops[0]->getType());
11515  }
11516  case X86::BI__builtin_ia32_kshiftriqi:
11517  case X86::BI__builtin_ia32_kshiftrihi:
11518  case X86::BI__builtin_ia32_kshiftrisi:
11519  case X86::BI__builtin_ia32_kshiftridi: {
11520    unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11521    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11522
11523    if (ShiftVal >= NumElts)
11524      return llvm::Constant::getNullValue(Ops[0]->getType());
11525
11526    Value *In = getMaskVecValue(*this, Ops[0], NumElts);
11527
11528    uint32_t Indices[64];
11529    for (unsigned i = 0; i != NumElts; ++i)
11530      Indices[i] = i + ShiftVal;
11531
11532    Value *Zero = llvm::Constant::getNullValue(In->getType());
11533    Value *SV = Builder.CreateShuffleVector(In, Zero,
11534                                            makeArrayRef(Indices, NumElts),
11535                                            "kshiftr");
11536    return Builder.CreateBitCast(SV, Ops[0]->getType());
11537  }
11538  case X86::BI__builtin_ia32_movnti:
11539  case X86::BI__builtin_ia32_movnti64:
11540  case X86::BI__builtin_ia32_movntsd:
11541  case X86::BI__builtin_ia32_movntss: {
11542    llvm::MDNode *Node = llvm::MDNode::get(
11543        getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
11544
11545    Value *Ptr = Ops[0];
11546    Value *Src = Ops[1];
11547
11548    // Extract the 0'th element of the source vector.
11549    if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
11550        BuiltinID == X86::BI__builtin_ia32_movntss)
11551      Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
11552
11553    // Convert the type of the pointer to a pointer to the stored type.
11554    Value *BC = Builder.CreateBitCast(
11555        Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
11556
11557    // Unaligned nontemporal store of the scalar value.
11558    StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
11559    SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
11560    SI->setAlignment(llvm::Align::None());
11561    return SI;
11562  }
11563  // Rotate is a special case of funnel shift - 1st 2 args are the same.
11564  case X86::BI__builtin_ia32_vprotb:
11565  case X86::BI__builtin_ia32_vprotw:
11566  case X86::BI__builtin_ia32_vprotd:
11567  case X86::BI__builtin_ia32_vprotq:
11568  case X86::BI__builtin_ia32_vprotbi:
11569  case X86::BI__builtin_ia32_vprotwi:
11570  case X86::BI__builtin_ia32_vprotdi:
11571  case X86::BI__builtin_ia32_vprotqi:
11572  case X86::BI__builtin_ia32_prold128:
11573  case X86::BI__builtin_ia32_prold256:
11574  case X86::BI__builtin_ia32_prold512:
11575  case X86::BI__builtin_ia32_prolq128:
11576  case X86::BI__builtin_ia32_prolq256:
11577  case X86::BI__builtin_ia32_prolq512:
11578  case X86::BI__builtin_ia32_prolvd128:
11579  case X86::BI__builtin_ia32_prolvd256:
11580  case X86::BI__builtin_ia32_prolvd512:
11581  case X86::BI__builtin_ia32_prolvq128:
11582  case X86::BI__builtin_ia32_prolvq256:
11583  case X86::BI__builtin_ia32_prolvq512:
11584    return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
11585  case X86::BI__builtin_ia32_prord128:
11586  case X86::BI__builtin_ia32_prord256:
11587  case X86::BI__builtin_ia32_prord512:
11588  case X86::BI__builtin_ia32_prorq128:
11589  case X86::BI__builtin_ia32_prorq256:
11590  case X86::BI__builtin_ia32_prorq512:
11591  case X86::BI__builtin_ia32_prorvd128:
11592  case X86::BI__builtin_ia32_prorvd256:
11593  case X86::BI__builtin_ia32_prorvd512:
11594  case X86::BI__builtin_ia32_prorvq128:
11595  case X86::BI__builtin_ia32_prorvq256:
11596  case X86::BI__builtin_ia32_prorvq512:
11597    return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
11598  case X86::BI__builtin_ia32_selectb_128:
11599  case X86::BI__builtin_ia32_selectb_256:
11600  case X86::BI__builtin_ia32_selectb_512:
11601  case X86::BI__builtin_ia32_selectw_128:
11602  case X86::BI__builtin_ia32_selectw_256:
11603  case X86::BI__builtin_ia32_selectw_512:
11604  case X86::BI__builtin_ia32_selectd_128:
11605  case X86::BI__builtin_ia32_selectd_256:
11606  case X86::BI__builtin_ia32_selectd_512:
11607  case X86::BI__builtin_ia32_selectq_128:
11608  case X86::BI__builtin_ia32_selectq_256:
11609  case X86::BI__builtin_ia32_selectq_512:
11610  case X86::BI__builtin_ia32_selectps_128:
11611  case X86::BI__builtin_ia32_selectps_256:
11612  case X86::BI__builtin_ia32_selectps_512:
11613  case X86::BI__builtin_ia32_selectpd_128:
11614  case X86::BI__builtin_ia32_selectpd_256:
11615  case X86::BI__builtin_ia32_selectpd_512:
11616    return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
11617  case X86::BI__builtin_ia32_selectss_128:
11618  case X86::BI__builtin_ia32_selectsd_128: {
11619    Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11620    Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11621    A = EmitX86ScalarSelect(*this, Ops[0], A, B);
11622    return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
11623  }
11624  case X86::BI__builtin_ia32_cmpb128_mask:
11625  case X86::BI__builtin_ia32_cmpb256_mask:
11626  case X86::BI__builtin_ia32_cmpb512_mask:
11627  case X86::BI__builtin_ia32_cmpw128_mask:
11628  case X86::BI__builtin_ia32_cmpw256_mask:
11629  case X86::BI__builtin_ia32_cmpw512_mask:
11630  case X86::BI__builtin_ia32_cmpd128_mask:
11631  case X86::BI__builtin_ia32_cmpd256_mask:
11632  case X86::BI__builtin_ia32_cmpd512_mask:
11633  case X86::BI__builtin_ia32_cmpq128_mask:
11634  case X86::BI__builtin_ia32_cmpq256_mask:
11635  case X86::BI__builtin_ia32_cmpq512_mask: {
11636    unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11637    return EmitX86MaskedCompare(*this, CC, true, Ops);
11638  }
11639  case X86::BI__builtin_ia32_ucmpb128_mask:
11640  case X86::BI__builtin_ia32_ucmpb256_mask:
11641  case X86::BI__builtin_ia32_ucmpb512_mask:
11642  case X86::BI__builtin_ia32_ucmpw128_mask:
11643  case X86::BI__builtin_ia32_ucmpw256_mask:
11644  case X86::BI__builtin_ia32_ucmpw512_mask:
11645  case X86::BI__builtin_ia32_ucmpd128_mask:
11646  case X86::BI__builtin_ia32_ucmpd256_mask:
11647  case X86::BI__builtin_ia32_ucmpd512_mask:
11648  case X86::BI__builtin_ia32_ucmpq128_mask:
11649  case X86::BI__builtin_ia32_ucmpq256_mask:
11650  case X86::BI__builtin_ia32_ucmpq512_mask: {
11651    unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11652    return EmitX86MaskedCompare(*this, CC, false, Ops);
11653  }
11654  case X86::BI__builtin_ia32_vpcomb:
11655  case X86::BI__builtin_ia32_vpcomw:
11656  case X86::BI__builtin_ia32_vpcomd:
11657  case X86::BI__builtin_ia32_vpcomq:
11658    return EmitX86vpcom(*this, Ops, true);
11659  case X86::BI__builtin_ia32_vpcomub:
11660  case X86::BI__builtin_ia32_vpcomuw:
11661  case X86::BI__builtin_ia32_vpcomud:
11662  case X86::BI__builtin_ia32_vpcomuq:
11663    return EmitX86vpcom(*this, Ops, false);
11664
11665  case X86::BI__builtin_ia32_kortestcqi:
11666  case X86::BI__builtin_ia32_kortestchi:
11667  case X86::BI__builtin_ia32_kortestcsi:
11668  case X86::BI__builtin_ia32_kortestcdi: {
11669    Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
11670    Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
11671    Value *Cmp = Builder.CreateICmpEQ(Or, C);
11672    return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
11673  }
11674  case X86::BI__builtin_ia32_kortestzqi:
11675  case X86::BI__builtin_ia32_kortestzhi:
11676  case X86::BI__builtin_ia32_kortestzsi:
11677  case X86::BI__builtin_ia32_kortestzdi: {
11678    Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
11679    Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
11680    Value *Cmp = Builder.CreateICmpEQ(Or, C);
11681    return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
11682  }
11683
11684  case X86::BI__builtin_ia32_ktestcqi:
11685  case X86::BI__builtin_ia32_ktestzqi:
11686  case X86::BI__builtin_ia32_ktestchi:
11687  case X86::BI__builtin_ia32_ktestzhi:
11688  case X86::BI__builtin_ia32_ktestcsi:
11689  case X86::BI__builtin_ia32_ktestzsi:
11690  case X86::BI__builtin_ia32_ktestcdi:
11691  case X86::BI__builtin_ia32_ktestzdi: {
11692    Intrinsic::ID IID;
11693    switch (BuiltinID) {
11694    default: llvm_unreachable("Unsupported intrinsic!");
11695    case X86::BI__builtin_ia32_ktestcqi:
11696      IID = Intrinsic::x86_avx512_ktestc_b;
11697      break;
11698    case X86::BI__builtin_ia32_ktestzqi:
11699      IID = Intrinsic::x86_avx512_ktestz_b;
11700      break;
11701    case X86::BI__builtin_ia32_ktestchi:
11702      IID = Intrinsic::x86_avx512_ktestc_w;
11703      break;
11704    case X86::BI__builtin_ia32_ktestzhi:
11705      IID = Intrinsic::x86_avx512_ktestz_w;
11706      break;
11707    case X86::BI__builtin_ia32_ktestcsi:
11708      IID = Intrinsic::x86_avx512_ktestc_d;
11709      break;
11710    case X86::BI__builtin_ia32_ktestzsi:
11711      IID = Intrinsic::x86_avx512_ktestz_d;
11712      break;
11713    case X86::BI__builtin_ia32_ktestcdi:
11714      IID = Intrinsic::x86_avx512_ktestc_q;
11715      break;
11716    case X86::BI__builtin_ia32_ktestzdi:
11717      IID = Intrinsic::x86_avx512_ktestz_q;
11718      break;
11719    }
11720
11721    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11722    Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11723    Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11724    Function *Intr = CGM.getIntrinsic(IID);
11725    return Builder.CreateCall(Intr, {LHS, RHS});
11726  }
11727
11728  case X86::BI__builtin_ia32_kaddqi:
11729  case X86::BI__builtin_ia32_kaddhi:
11730  case X86::BI__builtin_ia32_kaddsi:
11731  case X86::BI__builtin_ia32_kadddi: {
11732    Intrinsic::ID IID;
11733    switch (BuiltinID) {
11734    default: llvm_unreachable("Unsupported intrinsic!");
11735    case X86::BI__builtin_ia32_kaddqi:
11736      IID = Intrinsic::x86_avx512_kadd_b;
11737      break;
11738    case X86::BI__builtin_ia32_kaddhi:
11739      IID = Intrinsic::x86_avx512_kadd_w;
11740      break;
11741    case X86::BI__builtin_ia32_kaddsi:
11742      IID = Intrinsic::x86_avx512_kadd_d;
11743      break;
11744    case X86::BI__builtin_ia32_kadddi:
11745      IID = Intrinsic::x86_avx512_kadd_q;
11746      break;
11747    }
11748
11749    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11750    Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11751    Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11752    Function *Intr = CGM.getIntrinsic(IID);
11753    Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
11754    return Builder.CreateBitCast(Res, Ops[0]->getType());
11755  }
11756  case X86::BI__builtin_ia32_kandqi:
11757  case X86::BI__builtin_ia32_kandhi:
11758  case X86::BI__builtin_ia32_kandsi:
11759  case X86::BI__builtin_ia32_kanddi:
11760    return EmitX86MaskLogic(*this, Instruction::And, Ops);
11761  case X86::BI__builtin_ia32_kandnqi:
11762  case X86::BI__builtin_ia32_kandnhi:
11763  case X86::BI__builtin_ia32_kandnsi:
11764  case X86::BI__builtin_ia32_kandndi:
11765    return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
11766  case X86::BI__builtin_ia32_korqi:
11767  case X86::BI__builtin_ia32_korhi:
11768  case X86::BI__builtin_ia32_korsi:
11769  case X86::BI__builtin_ia32_kordi:
11770    return EmitX86MaskLogic(*this, Instruction::Or, Ops);
11771  case X86::BI__builtin_ia32_kxnorqi:
11772  case X86::BI__builtin_ia32_kxnorhi:
11773  case X86::BI__builtin_ia32_kxnorsi:
11774  case X86::BI__builtin_ia32_kxnordi:
11775    return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
11776  case X86::BI__builtin_ia32_kxorqi:
11777  case X86::BI__builtin_ia32_kxorhi:
11778  case X86::BI__builtin_ia32_kxorsi:
11779  case X86::BI__builtin_ia32_kxordi:
11780    return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
11781  case X86::BI__builtin_ia32_knotqi:
11782  case X86::BI__builtin_ia32_knothi:
11783  case X86::BI__builtin_ia32_knotsi:
11784  case X86::BI__builtin_ia32_knotdi: {
11785    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11786    Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
11787    return Builder.CreateBitCast(Builder.CreateNot(Res),
11788                                 Ops[0]->getType());
11789  }
11790  case X86::BI__builtin_ia32_kmovb:
11791  case X86::BI__builtin_ia32_kmovw:
11792  case X86::BI__builtin_ia32_kmovd:
11793  case X86::BI__builtin_ia32_kmovq: {
11794    // Bitcast to vXi1 type and then back to integer. This gets the mask
11795    // register type into the IR, but might be optimized out depending on
11796    // what's around it.
11797    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11798    Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
11799    return Builder.CreateBitCast(Res, Ops[0]->getType());
11800  }
11801
11802  case X86::BI__builtin_ia32_kunpckdi:
11803  case X86::BI__builtin_ia32_kunpcksi:
11804  case X86::BI__builtin_ia32_kunpckhi: {
11805    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11806    Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11807    Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11808    uint32_t Indices[64];
11809    for (unsigned i = 0; i != NumElts; ++i)
11810      Indices[i] = i;
11811
11812    // First extract half of each vector. This gives better codegen than
11813    // doing it in a single shuffle.
11814    LHS = Builder.CreateShuffleVector(LHS, LHS,
11815                                      makeArrayRef(Indices, NumElts / 2));
11816    RHS = Builder.CreateShuffleVector(RHS, RHS,
11817                                      makeArrayRef(Indices, NumElts / 2));
11818    // Concat the vectors.
11819    // NOTE: Operands are swapped to match the intrinsic definition.
11820    Value *Res = Builder.CreateShuffleVector(RHS, LHS,
11821                                             makeArrayRef(Indices, NumElts));
11822    return Builder.CreateBitCast(Res, Ops[0]->getType());
11823  }
11824
11825  case X86::BI__builtin_ia32_vplzcntd_128:
11826  case X86::BI__builtin_ia32_vplzcntd_256:
11827  case X86::BI__builtin_ia32_vplzcntd_512:
11828  case X86::BI__builtin_ia32_vplzcntq_128:
11829  case X86::BI__builtin_ia32_vplzcntq_256:
11830  case X86::BI__builtin_ia32_vplzcntq_512: {
11831    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
11832    return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
11833  }
11834  case X86::BI__builtin_ia32_sqrtss:
11835  case X86::BI__builtin_ia32_sqrtsd: {
11836    Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
11837    Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
11838    A = Builder.CreateCall(F, {A});
11839    return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
11840  }
11841  case X86::BI__builtin_ia32_sqrtsd_round_mask:
11842  case X86::BI__builtin_ia32_sqrtss_round_mask: {
11843    unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
11844    // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
11845    // otherwise keep the intrinsic.
11846    if (CC != 4) {
11847      Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
11848                          Intrinsic::x86_avx512_mask_sqrt_sd :
11849                          Intrinsic::x86_avx512_mask_sqrt_ss;
11850      return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11851    }
11852    Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11853    Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
11854    A = Builder.CreateCall(F, A);
11855    Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11856    A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
11857    return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
11858  }
11859  case X86::BI__builtin_ia32_sqrtpd256:
11860  case X86::BI__builtin_ia32_sqrtpd:
11861  case X86::BI__builtin_ia32_sqrtps256:
11862  case X86::BI__builtin_ia32_sqrtps:
11863  case X86::BI__builtin_ia32_sqrtps512:
11864  case X86::BI__builtin_ia32_sqrtpd512: {
11865    if (Ops.size() == 2) {
11866      unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11867      // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
11868      // otherwise keep the intrinsic.
11869      if (CC != 4) {
11870        Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
11871                            Intrinsic::x86_avx512_sqrt_ps_512 :
11872                            Intrinsic::x86_avx512_sqrt_pd_512;
11873        return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11874      }
11875    }
11876    Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
11877    return Builder.CreateCall(F, Ops[0]);
11878  }
11879  case X86::BI__builtin_ia32_pabsb128:
11880  case X86::BI__builtin_ia32_pabsw128:
11881  case X86::BI__builtin_ia32_pabsd128:
11882  case X86::BI__builtin_ia32_pabsb256:
11883  case X86::BI__builtin_ia32_pabsw256:
11884  case X86::BI__builtin_ia32_pabsd256:
11885  case X86::BI__builtin_ia32_pabsq128:
11886  case X86::BI__builtin_ia32_pabsq256:
11887  case X86::BI__builtin_ia32_pabsb512:
11888  case X86::BI__builtin_ia32_pabsw512:
11889  case X86::BI__builtin_ia32_pabsd512:
11890  case X86::BI__builtin_ia32_pabsq512:
11891    return EmitX86Abs(*this, Ops);
11892
11893  case X86::BI__builtin_ia32_pmaxsb128:
11894  case X86::BI__builtin_ia32_pmaxsw128:
11895  case X86::BI__builtin_ia32_pmaxsd128:
11896  case X86::BI__builtin_ia32_pmaxsq128:
11897  case X86::BI__builtin_ia32_pmaxsb256:
11898  case X86::BI__builtin_ia32_pmaxsw256:
11899  case X86::BI__builtin_ia32_pmaxsd256:
11900  case X86::BI__builtin_ia32_pmaxsq256:
11901  case X86::BI__builtin_ia32_pmaxsb512:
11902  case X86::BI__builtin_ia32_pmaxsw512:
11903  case X86::BI__builtin_ia32_pmaxsd512:
11904  case X86::BI__builtin_ia32_pmaxsq512:
11905    return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
11906  case X86::BI__builtin_ia32_pmaxub128:
11907  case X86::BI__builtin_ia32_pmaxuw128:
11908  case X86::BI__builtin_ia32_pmaxud128:
11909  case X86::BI__builtin_ia32_pmaxuq128:
11910  case X86::BI__builtin_ia32_pmaxub256:
11911  case X86::BI__builtin_ia32_pmaxuw256:
11912  case X86::BI__builtin_ia32_pmaxud256:
11913  case X86::BI__builtin_ia32_pmaxuq256:
11914  case X86::BI__builtin_ia32_pmaxub512:
11915  case X86::BI__builtin_ia32_pmaxuw512:
11916  case X86::BI__builtin_ia32_pmaxud512:
11917  case X86::BI__builtin_ia32_pmaxuq512:
11918    return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
11919  case X86::BI__builtin_ia32_pminsb128:
11920  case X86::BI__builtin_ia32_pminsw128:
11921  case X86::BI__builtin_ia32_pminsd128:
11922  case X86::BI__builtin_ia32_pminsq128:
11923  case X86::BI__builtin_ia32_pminsb256:
11924  case X86::BI__builtin_ia32_pminsw256:
11925  case X86::BI__builtin_ia32_pminsd256:
11926  case X86::BI__builtin_ia32_pminsq256:
11927  case X86::BI__builtin_ia32_pminsb512:
11928  case X86::BI__builtin_ia32_pminsw512:
11929  case X86::BI__builtin_ia32_pminsd512:
11930  case X86::BI__builtin_ia32_pminsq512:
11931    return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
11932  case X86::BI__builtin_ia32_pminub128:
11933  case X86::BI__builtin_ia32_pminuw128:
11934  case X86::BI__builtin_ia32_pminud128:
11935  case X86::BI__builtin_ia32_pminuq128:
11936  case X86::BI__builtin_ia32_pminub256:
11937  case X86::BI__builtin_ia32_pminuw256:
11938  case X86::BI__builtin_ia32_pminud256:
11939  case X86::BI__builtin_ia32_pminuq256:
11940  case X86::BI__builtin_ia32_pminub512:
11941  case X86::BI__builtin_ia32_pminuw512:
11942  case X86::BI__builtin_ia32_pminud512:
11943  case X86::BI__builtin_ia32_pminuq512:
11944    return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
11945
11946  case X86::BI__builtin_ia32_pmuludq128:
11947  case X86::BI__builtin_ia32_pmuludq256:
11948  case X86::BI__builtin_ia32_pmuludq512:
11949    return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
11950
11951  case X86::BI__builtin_ia32_pmuldq128:
11952  case X86::BI__builtin_ia32_pmuldq256:
11953  case X86::BI__builtin_ia32_pmuldq512:
11954    return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
11955
11956  case X86::BI__builtin_ia32_pternlogd512_mask:
11957  case X86::BI__builtin_ia32_pternlogq512_mask:
11958  case X86::BI__builtin_ia32_pternlogd128_mask:
11959  case X86::BI__builtin_ia32_pternlogd256_mask:
11960  case X86::BI__builtin_ia32_pternlogq128_mask:
11961  case X86::BI__builtin_ia32_pternlogq256_mask:
11962    return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
11963
11964  case X86::BI__builtin_ia32_pternlogd512_maskz:
11965  case X86::BI__builtin_ia32_pternlogq512_maskz:
11966  case X86::BI__builtin_ia32_pternlogd128_maskz:
11967  case X86::BI__builtin_ia32_pternlogd256_maskz:
11968  case X86::BI__builtin_ia32_pternlogq128_maskz:
11969  case X86::BI__builtin_ia32_pternlogq256_maskz:
11970    return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
11971
11972  case X86::BI__builtin_ia32_vpshldd128:
11973  case X86::BI__builtin_ia32_vpshldd256:
11974  case X86::BI__builtin_ia32_vpshldd512:
11975  case X86::BI__builtin_ia32_vpshldq128:
11976  case X86::BI__builtin_ia32_vpshldq256:
11977  case X86::BI__builtin_ia32_vpshldq512:
11978  case X86::BI__builtin_ia32_vpshldw128:
11979  case X86::BI__builtin_ia32_vpshldw256:
11980  case X86::BI__builtin_ia32_vpshldw512:
11981    return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11982
11983  case X86::BI__builtin_ia32_vpshrdd128:
11984  case X86::BI__builtin_ia32_vpshrdd256:
11985  case X86::BI__builtin_ia32_vpshrdd512:
11986  case X86::BI__builtin_ia32_vpshrdq128:
11987  case X86::BI__builtin_ia32_vpshrdq256:
11988  case X86::BI__builtin_ia32_vpshrdq512:
11989  case X86::BI__builtin_ia32_vpshrdw128:
11990  case X86::BI__builtin_ia32_vpshrdw256:
11991  case X86::BI__builtin_ia32_vpshrdw512:
11992    // Ops 0 and 1 are swapped.
11993    return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11994
11995  case X86::BI__builtin_ia32_vpshldvd128:
11996  case X86::BI__builtin_ia32_vpshldvd256:
11997  case X86::BI__builtin_ia32_vpshldvd512:
11998  case X86::BI__builtin_ia32_vpshldvq128:
11999  case X86::BI__builtin_ia32_vpshldvq256:
12000  case X86::BI__builtin_ia32_vpshldvq512:
12001  case X86::BI__builtin_ia32_vpshldvw128:
12002  case X86::BI__builtin_ia32_vpshldvw256:
12003  case X86::BI__builtin_ia32_vpshldvw512:
12004    return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
12005
12006  case X86::BI__builtin_ia32_vpshrdvd128:
12007  case X86::BI__builtin_ia32_vpshrdvd256:
12008  case X86::BI__builtin_ia32_vpshrdvd512:
12009  case X86::BI__builtin_ia32_vpshrdvq128:
12010  case X86::BI__builtin_ia32_vpshrdvq256:
12011  case X86::BI__builtin_ia32_vpshrdvq512:
12012  case X86::BI__builtin_ia32_vpshrdvw128:
12013  case X86::BI__builtin_ia32_vpshrdvw256:
12014  case X86::BI__builtin_ia32_vpshrdvw512:
12015    // Ops 0 and 1 are swapped.
12016    return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
12017
12018  // 3DNow!
12019  case X86::BI__builtin_ia32_pswapdsf:
12020  case X86::BI__builtin_ia32_pswapdsi: {
12021    llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
12022    Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
12023    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
12024    return Builder.CreateCall(F, Ops, "pswapd");
12025  }
12026  case X86::BI__builtin_ia32_rdrand16_step:
12027  case X86::BI__builtin_ia32_rdrand32_step:
12028  case X86::BI__builtin_ia32_rdrand64_step:
12029  case X86::BI__builtin_ia32_rdseed16_step:
12030  case X86::BI__builtin_ia32_rdseed32_step:
12031  case X86::BI__builtin_ia32_rdseed64_step: {
12032    Intrinsic::ID ID;
12033    switch (BuiltinID) {
12034    default: llvm_unreachable("Unsupported intrinsic!");
12035    case X86::BI__builtin_ia32_rdrand16_step:
12036      ID = Intrinsic::x86_rdrand_16;
12037      break;
12038    case X86::BI__builtin_ia32_rdrand32_step:
12039      ID = Intrinsic::x86_rdrand_32;
12040      break;
12041    case X86::BI__builtin_ia32_rdrand64_step:
12042      ID = Intrinsic::x86_rdrand_64;
12043      break;
12044    case X86::BI__builtin_ia32_rdseed16_step:
12045      ID = Intrinsic::x86_rdseed_16;
12046      break;
12047    case X86::BI__builtin_ia32_rdseed32_step:
12048      ID = Intrinsic::x86_rdseed_32;
12049      break;
12050    case X86::BI__builtin_ia32_rdseed64_step:
12051      ID = Intrinsic::x86_rdseed_64;
12052      break;
12053    }
12054
12055    Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
12056    Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
12057                                      Ops[0]);
12058    return Builder.CreateExtractValue(Call, 1);
12059  }
12060  case X86::BI__builtin_ia32_addcarryx_u32:
12061  case X86::BI__builtin_ia32_addcarryx_u64:
12062  case X86::BI__builtin_ia32_subborrow_u32:
12063  case X86::BI__builtin_ia32_subborrow_u64: {
12064    Intrinsic::ID IID;
12065    switch (BuiltinID) {
12066    default: llvm_unreachable("Unsupported intrinsic!");
12067    case X86::BI__builtin_ia32_addcarryx_u32:
12068      IID = Intrinsic::x86_addcarry_32;
12069      break;
12070    case X86::BI__builtin_ia32_addcarryx_u64:
12071      IID = Intrinsic::x86_addcarry_64;
12072      break;
12073    case X86::BI__builtin_ia32_subborrow_u32:
12074      IID = Intrinsic::x86_subborrow_32;
12075      break;
12076    case X86::BI__builtin_ia32_subborrow_u64:
12077      IID = Intrinsic::x86_subborrow_64;
12078      break;
12079    }
12080
12081    Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
12082                                     { Ops[0], Ops[1], Ops[2] });
12083    Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
12084                                      Ops[3]);
12085    return Builder.CreateExtractValue(Call, 0);
12086  }
12087
12088  case X86::BI__builtin_ia32_fpclassps128_mask:
12089  case X86::BI__builtin_ia32_fpclassps256_mask:
12090  case X86::BI__builtin_ia32_fpclassps512_mask:
12091  case X86::BI__builtin_ia32_fpclasspd128_mask:
12092  case X86::BI__builtin_ia32_fpclasspd256_mask:
12093  case X86::BI__builtin_ia32_fpclasspd512_mask: {
12094    unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
12095    Value *MaskIn = Ops[2];
12096    Ops.erase(&Ops[2]);
12097
12098    Intrinsic::ID ID;
12099    switch (BuiltinID) {
12100    default: llvm_unreachable("Unsupported intrinsic!");
12101    case X86::BI__builtin_ia32_fpclassps128_mask:
12102      ID = Intrinsic::x86_avx512_fpclass_ps_128;
12103      break;
12104    case X86::BI__builtin_ia32_fpclassps256_mask:
12105      ID = Intrinsic::x86_avx512_fpclass_ps_256;
12106      break;
12107    case X86::BI__builtin_ia32_fpclassps512_mask:
12108      ID = Intrinsic::x86_avx512_fpclass_ps_512;
12109      break;
12110    case X86::BI__builtin_ia32_fpclasspd128_mask:
12111      ID = Intrinsic::x86_avx512_fpclass_pd_128;
12112      break;
12113    case X86::BI__builtin_ia32_fpclasspd256_mask:
12114      ID = Intrinsic::x86_avx512_fpclass_pd_256;
12115      break;
12116    case X86::BI__builtin_ia32_fpclasspd512_mask:
12117      ID = Intrinsic::x86_avx512_fpclass_pd_512;
12118      break;
12119    }
12120
12121    Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12122    return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
12123  }
12124
12125  case X86::BI__builtin_ia32_vp2intersect_q_512:
12126  case X86::BI__builtin_ia32_vp2intersect_q_256:
12127  case X86::BI__builtin_ia32_vp2intersect_q_128:
12128  case X86::BI__builtin_ia32_vp2intersect_d_512:
12129  case X86::BI__builtin_ia32_vp2intersect_d_256:
12130  case X86::BI__builtin_ia32_vp2intersect_d_128: {
12131    unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
12132    Intrinsic::ID ID;
12133
12134    switch (BuiltinID) {
12135    default: llvm_unreachable("Unsupported intrinsic!");
12136    case X86::BI__builtin_ia32_vp2intersect_q_512:
12137      ID = Intrinsic::x86_avx512_vp2intersect_q_512;
12138      break;
12139    case X86::BI__builtin_ia32_vp2intersect_q_256:
12140      ID = Intrinsic::x86_avx512_vp2intersect_q_256;
12141      break;
12142    case X86::BI__builtin_ia32_vp2intersect_q_128:
12143      ID = Intrinsic::x86_avx512_vp2intersect_q_128;
12144      break;
12145    case X86::BI__builtin_ia32_vp2intersect_d_512:
12146      ID = Intrinsic::x86_avx512_vp2intersect_d_512;
12147      break;
12148    case X86::BI__builtin_ia32_vp2intersect_d_256:
12149      ID = Intrinsic::x86_avx512_vp2intersect_d_256;
12150      break;
12151    case X86::BI__builtin_ia32_vp2intersect_d_128:
12152      ID = Intrinsic::x86_avx512_vp2intersect_d_128;
12153      break;
12154    }
12155
12156    Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
12157    Value *Result = Builder.CreateExtractValue(Call, 0);
12158    Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
12159    Builder.CreateDefaultAlignedStore(Result, Ops[2]);
12160
12161    Result = Builder.CreateExtractValue(Call, 1);
12162    Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
12163    return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
12164  }
12165
12166  case X86::BI__builtin_ia32_vpmultishiftqb128:
12167  case X86::BI__builtin_ia32_vpmultishiftqb256:
12168  case X86::BI__builtin_ia32_vpmultishiftqb512: {
12169    Intrinsic::ID ID;
12170    switch (BuiltinID) {
12171    default: llvm_unreachable("Unsupported intrinsic!");
12172    case X86::BI__builtin_ia32_vpmultishiftqb128:
12173      ID = Intrinsic::x86_avx512_pmultishift_qb_128;
12174      break;
12175    case X86::BI__builtin_ia32_vpmultishiftqb256:
12176      ID = Intrinsic::x86_avx512_pmultishift_qb_256;
12177      break;
12178    case X86::BI__builtin_ia32_vpmultishiftqb512:
12179      ID = Intrinsic::x86_avx512_pmultishift_qb_512;
12180      break;
12181    }
12182
12183    return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12184  }
12185
12186  case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
12187  case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
12188  case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
12189    unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
12190    Value *MaskIn = Ops[2];
12191    Ops.erase(&Ops[2]);
12192
12193    Intrinsic::ID ID;
12194    switch (BuiltinID) {
12195    default: llvm_unreachable("Unsupported intrinsic!");
12196    case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
12197      ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
12198      break;
12199    case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
12200      ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
12201      break;
12202    case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
12203      ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
12204      break;
12205    }
12206
12207    Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12208    return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
12209  }
12210
12211  // packed comparison intrinsics
12212  case X86::BI__builtin_ia32_cmpeqps:
12213  case X86::BI__builtin_ia32_cmpeqpd:
12214    return getVectorFCmpIR(CmpInst::FCMP_OEQ);
12215  case X86::BI__builtin_ia32_cmpltps:
12216  case X86::BI__builtin_ia32_cmpltpd:
12217    return getVectorFCmpIR(CmpInst::FCMP_OLT);
12218  case X86::BI__builtin_ia32_cmpleps:
12219  case X86::BI__builtin_ia32_cmplepd:
12220    return getVectorFCmpIR(CmpInst::FCMP_OLE);
12221  case X86::BI__builtin_ia32_cmpunordps:
12222  case X86::BI__builtin_ia32_cmpunordpd:
12223    return getVectorFCmpIR(CmpInst::FCMP_UNO);
12224  case X86::BI__builtin_ia32_cmpneqps:
12225  case X86::BI__builtin_ia32_cmpneqpd:
12226    return getVectorFCmpIR(CmpInst::FCMP_UNE);
12227  case X86::BI__builtin_ia32_cmpnltps:
12228  case X86::BI__builtin_ia32_cmpnltpd:
12229    return getVectorFCmpIR(CmpInst::FCMP_UGE);
12230  case X86::BI__builtin_ia32_cmpnleps:
12231  case X86::BI__builtin_ia32_cmpnlepd:
12232    return getVectorFCmpIR(CmpInst::FCMP_UGT);
12233  case X86::BI__builtin_ia32_cmpordps:
12234  case X86::BI__builtin_ia32_cmpordpd:
12235    return getVectorFCmpIR(CmpInst::FCMP_ORD);
12236  case X86::BI__builtin_ia32_cmpps:
12237  case X86::BI__builtin_ia32_cmpps256:
12238  case X86::BI__builtin_ia32_cmppd:
12239  case X86::BI__builtin_ia32_cmppd256:
12240  case X86::BI__builtin_ia32_cmpps128_mask:
12241  case X86::BI__builtin_ia32_cmpps256_mask:
12242  case X86::BI__builtin_ia32_cmpps512_mask:
12243  case X86::BI__builtin_ia32_cmppd128_mask:
12244  case X86::BI__builtin_ia32_cmppd256_mask:
12245  case X86::BI__builtin_ia32_cmppd512_mask: {
12246    // Lowering vector comparisons to fcmp instructions, while
12247    // ignoring signalling behaviour requested
12248    // ignoring rounding mode requested
12249    // This is is only possible as long as FENV_ACCESS is not implemented.
12250    // See also: https://reviews.llvm.org/D45616
12251
12252    // The third argument is the comparison condition, and integer in the
12253    // range [0, 31]
12254    unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
12255
12256    // Lowering to IR fcmp instruction.
12257    // Ignoring requested signaling behaviour,
12258    // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
12259    FCmpInst::Predicate Pred;
12260    switch (CC) {
12261    case 0x00: Pred = FCmpInst::FCMP_OEQ;   break;
12262    case 0x01: Pred = FCmpInst::FCMP_OLT;   break;
12263    case 0x02: Pred = FCmpInst::FCMP_OLE;   break;
12264    case 0x03: Pred = FCmpInst::FCMP_UNO;   break;
12265    case 0x04: Pred = FCmpInst::FCMP_UNE;   break;
12266    case 0x05: Pred = FCmpInst::FCMP_UGE;   break;
12267    case 0x06: Pred = FCmpInst::FCMP_UGT;   break;
12268    case 0x07: Pred = FCmpInst::FCMP_ORD;   break;
12269    case 0x08: Pred = FCmpInst::FCMP_UEQ;   break;
12270    case 0x09: Pred = FCmpInst::FCMP_ULT;   break;
12271    case 0x0a: Pred = FCmpInst::FCMP_ULE;   break;
12272    case 0x0b: Pred = FCmpInst::FCMP_FALSE; break;
12273    case 0x0c: Pred = FCmpInst::FCMP_ONE;   break;
12274    case 0x0d: Pred = FCmpInst::FCMP_OGE;   break;
12275    case 0x0e: Pred = FCmpInst::FCMP_OGT;   break;
12276    case 0x0f: Pred = FCmpInst::FCMP_TRUE;  break;
12277    case 0x10: Pred = FCmpInst::FCMP_OEQ;   break;
12278    case 0x11: Pred = FCmpInst::FCMP_OLT;   break;
12279    case 0x12: Pred = FCmpInst::FCMP_OLE;   break;
12280    case 0x13: Pred = FCmpInst::FCMP_UNO;   break;
12281    case 0x14: Pred = FCmpInst::FCMP_UNE;   break;
12282    case 0x15: Pred = FCmpInst::FCMP_UGE;   break;
12283    case 0x16: Pred = FCmpInst::FCMP_UGT;   break;
12284    case 0x17: Pred = FCmpInst::FCMP_ORD;   break;
12285    case 0x18: Pred = FCmpInst::FCMP_UEQ;   break;
12286    case 0x19: Pred = FCmpInst::FCMP_ULT;   break;
12287    case 0x1a: Pred = FCmpInst::FCMP_ULE;   break;
12288    case 0x1b: Pred = FCmpInst::FCMP_FALSE; break;
12289    case 0x1c: Pred = FCmpInst::FCMP_ONE;   break;
12290    case 0x1d: Pred = FCmpInst::FCMP_OGE;   break;
12291    case 0x1e: Pred = FCmpInst::FCMP_OGT;   break;
12292    case 0x1f: Pred = FCmpInst::FCMP_TRUE;  break;
12293    default: llvm_unreachable("Unhandled CC");
12294    }
12295
12296    // Builtins without the _mask suffix return a vector of integers
12297    // of the same width as the input vectors
12298    switch (BuiltinID) {
12299    case X86::BI__builtin_ia32_cmpps512_mask:
12300    case X86::BI__builtin_ia32_cmppd512_mask:
12301    case X86::BI__builtin_ia32_cmpps128_mask:
12302    case X86::BI__builtin_ia32_cmpps256_mask:
12303    case X86::BI__builtin_ia32_cmppd128_mask:
12304    case X86::BI__builtin_ia32_cmppd256_mask: {
12305      unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
12306      Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
12307      return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
12308    }
12309    default:
12310      return getVectorFCmpIR(Pred);
12311    }
12312  }
12313
12314  // SSE scalar comparison intrinsics
12315  case X86::BI__builtin_ia32_cmpeqss:
12316    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
12317  case X86::BI__builtin_ia32_cmpltss:
12318    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
12319  case X86::BI__builtin_ia32_cmpless:
12320    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
12321  case X86::BI__builtin_ia32_cmpunordss:
12322    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
12323  case X86::BI__builtin_ia32_cmpneqss:
12324    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
12325  case X86::BI__builtin_ia32_cmpnltss:
12326    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
12327  case X86::BI__builtin_ia32_cmpnless:
12328    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
12329  case X86::BI__builtin_ia32_cmpordss:
12330    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
12331  case X86::BI__builtin_ia32_cmpeqsd:
12332    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
12333  case X86::BI__builtin_ia32_cmpltsd:
12334    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
12335  case X86::BI__builtin_ia32_cmplesd:
12336    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
12337  case X86::BI__builtin_ia32_cmpunordsd:
12338    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
12339  case X86::BI__builtin_ia32_cmpneqsd:
12340    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
12341  case X86::BI__builtin_ia32_cmpnltsd:
12342    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
12343  case X86::BI__builtin_ia32_cmpnlesd:
12344    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
12345  case X86::BI__builtin_ia32_cmpordsd:
12346    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
12347
12348// AVX512 bf16 intrinsics
12349  case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
12350    Ops[2] = getMaskVecValue(*this, Ops[2],
12351                             Ops[0]->getType()->getVectorNumElements());
12352    Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
12353    return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
12354  }
12355  case X86::BI__builtin_ia32_cvtsbf162ss_32:
12356    return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
12357
12358  case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
12359  case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
12360    Intrinsic::ID IID;
12361    switch (BuiltinID) {
12362    default: llvm_unreachable("Unsupported intrinsic!");
12363    case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
12364      IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
12365      break;
12366    case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
12367      IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
12368      break;
12369    }
12370    Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
12371    return EmitX86Select(*this, Ops[2], Res, Ops[1]);
12372  }
12373
12374  case X86::BI__emul:
12375  case X86::BI__emulu: {
12376    llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
12377    bool isSigned = (BuiltinID == X86::BI__emul);
12378    Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
12379    Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
12380    return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
12381  }
12382  case X86::BI__mulh:
12383  case X86::BI__umulh:
12384  case X86::BI_mul128:
12385  case X86::BI_umul128: {
12386    llvm::Type *ResType = ConvertType(E->getType());
12387    llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
12388
12389    bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
12390    Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
12391    Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
12392
12393    Value *MulResult, *HigherBits;
12394    if (IsSigned) {
12395      MulResult = Builder.CreateNSWMul(LHS, RHS);
12396      HigherBits = Builder.CreateAShr(MulResult, 64);
12397    } else {
12398      MulResult = Builder.CreateNUWMul(LHS, RHS);
12399      HigherBits = Builder.CreateLShr(MulResult, 64);
12400    }
12401    HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
12402
12403    if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
12404      return HigherBits;
12405
12406    Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
12407    Builder.CreateStore(HigherBits, HighBitsAddress);
12408    return Builder.CreateIntCast(MulResult, ResType, IsSigned);
12409  }
12410
12411  case X86::BI__faststorefence: {
12412    return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
12413                               llvm::SyncScope::System);
12414  }
12415  case X86::BI__shiftleft128:
12416  case X86::BI__shiftright128: {
12417    // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this:
12418    // llvm::Function *F = CGM.getIntrinsic(
12419    //   BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
12420    //   Int64Ty);
12421    // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
12422    // return Builder.CreateCall(F, Ops);
12423    llvm::Type *Int128Ty = Builder.getInt128Ty();
12424    Value *HighPart128 =
12425        Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64);
12426    Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty);
12427    Value *Val = Builder.CreateOr(HighPart128, LowPart128);
12428    Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty),
12429                                   llvm::ConstantInt::get(Int128Ty, 0x3f));
12430    Value *Res;
12431    if (BuiltinID == X86::BI__shiftleft128)
12432      Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64);
12433    else
12434      Res = Builder.CreateLShr(Val, Amt);
12435    return Builder.CreateTrunc(Res, Int64Ty);
12436  }
12437  case X86::BI_ReadWriteBarrier:
12438  case X86::BI_ReadBarrier:
12439  case X86::BI_WriteBarrier: {
12440    return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
12441                               llvm::SyncScope::SingleThread);
12442  }
12443  case X86::BI_BitScanForward:
12444  case X86::BI_BitScanForward64:
12445    return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
12446  case X86::BI_BitScanReverse:
12447  case X86::BI_BitScanReverse64:
12448    return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
12449
12450  case X86::BI_InterlockedAnd64:
12451    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
12452  case X86::BI_InterlockedExchange64:
12453    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
12454  case X86::BI_InterlockedExchangeAdd64:
12455    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
12456  case X86::BI_InterlockedExchangeSub64:
12457    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
12458  case X86::BI_InterlockedOr64:
12459    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
12460  case X86::BI_InterlockedXor64:
12461    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
12462  case X86::BI_InterlockedDecrement64:
12463    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
12464  case X86::BI_InterlockedIncrement64:
12465    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
12466  case X86::BI_InterlockedCompareExchange128: {
12467    // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
12468    // instead it takes pointers to 64bit ints for Destination and
12469    // ComparandResult, and exchange is taken as two 64bit ints (high & low).
12470    // The previous value is written to ComparandResult, and success is
12471    // returned.
12472
12473    llvm::Type *Int128Ty = Builder.getInt128Ty();
12474    llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
12475
12476    Value *Destination =
12477        Builder.CreateBitCast(Ops[0], Int128PtrTy);
12478    Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
12479    Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
12480    Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
12481                            getContext().toCharUnitsFromBits(128));
12482
12483    Value *Exchange = Builder.CreateOr(
12484        Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
12485        ExchangeLow128);
12486
12487    Value *Comparand = Builder.CreateLoad(ComparandResult);
12488
12489    AtomicCmpXchgInst *CXI =
12490        Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
12491                                    AtomicOrdering::SequentiallyConsistent,
12492                                    AtomicOrdering::SequentiallyConsistent);
12493    CXI->setVolatile(true);
12494
12495    // Write the result back to the inout pointer.
12496    Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
12497
12498    // Get the success boolean and zero extend it to i8.
12499    Value *Success = Builder.CreateExtractValue(CXI, 1);
12500    return Builder.CreateZExt(Success, ConvertType(E->getType()));
12501  }
12502
12503  case X86::BI_AddressOfReturnAddress: {
12504    Function *F =
12505        CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
12506    return Builder.CreateCall(F);
12507  }
12508  case X86::BI__stosb: {
12509    // We treat __stosb as a volatile memset - it may not generate "rep stosb"
12510    // instruction, but it will create a memset that won't be optimized away.
12511    return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align::None(), true);
12512  }
12513  case X86::BI__ud2:
12514    // llvm.trap makes a ud2a instruction on x86.
12515    return EmitTrapCall(Intrinsic::trap);
12516  case X86::BI__int2c: {
12517    // This syscall signals a driver assertion failure in x86 NT kernels.
12518    llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
12519    llvm::InlineAsm *IA =
12520        llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
12521    llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
12522        getLLVMContext(), llvm::AttributeList::FunctionIndex,
12523        llvm::Attribute::NoReturn);
12524    llvm::CallInst *CI = Builder.CreateCall(IA);
12525    CI->setAttributes(NoReturnAttr);
12526    return CI;
12527  }
12528  case X86::BI__readfsbyte:
12529  case X86::BI__readfsword:
12530  case X86::BI__readfsdword:
12531  case X86::BI__readfsqword: {
12532    llvm::Type *IntTy = ConvertType(E->getType());
12533    Value *Ptr =
12534        Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
12535    LoadInst *Load = Builder.CreateAlignedLoad(
12536        IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
12537    Load->setVolatile(true);
12538    return Load;
12539  }
12540  case X86::BI__readgsbyte:
12541  case X86::BI__readgsword:
12542  case X86::BI__readgsdword:
12543  case X86::BI__readgsqword: {
12544    llvm::Type *IntTy = ConvertType(E->getType());
12545    Value *Ptr =
12546        Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
12547    LoadInst *Load = Builder.CreateAlignedLoad(
12548        IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
12549    Load->setVolatile(true);
12550    return Load;
12551  }
12552  case X86::BI__builtin_ia32_paddsb512:
12553  case X86::BI__builtin_ia32_paddsw512:
12554  case X86::BI__builtin_ia32_paddsb256:
12555  case X86::BI__builtin_ia32_paddsw256:
12556  case X86::BI__builtin_ia32_paddsb128:
12557  case X86::BI__builtin_ia32_paddsw128:
12558    return EmitX86AddSubSatExpr(*this, Ops, true, true);
12559  case X86::BI__builtin_ia32_paddusb512:
12560  case X86::BI__builtin_ia32_paddusw512:
12561  case X86::BI__builtin_ia32_paddusb256:
12562  case X86::BI__builtin_ia32_paddusw256:
12563  case X86::BI__builtin_ia32_paddusb128:
12564  case X86::BI__builtin_ia32_paddusw128:
12565    return EmitX86AddSubSatExpr(*this, Ops, false, true);
12566  case X86::BI__builtin_ia32_psubsb512:
12567  case X86::BI__builtin_ia32_psubsw512:
12568  case X86::BI__builtin_ia32_psubsb256:
12569  case X86::BI__builtin_ia32_psubsw256:
12570  case X86::BI__builtin_ia32_psubsb128:
12571  case X86::BI__builtin_ia32_psubsw128:
12572    return EmitX86AddSubSatExpr(*this, Ops, true, false);
12573  case X86::BI__builtin_ia32_psubusb512:
12574  case X86::BI__builtin_ia32_psubusw512:
12575  case X86::BI__builtin_ia32_psubusb256:
12576  case X86::BI__builtin_ia32_psubusw256:
12577  case X86::BI__builtin_ia32_psubusb128:
12578  case X86::BI__builtin_ia32_psubusw128:
12579    return EmitX86AddSubSatExpr(*this, Ops, false, false);
12580  }
12581}
12582
12583Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
12584                                           const CallExpr *E) {
12585  SmallVector<Value*, 4> Ops;
12586
12587  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
12588    Ops.push_back(EmitScalarExpr(E->getArg(i)));
12589
12590  Intrinsic::ID ID = Intrinsic::not_intrinsic;
12591
12592  switch (BuiltinID) {
12593  default: return nullptr;
12594
12595  // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
12596  // call __builtin_readcyclecounter.
12597  case PPC::BI__builtin_ppc_get_timebase:
12598    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
12599
12600  // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
12601  case PPC::BI__builtin_altivec_lvx:
12602  case PPC::BI__builtin_altivec_lvxl:
12603  case PPC::BI__builtin_altivec_lvebx:
12604  case PPC::BI__builtin_altivec_lvehx:
12605  case PPC::BI__builtin_altivec_lvewx:
12606  case PPC::BI__builtin_altivec_lvsl:
12607  case PPC::BI__builtin_altivec_lvsr:
12608  case PPC::BI__builtin_vsx_lxvd2x:
12609  case PPC::BI__builtin_vsx_lxvw4x:
12610  case PPC::BI__builtin_vsx_lxvd2x_be:
12611  case PPC::BI__builtin_vsx_lxvw4x_be:
12612  case PPC::BI__builtin_vsx_lxvl:
12613  case PPC::BI__builtin_vsx_lxvll:
12614  {
12615    if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
12616       BuiltinID == PPC::BI__builtin_vsx_lxvll){
12617      Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
12618    }else {
12619      Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
12620      Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
12621      Ops.pop_back();
12622    }
12623
12624    switch (BuiltinID) {
12625    default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
12626    case PPC::BI__builtin_altivec_lvx:
12627      ID = Intrinsic::ppc_altivec_lvx;
12628      break;
12629    case PPC::BI__builtin_altivec_lvxl:
12630      ID = Intrinsic::ppc_altivec_lvxl;
12631      break;
12632    case PPC::BI__builtin_altivec_lvebx:
12633      ID = Intrinsic::ppc_altivec_lvebx;
12634      break;
12635    case PPC::BI__builtin_altivec_lvehx:
12636      ID = Intrinsic::ppc_altivec_lvehx;
12637      break;
12638    case PPC::BI__builtin_altivec_lvewx:
12639      ID = Intrinsic::ppc_altivec_lvewx;
12640      break;
12641    case PPC::BI__builtin_altivec_lvsl:
12642      ID = Intrinsic::ppc_altivec_lvsl;
12643      break;
12644    case PPC::BI__builtin_altivec_lvsr:
12645      ID = Intrinsic::ppc_altivec_lvsr;
12646      break;
12647    case PPC::BI__builtin_vsx_lxvd2x:
12648      ID = Intrinsic::ppc_vsx_lxvd2x;
12649      break;
12650    case PPC::BI__builtin_vsx_lxvw4x:
12651      ID = Intrinsic::ppc_vsx_lxvw4x;
12652      break;
12653    case PPC::BI__builtin_vsx_lxvd2x_be:
12654      ID = Intrinsic::ppc_vsx_lxvd2x_be;
12655      break;
12656    case PPC::BI__builtin_vsx_lxvw4x_be:
12657      ID = Intrinsic::ppc_vsx_lxvw4x_be;
12658      break;
12659    case PPC::BI__builtin_vsx_lxvl:
12660      ID = Intrinsic::ppc_vsx_lxvl;
12661      break;
12662    case PPC::BI__builtin_vsx_lxvll:
12663      ID = Intrinsic::ppc_vsx_lxvll;
12664      break;
12665    }
12666    llvm::Function *F = CGM.getIntrinsic(ID);
12667    return Builder.CreateCall(F, Ops, "");
12668  }
12669
12670  // vec_st, vec_xst_be
12671  case PPC::BI__builtin_altivec_stvx:
12672  case PPC::BI__builtin_altivec_stvxl:
12673  case PPC::BI__builtin_altivec_stvebx:
12674  case PPC::BI__builtin_altivec_stvehx:
12675  case PPC::BI__builtin_altivec_stvewx:
12676  case PPC::BI__builtin_vsx_stxvd2x:
12677  case PPC::BI__builtin_vsx_stxvw4x:
12678  case PPC::BI__builtin_vsx_stxvd2x_be:
12679  case PPC::BI__builtin_vsx_stxvw4x_be:
12680  case PPC::BI__builtin_vsx_stxvl:
12681  case PPC::BI__builtin_vsx_stxvll:
12682  {
12683    if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
12684      BuiltinID == PPC::BI__builtin_vsx_stxvll ){
12685      Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
12686    }else {
12687      Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
12688      Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
12689      Ops.pop_back();
12690    }
12691
12692    switch (BuiltinID) {
12693    default: llvm_unreachable("Unsupported st intrinsic!");
12694    case PPC::BI__builtin_altivec_stvx:
12695      ID = Intrinsic::ppc_altivec_stvx;
12696      break;
12697    case PPC::BI__builtin_altivec_stvxl:
12698      ID = Intrinsic::ppc_altivec_stvxl;
12699      break;
12700    case PPC::BI__builtin_altivec_stvebx:
12701      ID = Intrinsic::ppc_altivec_stvebx;
12702      break;
12703    case PPC::BI__builtin_altivec_stvehx:
12704      ID = Intrinsic::ppc_altivec_stvehx;
12705      break;
12706    case PPC::BI__builtin_altivec_stvewx:
12707      ID = Intrinsic::ppc_altivec_stvewx;
12708      break;
12709    case PPC::BI__builtin_vsx_stxvd2x:
12710      ID = Intrinsic::ppc_vsx_stxvd2x;
12711      break;
12712    case PPC::BI__builtin_vsx_stxvw4x:
12713      ID = Intrinsic::ppc_vsx_stxvw4x;
12714      break;
12715    case PPC::BI__builtin_vsx_stxvd2x_be:
12716      ID = Intrinsic::ppc_vsx_stxvd2x_be;
12717      break;
12718    case PPC::BI__builtin_vsx_stxvw4x_be:
12719      ID = Intrinsic::ppc_vsx_stxvw4x_be;
12720      break;
12721    case PPC::BI__builtin_vsx_stxvl:
12722      ID = Intrinsic::ppc_vsx_stxvl;
12723      break;
12724    case PPC::BI__builtin_vsx_stxvll:
12725      ID = Intrinsic::ppc_vsx_stxvll;
12726      break;
12727    }
12728    llvm::Function *F = CGM.getIntrinsic(ID);
12729    return Builder.CreateCall(F, Ops, "");
12730  }
12731  // Square root
12732  case PPC::BI__builtin_vsx_xvsqrtsp:
12733  case PPC::BI__builtin_vsx_xvsqrtdp: {
12734    llvm::Type *ResultType = ConvertType(E->getType());
12735    Value *X = EmitScalarExpr(E->getArg(0));
12736    ID = Intrinsic::sqrt;
12737    llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12738    return Builder.CreateCall(F, X);
12739  }
12740  // Count leading zeros
12741  case PPC::BI__builtin_altivec_vclzb:
12742  case PPC::BI__builtin_altivec_vclzh:
12743  case PPC::BI__builtin_altivec_vclzw:
12744  case PPC::BI__builtin_altivec_vclzd: {
12745    llvm::Type *ResultType = ConvertType(E->getType());
12746    Value *X = EmitScalarExpr(E->getArg(0));
12747    Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12748    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
12749    return Builder.CreateCall(F, {X, Undef});
12750  }
12751  case PPC::BI__builtin_altivec_vctzb:
12752  case PPC::BI__builtin_altivec_vctzh:
12753  case PPC::BI__builtin_altivec_vctzw:
12754  case PPC::BI__builtin_altivec_vctzd: {
12755    llvm::Type *ResultType = ConvertType(E->getType());
12756    Value *X = EmitScalarExpr(E->getArg(0));
12757    Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12758    Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
12759    return Builder.CreateCall(F, {X, Undef});
12760  }
12761  case PPC::BI__builtin_altivec_vpopcntb:
12762  case PPC::BI__builtin_altivec_vpopcnth:
12763  case PPC::BI__builtin_altivec_vpopcntw:
12764  case PPC::BI__builtin_altivec_vpopcntd: {
12765    llvm::Type *ResultType = ConvertType(E->getType());
12766    Value *X = EmitScalarExpr(E->getArg(0));
12767    llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12768    return Builder.CreateCall(F, X);
12769  }
12770  // Copy sign
12771  case PPC::BI__builtin_vsx_xvcpsgnsp:
12772  case PPC::BI__builtin_vsx_xvcpsgndp: {
12773    llvm::Type *ResultType = ConvertType(E->getType());
12774    Value *X = EmitScalarExpr(E->getArg(0));
12775    Value *Y = EmitScalarExpr(E->getArg(1));
12776    ID = Intrinsic::copysign;
12777    llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12778    return Builder.CreateCall(F, {X, Y});
12779  }
12780  // Rounding/truncation
12781  case PPC::BI__builtin_vsx_xvrspip:
12782  case PPC::BI__builtin_vsx_xvrdpip:
12783  case PPC::BI__builtin_vsx_xvrdpim:
12784  case PPC::BI__builtin_vsx_xvrspim:
12785  case PPC::BI__builtin_vsx_xvrdpi:
12786  case PPC::BI__builtin_vsx_xvrspi:
12787  case PPC::BI__builtin_vsx_xvrdpic:
12788  case PPC::BI__builtin_vsx_xvrspic:
12789  case PPC::BI__builtin_vsx_xvrdpiz:
12790  case PPC::BI__builtin_vsx_xvrspiz: {
12791    llvm::Type *ResultType = ConvertType(E->getType());
12792    Value *X = EmitScalarExpr(E->getArg(0));
12793    if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
12794        BuiltinID == PPC::BI__builtin_vsx_xvrspim)
12795      ID = Intrinsic::floor;
12796    else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
12797             BuiltinID == PPC::BI__builtin_vsx_xvrspi)
12798      ID = Intrinsic::round;
12799    else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
12800             BuiltinID == PPC::BI__builtin_vsx_xvrspic)
12801      ID = Intrinsic::nearbyint;
12802    else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
12803             BuiltinID == PPC::BI__builtin_vsx_xvrspip)
12804      ID = Intrinsic::ceil;
12805    else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
12806             BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
12807      ID = Intrinsic::trunc;
12808    llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12809    return Builder.CreateCall(F, X);
12810  }
12811
12812  // Absolute value
12813  case PPC::BI__builtin_vsx_xvabsdp:
12814  case PPC::BI__builtin_vsx_xvabssp: {
12815    llvm::Type *ResultType = ConvertType(E->getType());
12816    Value *X = EmitScalarExpr(E->getArg(0));
12817    llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
12818    return Builder.CreateCall(F, X);
12819  }
12820
12821  // FMA variations
12822  case PPC::BI__builtin_vsx_xvmaddadp:
12823  case PPC::BI__builtin_vsx_xvmaddasp:
12824  case PPC::BI__builtin_vsx_xvnmaddadp:
12825  case PPC::BI__builtin_vsx_xvnmaddasp:
12826  case PPC::BI__builtin_vsx_xvmsubadp:
12827  case PPC::BI__builtin_vsx_xvmsubasp:
12828  case PPC::BI__builtin_vsx_xvnmsubadp:
12829  case PPC::BI__builtin_vsx_xvnmsubasp: {
12830    llvm::Type *ResultType = ConvertType(E->getType());
12831    Value *X = EmitScalarExpr(E->getArg(0));
12832    Value *Y = EmitScalarExpr(E->getArg(1));
12833    Value *Z = EmitScalarExpr(E->getArg(2));
12834    Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12835    llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12836    switch (BuiltinID) {
12837      case PPC::BI__builtin_vsx_xvmaddadp:
12838      case PPC::BI__builtin_vsx_xvmaddasp:
12839        return Builder.CreateCall(F, {X, Y, Z});
12840      case PPC::BI__builtin_vsx_xvnmaddadp:
12841      case PPC::BI__builtin_vsx_xvnmaddasp:
12842        return Builder.CreateFSub(Zero,
12843                                  Builder.CreateCall(F, {X, Y, Z}), "sub");
12844      case PPC::BI__builtin_vsx_xvmsubadp:
12845      case PPC::BI__builtin_vsx_xvmsubasp:
12846        return Builder.CreateCall(F,
12847                                  {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12848      case PPC::BI__builtin_vsx_xvnmsubadp:
12849      case PPC::BI__builtin_vsx_xvnmsubasp:
12850        Value *FsubRes =
12851          Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12852        return Builder.CreateFSub(Zero, FsubRes, "sub");
12853    }
12854    llvm_unreachable("Unknown FMA operation");
12855    return nullptr; // Suppress no-return warning
12856  }
12857
12858  case PPC::BI__builtin_vsx_insertword: {
12859    llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
12860
12861    // Third argument is a compile time constant int. It must be clamped to
12862    // to the range [0, 12].
12863    ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12864    assert(ArgCI &&
12865           "Third arg to xxinsertw intrinsic must be constant integer");
12866    const int64_t MaxIndex = 12;
12867    int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
12868
12869    // The builtin semantics don't exactly match the xxinsertw instructions
12870    // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
12871    // word from the first argument, and inserts it in the second argument. The
12872    // instruction extracts the word from its second input register and inserts
12873    // it into its first input register, so swap the first and second arguments.
12874    std::swap(Ops[0], Ops[1]);
12875
12876    // Need to cast the second argument from a vector of unsigned int to a
12877    // vector of long long.
12878    Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
12879
12880    if (getTarget().isLittleEndian()) {
12881      // Create a shuffle mask of (1, 0)
12882      Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
12883                                   ConstantInt::get(Int32Ty, 0)
12884                                 };
12885      Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12886
12887      // Reverse the double words in the vector we will extract from.
12888      Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12889      Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
12890
12891      // Reverse the index.
12892      Index = MaxIndex - Index;
12893    }
12894
12895    // Intrinsic expects the first arg to be a vector of int.
12896    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
12897    Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
12898    return Builder.CreateCall(F, Ops);
12899  }
12900
12901  case PPC::BI__builtin_vsx_extractuword: {
12902    llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
12903
12904    // Intrinsic expects the first argument to be a vector of doublewords.
12905    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12906
12907    // The second argument is a compile time constant int that needs to
12908    // be clamped to the range [0, 12].
12909    ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
12910    assert(ArgCI &&
12911           "Second Arg to xxextractuw intrinsic must be a constant integer!");
12912    const int64_t MaxIndex = 12;
12913    int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
12914
12915    if (getTarget().isLittleEndian()) {
12916      // Reverse the index.
12917      Index = MaxIndex - Index;
12918      Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
12919
12920      // Emit the call, then reverse the double words of the results vector.
12921      Value *Call = Builder.CreateCall(F, Ops);
12922
12923      // Create a shuffle mask of (1, 0)
12924      Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
12925                                   ConstantInt::get(Int32Ty, 0)
12926                                 };
12927      Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12928
12929      Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
12930      return ShuffleCall;
12931    } else {
12932      Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
12933      return Builder.CreateCall(F, Ops);
12934    }
12935  }
12936
12937  case PPC::BI__builtin_vsx_xxpermdi: {
12938    ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12939    assert(ArgCI && "Third arg must be constant integer!");
12940
12941    unsigned Index = ArgCI->getZExtValue();
12942    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12943    Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
12944
12945    // Account for endianness by treating this as just a shuffle. So we use the
12946    // same indices for both LE and BE in order to produce expected results in
12947    // both cases.
12948    unsigned ElemIdx0 = (Index & 2) >> 1;
12949    unsigned ElemIdx1 = 2 + (Index & 1);
12950
12951    Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0),
12952                                ConstantInt::get(Int32Ty, ElemIdx1)};
12953    Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12954
12955    Value *ShuffleCall =
12956        Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
12957    QualType BIRetType = E->getType();
12958    auto RetTy = ConvertType(BIRetType);
12959    return Builder.CreateBitCast(ShuffleCall, RetTy);
12960  }
12961
12962  case PPC::BI__builtin_vsx_xxsldwi: {
12963    ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12964    assert(ArgCI && "Third argument must be a compile time constant");
12965    unsigned Index = ArgCI->getZExtValue() & 0x3;
12966    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
12967    Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4));
12968
12969    // Create a shuffle mask
12970    unsigned ElemIdx0;
12971    unsigned ElemIdx1;
12972    unsigned ElemIdx2;
12973    unsigned ElemIdx3;
12974    if (getTarget().isLittleEndian()) {
12975      // Little endian element N comes from element 8+N-Index of the
12976      // concatenated wide vector (of course, using modulo arithmetic on
12977      // the total number of elements).
12978      ElemIdx0 = (8 - Index) % 8;
12979      ElemIdx1 = (9 - Index) % 8;
12980      ElemIdx2 = (10 - Index) % 8;
12981      ElemIdx3 = (11 - Index) % 8;
12982    } else {
12983      // Big endian ElemIdx<N> = Index + N
12984      ElemIdx0 = Index;
12985      ElemIdx1 = Index + 1;
12986      ElemIdx2 = Index + 2;
12987      ElemIdx3 = Index + 3;
12988    }
12989
12990    Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0),
12991                                ConstantInt::get(Int32Ty, ElemIdx1),
12992                                ConstantInt::get(Int32Ty, ElemIdx2),
12993                                ConstantInt::get(Int32Ty, ElemIdx3)};
12994
12995    Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12996    Value *ShuffleCall =
12997        Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
12998    QualType BIRetType = E->getType();
12999    auto RetTy = ConvertType(BIRetType);
13000    return Builder.CreateBitCast(ShuffleCall, RetTy);
13001  }
13002
13003  case PPC::BI__builtin_pack_vector_int128: {
13004    bool isLittleEndian = getTarget().isLittleEndian();
13005    Value *UndefValue =
13006        llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), 2));
13007    Value *Res = Builder.CreateInsertElement(
13008        UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
13009    Res = Builder.CreateInsertElement(Res, Ops[1],
13010                                      (uint64_t)(isLittleEndian ? 0 : 1));
13011    return Builder.CreateBitCast(Res, ConvertType(E->getType()));
13012  }
13013
13014  case PPC::BI__builtin_unpack_vector_int128: {
13015    ConstantInt *Index = cast<ConstantInt>(Ops[1]);
13016    Value *Unpacked = Builder.CreateBitCast(
13017        Ops[0], llvm::VectorType::get(ConvertType(E->getType()), 2));
13018
13019    if (getTarget().isLittleEndian())
13020      Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
13021
13022    return Builder.CreateExtractElement(Unpacked, Index);
13023  }
13024  }
13025}
13026
13027Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
13028                                              const CallExpr *E) {
13029  switch (BuiltinID) {
13030  case AMDGPU::BI__builtin_amdgcn_div_scale:
13031  case AMDGPU::BI__builtin_amdgcn_div_scalef: {
13032    // Translate from the intrinsics's struct return to the builtin's out
13033    // argument.
13034
13035    Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
13036
13037    llvm::Value *X = EmitScalarExpr(E->getArg(0));
13038    llvm::Value *Y = EmitScalarExpr(E->getArg(1));
13039    llvm::Value *Z = EmitScalarExpr(E->getArg(2));
13040
13041    llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
13042                                           X->getType());
13043
13044    llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
13045
13046    llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
13047    llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
13048
13049    llvm::Type *RealFlagType
13050      = FlagOutPtr.getPointer()->getType()->getPointerElementType();
13051
13052    llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
13053    Builder.CreateStore(FlagExt, FlagOutPtr);
13054    return Result;
13055  }
13056  case AMDGPU::BI__builtin_amdgcn_div_fmas:
13057  case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
13058    llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
13059    llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
13060    llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
13061    llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
13062
13063    llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
13064                                      Src0->getType());
13065    llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
13066    return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
13067  }
13068
13069  case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
13070    return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
13071  case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
13072    return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
13073  case AMDGPU::BI__builtin_amdgcn_mov_dpp:
13074  case AMDGPU::BI__builtin_amdgcn_update_dpp: {
13075    llvm::SmallVector<llvm::Value *, 6> Args;
13076    for (unsigned I = 0; I != E->getNumArgs(); ++I)
13077      Args.push_back(EmitScalarExpr(E->getArg(I)));
13078    assert(Args.size() == 5 || Args.size() == 6);
13079    if (Args.size() == 5)
13080      Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
13081    Function *F =
13082        CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
13083    return Builder.CreateCall(F, Args);
13084  }
13085  case AMDGPU::BI__builtin_amdgcn_div_fixup:
13086  case AMDGPU::BI__builtin_amdgcn_div_fixupf:
13087  case AMDGPU::BI__builtin_amdgcn_div_fixuph:
13088    return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
13089  case AMDGPU::BI__builtin_amdgcn_trig_preop:
13090  case AMDGPU::BI__builtin_amdgcn_trig_preopf:
13091    return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
13092  case AMDGPU::BI__builtin_amdgcn_rcp:
13093  case AMDGPU::BI__builtin_amdgcn_rcpf:
13094  case AMDGPU::BI__builtin_amdgcn_rcph:
13095    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
13096  case AMDGPU::BI__builtin_amdgcn_rsq:
13097  case AMDGPU::BI__builtin_amdgcn_rsqf:
13098  case AMDGPU::BI__builtin_amdgcn_rsqh:
13099    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
13100  case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
13101  case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
13102    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
13103  case AMDGPU::BI__builtin_amdgcn_sinf:
13104  case AMDGPU::BI__builtin_amdgcn_sinh:
13105    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
13106  case AMDGPU::BI__builtin_amdgcn_cosf:
13107  case AMDGPU::BI__builtin_amdgcn_cosh:
13108    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
13109  case AMDGPU::BI__builtin_amdgcn_log_clampf:
13110    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
13111  case AMDGPU::BI__builtin_amdgcn_ldexp:
13112  case AMDGPU::BI__builtin_amdgcn_ldexpf:
13113  case AMDGPU::BI__builtin_amdgcn_ldexph:
13114    return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
13115  case AMDGPU::BI__builtin_amdgcn_frexp_mant:
13116  case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
13117  case AMDGPU::BI__builtin_amdgcn_frexp_manth:
13118    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
13119  case AMDGPU::BI__builtin_amdgcn_frexp_exp:
13120  case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
13121    Value *Src0 = EmitScalarExpr(E->getArg(0));
13122    Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
13123                                { Builder.getInt32Ty(), Src0->getType() });
13124    return Builder.CreateCall(F, Src0);
13125  }
13126  case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
13127    Value *Src0 = EmitScalarExpr(E->getArg(0));
13128    Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
13129                                { Builder.getInt16Ty(), Src0->getType() });
13130    return Builder.CreateCall(F, Src0);
13131  }
13132  case AMDGPU::BI__builtin_amdgcn_fract:
13133  case AMDGPU::BI__builtin_amdgcn_fractf:
13134  case AMDGPU::BI__builtin_amdgcn_fracth:
13135    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
13136  case AMDGPU::BI__builtin_amdgcn_lerp:
13137    return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
13138  case AMDGPU::BI__builtin_amdgcn_ubfe:
13139    return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
13140  case AMDGPU::BI__builtin_amdgcn_sbfe:
13141    return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
13142  case AMDGPU::BI__builtin_amdgcn_uicmp:
13143  case AMDGPU::BI__builtin_amdgcn_uicmpl:
13144  case AMDGPU::BI__builtin_amdgcn_sicmp:
13145  case AMDGPU::BI__builtin_amdgcn_sicmpl: {
13146    llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
13147    llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
13148    llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
13149
13150    // FIXME-GFX10: How should 32 bit mask be handled?
13151    Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
13152      { Builder.getInt64Ty(), Src0->getType() });
13153    return Builder.CreateCall(F, { Src0, Src1, Src2 });
13154  }
13155  case AMDGPU::BI__builtin_amdgcn_fcmp:
13156  case AMDGPU::BI__builtin_amdgcn_fcmpf: {
13157    llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
13158    llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
13159    llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
13160
13161    // FIXME-GFX10: How should 32 bit mask be handled?
13162    Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
13163      { Builder.getInt64Ty(), Src0->getType() });
13164    return Builder.CreateCall(F, { Src0, Src1, Src2 });
13165  }
13166  case AMDGPU::BI__builtin_amdgcn_class:
13167  case AMDGPU::BI__builtin_amdgcn_classf:
13168  case AMDGPU::BI__builtin_amdgcn_classh:
13169    return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
13170  case AMDGPU::BI__builtin_amdgcn_fmed3f:
13171  case AMDGPU::BI__builtin_amdgcn_fmed3h:
13172    return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
13173  case AMDGPU::BI__builtin_amdgcn_ds_append:
13174  case AMDGPU::BI__builtin_amdgcn_ds_consume: {
13175    Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
13176      Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
13177    Value *Src0 = EmitScalarExpr(E->getArg(0));
13178    Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
13179    return Builder.CreateCall(F, { Src0, Builder.getFalse() });
13180  }
13181  case AMDGPU::BI__builtin_amdgcn_read_exec: {
13182    CallInst *CI = cast<CallInst>(
13183      EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
13184    CI->setConvergent();
13185    return CI;
13186  }
13187  case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
13188  case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
13189    StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
13190      "exec_lo" : "exec_hi";
13191    CallInst *CI = cast<CallInst>(
13192      EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName));
13193    CI->setConvergent();
13194    return CI;
13195  }
13196  // amdgcn workitem
13197  case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
13198    return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
13199  case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
13200    return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
13201  case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
13202    return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
13203
13204  // r600 intrinsics
13205  case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
13206  case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
13207    return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
13208  case AMDGPU::BI__builtin_r600_read_tidig_x:
13209    return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
13210  case AMDGPU::BI__builtin_r600_read_tidig_y:
13211    return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
13212  case AMDGPU::BI__builtin_r600_read_tidig_z:
13213    return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
13214  default:
13215    return nullptr;
13216  }
13217}
13218
13219/// Handle a SystemZ function in which the final argument is a pointer
13220/// to an int that receives the post-instruction CC value.  At the LLVM level
13221/// this is represented as a function that returns a {result, cc} pair.
13222static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
13223                                         unsigned IntrinsicID,
13224                                         const CallExpr *E) {
13225  unsigned NumArgs = E->getNumArgs() - 1;
13226  SmallVector<Value *, 8> Args(NumArgs);
13227  for (unsigned I = 0; I < NumArgs; ++I)
13228    Args[I] = CGF.EmitScalarExpr(E->getArg(I));
13229  Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
13230  Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
13231  Value *Call = CGF.Builder.CreateCall(F, Args);
13232  Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
13233  CGF.Builder.CreateStore(CC, CCPtr);
13234  return CGF.Builder.CreateExtractValue(Call, 0);
13235}
13236
13237Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
13238                                               const CallExpr *E) {
13239  switch (BuiltinID) {
13240  case SystemZ::BI__builtin_tbegin: {
13241    Value *TDB = EmitScalarExpr(E->getArg(0));
13242    Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
13243    Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
13244    return Builder.CreateCall(F, {TDB, Control});
13245  }
13246  case SystemZ::BI__builtin_tbegin_nofloat: {
13247    Value *TDB = EmitScalarExpr(E->getArg(0));
13248    Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
13249    Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
13250    return Builder.CreateCall(F, {TDB, Control});
13251  }
13252  case SystemZ::BI__builtin_tbeginc: {
13253    Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
13254    Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
13255    Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
13256    return Builder.CreateCall(F, {TDB, Control});
13257  }
13258  case SystemZ::BI__builtin_tabort: {
13259    Value *Data = EmitScalarExpr(E->getArg(0));
13260    Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
13261    return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
13262  }
13263  case SystemZ::BI__builtin_non_tx_store: {
13264    Value *Address = EmitScalarExpr(E->getArg(0));
13265    Value *Data = EmitScalarExpr(E->getArg(1));
13266    Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
13267    return Builder.CreateCall(F, {Data, Address});
13268  }
13269
13270  // Vector builtins.  Note that most vector builtins are mapped automatically
13271  // to target-specific LLVM intrinsics.  The ones handled specially here can
13272  // be represented via standard LLVM IR, which is preferable to enable common
13273  // LLVM optimizations.
13274
13275  case SystemZ::BI__builtin_s390_vpopctb:
13276  case SystemZ::BI__builtin_s390_vpopcth:
13277  case SystemZ::BI__builtin_s390_vpopctf:
13278  case SystemZ::BI__builtin_s390_vpopctg: {
13279    llvm::Type *ResultType = ConvertType(E->getType());
13280    Value *X = EmitScalarExpr(E->getArg(0));
13281    Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
13282    return Builder.CreateCall(F, X);
13283  }
13284
13285  case SystemZ::BI__builtin_s390_vclzb:
13286  case SystemZ::BI__builtin_s390_vclzh:
13287  case SystemZ::BI__builtin_s390_vclzf:
13288  case SystemZ::BI__builtin_s390_vclzg: {
13289    llvm::Type *ResultType = ConvertType(E->getType());
13290    Value *X = EmitScalarExpr(E->getArg(0));
13291    Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
13292    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
13293    return Builder.CreateCall(F, {X, Undef});
13294  }
13295
13296  case SystemZ::BI__builtin_s390_vctzb:
13297  case SystemZ::BI__builtin_s390_vctzh:
13298  case SystemZ::BI__builtin_s390_vctzf:
13299  case SystemZ::BI__builtin_s390_vctzg: {
13300    llvm::Type *ResultType = ConvertType(E->getType());
13301    Value *X = EmitScalarExpr(E->getArg(0));
13302    Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
13303    Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
13304    return Builder.CreateCall(F, {X, Undef});
13305  }
13306
13307  case SystemZ::BI__builtin_s390_vfsqsb:
13308  case SystemZ::BI__builtin_s390_vfsqdb: {
13309    llvm::Type *ResultType = ConvertType(E->getType());
13310    Value *X = EmitScalarExpr(E->getArg(0));
13311    Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
13312    return Builder.CreateCall(F, X);
13313  }
13314  case SystemZ::BI__builtin_s390_vfmasb:
13315  case SystemZ::BI__builtin_s390_vfmadb: {
13316    llvm::Type *ResultType = ConvertType(E->getType());
13317    Value *X = EmitScalarExpr(E->getArg(0));
13318    Value *Y = EmitScalarExpr(E->getArg(1));
13319    Value *Z = EmitScalarExpr(E->getArg(2));
13320    Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
13321    return Builder.CreateCall(F, {X, Y, Z});
13322  }
13323  case SystemZ::BI__builtin_s390_vfmssb:
13324  case SystemZ::BI__builtin_s390_vfmsdb: {
13325    llvm::Type *ResultType = ConvertType(E->getType());
13326    Value *X = EmitScalarExpr(E->getArg(0));
13327    Value *Y = EmitScalarExpr(E->getArg(1));
13328    Value *Z = EmitScalarExpr(E->getArg(2));
13329    Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
13330    return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
13331  }
13332  case SystemZ::BI__builtin_s390_vfnmasb:
13333  case SystemZ::BI__builtin_s390_vfnmadb: {
13334    llvm::Type *ResultType = ConvertType(E->getType());
13335    Value *X = EmitScalarExpr(E->getArg(0));
13336    Value *Y = EmitScalarExpr(E->getArg(1));
13337    Value *Z = EmitScalarExpr(E->getArg(2));
13338    Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
13339    return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
13340  }
13341  case SystemZ::BI__builtin_s390_vfnmssb:
13342  case SystemZ::BI__builtin_s390_vfnmsdb: {
13343    llvm::Type *ResultType = ConvertType(E->getType());
13344    Value *X = EmitScalarExpr(E->getArg(0));
13345    Value *Y = EmitScalarExpr(E->getArg(1));
13346    Value *Z = EmitScalarExpr(E->getArg(2));
13347    Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
13348    Value *NegZ = Builder.CreateFNeg(Z, "neg");
13349    return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
13350  }
13351  case SystemZ::BI__builtin_s390_vflpsb:
13352  case SystemZ::BI__builtin_s390_vflpdb: {
13353    llvm::Type *ResultType = ConvertType(E->getType());
13354    Value *X = EmitScalarExpr(E->getArg(0));
13355    Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
13356    return Builder.CreateCall(F, X);
13357  }
13358  case SystemZ::BI__builtin_s390_vflnsb:
13359  case SystemZ::BI__builtin_s390_vflndb: {
13360    llvm::Type *ResultType = ConvertType(E->getType());
13361    Value *X = EmitScalarExpr(E->getArg(0));
13362    Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
13363    return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
13364  }
13365  case SystemZ::BI__builtin_s390_vfisb:
13366  case SystemZ::BI__builtin_s390_vfidb: {
13367    llvm::Type *ResultType = ConvertType(E->getType());
13368    Value *X = EmitScalarExpr(E->getArg(0));
13369    // Constant-fold the M4 and M5 mask arguments.
13370    llvm::APSInt M4, M5;
13371    bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
13372    bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
13373    assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
13374    (void)IsConstM4; (void)IsConstM5;
13375    // Check whether this instance can be represented via a LLVM standard
13376    // intrinsic.  We only support some combinations of M4 and M5.
13377    Intrinsic::ID ID = Intrinsic::not_intrinsic;
13378    switch (M4.getZExtValue()) {
13379    default: break;
13380    case 0:  // IEEE-inexact exception allowed
13381      switch (M5.getZExtValue()) {
13382      default: break;
13383      case 0: ID = Intrinsic::rint; break;
13384      }
13385      break;
13386    case 4:  // IEEE-inexact exception suppressed
13387      switch (M5.getZExtValue()) {
13388      default: break;
13389      case 0: ID = Intrinsic::nearbyint; break;
13390      case 1: ID = Intrinsic::round; break;
13391      case 5: ID = Intrinsic::trunc; break;
13392      case 6: ID = Intrinsic::ceil; break;
13393      case 7: ID = Intrinsic::floor; break;
13394      }
13395      break;
13396    }
13397    if (ID != Intrinsic::not_intrinsic) {
13398      Function *F = CGM.getIntrinsic(ID, ResultType);
13399      return Builder.CreateCall(F, X);
13400    }
13401    switch (BuiltinID) {
13402      case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
13403      case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
13404      default: llvm_unreachable("Unknown BuiltinID");
13405    }
13406    Function *F = CGM.getIntrinsic(ID);
13407    Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13408    Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
13409    return Builder.CreateCall(F, {X, M4Value, M5Value});
13410  }
13411  case SystemZ::BI__builtin_s390_vfmaxsb:
13412  case SystemZ::BI__builtin_s390_vfmaxdb: {
13413    llvm::Type *ResultType = ConvertType(E->getType());
13414    Value *X = EmitScalarExpr(E->getArg(0));
13415    Value *Y = EmitScalarExpr(E->getArg(1));
13416    // Constant-fold the M4 mask argument.
13417    llvm::APSInt M4;
13418    bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
13419    assert(IsConstM4 && "Constant arg isn't actually constant?");
13420    (void)IsConstM4;
13421    // Check whether this instance can be represented via a LLVM standard
13422    // intrinsic.  We only support some values of M4.
13423    Intrinsic::ID ID = Intrinsic::not_intrinsic;
13424    switch (M4.getZExtValue()) {
13425    default: break;
13426    case 4: ID = Intrinsic::maxnum; break;
13427    }
13428    if (ID != Intrinsic::not_intrinsic) {
13429      Function *F = CGM.getIntrinsic(ID, ResultType);
13430      return Builder.CreateCall(F, {X, Y});
13431    }
13432    switch (BuiltinID) {
13433      case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
13434      case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
13435      default: llvm_unreachable("Unknown BuiltinID");
13436    }
13437    Function *F = CGM.getIntrinsic(ID);
13438    Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13439    return Builder.CreateCall(F, {X, Y, M4Value});
13440  }
13441  case SystemZ::BI__builtin_s390_vfminsb:
13442  case SystemZ::BI__builtin_s390_vfmindb: {
13443    llvm::Type *ResultType = ConvertType(E->getType());
13444    Value *X = EmitScalarExpr(E->getArg(0));
13445    Value *Y = EmitScalarExpr(E->getArg(1));
13446    // Constant-fold the M4 mask argument.
13447    llvm::APSInt M4;
13448    bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
13449    assert(IsConstM4 && "Constant arg isn't actually constant?");
13450    (void)IsConstM4;
13451    // Check whether this instance can be represented via a LLVM standard
13452    // intrinsic.  We only support some values of M4.
13453    Intrinsic::ID ID = Intrinsic::not_intrinsic;
13454    switch (M4.getZExtValue()) {
13455    default: break;
13456    case 4: ID = Intrinsic::minnum; break;
13457    }
13458    if (ID != Intrinsic::not_intrinsic) {
13459      Function *F = CGM.getIntrinsic(ID, ResultType);
13460      return Builder.CreateCall(F, {X, Y});
13461    }
13462    switch (BuiltinID) {
13463      case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
13464      case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
13465      default: llvm_unreachable("Unknown BuiltinID");
13466    }
13467    Function *F = CGM.getIntrinsic(ID);
13468    Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13469    return Builder.CreateCall(F, {X, Y, M4Value});
13470  }
13471
13472  case SystemZ::BI__builtin_s390_vlbrh:
13473  case SystemZ::BI__builtin_s390_vlbrf:
13474  case SystemZ::BI__builtin_s390_vlbrg: {
13475    llvm::Type *ResultType = ConvertType(E->getType());
13476    Value *X = EmitScalarExpr(E->getArg(0));
13477    Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
13478    return Builder.CreateCall(F, X);
13479  }
13480
13481  // Vector intrinsics that output the post-instruction CC value.
13482
13483#define INTRINSIC_WITH_CC(NAME) \
13484    case SystemZ::BI__builtin_##NAME: \
13485      return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
13486
13487  INTRINSIC_WITH_CC(s390_vpkshs);
13488  INTRINSIC_WITH_CC(s390_vpksfs);
13489  INTRINSIC_WITH_CC(s390_vpksgs);
13490
13491  INTRINSIC_WITH_CC(s390_vpklshs);
13492  INTRINSIC_WITH_CC(s390_vpklsfs);
13493  INTRINSIC_WITH_CC(s390_vpklsgs);
13494
13495  INTRINSIC_WITH_CC(s390_vceqbs);
13496  INTRINSIC_WITH_CC(s390_vceqhs);
13497  INTRINSIC_WITH_CC(s390_vceqfs);
13498  INTRINSIC_WITH_CC(s390_vceqgs);
13499
13500  INTRINSIC_WITH_CC(s390_vchbs);
13501  INTRINSIC_WITH_CC(s390_vchhs);
13502  INTRINSIC_WITH_CC(s390_vchfs);
13503  INTRINSIC_WITH_CC(s390_vchgs);
13504
13505  INTRINSIC_WITH_CC(s390_vchlbs);
13506  INTRINSIC_WITH_CC(s390_vchlhs);
13507  INTRINSIC_WITH_CC(s390_vchlfs);
13508  INTRINSIC_WITH_CC(s390_vchlgs);
13509
13510  INTRINSIC_WITH_CC(s390_vfaebs);
13511  INTRINSIC_WITH_CC(s390_vfaehs);
13512  INTRINSIC_WITH_CC(s390_vfaefs);
13513
13514  INTRINSIC_WITH_CC(s390_vfaezbs);
13515  INTRINSIC_WITH_CC(s390_vfaezhs);
13516  INTRINSIC_WITH_CC(s390_vfaezfs);
13517
13518  INTRINSIC_WITH_CC(s390_vfeebs);
13519  INTRINSIC_WITH_CC(s390_vfeehs);
13520  INTRINSIC_WITH_CC(s390_vfeefs);
13521
13522  INTRINSIC_WITH_CC(s390_vfeezbs);
13523  INTRINSIC_WITH_CC(s390_vfeezhs);
13524  INTRINSIC_WITH_CC(s390_vfeezfs);
13525
13526  INTRINSIC_WITH_CC(s390_vfenebs);
13527  INTRINSIC_WITH_CC(s390_vfenehs);
13528  INTRINSIC_WITH_CC(s390_vfenefs);
13529
13530  INTRINSIC_WITH_CC(s390_vfenezbs);
13531  INTRINSIC_WITH_CC(s390_vfenezhs);
13532  INTRINSIC_WITH_CC(s390_vfenezfs);
13533
13534  INTRINSIC_WITH_CC(s390_vistrbs);
13535  INTRINSIC_WITH_CC(s390_vistrhs);
13536  INTRINSIC_WITH_CC(s390_vistrfs);
13537
13538  INTRINSIC_WITH_CC(s390_vstrcbs);
13539  INTRINSIC_WITH_CC(s390_vstrchs);
13540  INTRINSIC_WITH_CC(s390_vstrcfs);
13541
13542  INTRINSIC_WITH_CC(s390_vstrczbs);
13543  INTRINSIC_WITH_CC(s390_vstrczhs);
13544  INTRINSIC_WITH_CC(s390_vstrczfs);
13545
13546  INTRINSIC_WITH_CC(s390_vfcesbs);
13547  INTRINSIC_WITH_CC(s390_vfcedbs);
13548  INTRINSIC_WITH_CC(s390_vfchsbs);
13549  INTRINSIC_WITH_CC(s390_vfchdbs);
13550  INTRINSIC_WITH_CC(s390_vfchesbs);
13551  INTRINSIC_WITH_CC(s390_vfchedbs);
13552
13553  INTRINSIC_WITH_CC(s390_vftcisb);
13554  INTRINSIC_WITH_CC(s390_vftcidb);
13555
13556  INTRINSIC_WITH_CC(s390_vstrsb);
13557  INTRINSIC_WITH_CC(s390_vstrsh);
13558  INTRINSIC_WITH_CC(s390_vstrsf);
13559
13560  INTRINSIC_WITH_CC(s390_vstrszb);
13561  INTRINSIC_WITH_CC(s390_vstrszh);
13562  INTRINSIC_WITH_CC(s390_vstrszf);
13563
13564#undef INTRINSIC_WITH_CC
13565
13566  default:
13567    return nullptr;
13568  }
13569}
13570
13571namespace {
13572// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
13573struct NVPTXMmaLdstInfo {
13574  unsigned NumResults;  // Number of elements to load/store
13575  // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
13576  unsigned IID_col;
13577  unsigned IID_row;
13578};
13579
13580#define MMA_INTR(geom_op_type, layout) \
13581  Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
13582#define MMA_LDST(n, geom_op_type)                                              \
13583  { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
13584
13585static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
13586  switch (BuiltinID) {
13587  // FP MMA loads
13588  case NVPTX::BI__hmma_m16n16k16_ld_a:
13589    return MMA_LDST(8, m16n16k16_load_a_f16);
13590  case NVPTX::BI__hmma_m16n16k16_ld_b:
13591    return MMA_LDST(8, m16n16k16_load_b_f16);
13592  case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
13593    return MMA_LDST(4, m16n16k16_load_c_f16);
13594  case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
13595    return MMA_LDST(8, m16n16k16_load_c_f32);
13596  case NVPTX::BI__hmma_m32n8k16_ld_a:
13597    return MMA_LDST(8, m32n8k16_load_a_f16);
13598  case NVPTX::BI__hmma_m32n8k16_ld_b:
13599    return MMA_LDST(8, m32n8k16_load_b_f16);
13600  case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
13601    return MMA_LDST(4, m32n8k16_load_c_f16);
13602  case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
13603    return MMA_LDST(8, m32n8k16_load_c_f32);
13604  case NVPTX::BI__hmma_m8n32k16_ld_a:
13605    return MMA_LDST(8, m8n32k16_load_a_f16);
13606  case NVPTX::BI__hmma_m8n32k16_ld_b:
13607    return MMA_LDST(8, m8n32k16_load_b_f16);
13608  case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
13609    return MMA_LDST(4, m8n32k16_load_c_f16);
13610  case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
13611    return MMA_LDST(8, m8n32k16_load_c_f32);
13612
13613  // Integer MMA loads
13614  case NVPTX::BI__imma_m16n16k16_ld_a_s8:
13615    return MMA_LDST(2, m16n16k16_load_a_s8);
13616  case NVPTX::BI__imma_m16n16k16_ld_a_u8:
13617    return MMA_LDST(2, m16n16k16_load_a_u8);
13618  case NVPTX::BI__imma_m16n16k16_ld_b_s8:
13619    return MMA_LDST(2, m16n16k16_load_b_s8);
13620  case NVPTX::BI__imma_m16n16k16_ld_b_u8:
13621    return MMA_LDST(2, m16n16k16_load_b_u8);
13622  case NVPTX::BI__imma_m16n16k16_ld_c:
13623    return MMA_LDST(8, m16n16k16_load_c_s32);
13624  case NVPTX::BI__imma_m32n8k16_ld_a_s8:
13625    return MMA_LDST(4, m32n8k16_load_a_s8);
13626  case NVPTX::BI__imma_m32n8k16_ld_a_u8:
13627    return MMA_LDST(4, m32n8k16_load_a_u8);
13628  case NVPTX::BI__imma_m32n8k16_ld_b_s8:
13629    return MMA_LDST(1, m32n8k16_load_b_s8);
13630  case NVPTX::BI__imma_m32n8k16_ld_b_u8:
13631    return MMA_LDST(1, m32n8k16_load_b_u8);
13632  case NVPTX::BI__imma_m32n8k16_ld_c:
13633    return MMA_LDST(8, m32n8k16_load_c_s32);
13634  case NVPTX::BI__imma_m8n32k16_ld_a_s8:
13635    return MMA_LDST(1, m8n32k16_load_a_s8);
13636  case NVPTX::BI__imma_m8n32k16_ld_a_u8:
13637    return MMA_LDST(1, m8n32k16_load_a_u8);
13638  case NVPTX::BI__imma_m8n32k16_ld_b_s8:
13639    return MMA_LDST(4, m8n32k16_load_b_s8);
13640  case NVPTX::BI__imma_m8n32k16_ld_b_u8:
13641    return MMA_LDST(4, m8n32k16_load_b_u8);
13642  case NVPTX::BI__imma_m8n32k16_ld_c:
13643    return MMA_LDST(8, m8n32k16_load_c_s32);
13644
13645  // Sub-integer MMA loads.
13646  // Only row/col layout is supported by A/B fragments.
13647  case NVPTX::BI__imma_m8n8k32_ld_a_s4:
13648    return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
13649  case NVPTX::BI__imma_m8n8k32_ld_a_u4:
13650    return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
13651  case NVPTX::BI__imma_m8n8k32_ld_b_s4:
13652    return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
13653  case NVPTX::BI__imma_m8n8k32_ld_b_u4:
13654    return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
13655  case NVPTX::BI__imma_m8n8k32_ld_c:
13656    return MMA_LDST(2, m8n8k32_load_c_s32);
13657  case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
13658    return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
13659  case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
13660    return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
13661  case NVPTX::BI__bmma_m8n8k128_ld_c:
13662    return MMA_LDST(2, m8n8k128_load_c_s32);
13663
13664  // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
13665  // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
13666  // use fragment C for both loads and stores.
13667  // FP MMA stores.
13668  case NVPTX::BI__hmma_m16n16k16_st_c_f16:
13669    return MMA_LDST(4, m16n16k16_store_d_f16);
13670  case NVPTX::BI__hmma_m16n16k16_st_c_f32:
13671    return MMA_LDST(8, m16n16k16_store_d_f32);
13672  case NVPTX::BI__hmma_m32n8k16_st_c_f16:
13673    return MMA_LDST(4, m32n8k16_store_d_f16);
13674  case NVPTX::BI__hmma_m32n8k16_st_c_f32:
13675    return MMA_LDST(8, m32n8k16_store_d_f32);
13676  case NVPTX::BI__hmma_m8n32k16_st_c_f16:
13677    return MMA_LDST(4, m8n32k16_store_d_f16);
13678  case NVPTX::BI__hmma_m8n32k16_st_c_f32:
13679    return MMA_LDST(8, m8n32k16_store_d_f32);
13680
13681  // Integer and sub-integer MMA stores.
13682  // Another naming quirk. Unlike other MMA builtins that use PTX types in the
13683  // name, integer loads/stores use LLVM's i32.
13684  case NVPTX::BI__imma_m16n16k16_st_c_i32:
13685    return MMA_LDST(8, m16n16k16_store_d_s32);
13686  case NVPTX::BI__imma_m32n8k16_st_c_i32:
13687    return MMA_LDST(8, m32n8k16_store_d_s32);
13688  case NVPTX::BI__imma_m8n32k16_st_c_i32:
13689    return MMA_LDST(8, m8n32k16_store_d_s32);
13690  case NVPTX::BI__imma_m8n8k32_st_c_i32:
13691    return MMA_LDST(2, m8n8k32_store_d_s32);
13692  case NVPTX::BI__bmma_m8n8k128_st_c_i32:
13693    return MMA_LDST(2, m8n8k128_store_d_s32);
13694
13695  default:
13696    llvm_unreachable("Unknown MMA builtin");
13697  }
13698}
13699#undef MMA_LDST
13700#undef MMA_INTR
13701
13702
13703struct NVPTXMmaInfo {
13704  unsigned NumEltsA;
13705  unsigned NumEltsB;
13706  unsigned NumEltsC;
13707  unsigned NumEltsD;
13708  std::array<unsigned, 8> Variants;
13709
13710  unsigned getMMAIntrinsic(int Layout, bool Satf) {
13711    unsigned Index = Layout * 2 + Satf;
13712    if (Index >= Variants.size())
13713      return 0;
13714    return Variants[Index];
13715  }
13716};
13717
13718  // Returns an intrinsic that matches Layout and Satf for valid combinations of
13719  // Layout and Satf, 0 otherwise.
13720static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
13721  // clang-format off
13722#define MMA_VARIANTS(geom, type) {{                                 \
13723      Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
13724      Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
13725      Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
13726      Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
13727      Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
13728      Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
13729      Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type,             \
13730      Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite  \
13731    }}
13732// Sub-integer MMA only supports row.col layout.
13733#define MMA_VARIANTS_I4(geom, type) {{ \
13734      0, \
13735      0, \
13736      Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
13737      Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
13738      0, \
13739      0, \
13740      0, \
13741      0  \
13742    }}
13743// b1 MMA does not support .satfinite.
13744#define MMA_VARIANTS_B1(geom, type) {{ \
13745      0, \
13746      0, \
13747      Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
13748      0, \
13749      0, \
13750      0, \
13751      0, \
13752      0  \
13753    }}
13754    // clang-format on
13755    switch (BuiltinID) {
13756    // FP MMA
13757    // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
13758    // NumEltsN of return value are ordered as A,B,C,D.
13759    case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
13760      return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
13761    case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
13762      return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
13763    case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
13764      return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
13765    case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
13766      return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
13767    case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
13768      return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
13769    case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
13770      return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
13771    case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
13772      return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
13773    case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
13774      return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
13775    case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
13776      return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
13777    case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
13778      return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
13779    case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
13780      return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
13781    case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
13782      return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
13783
13784    // Integer MMA
13785    case NVPTX::BI__imma_m16n16k16_mma_s8:
13786      return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
13787    case NVPTX::BI__imma_m16n16k16_mma_u8:
13788      return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
13789    case NVPTX::BI__imma_m32n8k16_mma_s8:
13790      return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
13791    case NVPTX::BI__imma_m32n8k16_mma_u8:
13792      return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
13793    case NVPTX::BI__imma_m8n32k16_mma_s8:
13794      return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
13795    case NVPTX::BI__imma_m8n32k16_mma_u8:
13796      return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
13797
13798    // Sub-integer MMA
13799    case NVPTX::BI__imma_m8n8k32_mma_s4:
13800      return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
13801    case NVPTX::BI__imma_m8n8k32_mma_u4:
13802      return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
13803    case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
13804      return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
13805    default:
13806      llvm_unreachable("Unexpected builtin ID.");
13807    }
13808#undef MMA_VARIANTS
13809#undef MMA_VARIANTS_I4
13810#undef MMA_VARIANTS_B1
13811}
13812
13813} // namespace
13814
13815Value *
13816CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
13817  auto MakeLdg = [&](unsigned IntrinsicID) {
13818    Value *Ptr = EmitScalarExpr(E->getArg(0));
13819    clang::CharUnits Align =
13820        getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
13821    return Builder.CreateCall(
13822        CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
13823                                       Ptr->getType()}),
13824        {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
13825  };
13826  auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
13827    Value *Ptr = EmitScalarExpr(E->getArg(0));
13828    return Builder.CreateCall(
13829        CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
13830                                       Ptr->getType()}),
13831        {Ptr, EmitScalarExpr(E->getArg(1))});
13832  };
13833  switch (BuiltinID) {
13834  case NVPTX::BI__nvvm_atom_add_gen_i:
13835  case NVPTX::BI__nvvm_atom_add_gen_l:
13836  case NVPTX::BI__nvvm_atom_add_gen_ll:
13837    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
13838
13839  case NVPTX::BI__nvvm_atom_sub_gen_i:
13840  case NVPTX::BI__nvvm_atom_sub_gen_l:
13841  case NVPTX::BI__nvvm_atom_sub_gen_ll:
13842    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
13843
13844  case NVPTX::BI__nvvm_atom_and_gen_i:
13845  case NVPTX::BI__nvvm_atom_and_gen_l:
13846  case NVPTX::BI__nvvm_atom_and_gen_ll:
13847    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
13848
13849  case NVPTX::BI__nvvm_atom_or_gen_i:
13850  case NVPTX::BI__nvvm_atom_or_gen_l:
13851  case NVPTX::BI__nvvm_atom_or_gen_ll:
13852    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
13853
13854  case NVPTX::BI__nvvm_atom_xor_gen_i:
13855  case NVPTX::BI__nvvm_atom_xor_gen_l:
13856  case NVPTX::BI__nvvm_atom_xor_gen_ll:
13857    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
13858
13859  case NVPTX::BI__nvvm_atom_xchg_gen_i:
13860  case NVPTX::BI__nvvm_atom_xchg_gen_l:
13861  case NVPTX::BI__nvvm_atom_xchg_gen_ll:
13862    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
13863
13864  case NVPTX::BI__nvvm_atom_max_gen_i:
13865  case NVPTX::BI__nvvm_atom_max_gen_l:
13866  case NVPTX::BI__nvvm_atom_max_gen_ll:
13867    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
13868
13869  case NVPTX::BI__nvvm_atom_max_gen_ui:
13870  case NVPTX::BI__nvvm_atom_max_gen_ul:
13871  case NVPTX::BI__nvvm_atom_max_gen_ull:
13872    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
13873
13874  case NVPTX::BI__nvvm_atom_min_gen_i:
13875  case NVPTX::BI__nvvm_atom_min_gen_l:
13876  case NVPTX::BI__nvvm_atom_min_gen_ll:
13877    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
13878
13879  case NVPTX::BI__nvvm_atom_min_gen_ui:
13880  case NVPTX::BI__nvvm_atom_min_gen_ul:
13881  case NVPTX::BI__nvvm_atom_min_gen_ull:
13882    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
13883
13884  case NVPTX::BI__nvvm_atom_cas_gen_i:
13885  case NVPTX::BI__nvvm_atom_cas_gen_l:
13886  case NVPTX::BI__nvvm_atom_cas_gen_ll:
13887    // __nvvm_atom_cas_gen_* should return the old value rather than the
13888    // success flag.
13889    return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
13890
13891  case NVPTX::BI__nvvm_atom_add_gen_f:
13892  case NVPTX::BI__nvvm_atom_add_gen_d: {
13893    Value *Ptr = EmitScalarExpr(E->getArg(0));
13894    Value *Val = EmitScalarExpr(E->getArg(1));
13895    return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
13896                                   AtomicOrdering::SequentiallyConsistent);
13897  }
13898
13899  case NVPTX::BI__nvvm_atom_inc_gen_ui: {
13900    Value *Ptr = EmitScalarExpr(E->getArg(0));
13901    Value *Val = EmitScalarExpr(E->getArg(1));
13902    Function *FnALI32 =
13903        CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
13904    return Builder.CreateCall(FnALI32, {Ptr, Val});
13905  }
13906
13907  case NVPTX::BI__nvvm_atom_dec_gen_ui: {
13908    Value *Ptr = EmitScalarExpr(E->getArg(0));
13909    Value *Val = EmitScalarExpr(E->getArg(1));
13910    Function *FnALD32 =
13911        CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
13912    return Builder.CreateCall(FnALD32, {Ptr, Val});
13913  }
13914
13915  case NVPTX::BI__nvvm_ldg_c:
13916  case NVPTX::BI__nvvm_ldg_c2:
13917  case NVPTX::BI__nvvm_ldg_c4:
13918  case NVPTX::BI__nvvm_ldg_s:
13919  case NVPTX::BI__nvvm_ldg_s2:
13920  case NVPTX::BI__nvvm_ldg_s4:
13921  case NVPTX::BI__nvvm_ldg_i:
13922  case NVPTX::BI__nvvm_ldg_i2:
13923  case NVPTX::BI__nvvm_ldg_i4:
13924  case NVPTX::BI__nvvm_ldg_l:
13925  case NVPTX::BI__nvvm_ldg_ll:
13926  case NVPTX::BI__nvvm_ldg_ll2:
13927  case NVPTX::BI__nvvm_ldg_uc:
13928  case NVPTX::BI__nvvm_ldg_uc2:
13929  case NVPTX::BI__nvvm_ldg_uc4:
13930  case NVPTX::BI__nvvm_ldg_us:
13931  case NVPTX::BI__nvvm_ldg_us2:
13932  case NVPTX::BI__nvvm_ldg_us4:
13933  case NVPTX::BI__nvvm_ldg_ui:
13934  case NVPTX::BI__nvvm_ldg_ui2:
13935  case NVPTX::BI__nvvm_ldg_ui4:
13936  case NVPTX::BI__nvvm_ldg_ul:
13937  case NVPTX::BI__nvvm_ldg_ull:
13938  case NVPTX::BI__nvvm_ldg_ull2:
13939    // PTX Interoperability section 2.2: "For a vector with an even number of
13940    // elements, its alignment is set to number of elements times the alignment
13941    // of its member: n*alignof(t)."
13942    return MakeLdg(Intrinsic::nvvm_ldg_global_i);
13943  case NVPTX::BI__nvvm_ldg_f:
13944  case NVPTX::BI__nvvm_ldg_f2:
13945  case NVPTX::BI__nvvm_ldg_f4:
13946  case NVPTX::BI__nvvm_ldg_d:
13947  case NVPTX::BI__nvvm_ldg_d2:
13948    return MakeLdg(Intrinsic::nvvm_ldg_global_f);
13949
13950  case NVPTX::BI__nvvm_atom_cta_add_gen_i:
13951  case NVPTX::BI__nvvm_atom_cta_add_gen_l:
13952  case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
13953    return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
13954  case NVPTX::BI__nvvm_atom_sys_add_gen_i:
13955  case NVPTX::BI__nvvm_atom_sys_add_gen_l:
13956  case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
13957    return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
13958  case NVPTX::BI__nvvm_atom_cta_add_gen_f:
13959  case NVPTX::BI__nvvm_atom_cta_add_gen_d:
13960    return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
13961  case NVPTX::BI__nvvm_atom_sys_add_gen_f:
13962  case NVPTX::BI__nvvm_atom_sys_add_gen_d:
13963    return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
13964  case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
13965  case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
13966  case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
13967    return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
13968  case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
13969  case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
13970  case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
13971    return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
13972  case NVPTX::BI__nvvm_atom_cta_max_gen_i:
13973  case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
13974  case NVPTX::BI__nvvm_atom_cta_max_gen_l:
13975  case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
13976  case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
13977  case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
13978    return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
13979  case NVPTX::BI__nvvm_atom_sys_max_gen_i:
13980  case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
13981  case NVPTX::BI__nvvm_atom_sys_max_gen_l:
13982  case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
13983  case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
13984  case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
13985    return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
13986  case NVPTX::BI__nvvm_atom_cta_min_gen_i:
13987  case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
13988  case NVPTX::BI__nvvm_atom_cta_min_gen_l:
13989  case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
13990  case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
13991  case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
13992    return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
13993  case NVPTX::BI__nvvm_atom_sys_min_gen_i:
13994  case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
13995  case NVPTX::BI__nvvm_atom_sys_min_gen_l:
13996  case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
13997  case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
13998  case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
13999    return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
14000  case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
14001    return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
14002  case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
14003    return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
14004  case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
14005    return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
14006  case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
14007    return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
14008  case NVPTX::BI__nvvm_atom_cta_and_gen_i:
14009  case NVPTX::BI__nvvm_atom_cta_and_gen_l:
14010  case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
14011    return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
14012  case NVPTX::BI__nvvm_atom_sys_and_gen_i:
14013  case NVPTX::BI__nvvm_atom_sys_and_gen_l:
14014  case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
14015    return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
14016  case NVPTX::BI__nvvm_atom_cta_or_gen_i:
14017  case NVPTX::BI__nvvm_atom_cta_or_gen_l:
14018  case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
14019    return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
14020  case NVPTX::BI__nvvm_atom_sys_or_gen_i:
14021  case NVPTX::BI__nvvm_atom_sys_or_gen_l:
14022  case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
14023    return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
14024  case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
14025  case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
14026  case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
14027    return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
14028  case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
14029  case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
14030  case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
14031    return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
14032  case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
14033  case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
14034  case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
14035    Value *Ptr = EmitScalarExpr(E->getArg(0));
14036    return Builder.CreateCall(
14037        CGM.getIntrinsic(
14038            Intrinsic::nvvm_atomic_cas_gen_i_cta,
14039            {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
14040        {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
14041  }
14042  case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
14043  case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
14044  case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
14045    Value *Ptr = EmitScalarExpr(E->getArg(0));
14046    return Builder.CreateCall(
14047        CGM.getIntrinsic(
14048            Intrinsic::nvvm_atomic_cas_gen_i_sys,
14049            {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
14050        {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
14051  }
14052  case NVPTX::BI__nvvm_match_all_sync_i32p:
14053  case NVPTX::BI__nvvm_match_all_sync_i64p: {
14054    Value *Mask = EmitScalarExpr(E->getArg(0));
14055    Value *Val = EmitScalarExpr(E->getArg(1));
14056    Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
14057    Value *ResultPair = Builder.CreateCall(
14058        CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
14059                             ? Intrinsic::nvvm_match_all_sync_i32p
14060                             : Intrinsic::nvvm_match_all_sync_i64p),
14061        {Mask, Val});
14062    Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
14063                                     PredOutPtr.getElementType());
14064    Builder.CreateStore(Pred, PredOutPtr);
14065    return Builder.CreateExtractValue(ResultPair, 0);
14066  }
14067
14068  // FP MMA loads
14069  case NVPTX::BI__hmma_m16n16k16_ld_a:
14070  case NVPTX::BI__hmma_m16n16k16_ld_b:
14071  case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
14072  case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
14073  case NVPTX::BI__hmma_m32n8k16_ld_a:
14074  case NVPTX::BI__hmma_m32n8k16_ld_b:
14075  case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
14076  case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
14077  case NVPTX::BI__hmma_m8n32k16_ld_a:
14078  case NVPTX::BI__hmma_m8n32k16_ld_b:
14079  case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
14080  case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
14081  // Integer MMA loads.
14082  case NVPTX::BI__imma_m16n16k16_ld_a_s8:
14083  case NVPTX::BI__imma_m16n16k16_ld_a_u8:
14084  case NVPTX::BI__imma_m16n16k16_ld_b_s8:
14085  case NVPTX::BI__imma_m16n16k16_ld_b_u8:
14086  case NVPTX::BI__imma_m16n16k16_ld_c:
14087  case NVPTX::BI__imma_m32n8k16_ld_a_s8:
14088  case NVPTX::BI__imma_m32n8k16_ld_a_u8:
14089  case NVPTX::BI__imma_m32n8k16_ld_b_s8:
14090  case NVPTX::BI__imma_m32n8k16_ld_b_u8:
14091  case NVPTX::BI__imma_m32n8k16_ld_c:
14092  case NVPTX::BI__imma_m8n32k16_ld_a_s8:
14093  case NVPTX::BI__imma_m8n32k16_ld_a_u8:
14094  case NVPTX::BI__imma_m8n32k16_ld_b_s8:
14095  case NVPTX::BI__imma_m8n32k16_ld_b_u8:
14096  case NVPTX::BI__imma_m8n32k16_ld_c:
14097  // Sub-integer MMA loads.
14098  case NVPTX::BI__imma_m8n8k32_ld_a_s4:
14099  case NVPTX::BI__imma_m8n8k32_ld_a_u4:
14100  case NVPTX::BI__imma_m8n8k32_ld_b_s4:
14101  case NVPTX::BI__imma_m8n8k32_ld_b_u4:
14102  case NVPTX::BI__imma_m8n8k32_ld_c:
14103  case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
14104  case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
14105  case NVPTX::BI__bmma_m8n8k128_ld_c:
14106  {
14107    Address Dst = EmitPointerWithAlignment(E->getArg(0));
14108    Value *Src = EmitScalarExpr(E->getArg(1));
14109    Value *Ldm = EmitScalarExpr(E->getArg(2));
14110    llvm::APSInt isColMajorArg;
14111    if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
14112      return nullptr;
14113    bool isColMajor = isColMajorArg.getSExtValue();
14114    NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
14115    unsigned IID = isColMajor ? II.IID_col : II.IID_row;
14116    if (IID == 0)
14117      return nullptr;
14118
14119    Value *Result =
14120        Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
14121
14122    // Save returned values.
14123    assert(II.NumResults);
14124    if (II.NumResults == 1) {
14125      Builder.CreateAlignedStore(Result, Dst.getPointer(),
14126                                 CharUnits::fromQuantity(4));
14127    } else {
14128      for (unsigned i = 0; i < II.NumResults; ++i) {
14129        Builder.CreateAlignedStore(
14130            Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
14131                                  Dst.getElementType()),
14132            Builder.CreateGEP(Dst.getPointer(),
14133                              llvm::ConstantInt::get(IntTy, i)),
14134            CharUnits::fromQuantity(4));
14135      }
14136    }
14137    return Result;
14138  }
14139
14140  case NVPTX::BI__hmma_m16n16k16_st_c_f16:
14141  case NVPTX::BI__hmma_m16n16k16_st_c_f32:
14142  case NVPTX::BI__hmma_m32n8k16_st_c_f16:
14143  case NVPTX::BI__hmma_m32n8k16_st_c_f32:
14144  case NVPTX::BI__hmma_m8n32k16_st_c_f16:
14145  case NVPTX::BI__hmma_m8n32k16_st_c_f32:
14146  case NVPTX::BI__imma_m16n16k16_st_c_i32:
14147  case NVPTX::BI__imma_m32n8k16_st_c_i32:
14148  case NVPTX::BI__imma_m8n32k16_st_c_i32:
14149  case NVPTX::BI__imma_m8n8k32_st_c_i32:
14150  case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
14151    Value *Dst = EmitScalarExpr(E->getArg(0));
14152    Address Src = EmitPointerWithAlignment(E->getArg(1));
14153    Value *Ldm = EmitScalarExpr(E->getArg(2));
14154    llvm::APSInt isColMajorArg;
14155    if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
14156      return nullptr;
14157    bool isColMajor = isColMajorArg.getSExtValue();
14158    NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
14159    unsigned IID = isColMajor ? II.IID_col : II.IID_row;
14160    if (IID == 0)
14161      return nullptr;
14162    Function *Intrinsic =
14163        CGM.getIntrinsic(IID, Dst->getType());
14164    llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
14165    SmallVector<Value *, 10> Values = {Dst};
14166    for (unsigned i = 0; i < II.NumResults; ++i) {
14167      Value *V = Builder.CreateAlignedLoad(
14168          Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
14169          CharUnits::fromQuantity(4));
14170      Values.push_back(Builder.CreateBitCast(V, ParamType));
14171    }
14172    Values.push_back(Ldm);
14173    Value *Result = Builder.CreateCall(Intrinsic, Values);
14174    return Result;
14175  }
14176
14177  // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
14178  // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
14179  case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
14180  case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
14181  case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
14182  case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
14183  case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
14184  case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
14185  case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
14186  case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
14187  case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
14188  case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
14189  case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
14190  case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
14191  case NVPTX::BI__imma_m16n16k16_mma_s8:
14192  case NVPTX::BI__imma_m16n16k16_mma_u8:
14193  case NVPTX::BI__imma_m32n8k16_mma_s8:
14194  case NVPTX::BI__imma_m32n8k16_mma_u8:
14195  case NVPTX::BI__imma_m8n32k16_mma_s8:
14196  case NVPTX::BI__imma_m8n32k16_mma_u8:
14197  case NVPTX::BI__imma_m8n8k32_mma_s4:
14198  case NVPTX::BI__imma_m8n8k32_mma_u4:
14199  case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
14200    Address Dst = EmitPointerWithAlignment(E->getArg(0));
14201    Address SrcA = EmitPointerWithAlignment(E->getArg(1));
14202    Address SrcB = EmitPointerWithAlignment(E->getArg(2));
14203    Address SrcC = EmitPointerWithAlignment(E->getArg(3));
14204    llvm::APSInt LayoutArg;
14205    if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
14206      return nullptr;
14207    int Layout = LayoutArg.getSExtValue();
14208    if (Layout < 0 || Layout > 3)
14209      return nullptr;
14210    llvm::APSInt SatfArg;
14211    if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
14212      SatfArg = 0;  // .b1 does not have satf argument.
14213    else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
14214      return nullptr;
14215    bool Satf = SatfArg.getSExtValue();
14216    NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
14217    unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
14218    if (IID == 0)  // Unsupported combination of Layout/Satf.
14219      return nullptr;
14220
14221    SmallVector<Value *, 24> Values;
14222    Function *Intrinsic = CGM.getIntrinsic(IID);
14223    llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
14224    // Load A
14225    for (unsigned i = 0; i < MI.NumEltsA; ++i) {
14226      Value *V = Builder.CreateAlignedLoad(
14227          Builder.CreateGEP(SrcA.getPointer(),
14228                            llvm::ConstantInt::get(IntTy, i)),
14229          CharUnits::fromQuantity(4));
14230      Values.push_back(Builder.CreateBitCast(V, AType));
14231    }
14232    // Load B
14233    llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
14234    for (unsigned i = 0; i < MI.NumEltsB; ++i) {
14235      Value *V = Builder.CreateAlignedLoad(
14236          Builder.CreateGEP(SrcB.getPointer(),
14237                            llvm::ConstantInt::get(IntTy, i)),
14238          CharUnits::fromQuantity(4));
14239      Values.push_back(Builder.CreateBitCast(V, BType));
14240    }
14241    // Load C
14242    llvm::Type *CType =
14243        Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
14244    for (unsigned i = 0; i < MI.NumEltsC; ++i) {
14245      Value *V = Builder.CreateAlignedLoad(
14246          Builder.CreateGEP(SrcC.getPointer(),
14247                            llvm::ConstantInt::get(IntTy, i)),
14248          CharUnits::fromQuantity(4));
14249      Values.push_back(Builder.CreateBitCast(V, CType));
14250    }
14251    Value *Result = Builder.CreateCall(Intrinsic, Values);
14252    llvm::Type *DType = Dst.getElementType();
14253    for (unsigned i = 0; i < MI.NumEltsD; ++i)
14254      Builder.CreateAlignedStore(
14255          Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
14256          Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
14257          CharUnits::fromQuantity(4));
14258    return Result;
14259  }
14260  default:
14261    return nullptr;
14262  }
14263}
14264
14265namespace {
14266struct BuiltinAlignArgs {
14267  llvm::Value *Src = nullptr;
14268  llvm::Type *SrcType = nullptr;
14269  llvm::Value *Alignment = nullptr;
14270  llvm::Value *Mask = nullptr;
14271  llvm::IntegerType *IntType = nullptr;
14272
14273  BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
14274    QualType AstType = E->getArg(0)->getType();
14275    if (AstType->isArrayType())
14276      Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
14277    else
14278      Src = CGF.EmitScalarExpr(E->getArg(0));
14279    SrcType = Src->getType();
14280    if (SrcType->isPointerTy()) {
14281      IntType = IntegerType::get(
14282          CGF.getLLVMContext(),
14283          CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
14284    } else {
14285      assert(SrcType->isIntegerTy());
14286      IntType = cast<llvm::IntegerType>(SrcType);
14287    }
14288    Alignment = CGF.EmitScalarExpr(E->getArg(1));
14289    Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
14290    auto *One = llvm::ConstantInt::get(IntType, 1);
14291    Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
14292  }
14293};
14294} // namespace
14295
14296/// Generate (x & (y-1)) == 0.
14297RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
14298  BuiltinAlignArgs Args(E, *this);
14299  llvm::Value *SrcAddress = Args.Src;
14300  if (Args.SrcType->isPointerTy())
14301    SrcAddress =
14302        Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
14303  return RValue::get(Builder.CreateICmpEQ(
14304      Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
14305      llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
14306}
14307
14308/// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
14309/// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
14310/// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
14311/// TODO: actually use ptrmask once most optimization passes know about it.
14312RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
14313  BuiltinAlignArgs Args(E, *this);
14314  llvm::Value *SrcAddr = Args.Src;
14315  if (Args.Src->getType()->isPointerTy())
14316    SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
14317  llvm::Value *SrcForMask = SrcAddr;
14318  if (AlignUp) {
14319    // When aligning up we have to first add the mask to ensure we go over the
14320    // next alignment value and then align down to the next valid multiple.
14321    // By adding the mask, we ensure that align_up on an already aligned
14322    // value will not change the value.
14323    SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
14324  }
14325  // Invert the mask to only clear the lower bits.
14326  llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
14327  llvm::Value *Result =
14328      Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
14329  if (Args.Src->getType()->isPointerTy()) {
14330    /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
14331    // Result = Builder.CreateIntrinsic(
14332    //  Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
14333    //  {SrcForMask, NegatedMask}, nullptr, "aligned_result");
14334    Result->setName("aligned_intptr");
14335    llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
14336    // The result must point to the same underlying allocation. This means we
14337    // can use an inbounds GEP to enable better optimization.
14338    Value *Base = EmitCastToVoidPtr(Args.Src);
14339    if (getLangOpts().isSignedOverflowDefined())
14340      Result = Builder.CreateGEP(Base, Difference, "aligned_result");
14341    else
14342      Result = EmitCheckedInBoundsGEP(Base, Difference,
14343                                      /*SignedIndices=*/true,
14344                                      /*isSubtraction=*/!AlignUp,
14345                                      E->getExprLoc(), "aligned_result");
14346    Result = Builder.CreatePointerCast(Result, Args.SrcType);
14347    // Emit an alignment assumption to ensure that the new alignment is
14348    // propagated to loads/stores, etc.
14349    EmitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
14350  }
14351  assert(Result->getType() == Args.SrcType);
14352  return RValue::get(Result);
14353}
14354
14355Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
14356                                                   const CallExpr *E) {
14357  switch (BuiltinID) {
14358  case WebAssembly::BI__builtin_wasm_memory_size: {
14359    llvm::Type *ResultType = ConvertType(E->getType());
14360    Value *I = EmitScalarExpr(E->getArg(0));
14361    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
14362    return Builder.CreateCall(Callee, I);
14363  }
14364  case WebAssembly::BI__builtin_wasm_memory_grow: {
14365    llvm::Type *ResultType = ConvertType(E->getType());
14366    Value *Args[] = {
14367      EmitScalarExpr(E->getArg(0)),
14368      EmitScalarExpr(E->getArg(1))
14369    };
14370    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
14371    return Builder.CreateCall(Callee, Args);
14372  }
14373  case WebAssembly::BI__builtin_wasm_memory_init: {
14374    llvm::APSInt SegConst;
14375    if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
14376      llvm_unreachable("Constant arg isn't actually constant?");
14377    llvm::APSInt MemConst;
14378    if (!E->getArg(1)->isIntegerConstantExpr(MemConst, getContext()))
14379      llvm_unreachable("Constant arg isn't actually constant?");
14380    if (!MemConst.isNullValue())
14381      ErrorUnsupported(E, "non-zero memory index");
14382    Value *Args[] = {llvm::ConstantInt::get(getLLVMContext(), SegConst),
14383                     llvm::ConstantInt::get(getLLVMContext(), MemConst),
14384                     EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)),
14385                     EmitScalarExpr(E->getArg(4))};
14386    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_init);
14387    return Builder.CreateCall(Callee, Args);
14388  }
14389  case WebAssembly::BI__builtin_wasm_data_drop: {
14390    llvm::APSInt SegConst;
14391    if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
14392      llvm_unreachable("Constant arg isn't actually constant?");
14393    Value *Arg = llvm::ConstantInt::get(getLLVMContext(), SegConst);
14394    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_data_drop);
14395    return Builder.CreateCall(Callee, {Arg});
14396  }
14397  case WebAssembly::BI__builtin_wasm_tls_size: {
14398    llvm::Type *ResultType = ConvertType(E->getType());
14399    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
14400    return Builder.CreateCall(Callee);
14401  }
14402  case WebAssembly::BI__builtin_wasm_tls_align: {
14403    llvm::Type *ResultType = ConvertType(E->getType());
14404    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
14405    return Builder.CreateCall(Callee);
14406  }
14407  case WebAssembly::BI__builtin_wasm_tls_base: {
14408    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
14409    return Builder.CreateCall(Callee);
14410  }
14411  case WebAssembly::BI__builtin_wasm_throw: {
14412    Value *Tag = EmitScalarExpr(E->getArg(0));
14413    Value *Obj = EmitScalarExpr(E->getArg(1));
14414    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
14415    return Builder.CreateCall(Callee, {Tag, Obj});
14416  }
14417  case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
14418    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
14419    return Builder.CreateCall(Callee);
14420  }
14421  case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
14422    Value *Addr = EmitScalarExpr(E->getArg(0));
14423    Value *Expected = EmitScalarExpr(E->getArg(1));
14424    Value *Timeout = EmitScalarExpr(E->getArg(2));
14425    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
14426    return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
14427  }
14428  case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
14429    Value *Addr = EmitScalarExpr(E->getArg(0));
14430    Value *Expected = EmitScalarExpr(E->getArg(1));
14431    Value *Timeout = EmitScalarExpr(E->getArg(2));
14432    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
14433    return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
14434  }
14435  case WebAssembly::BI__builtin_wasm_atomic_notify: {
14436    Value *Addr = EmitScalarExpr(E->getArg(0));
14437    Value *Count = EmitScalarExpr(E->getArg(1));
14438    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
14439    return Builder.CreateCall(Callee, {Addr, Count});
14440  }
14441  case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
14442  case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
14443  case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
14444  case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
14445    Value *Src = EmitScalarExpr(E->getArg(0));
14446    llvm::Type *ResT = ConvertType(E->getType());
14447    Function *Callee =
14448        CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
14449    return Builder.CreateCall(Callee, {Src});
14450  }
14451  case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
14452  case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
14453  case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
14454  case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
14455    Value *Src = EmitScalarExpr(E->getArg(0));
14456    llvm::Type *ResT = ConvertType(E->getType());
14457    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
14458                                        {ResT, Src->getType()});
14459    return Builder.CreateCall(Callee, {Src});
14460  }
14461  case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
14462  case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
14463  case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
14464  case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
14465  case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4:
14466  case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64x2_f64x2: {
14467    Value *Src = EmitScalarExpr(E->getArg(0));
14468    llvm::Type *ResT = ConvertType(E->getType());
14469    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
14470                                     {ResT, Src->getType()});
14471    return Builder.CreateCall(Callee, {Src});
14472  }
14473  case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
14474  case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
14475  case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
14476  case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
14477  case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4:
14478  case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64x2_f64x2: {
14479    Value *Src = EmitScalarExpr(E->getArg(0));
14480    llvm::Type *ResT = ConvertType(E->getType());
14481    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
14482                                     {ResT, Src->getType()});
14483    return Builder.CreateCall(Callee, {Src});
14484  }
14485  case WebAssembly::BI__builtin_wasm_min_f32:
14486  case WebAssembly::BI__builtin_wasm_min_f64:
14487  case WebAssembly::BI__builtin_wasm_min_f32x4:
14488  case WebAssembly::BI__builtin_wasm_min_f64x2: {
14489    Value *LHS = EmitScalarExpr(E->getArg(0));
14490    Value *RHS = EmitScalarExpr(E->getArg(1));
14491    Function *Callee = CGM.getIntrinsic(Intrinsic::minimum,
14492                                     ConvertType(E->getType()));
14493    return Builder.CreateCall(Callee, {LHS, RHS});
14494  }
14495  case WebAssembly::BI__builtin_wasm_max_f32:
14496  case WebAssembly::BI__builtin_wasm_max_f64:
14497  case WebAssembly::BI__builtin_wasm_max_f32x4:
14498  case WebAssembly::BI__builtin_wasm_max_f64x2: {
14499    Value *LHS = EmitScalarExpr(E->getArg(0));
14500    Value *RHS = EmitScalarExpr(E->getArg(1));
14501    Function *Callee = CGM.getIntrinsic(Intrinsic::maximum,
14502                                     ConvertType(E->getType()));
14503    return Builder.CreateCall(Callee, {LHS, RHS});
14504  }
14505  case WebAssembly::BI__builtin_wasm_swizzle_v8x16: {
14506    Value *Src = EmitScalarExpr(E->getArg(0));
14507    Value *Indices = EmitScalarExpr(E->getArg(1));
14508    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
14509    return Builder.CreateCall(Callee, {Src, Indices});
14510  }
14511  case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
14512  case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
14513  case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
14514  case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
14515  case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
14516  case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
14517  case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
14518  case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
14519    llvm::APSInt LaneConst;
14520    if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
14521      llvm_unreachable("Constant arg isn't actually constant?");
14522    Value *Vec = EmitScalarExpr(E->getArg(0));
14523    Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
14524    Value *Extract = Builder.CreateExtractElement(Vec, Lane);
14525    switch (BuiltinID) {
14526    case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
14527    case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
14528      return Builder.CreateSExt(Extract, ConvertType(E->getType()));
14529    case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
14530    case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
14531      return Builder.CreateZExt(Extract, ConvertType(E->getType()));
14532    case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
14533    case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
14534    case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
14535    case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
14536      return Extract;
14537    default:
14538      llvm_unreachable("unexpected builtin ID");
14539    }
14540  }
14541  case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
14542  case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
14543  case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
14544  case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
14545  case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
14546  case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
14547    llvm::APSInt LaneConst;
14548    if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
14549      llvm_unreachable("Constant arg isn't actually constant?");
14550    Value *Vec = EmitScalarExpr(E->getArg(0));
14551    Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
14552    Value *Val = EmitScalarExpr(E->getArg(2));
14553    switch (BuiltinID) {
14554    case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
14555    case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
14556      llvm::Type *ElemType = ConvertType(E->getType())->getVectorElementType();
14557      Value *Trunc = Builder.CreateTrunc(Val, ElemType);
14558      return Builder.CreateInsertElement(Vec, Trunc, Lane);
14559    }
14560    case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
14561    case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
14562    case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
14563    case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
14564      return Builder.CreateInsertElement(Vec, Val, Lane);
14565    default:
14566      llvm_unreachable("unexpected builtin ID");
14567    }
14568  }
14569  case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
14570  case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
14571  case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
14572  case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
14573  case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
14574  case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
14575  case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
14576  case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
14577    unsigned IntNo;
14578    switch (BuiltinID) {
14579    case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
14580    case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
14581      IntNo = Intrinsic::sadd_sat;
14582      break;
14583    case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
14584    case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
14585      IntNo = Intrinsic::uadd_sat;
14586      break;
14587    case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
14588    case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
14589      IntNo = Intrinsic::wasm_sub_saturate_signed;
14590      break;
14591    case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
14592    case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
14593      IntNo = Intrinsic::wasm_sub_saturate_unsigned;
14594      break;
14595    default:
14596      llvm_unreachable("unexpected builtin ID");
14597    }
14598    Value *LHS = EmitScalarExpr(E->getArg(0));
14599    Value *RHS = EmitScalarExpr(E->getArg(1));
14600    Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
14601    return Builder.CreateCall(Callee, {LHS, RHS});
14602  }
14603  case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
14604  case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
14605    Value *LHS = EmitScalarExpr(E->getArg(0));
14606    Value *RHS = EmitScalarExpr(E->getArg(1));
14607    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
14608                                        ConvertType(E->getType()));
14609    return Builder.CreateCall(Callee, {LHS, RHS});
14610  }
14611  case WebAssembly::BI__builtin_wasm_bitselect: {
14612    Value *V1 = EmitScalarExpr(E->getArg(0));
14613    Value *V2 = EmitScalarExpr(E->getArg(1));
14614    Value *C = EmitScalarExpr(E->getArg(2));
14615    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect,
14616                                     ConvertType(E->getType()));
14617    return Builder.CreateCall(Callee, {V1, V2, C});
14618  }
14619  case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
14620    Value *LHS = EmitScalarExpr(E->getArg(0));
14621    Value *RHS = EmitScalarExpr(E->getArg(1));
14622    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
14623    return Builder.CreateCall(Callee, {LHS, RHS});
14624  }
14625  case WebAssembly::BI__builtin_wasm_any_true_i8x16:
14626  case WebAssembly::BI__builtin_wasm_any_true_i16x8:
14627  case WebAssembly::BI__builtin_wasm_any_true_i32x4:
14628  case WebAssembly::BI__builtin_wasm_any_true_i64x2:
14629  case WebAssembly::BI__builtin_wasm_all_true_i8x16:
14630  case WebAssembly::BI__builtin_wasm_all_true_i16x8:
14631  case WebAssembly::BI__builtin_wasm_all_true_i32x4:
14632  case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
14633    unsigned IntNo;
14634    switch (BuiltinID) {
14635    case WebAssembly::BI__builtin_wasm_any_true_i8x16:
14636    case WebAssembly::BI__builtin_wasm_any_true_i16x8:
14637    case WebAssembly::BI__builtin_wasm_any_true_i32x4:
14638    case WebAssembly::BI__builtin_wasm_any_true_i64x2:
14639      IntNo = Intrinsic::wasm_anytrue;
14640      break;
14641    case WebAssembly::BI__builtin_wasm_all_true_i8x16:
14642    case WebAssembly::BI__builtin_wasm_all_true_i16x8:
14643    case WebAssembly::BI__builtin_wasm_all_true_i32x4:
14644    case WebAssembly::BI__builtin_wasm_all_true_i64x2:
14645      IntNo = Intrinsic::wasm_alltrue;
14646      break;
14647    default:
14648      llvm_unreachable("unexpected builtin ID");
14649    }
14650    Value *Vec = EmitScalarExpr(E->getArg(0));
14651    Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
14652    return Builder.CreateCall(Callee, {Vec});
14653  }
14654  case WebAssembly::BI__builtin_wasm_abs_f32x4:
14655  case WebAssembly::BI__builtin_wasm_abs_f64x2: {
14656    Value *Vec = EmitScalarExpr(E->getArg(0));
14657    Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
14658    return Builder.CreateCall(Callee, {Vec});
14659  }
14660  case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
14661  case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
14662    Value *Vec = EmitScalarExpr(E->getArg(0));
14663    Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
14664    return Builder.CreateCall(Callee, {Vec});
14665  }
14666  case WebAssembly::BI__builtin_wasm_qfma_f32x4:
14667  case WebAssembly::BI__builtin_wasm_qfms_f32x4:
14668  case WebAssembly::BI__builtin_wasm_qfma_f64x2:
14669  case WebAssembly::BI__builtin_wasm_qfms_f64x2: {
14670    Value *A = EmitScalarExpr(E->getArg(0));
14671    Value *B = EmitScalarExpr(E->getArg(1));
14672    Value *C = EmitScalarExpr(E->getArg(2));
14673    unsigned IntNo;
14674    switch (BuiltinID) {
14675    case WebAssembly::BI__builtin_wasm_qfma_f32x4:
14676    case WebAssembly::BI__builtin_wasm_qfma_f64x2:
14677      IntNo = Intrinsic::wasm_qfma;
14678      break;
14679    case WebAssembly::BI__builtin_wasm_qfms_f32x4:
14680    case WebAssembly::BI__builtin_wasm_qfms_f64x2:
14681      IntNo = Intrinsic::wasm_qfms;
14682      break;
14683    default:
14684      llvm_unreachable("unexpected builtin ID");
14685    }
14686    Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
14687    return Builder.CreateCall(Callee, {A, B, C});
14688  }
14689  case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
14690  case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
14691  case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
14692  case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
14693    Value *Low = EmitScalarExpr(E->getArg(0));
14694    Value *High = EmitScalarExpr(E->getArg(1));
14695    unsigned IntNo;
14696    switch (BuiltinID) {
14697    case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
14698    case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
14699      IntNo = Intrinsic::wasm_narrow_signed;
14700      break;
14701    case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
14702    case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
14703      IntNo = Intrinsic::wasm_narrow_unsigned;
14704      break;
14705    default:
14706      llvm_unreachable("unexpected builtin ID");
14707    }
14708    Function *Callee =
14709        CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
14710    return Builder.CreateCall(Callee, {Low, High});
14711  }
14712  case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
14713  case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
14714  case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
14715  case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
14716  case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
14717  case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
14718  case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
14719  case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: {
14720    Value *Vec = EmitScalarExpr(E->getArg(0));
14721    unsigned IntNo;
14722    switch (BuiltinID) {
14723    case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
14724    case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
14725      IntNo = Intrinsic::wasm_widen_low_signed;
14726      break;
14727    case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
14728    case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
14729      IntNo = Intrinsic::wasm_widen_high_signed;
14730      break;
14731    case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
14732    case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
14733      IntNo = Intrinsic::wasm_widen_low_unsigned;
14734      break;
14735    case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
14736    case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8:
14737      IntNo = Intrinsic::wasm_widen_high_unsigned;
14738      break;
14739    default:
14740      llvm_unreachable("unexpected builtin ID");
14741    }
14742    Function *Callee =
14743        CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Vec->getType()});
14744    return Builder.CreateCall(Callee, Vec);
14745  }
14746  default:
14747    return nullptr;
14748  }
14749}
14750
14751Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
14752                                               const CallExpr *E) {
14753  SmallVector<llvm::Value *, 4> Ops;
14754  Intrinsic::ID ID = Intrinsic::not_intrinsic;
14755
14756  auto MakeCircLd = [&](unsigned IntID, bool HasImm) {
14757    // The base pointer is passed by address, so it needs to be loaded.
14758    Address BP = EmitPointerWithAlignment(E->getArg(0));
14759    BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
14760                 BP.getAlignment());
14761    llvm::Value *Base = Builder.CreateLoad(BP);
14762    // Operands are Base, Increment, Modifier, Start.
14763    if (HasImm)
14764      Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
14765              EmitScalarExpr(E->getArg(3)) };
14766    else
14767      Ops = { Base, EmitScalarExpr(E->getArg(1)),
14768              EmitScalarExpr(E->getArg(2)) };
14769
14770    llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14771    llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1);
14772    llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
14773                                            NewBase->getType()->getPointerTo());
14774    Address Dest = EmitPointerWithAlignment(E->getArg(0));
14775    // The intrinsic generates two results. The new value for the base pointer
14776    // needs to be stored.
14777    Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
14778    return Builder.CreateExtractValue(Result, 0);
14779  };
14780
14781  auto MakeCircSt = [&](unsigned IntID, bool HasImm) {
14782    // The base pointer is passed by address, so it needs to be loaded.
14783    Address BP = EmitPointerWithAlignment(E->getArg(0));
14784    BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
14785                 BP.getAlignment());
14786    llvm::Value *Base = Builder.CreateLoad(BP);
14787    // Operands are Base, Increment, Modifier, Value, Start.
14788    if (HasImm)
14789      Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
14790              EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) };
14791    else
14792      Ops = { Base, EmitScalarExpr(E->getArg(1)),
14793              EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) };
14794
14795    llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14796    llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
14797                                            NewBase->getType()->getPointerTo());
14798    Address Dest = EmitPointerWithAlignment(E->getArg(0));
14799    // The intrinsic generates one result, which is the new value for the base
14800    // pointer. It needs to be stored.
14801    return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
14802  };
14803
14804  // Handle the conversion of bit-reverse load intrinsics to bit code.
14805  // The intrinsic call after this function only reads from memory and the
14806  // write to memory is dealt by the store instruction.
14807  auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) {
14808    // The intrinsic generates one result, which is the new value for the base
14809    // pointer. It needs to be returned. The result of the load instruction is
14810    // passed to intrinsic by address, so the value needs to be stored.
14811    llvm::Value *BaseAddress =
14812        Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
14813
14814    // Expressions like &(*pt++) will be incremented per evaluation.
14815    // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
14816    // per call.
14817    Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
14818    DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
14819                       DestAddr.getAlignment());
14820    llvm::Value *DestAddress = DestAddr.getPointer();
14821
14822    // Operands are Base, Dest, Modifier.
14823    // The intrinsic format in LLVM IR is defined as
14824    // { ValueType, i8* } (i8*, i32).
14825    Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))};
14826
14827    llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14828    // The value needs to be stored as the variable is passed by reference.
14829    llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
14830
14831    // The store needs to be truncated to fit the destination type.
14832    // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
14833    // to be handled with stores of respective destination type.
14834    DestVal = Builder.CreateTrunc(DestVal, DestTy);
14835
14836    llvm::Value *DestForStore =
14837        Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
14838    Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
14839    // The updated value of the base pointer is returned.
14840    return Builder.CreateExtractValue(Result, 1);
14841  };
14842
14843  switch (BuiltinID) {
14844  case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
14845  case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: {
14846    Address Dest = EmitPointerWithAlignment(E->getArg(2));
14847    unsigned Size;
14848    if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) {
14849      Size = 512;
14850      ID = Intrinsic::hexagon_V6_vaddcarry;
14851    } else {
14852      Size = 1024;
14853      ID = Intrinsic::hexagon_V6_vaddcarry_128B;
14854    }
14855    Dest = Builder.CreateBitCast(Dest,
14856        llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
14857    LoadInst *QLd = Builder.CreateLoad(Dest);
14858    Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
14859    llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14860    llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
14861    llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
14862                                              Vprd->getType()->getPointerTo(0));
14863    Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
14864    return Builder.CreateExtractValue(Result, 0);
14865  }
14866  case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
14867  case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
14868    Address Dest = EmitPointerWithAlignment(E->getArg(2));
14869    unsigned Size;
14870    if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) {
14871      Size = 512;
14872      ID = Intrinsic::hexagon_V6_vsubcarry;
14873    } else {
14874      Size = 1024;
14875      ID = Intrinsic::hexagon_V6_vsubcarry_128B;
14876    }
14877    Dest = Builder.CreateBitCast(Dest,
14878        llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
14879    LoadInst *QLd = Builder.CreateLoad(Dest);
14880    Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
14881    llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14882    llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
14883    llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
14884                                              Vprd->getType()->getPointerTo(0));
14885    Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
14886    return Builder.CreateExtractValue(Result, 0);
14887  }
14888  case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
14889    return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true);
14890  case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
14891    return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci,  /*HasImm*/true);
14892  case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
14893    return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true);
14894  case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
14895    return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci,  /*HasImm*/true);
14896  case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
14897    return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci,  /*HasImm*/true);
14898  case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
14899    return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci,  /*HasImm*/true);
14900  case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
14901    return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false);
14902  case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
14903    return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr,  /*HasImm*/false);
14904  case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
14905    return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false);
14906  case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
14907    return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr,  /*HasImm*/false);
14908  case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
14909    return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr,  /*HasImm*/false);
14910  case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
14911    return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr,  /*HasImm*/false);
14912  case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
14913    return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true);
14914  case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
14915    return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true);
14916  case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
14917    return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true);
14918  case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
14919    return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true);
14920  case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
14921    return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true);
14922  case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
14923    return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false);
14924  case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
14925    return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false);
14926  case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
14927    return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false);
14928  case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
14929    return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false);
14930  case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
14931    return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false);
14932  case Hexagon::BI__builtin_brev_ldub:
14933    return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
14934  case Hexagon::BI__builtin_brev_ldb:
14935    return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
14936  case Hexagon::BI__builtin_brev_lduh:
14937    return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
14938  case Hexagon::BI__builtin_brev_ldh:
14939    return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
14940  case Hexagon::BI__builtin_brev_ldw:
14941    return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
14942  case Hexagon::BI__builtin_brev_ldd:
14943    return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
14944  default:
14945    break;
14946  } // switch
14947
14948  return nullptr;
14949}
14950