CGAtomic.cpp revision 360784
1//===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the code for emitting atomic operations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCall.h"
14#include "CGRecordLayout.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "TargetInfo.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/CodeGen/CGFunctionInfo.h"
20#include "clang/Frontend/FrontendDiagnostic.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Intrinsics.h"
24#include "llvm/IR/Operator.h"
25
26using namespace clang;
27using namespace CodeGen;
28
29namespace {
30  class AtomicInfo {
31    CodeGenFunction &CGF;
32    QualType AtomicTy;
33    QualType ValueTy;
34    uint64_t AtomicSizeInBits;
35    uint64_t ValueSizeInBits;
36    CharUnits AtomicAlign;
37    CharUnits ValueAlign;
38    TypeEvaluationKind EvaluationKind;
39    bool UseLibcall;
40    LValue LVal;
41    CGBitFieldInfo BFI;
42  public:
43    AtomicInfo(CodeGenFunction &CGF, LValue &lvalue)
44        : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0),
45          EvaluationKind(TEK_Scalar), UseLibcall(true) {
46      assert(!lvalue.isGlobalReg());
47      ASTContext &C = CGF.getContext();
48      if (lvalue.isSimple()) {
49        AtomicTy = lvalue.getType();
50        if (auto *ATy = AtomicTy->getAs<AtomicType>())
51          ValueTy = ATy->getValueType();
52        else
53          ValueTy = AtomicTy;
54        EvaluationKind = CGF.getEvaluationKind(ValueTy);
55
56        uint64_t ValueAlignInBits;
57        uint64_t AtomicAlignInBits;
58        TypeInfo ValueTI = C.getTypeInfo(ValueTy);
59        ValueSizeInBits = ValueTI.Width;
60        ValueAlignInBits = ValueTI.Align;
61
62        TypeInfo AtomicTI = C.getTypeInfo(AtomicTy);
63        AtomicSizeInBits = AtomicTI.Width;
64        AtomicAlignInBits = AtomicTI.Align;
65
66        assert(ValueSizeInBits <= AtomicSizeInBits);
67        assert(ValueAlignInBits <= AtomicAlignInBits);
68
69        AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits);
70        ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits);
71        if (lvalue.getAlignment().isZero())
72          lvalue.setAlignment(AtomicAlign);
73
74        LVal = lvalue;
75      } else if (lvalue.isBitField()) {
76        ValueTy = lvalue.getType();
77        ValueSizeInBits = C.getTypeSize(ValueTy);
78        auto &OrigBFI = lvalue.getBitFieldInfo();
79        auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment());
80        AtomicSizeInBits = C.toBits(
81            C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1)
82                .alignTo(lvalue.getAlignment()));
83        auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldPointer());
84        auto OffsetInChars =
85            (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) *
86            lvalue.getAlignment();
87        VoidPtrAddr = CGF.Builder.CreateConstGEP1_64(
88            VoidPtrAddr, OffsetInChars.getQuantity());
89        auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
90            VoidPtrAddr,
91            CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(),
92            "atomic_bitfield_base");
93        BFI = OrigBFI;
94        BFI.Offset = Offset;
95        BFI.StorageSize = AtomicSizeInBits;
96        BFI.StorageOffset += OffsetInChars;
97        LVal = LValue::MakeBitfield(Address(Addr, lvalue.getAlignment()),
98                                    BFI, lvalue.getType(), lvalue.getBaseInfo(),
99                                    lvalue.getTBAAInfo());
100        AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned);
101        if (AtomicTy.isNull()) {
102          llvm::APInt Size(
103              /*numBits=*/32,
104              C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity());
105          AtomicTy =
106              C.getConstantArrayType(C.CharTy, Size, nullptr, ArrayType::Normal,
107                                     /*IndexTypeQuals=*/0);
108        }
109        AtomicAlign = ValueAlign = lvalue.getAlignment();
110      } else if (lvalue.isVectorElt()) {
111        ValueTy = lvalue.getType()->castAs<VectorType>()->getElementType();
112        ValueSizeInBits = C.getTypeSize(ValueTy);
113        AtomicTy = lvalue.getType();
114        AtomicSizeInBits = C.getTypeSize(AtomicTy);
115        AtomicAlign = ValueAlign = lvalue.getAlignment();
116        LVal = lvalue;
117      } else {
118        assert(lvalue.isExtVectorElt());
119        ValueTy = lvalue.getType();
120        ValueSizeInBits = C.getTypeSize(ValueTy);
121        AtomicTy = ValueTy = CGF.getContext().getExtVectorType(
122            lvalue.getType(), lvalue.getExtVectorAddress()
123                                  .getElementType()->getVectorNumElements());
124        AtomicSizeInBits = C.getTypeSize(AtomicTy);
125        AtomicAlign = ValueAlign = lvalue.getAlignment();
126        LVal = lvalue;
127      }
128      UseLibcall = !C.getTargetInfo().hasBuiltinAtomic(
129          AtomicSizeInBits, C.toBits(lvalue.getAlignment()));
130    }
131
132    QualType getAtomicType() const { return AtomicTy; }
133    QualType getValueType() const { return ValueTy; }
134    CharUnits getAtomicAlignment() const { return AtomicAlign; }
135    uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; }
136    uint64_t getValueSizeInBits() const { return ValueSizeInBits; }
137    TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
138    bool shouldUseLibcall() const { return UseLibcall; }
139    const LValue &getAtomicLValue() const { return LVal; }
140    llvm::Value *getAtomicPointer() const {
141      if (LVal.isSimple())
142        return LVal.getPointer(CGF);
143      else if (LVal.isBitField())
144        return LVal.getBitFieldPointer();
145      else if (LVal.isVectorElt())
146        return LVal.getVectorPointer();
147      assert(LVal.isExtVectorElt());
148      return LVal.getExtVectorPointer();
149    }
150    Address getAtomicAddress() const {
151      return Address(getAtomicPointer(), getAtomicAlignment());
152    }
153
154    Address getAtomicAddressAsAtomicIntPointer() const {
155      return emitCastToAtomicIntPointer(getAtomicAddress());
156    }
157
158    /// Is the atomic size larger than the underlying value type?
159    ///
160    /// Note that the absence of padding does not mean that atomic
161    /// objects are completely interchangeable with non-atomic
162    /// objects: we might have promoted the alignment of a type
163    /// without making it bigger.
164    bool hasPadding() const {
165      return (ValueSizeInBits != AtomicSizeInBits);
166    }
167
168    bool emitMemSetZeroIfNecessary() const;
169
170    llvm::Value *getAtomicSizeValue() const {
171      CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
172      return CGF.CGM.getSize(size);
173    }
174
175    /// Cast the given pointer to an integer pointer suitable for atomic
176    /// operations if the source.
177    Address emitCastToAtomicIntPointer(Address Addr) const;
178
179    /// If Addr is compatible with the iN that will be used for an atomic
180    /// operation, bitcast it. Otherwise, create a temporary that is suitable
181    /// and copy the value across.
182    Address convertToAtomicIntPointer(Address Addr) const;
183
184    /// Turn an atomic-layout object into an r-value.
185    RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot,
186                                     SourceLocation loc, bool AsValue) const;
187
188    /// Converts a rvalue to integer value.
189    llvm::Value *convertRValueToInt(RValue RVal) const;
190
191    RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal,
192                                     AggValueSlot ResultSlot,
193                                     SourceLocation Loc, bool AsValue) const;
194
195    /// Copy an atomic r-value into atomic-layout memory.
196    void emitCopyIntoMemory(RValue rvalue) const;
197
198    /// Project an l-value down to the value field.
199    LValue projectValue() const {
200      assert(LVal.isSimple());
201      Address addr = getAtomicAddress();
202      if (hasPadding())
203        addr = CGF.Builder.CreateStructGEP(addr, 0);
204
205      return LValue::MakeAddr(addr, getValueType(), CGF.getContext(),
206                              LVal.getBaseInfo(), LVal.getTBAAInfo());
207    }
208
209    /// Emits atomic load.
210    /// \returns Loaded value.
211    RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
212                          bool AsValue, llvm::AtomicOrdering AO,
213                          bool IsVolatile);
214
215    /// Emits atomic compare-and-exchange sequence.
216    /// \param Expected Expected value.
217    /// \param Desired Desired value.
218    /// \param Success Atomic ordering for success operation.
219    /// \param Failure Atomic ordering for failed operation.
220    /// \param IsWeak true if atomic operation is weak, false otherwise.
221    /// \returns Pair of values: previous value from storage (value type) and
222    /// boolean flag (i1 type) with true if success and false otherwise.
223    std::pair<RValue, llvm::Value *>
224    EmitAtomicCompareExchange(RValue Expected, RValue Desired,
225                              llvm::AtomicOrdering Success =
226                                  llvm::AtomicOrdering::SequentiallyConsistent,
227                              llvm::AtomicOrdering Failure =
228                                  llvm::AtomicOrdering::SequentiallyConsistent,
229                              bool IsWeak = false);
230
231    /// Emits atomic update.
232    /// \param AO Atomic ordering.
233    /// \param UpdateOp Update operation for the current lvalue.
234    void EmitAtomicUpdate(llvm::AtomicOrdering AO,
235                          const llvm::function_ref<RValue(RValue)> &UpdateOp,
236                          bool IsVolatile);
237    /// Emits atomic update.
238    /// \param AO Atomic ordering.
239    void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
240                          bool IsVolatile);
241
242    /// Materialize an atomic r-value in atomic-layout memory.
243    Address materializeRValue(RValue rvalue) const;
244
245    /// Creates temp alloca for intermediate operations on atomic value.
246    Address CreateTempAlloca() const;
247  private:
248    bool requiresMemSetZero(llvm::Type *type) const;
249
250
251    /// Emits atomic load as a libcall.
252    void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
253                               llvm::AtomicOrdering AO, bool IsVolatile);
254    /// Emits atomic load as LLVM instruction.
255    llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile);
256    /// Emits atomic compare-and-exchange op as a libcall.
257    llvm::Value *EmitAtomicCompareExchangeLibcall(
258        llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr,
259        llvm::AtomicOrdering Success =
260            llvm::AtomicOrdering::SequentiallyConsistent,
261        llvm::AtomicOrdering Failure =
262            llvm::AtomicOrdering::SequentiallyConsistent);
263    /// Emits atomic compare-and-exchange op as LLVM instruction.
264    std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp(
265        llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
266        llvm::AtomicOrdering Success =
267            llvm::AtomicOrdering::SequentiallyConsistent,
268        llvm::AtomicOrdering Failure =
269            llvm::AtomicOrdering::SequentiallyConsistent,
270        bool IsWeak = false);
271    /// Emit atomic update as libcalls.
272    void
273    EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
274                            const llvm::function_ref<RValue(RValue)> &UpdateOp,
275                            bool IsVolatile);
276    /// Emit atomic update as LLVM instructions.
277    void EmitAtomicUpdateOp(llvm::AtomicOrdering AO,
278                            const llvm::function_ref<RValue(RValue)> &UpdateOp,
279                            bool IsVolatile);
280    /// Emit atomic update as libcalls.
281    void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal,
282                                 bool IsVolatile);
283    /// Emit atomic update as LLVM instructions.
284    void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal,
285                            bool IsVolatile);
286  };
287}
288
289Address AtomicInfo::CreateTempAlloca() const {
290  Address TempAlloca = CGF.CreateMemTemp(
291      (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy
292                                                                : AtomicTy,
293      getAtomicAlignment(),
294      "atomic-temp");
295  // Cast to pointer to value type for bitfields.
296  if (LVal.isBitField())
297    return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
298        TempAlloca, getAtomicAddress().getType());
299  return TempAlloca;
300}
301
302static RValue emitAtomicLibcall(CodeGenFunction &CGF,
303                                StringRef fnName,
304                                QualType resultType,
305                                CallArgList &args) {
306  const CGFunctionInfo &fnInfo =
307    CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args);
308  llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo);
309  llvm::FunctionCallee fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName);
310  auto callee = CGCallee::forDirect(fn);
311  return CGF.EmitCall(fnInfo, callee, ReturnValueSlot(), args);
312}
313
314/// Does a store of the given IR type modify the full expected width?
315static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type,
316                           uint64_t expectedSize) {
317  return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize);
318}
319
320/// Does the atomic type require memsetting to zero before initialization?
321///
322/// The IR type is provided as a way of making certain queries faster.
323bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const {
324  // If the atomic type has size padding, we definitely need a memset.
325  if (hasPadding()) return true;
326
327  // Otherwise, do some simple heuristics to try to avoid it:
328  switch (getEvaluationKind()) {
329  // For scalars and complexes, check whether the store size of the
330  // type uses the full size.
331  case TEK_Scalar:
332    return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits);
333  case TEK_Complex:
334    return !isFullSizeType(CGF.CGM, type->getStructElementType(0),
335                           AtomicSizeInBits / 2);
336
337  // Padding in structs has an undefined bit pattern.  User beware.
338  case TEK_Aggregate:
339    return false;
340  }
341  llvm_unreachable("bad evaluation kind");
342}
343
344bool AtomicInfo::emitMemSetZeroIfNecessary() const {
345  assert(LVal.isSimple());
346  llvm::Value *addr = LVal.getPointer(CGF);
347  if (!requiresMemSetZero(addr->getType()->getPointerElementType()))
348    return false;
349
350  CGF.Builder.CreateMemSet(
351      addr, llvm::ConstantInt::get(CGF.Int8Ty, 0),
352      CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(),
353      LVal.getAlignment().getAsAlign());
354  return true;
355}
356
357static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak,
358                              Address Dest, Address Ptr,
359                              Address Val1, Address Val2,
360                              uint64_t Size,
361                              llvm::AtomicOrdering SuccessOrder,
362                              llvm::AtomicOrdering FailureOrder,
363                              llvm::SyncScope::ID Scope) {
364  // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment.
365  llvm::Value *Expected = CGF.Builder.CreateLoad(Val1);
366  llvm::Value *Desired = CGF.Builder.CreateLoad(Val2);
367
368  llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg(
369      Ptr.getPointer(), Expected, Desired, SuccessOrder, FailureOrder,
370      Scope);
371  Pair->setVolatile(E->isVolatile());
372  Pair->setWeak(IsWeak);
373
374  // Cmp holds the result of the compare-exchange operation: true on success,
375  // false on failure.
376  llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0);
377  llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1);
378
379  // This basic block is used to hold the store instruction if the operation
380  // failed.
381  llvm::BasicBlock *StoreExpectedBB =
382      CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn);
383
384  // This basic block is the exit point of the operation, we should end up
385  // here regardless of whether or not the operation succeeded.
386  llvm::BasicBlock *ContinueBB =
387      CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
388
389  // Update Expected if Expected isn't equal to Old, otherwise branch to the
390  // exit point.
391  CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB);
392
393  CGF.Builder.SetInsertPoint(StoreExpectedBB);
394  // Update the memory at Expected with Old's value.
395  CGF.Builder.CreateStore(Old, Val1);
396  // Finally, branch to the exit point.
397  CGF.Builder.CreateBr(ContinueBB);
398
399  CGF.Builder.SetInsertPoint(ContinueBB);
400  // Update the memory at Dest with Cmp's value.
401  CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
402}
403
404/// Given an ordering required on success, emit all possible cmpxchg
405/// instructions to cope with the provided (but possibly only dynamically known)
406/// FailureOrder.
407static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E,
408                                        bool IsWeak, Address Dest, Address Ptr,
409                                        Address Val1, Address Val2,
410                                        llvm::Value *FailureOrderVal,
411                                        uint64_t Size,
412                                        llvm::AtomicOrdering SuccessOrder,
413                                        llvm::SyncScope::ID Scope) {
414  llvm::AtomicOrdering FailureOrder;
415  if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) {
416    auto FOS = FO->getSExtValue();
417    if (!llvm::isValidAtomicOrderingCABI(FOS))
418      FailureOrder = llvm::AtomicOrdering::Monotonic;
419    else
420      switch ((llvm::AtomicOrderingCABI)FOS) {
421      case llvm::AtomicOrderingCABI::relaxed:
422      case llvm::AtomicOrderingCABI::release:
423      case llvm::AtomicOrderingCABI::acq_rel:
424        FailureOrder = llvm::AtomicOrdering::Monotonic;
425        break;
426      case llvm::AtomicOrderingCABI::consume:
427      case llvm::AtomicOrderingCABI::acquire:
428        FailureOrder = llvm::AtomicOrdering::Acquire;
429        break;
430      case llvm::AtomicOrderingCABI::seq_cst:
431        FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent;
432        break;
433      }
434    if (isStrongerThan(FailureOrder, SuccessOrder)) {
435      // Don't assert on undefined behavior "failure argument shall be no
436      // stronger than the success argument".
437      FailureOrder =
438          llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder);
439    }
440    emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder,
441                      FailureOrder, Scope);
442    return;
443  }
444
445  // Create all the relevant BB's
446  llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
447                   *SeqCstBB = nullptr;
448  MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn);
449  if (SuccessOrder != llvm::AtomicOrdering::Monotonic &&
450      SuccessOrder != llvm::AtomicOrdering::Release)
451    AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn);
452  if (SuccessOrder == llvm::AtomicOrdering::SequentiallyConsistent)
453    SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn);
454
455  llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn);
456
457  llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB);
458
459  // Emit all the different atomics
460
461  // MonotonicBB is arbitrarily chosen as the default case; in practice, this
462  // doesn't matter unless someone is crazy enough to use something that
463  // doesn't fold to a constant for the ordering.
464  CGF.Builder.SetInsertPoint(MonotonicBB);
465  emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
466                    Size, SuccessOrder, llvm::AtomicOrdering::Monotonic, Scope);
467  CGF.Builder.CreateBr(ContBB);
468
469  if (AcquireBB) {
470    CGF.Builder.SetInsertPoint(AcquireBB);
471    emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
472                      Size, SuccessOrder, llvm::AtomicOrdering::Acquire, Scope);
473    CGF.Builder.CreateBr(ContBB);
474    SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::consume),
475                AcquireBB);
476    SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire),
477                AcquireBB);
478  }
479  if (SeqCstBB) {
480    CGF.Builder.SetInsertPoint(SeqCstBB);
481    emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder,
482                      llvm::AtomicOrdering::SequentiallyConsistent, Scope);
483    CGF.Builder.CreateBr(ContBB);
484    SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst),
485                SeqCstBB);
486  }
487
488  CGF.Builder.SetInsertPoint(ContBB);
489}
490
491/// Duplicate the atomic min/max operation in conventional IR for the builtin
492/// variants that return the new rather than the original value.
493static llvm::Value *EmitPostAtomicMinMax(CGBuilderTy &Builder,
494                                         AtomicExpr::AtomicOp Op,
495                                         bool IsSigned,
496                                         llvm::Value *OldVal,
497                                         llvm::Value *RHS) {
498  llvm::CmpInst::Predicate Pred;
499  switch (Op) {
500  default:
501    llvm_unreachable("Unexpected min/max operation");
502  case AtomicExpr::AO__atomic_max_fetch:
503    Pred = IsSigned ? llvm::CmpInst::ICMP_SGT : llvm::CmpInst::ICMP_UGT;
504    break;
505  case AtomicExpr::AO__atomic_min_fetch:
506    Pred = IsSigned ? llvm::CmpInst::ICMP_SLT : llvm::CmpInst::ICMP_ULT;
507    break;
508  }
509  llvm::Value *Cmp = Builder.CreateICmp(Pred, OldVal, RHS, "tst");
510  return Builder.CreateSelect(Cmp, OldVal, RHS, "newval");
511}
512
513static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest,
514                         Address Ptr, Address Val1, Address Val2,
515                         llvm::Value *IsWeak, llvm::Value *FailureOrder,
516                         uint64_t Size, llvm::AtomicOrdering Order,
517                         llvm::SyncScope::ID Scope) {
518  llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
519  bool PostOpMinMax = false;
520  unsigned PostOp = 0;
521
522  switch (E->getOp()) {
523  case AtomicExpr::AO__c11_atomic_init:
524  case AtomicExpr::AO__opencl_atomic_init:
525    llvm_unreachable("Already handled!");
526
527  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
528  case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
529    emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
530                                FailureOrder, Size, Order, Scope);
531    return;
532  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
533  case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
534    emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
535                                FailureOrder, Size, Order, Scope);
536    return;
537  case AtomicExpr::AO__atomic_compare_exchange:
538  case AtomicExpr::AO__atomic_compare_exchange_n: {
539    if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) {
540      emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr,
541                                  Val1, Val2, FailureOrder, Size, Order, Scope);
542    } else {
543      // Create all the relevant BB's
544      llvm::BasicBlock *StrongBB =
545          CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn);
546      llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn);
547      llvm::BasicBlock *ContBB =
548          CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
549
550      llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB);
551      SI->addCase(CGF.Builder.getInt1(false), StrongBB);
552
553      CGF.Builder.SetInsertPoint(StrongBB);
554      emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
555                                  FailureOrder, Size, Order, Scope);
556      CGF.Builder.CreateBr(ContBB);
557
558      CGF.Builder.SetInsertPoint(WeakBB);
559      emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
560                                  FailureOrder, Size, Order, Scope);
561      CGF.Builder.CreateBr(ContBB);
562
563      CGF.Builder.SetInsertPoint(ContBB);
564    }
565    return;
566  }
567  case AtomicExpr::AO__c11_atomic_load:
568  case AtomicExpr::AO__opencl_atomic_load:
569  case AtomicExpr::AO__atomic_load_n:
570  case AtomicExpr::AO__atomic_load: {
571    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
572    Load->setAtomic(Order, Scope);
573    Load->setVolatile(E->isVolatile());
574    CGF.Builder.CreateStore(Load, Dest);
575    return;
576  }
577
578  case AtomicExpr::AO__c11_atomic_store:
579  case AtomicExpr::AO__opencl_atomic_store:
580  case AtomicExpr::AO__atomic_store:
581  case AtomicExpr::AO__atomic_store_n: {
582    llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1);
583    llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
584    Store->setAtomic(Order, Scope);
585    Store->setVolatile(E->isVolatile());
586    return;
587  }
588
589  case AtomicExpr::AO__c11_atomic_exchange:
590  case AtomicExpr::AO__opencl_atomic_exchange:
591  case AtomicExpr::AO__atomic_exchange_n:
592  case AtomicExpr::AO__atomic_exchange:
593    Op = llvm::AtomicRMWInst::Xchg;
594    break;
595
596  case AtomicExpr::AO__atomic_add_fetch:
597    PostOp = llvm::Instruction::Add;
598    LLVM_FALLTHROUGH;
599  case AtomicExpr::AO__c11_atomic_fetch_add:
600  case AtomicExpr::AO__opencl_atomic_fetch_add:
601  case AtomicExpr::AO__atomic_fetch_add:
602    Op = llvm::AtomicRMWInst::Add;
603    break;
604
605  case AtomicExpr::AO__atomic_sub_fetch:
606    PostOp = llvm::Instruction::Sub;
607    LLVM_FALLTHROUGH;
608  case AtomicExpr::AO__c11_atomic_fetch_sub:
609  case AtomicExpr::AO__opencl_atomic_fetch_sub:
610  case AtomicExpr::AO__atomic_fetch_sub:
611    Op = llvm::AtomicRMWInst::Sub;
612    break;
613
614  case AtomicExpr::AO__atomic_min_fetch:
615    PostOpMinMax = true;
616    LLVM_FALLTHROUGH;
617  case AtomicExpr::AO__c11_atomic_fetch_min:
618  case AtomicExpr::AO__opencl_atomic_fetch_min:
619  case AtomicExpr::AO__atomic_fetch_min:
620    Op = E->getValueType()->isSignedIntegerType() ? llvm::AtomicRMWInst::Min
621                                                  : llvm::AtomicRMWInst::UMin;
622    break;
623
624  case AtomicExpr::AO__atomic_max_fetch:
625    PostOpMinMax = true;
626    LLVM_FALLTHROUGH;
627  case AtomicExpr::AO__c11_atomic_fetch_max:
628  case AtomicExpr::AO__opencl_atomic_fetch_max:
629  case AtomicExpr::AO__atomic_fetch_max:
630    Op = E->getValueType()->isSignedIntegerType() ? llvm::AtomicRMWInst::Max
631                                                  : llvm::AtomicRMWInst::UMax;
632    break;
633
634  case AtomicExpr::AO__atomic_and_fetch:
635    PostOp = llvm::Instruction::And;
636    LLVM_FALLTHROUGH;
637  case AtomicExpr::AO__c11_atomic_fetch_and:
638  case AtomicExpr::AO__opencl_atomic_fetch_and:
639  case AtomicExpr::AO__atomic_fetch_and:
640    Op = llvm::AtomicRMWInst::And;
641    break;
642
643  case AtomicExpr::AO__atomic_or_fetch:
644    PostOp = llvm::Instruction::Or;
645    LLVM_FALLTHROUGH;
646  case AtomicExpr::AO__c11_atomic_fetch_or:
647  case AtomicExpr::AO__opencl_atomic_fetch_or:
648  case AtomicExpr::AO__atomic_fetch_or:
649    Op = llvm::AtomicRMWInst::Or;
650    break;
651
652  case AtomicExpr::AO__atomic_xor_fetch:
653    PostOp = llvm::Instruction::Xor;
654    LLVM_FALLTHROUGH;
655  case AtomicExpr::AO__c11_atomic_fetch_xor:
656  case AtomicExpr::AO__opencl_atomic_fetch_xor:
657  case AtomicExpr::AO__atomic_fetch_xor:
658    Op = llvm::AtomicRMWInst::Xor;
659    break;
660
661  case AtomicExpr::AO__atomic_nand_fetch:
662    PostOp = llvm::Instruction::And; // the NOT is special cased below
663    LLVM_FALLTHROUGH;
664  case AtomicExpr::AO__atomic_fetch_nand:
665    Op = llvm::AtomicRMWInst::Nand;
666    break;
667  }
668
669  llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1);
670  llvm::AtomicRMWInst *RMWI =
671      CGF.Builder.CreateAtomicRMW(Op, Ptr.getPointer(), LoadVal1, Order, Scope);
672  RMWI->setVolatile(E->isVolatile());
673
674  // For __atomic_*_fetch operations, perform the operation again to
675  // determine the value which was written.
676  llvm::Value *Result = RMWI;
677  if (PostOpMinMax)
678    Result = EmitPostAtomicMinMax(CGF.Builder, E->getOp(),
679                                  E->getValueType()->isSignedIntegerType(),
680                                  RMWI, LoadVal1);
681  else if (PostOp)
682    Result = CGF.Builder.CreateBinOp((llvm::Instruction::BinaryOps)PostOp, RMWI,
683                                     LoadVal1);
684  if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
685    Result = CGF.Builder.CreateNot(Result);
686  CGF.Builder.CreateStore(Result, Dest);
687}
688
689// This function emits any expression (scalar, complex, or aggregate)
690// into a temporary alloca.
691static Address
692EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
693  Address DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
694  CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
695                       /*Init*/ true);
696  return DeclPtr;
697}
698
699static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *Expr, Address Dest,
700                         Address Ptr, Address Val1, Address Val2,
701                         llvm::Value *IsWeak, llvm::Value *FailureOrder,
702                         uint64_t Size, llvm::AtomicOrdering Order,
703                         llvm::Value *Scope) {
704  auto ScopeModel = Expr->getScopeModel();
705
706  // LLVM atomic instructions always have synch scope. If clang atomic
707  // expression has no scope operand, use default LLVM synch scope.
708  if (!ScopeModel) {
709    EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size,
710                 Order, CGF.CGM.getLLVMContext().getOrInsertSyncScopeID(""));
711    return;
712  }
713
714  // Handle constant scope.
715  if (auto SC = dyn_cast<llvm::ConstantInt>(Scope)) {
716    auto SCID = CGF.getTargetHooks().getLLVMSyncScopeID(
717        CGF.CGM.getLangOpts(), ScopeModel->map(SC->getZExtValue()),
718        Order, CGF.CGM.getLLVMContext());
719    EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size,
720                 Order, SCID);
721    return;
722  }
723
724  // Handle non-constant scope.
725  auto &Builder = CGF.Builder;
726  auto Scopes = ScopeModel->getRuntimeValues();
727  llvm::DenseMap<unsigned, llvm::BasicBlock *> BB;
728  for (auto S : Scopes)
729    BB[S] = CGF.createBasicBlock(getAsString(ScopeModel->map(S)), CGF.CurFn);
730
731  llvm::BasicBlock *ContBB =
732      CGF.createBasicBlock("atomic.scope.continue", CGF.CurFn);
733
734  auto *SC = Builder.CreateIntCast(Scope, Builder.getInt32Ty(), false);
735  // If unsupported synch scope is encountered at run time, assume a fallback
736  // synch scope value.
737  auto FallBack = ScopeModel->getFallBackValue();
738  llvm::SwitchInst *SI = Builder.CreateSwitch(SC, BB[FallBack]);
739  for (auto S : Scopes) {
740    auto *B = BB[S];
741    if (S != FallBack)
742      SI->addCase(Builder.getInt32(S), B);
743
744    Builder.SetInsertPoint(B);
745    EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size,
746                 Order,
747                 CGF.getTargetHooks().getLLVMSyncScopeID(CGF.CGM.getLangOpts(),
748                                                         ScopeModel->map(S),
749                                                         Order,
750                                                         CGF.getLLVMContext()));
751    Builder.CreateBr(ContBB);
752  }
753
754  Builder.SetInsertPoint(ContBB);
755}
756
757static void
758AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args,
759                  bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy,
760                  SourceLocation Loc, CharUnits SizeInChars) {
761  if (UseOptimizedLibcall) {
762    // Load value and pass it to the function directly.
763    CharUnits Align = CGF.getContext().getTypeAlignInChars(ValTy);
764    int64_t SizeInBits = CGF.getContext().toBits(SizeInChars);
765    ValTy =
766        CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false);
767    llvm::Type *IPtrTy = llvm::IntegerType::get(CGF.getLLVMContext(),
768                                                SizeInBits)->getPointerTo();
769    Address Ptr = Address(CGF.Builder.CreateBitCast(Val, IPtrTy), Align);
770    Val = CGF.EmitLoadOfScalar(Ptr, false,
771                               CGF.getContext().getPointerType(ValTy),
772                               Loc);
773    // Coerce the value into an appropriately sized integer type.
774    Args.add(RValue::get(Val), ValTy);
775  } else {
776    // Non-optimized functions always take a reference.
777    Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)),
778                         CGF.getContext().VoidPtrTy);
779  }
780}
781
782RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
783  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
784  QualType MemTy = AtomicTy;
785  if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
786    MemTy = AT->getValueType();
787  llvm::Value *IsWeak = nullptr, *OrderFail = nullptr;
788
789  Address Val1 = Address::invalid();
790  Address Val2 = Address::invalid();
791  Address Dest = Address::invalid();
792  Address Ptr = EmitPointerWithAlignment(E->getPtr());
793
794  if (E->getOp() == AtomicExpr::AO__c11_atomic_init ||
795      E->getOp() == AtomicExpr::AO__opencl_atomic_init) {
796    LValue lvalue = MakeAddrLValue(Ptr, AtomicTy);
797    EmitAtomicInit(E->getVal1(), lvalue);
798    return RValue::get(nullptr);
799  }
800
801  CharUnits sizeChars, alignChars;
802  std::tie(sizeChars, alignChars) = getContext().getTypeInfoInChars(AtomicTy);
803  uint64_t Size = sizeChars.getQuantity();
804  unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth();
805
806  bool Oversized = getContext().toBits(sizeChars) > MaxInlineWidthInBits;
807  bool Misaligned = (Ptr.getAlignment() % sizeChars) != 0;
808  bool UseLibcall = Misaligned | Oversized;
809
810  if (UseLibcall) {
811    CGM.getDiags().Report(E->getBeginLoc(), diag::warn_atomic_op_misaligned)
812        << !Oversized;
813  }
814
815  llvm::Value *Order = EmitScalarExpr(E->getOrder());
816  llvm::Value *Scope =
817      E->getScopeModel() ? EmitScalarExpr(E->getScope()) : nullptr;
818
819  switch (E->getOp()) {
820  case AtomicExpr::AO__c11_atomic_init:
821  case AtomicExpr::AO__opencl_atomic_init:
822    llvm_unreachable("Already handled above with EmitAtomicInit!");
823
824  case AtomicExpr::AO__c11_atomic_load:
825  case AtomicExpr::AO__opencl_atomic_load:
826  case AtomicExpr::AO__atomic_load_n:
827    break;
828
829  case AtomicExpr::AO__atomic_load:
830    Dest = EmitPointerWithAlignment(E->getVal1());
831    break;
832
833  case AtomicExpr::AO__atomic_store:
834    Val1 = EmitPointerWithAlignment(E->getVal1());
835    break;
836
837  case AtomicExpr::AO__atomic_exchange:
838    Val1 = EmitPointerWithAlignment(E->getVal1());
839    Dest = EmitPointerWithAlignment(E->getVal2());
840    break;
841
842  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
843  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
844  case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
845  case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
846  case AtomicExpr::AO__atomic_compare_exchange_n:
847  case AtomicExpr::AO__atomic_compare_exchange:
848    Val1 = EmitPointerWithAlignment(E->getVal1());
849    if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
850      Val2 = EmitPointerWithAlignment(E->getVal2());
851    else
852      Val2 = EmitValToTemp(*this, E->getVal2());
853    OrderFail = EmitScalarExpr(E->getOrderFail());
854    if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange_n ||
855        E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
856      IsWeak = EmitScalarExpr(E->getWeak());
857    break;
858
859  case AtomicExpr::AO__c11_atomic_fetch_add:
860  case AtomicExpr::AO__c11_atomic_fetch_sub:
861  case AtomicExpr::AO__opencl_atomic_fetch_add:
862  case AtomicExpr::AO__opencl_atomic_fetch_sub:
863    if (MemTy->isPointerType()) {
864      // For pointer arithmetic, we're required to do a bit of math:
865      // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
866      // ... but only for the C11 builtins. The GNU builtins expect the
867      // user to multiply by sizeof(T).
868      QualType Val1Ty = E->getVal1()->getType();
869      llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
870      CharUnits PointeeIncAmt =
871          getContext().getTypeSizeInChars(MemTy->getPointeeType());
872      Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
873      auto Temp = CreateMemTemp(Val1Ty, ".atomictmp");
874      Val1 = Temp;
875      EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Temp, Val1Ty));
876      break;
877    }
878      LLVM_FALLTHROUGH;
879  case AtomicExpr::AO__atomic_fetch_add:
880  case AtomicExpr::AO__atomic_fetch_sub:
881  case AtomicExpr::AO__atomic_add_fetch:
882  case AtomicExpr::AO__atomic_sub_fetch:
883  case AtomicExpr::AO__c11_atomic_store:
884  case AtomicExpr::AO__c11_atomic_exchange:
885  case AtomicExpr::AO__opencl_atomic_store:
886  case AtomicExpr::AO__opencl_atomic_exchange:
887  case AtomicExpr::AO__atomic_store_n:
888  case AtomicExpr::AO__atomic_exchange_n:
889  case AtomicExpr::AO__c11_atomic_fetch_and:
890  case AtomicExpr::AO__c11_atomic_fetch_or:
891  case AtomicExpr::AO__c11_atomic_fetch_xor:
892  case AtomicExpr::AO__c11_atomic_fetch_max:
893  case AtomicExpr::AO__c11_atomic_fetch_min:
894  case AtomicExpr::AO__opencl_atomic_fetch_and:
895  case AtomicExpr::AO__opencl_atomic_fetch_or:
896  case AtomicExpr::AO__opencl_atomic_fetch_xor:
897  case AtomicExpr::AO__opencl_atomic_fetch_min:
898  case AtomicExpr::AO__opencl_atomic_fetch_max:
899  case AtomicExpr::AO__atomic_fetch_and:
900  case AtomicExpr::AO__atomic_fetch_or:
901  case AtomicExpr::AO__atomic_fetch_xor:
902  case AtomicExpr::AO__atomic_fetch_nand:
903  case AtomicExpr::AO__atomic_and_fetch:
904  case AtomicExpr::AO__atomic_or_fetch:
905  case AtomicExpr::AO__atomic_xor_fetch:
906  case AtomicExpr::AO__atomic_nand_fetch:
907  case AtomicExpr::AO__atomic_max_fetch:
908  case AtomicExpr::AO__atomic_min_fetch:
909  case AtomicExpr::AO__atomic_fetch_max:
910  case AtomicExpr::AO__atomic_fetch_min:
911    Val1 = EmitValToTemp(*this, E->getVal1());
912    break;
913  }
914
915  QualType RValTy = E->getType().getUnqualifiedType();
916
917  // The inlined atomics only function on iN types, where N is a power of 2. We
918  // need to make sure (via temporaries if necessary) that all incoming values
919  // are compatible.
920  LValue AtomicVal = MakeAddrLValue(Ptr, AtomicTy);
921  AtomicInfo Atomics(*this, AtomicVal);
922
923  Ptr = Atomics.emitCastToAtomicIntPointer(Ptr);
924  if (Val1.isValid()) Val1 = Atomics.convertToAtomicIntPointer(Val1);
925  if (Val2.isValid()) Val2 = Atomics.convertToAtomicIntPointer(Val2);
926  if (Dest.isValid())
927    Dest = Atomics.emitCastToAtomicIntPointer(Dest);
928  else if (E->isCmpXChg())
929    Dest = CreateMemTemp(RValTy, "cmpxchg.bool");
930  else if (!RValTy->isVoidType())
931    Dest = Atomics.emitCastToAtomicIntPointer(Atomics.CreateTempAlloca());
932
933  // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
934  if (UseLibcall) {
935    bool UseOptimizedLibcall = false;
936    switch (E->getOp()) {
937    case AtomicExpr::AO__c11_atomic_init:
938    case AtomicExpr::AO__opencl_atomic_init:
939      llvm_unreachable("Already handled above with EmitAtomicInit!");
940
941    case AtomicExpr::AO__c11_atomic_fetch_add:
942    case AtomicExpr::AO__opencl_atomic_fetch_add:
943    case AtomicExpr::AO__atomic_fetch_add:
944    case AtomicExpr::AO__c11_atomic_fetch_and:
945    case AtomicExpr::AO__opencl_atomic_fetch_and:
946    case AtomicExpr::AO__atomic_fetch_and:
947    case AtomicExpr::AO__c11_atomic_fetch_or:
948    case AtomicExpr::AO__opencl_atomic_fetch_or:
949    case AtomicExpr::AO__atomic_fetch_or:
950    case AtomicExpr::AO__atomic_fetch_nand:
951    case AtomicExpr::AO__c11_atomic_fetch_sub:
952    case AtomicExpr::AO__opencl_atomic_fetch_sub:
953    case AtomicExpr::AO__atomic_fetch_sub:
954    case AtomicExpr::AO__c11_atomic_fetch_xor:
955    case AtomicExpr::AO__opencl_atomic_fetch_xor:
956    case AtomicExpr::AO__opencl_atomic_fetch_min:
957    case AtomicExpr::AO__opencl_atomic_fetch_max:
958    case AtomicExpr::AO__atomic_fetch_xor:
959    case AtomicExpr::AO__c11_atomic_fetch_max:
960    case AtomicExpr::AO__c11_atomic_fetch_min:
961    case AtomicExpr::AO__atomic_add_fetch:
962    case AtomicExpr::AO__atomic_and_fetch:
963    case AtomicExpr::AO__atomic_nand_fetch:
964    case AtomicExpr::AO__atomic_or_fetch:
965    case AtomicExpr::AO__atomic_sub_fetch:
966    case AtomicExpr::AO__atomic_xor_fetch:
967    case AtomicExpr::AO__atomic_fetch_max:
968    case AtomicExpr::AO__atomic_fetch_min:
969    case AtomicExpr::AO__atomic_max_fetch:
970    case AtomicExpr::AO__atomic_min_fetch:
971      // For these, only library calls for certain sizes exist.
972      UseOptimizedLibcall = true;
973      break;
974
975    case AtomicExpr::AO__atomic_load:
976    case AtomicExpr::AO__atomic_store:
977    case AtomicExpr::AO__atomic_exchange:
978    case AtomicExpr::AO__atomic_compare_exchange:
979      // Use the generic version if we don't know that the operand will be
980      // suitably aligned for the optimized version.
981      if (Misaligned)
982        break;
983      LLVM_FALLTHROUGH;
984    case AtomicExpr::AO__c11_atomic_load:
985    case AtomicExpr::AO__c11_atomic_store:
986    case AtomicExpr::AO__c11_atomic_exchange:
987    case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
988    case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
989    case AtomicExpr::AO__opencl_atomic_load:
990    case AtomicExpr::AO__opencl_atomic_store:
991    case AtomicExpr::AO__opencl_atomic_exchange:
992    case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
993    case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
994    case AtomicExpr::AO__atomic_load_n:
995    case AtomicExpr::AO__atomic_store_n:
996    case AtomicExpr::AO__atomic_exchange_n:
997    case AtomicExpr::AO__atomic_compare_exchange_n:
998      // Only use optimized library calls for sizes for which they exist.
999      // FIXME: Size == 16 optimized library functions exist too.
1000      if (Size == 1 || Size == 2 || Size == 4 || Size == 8)
1001        UseOptimizedLibcall = true;
1002      break;
1003    }
1004
1005    CallArgList Args;
1006    if (!UseOptimizedLibcall) {
1007      // For non-optimized library calls, the size is the first parameter
1008      Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
1009               getContext().getSizeType());
1010    }
1011    // Atomic address is the first or second parameter
1012    // The OpenCL atomic library functions only accept pointer arguments to
1013    // generic address space.
1014    auto CastToGenericAddrSpace = [&](llvm::Value *V, QualType PT) {
1015      if (!E->isOpenCL())
1016        return V;
1017      auto AS = PT->castAs<PointerType>()->getPointeeType().getAddressSpace();
1018      if (AS == LangAS::opencl_generic)
1019        return V;
1020      auto DestAS = getContext().getTargetAddressSpace(LangAS::opencl_generic);
1021      auto T = V->getType();
1022      auto *DestType = T->getPointerElementType()->getPointerTo(DestAS);
1023
1024      return getTargetHooks().performAddrSpaceCast(
1025          *this, V, AS, LangAS::opencl_generic, DestType, false);
1026    };
1027
1028    Args.add(RValue::get(CastToGenericAddrSpace(
1029                 EmitCastToVoidPtr(Ptr.getPointer()), E->getPtr()->getType())),
1030             getContext().VoidPtrTy);
1031
1032    std::string LibCallName;
1033    QualType LoweredMemTy =
1034      MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy;
1035    QualType RetTy;
1036    bool HaveRetTy = false;
1037    llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
1038    bool PostOpMinMax = false;
1039    switch (E->getOp()) {
1040    case AtomicExpr::AO__c11_atomic_init:
1041    case AtomicExpr::AO__opencl_atomic_init:
1042      llvm_unreachable("Already handled!");
1043
1044    // There is only one libcall for compare an exchange, because there is no
1045    // optimisation benefit possible from a libcall version of a weak compare
1046    // and exchange.
1047    // bool __atomic_compare_exchange(size_t size, void *mem, void *expected,
1048    //                                void *desired, int success, int failure)
1049    // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired,
1050    //                                  int success, int failure)
1051    case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
1052    case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
1053    case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
1054    case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
1055    case AtomicExpr::AO__atomic_compare_exchange:
1056    case AtomicExpr::AO__atomic_compare_exchange_n:
1057      LibCallName = "__atomic_compare_exchange";
1058      RetTy = getContext().BoolTy;
1059      HaveRetTy = true;
1060      Args.add(
1061          RValue::get(CastToGenericAddrSpace(
1062              EmitCastToVoidPtr(Val1.getPointer()), E->getVal1()->getType())),
1063          getContext().VoidPtrTy);
1064      AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2.getPointer(),
1065                        MemTy, E->getExprLoc(), sizeChars);
1066      Args.add(RValue::get(Order), getContext().IntTy);
1067      Order = OrderFail;
1068      break;
1069    // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
1070    //                        int order)
1071    // T __atomic_exchange_N(T *mem, T val, int order)
1072    case AtomicExpr::AO__c11_atomic_exchange:
1073    case AtomicExpr::AO__opencl_atomic_exchange:
1074    case AtomicExpr::AO__atomic_exchange_n:
1075    case AtomicExpr::AO__atomic_exchange:
1076      LibCallName = "__atomic_exchange";
1077      AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1078                        MemTy, E->getExprLoc(), sizeChars);
1079      break;
1080    // void __atomic_store(size_t size, void *mem, void *val, int order)
1081    // void __atomic_store_N(T *mem, T val, int order)
1082    case AtomicExpr::AO__c11_atomic_store:
1083    case AtomicExpr::AO__opencl_atomic_store:
1084    case AtomicExpr::AO__atomic_store:
1085    case AtomicExpr::AO__atomic_store_n:
1086      LibCallName = "__atomic_store";
1087      RetTy = getContext().VoidTy;
1088      HaveRetTy = true;
1089      AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1090                        MemTy, E->getExprLoc(), sizeChars);
1091      break;
1092    // void __atomic_load(size_t size, void *mem, void *return, int order)
1093    // T __atomic_load_N(T *mem, int order)
1094    case AtomicExpr::AO__c11_atomic_load:
1095    case AtomicExpr::AO__opencl_atomic_load:
1096    case AtomicExpr::AO__atomic_load:
1097    case AtomicExpr::AO__atomic_load_n:
1098      LibCallName = "__atomic_load";
1099      break;
1100    // T __atomic_add_fetch_N(T *mem, T val, int order)
1101    // T __atomic_fetch_add_N(T *mem, T val, int order)
1102    case AtomicExpr::AO__atomic_add_fetch:
1103      PostOp = llvm::Instruction::Add;
1104      LLVM_FALLTHROUGH;
1105    case AtomicExpr::AO__c11_atomic_fetch_add:
1106    case AtomicExpr::AO__opencl_atomic_fetch_add:
1107    case AtomicExpr::AO__atomic_fetch_add:
1108      LibCallName = "__atomic_fetch_add";
1109      AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1110                        LoweredMemTy, E->getExprLoc(), sizeChars);
1111      break;
1112    // T __atomic_and_fetch_N(T *mem, T val, int order)
1113    // T __atomic_fetch_and_N(T *mem, T val, int order)
1114    case AtomicExpr::AO__atomic_and_fetch:
1115      PostOp = llvm::Instruction::And;
1116      LLVM_FALLTHROUGH;
1117    case AtomicExpr::AO__c11_atomic_fetch_and:
1118    case AtomicExpr::AO__opencl_atomic_fetch_and:
1119    case AtomicExpr::AO__atomic_fetch_and:
1120      LibCallName = "__atomic_fetch_and";
1121      AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1122                        MemTy, E->getExprLoc(), sizeChars);
1123      break;
1124    // T __atomic_or_fetch_N(T *mem, T val, int order)
1125    // T __atomic_fetch_or_N(T *mem, T val, int order)
1126    case AtomicExpr::AO__atomic_or_fetch:
1127      PostOp = llvm::Instruction::Or;
1128      LLVM_FALLTHROUGH;
1129    case AtomicExpr::AO__c11_atomic_fetch_or:
1130    case AtomicExpr::AO__opencl_atomic_fetch_or:
1131    case AtomicExpr::AO__atomic_fetch_or:
1132      LibCallName = "__atomic_fetch_or";
1133      AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1134                        MemTy, E->getExprLoc(), sizeChars);
1135      break;
1136    // T __atomic_sub_fetch_N(T *mem, T val, int order)
1137    // T __atomic_fetch_sub_N(T *mem, T val, int order)
1138    case AtomicExpr::AO__atomic_sub_fetch:
1139      PostOp = llvm::Instruction::Sub;
1140      LLVM_FALLTHROUGH;
1141    case AtomicExpr::AO__c11_atomic_fetch_sub:
1142    case AtomicExpr::AO__opencl_atomic_fetch_sub:
1143    case AtomicExpr::AO__atomic_fetch_sub:
1144      LibCallName = "__atomic_fetch_sub";
1145      AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1146                        LoweredMemTy, E->getExprLoc(), sizeChars);
1147      break;
1148    // T __atomic_xor_fetch_N(T *mem, T val, int order)
1149    // T __atomic_fetch_xor_N(T *mem, T val, int order)
1150    case AtomicExpr::AO__atomic_xor_fetch:
1151      PostOp = llvm::Instruction::Xor;
1152      LLVM_FALLTHROUGH;
1153    case AtomicExpr::AO__c11_atomic_fetch_xor:
1154    case AtomicExpr::AO__opencl_atomic_fetch_xor:
1155    case AtomicExpr::AO__atomic_fetch_xor:
1156      LibCallName = "__atomic_fetch_xor";
1157      AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1158                        MemTy, E->getExprLoc(), sizeChars);
1159      break;
1160    case AtomicExpr::AO__atomic_min_fetch:
1161      PostOpMinMax = true;
1162      LLVM_FALLTHROUGH;
1163    case AtomicExpr::AO__c11_atomic_fetch_min:
1164    case AtomicExpr::AO__atomic_fetch_min:
1165    case AtomicExpr::AO__opencl_atomic_fetch_min:
1166      LibCallName = E->getValueType()->isSignedIntegerType()
1167                        ? "__atomic_fetch_min"
1168                        : "__atomic_fetch_umin";
1169      AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1170                        LoweredMemTy, E->getExprLoc(), sizeChars);
1171      break;
1172    case AtomicExpr::AO__atomic_max_fetch:
1173      PostOpMinMax = true;
1174      LLVM_FALLTHROUGH;
1175    case AtomicExpr::AO__c11_atomic_fetch_max:
1176    case AtomicExpr::AO__atomic_fetch_max:
1177    case AtomicExpr::AO__opencl_atomic_fetch_max:
1178      LibCallName = E->getValueType()->isSignedIntegerType()
1179                        ? "__atomic_fetch_max"
1180                        : "__atomic_fetch_umax";
1181      AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1182                        LoweredMemTy, E->getExprLoc(), sizeChars);
1183      break;
1184    // T __atomic_nand_fetch_N(T *mem, T val, int order)
1185    // T __atomic_fetch_nand_N(T *mem, T val, int order)
1186    case AtomicExpr::AO__atomic_nand_fetch:
1187      PostOp = llvm::Instruction::And; // the NOT is special cased below
1188      LLVM_FALLTHROUGH;
1189    case AtomicExpr::AO__atomic_fetch_nand:
1190      LibCallName = "__atomic_fetch_nand";
1191      AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1192                        MemTy, E->getExprLoc(), sizeChars);
1193      break;
1194    }
1195
1196    if (E->isOpenCL()) {
1197      LibCallName = std::string("__opencl") +
1198          StringRef(LibCallName).drop_front(1).str();
1199
1200    }
1201    // Optimized functions have the size in their name.
1202    if (UseOptimizedLibcall)
1203      LibCallName += "_" + llvm::utostr(Size);
1204    // By default, assume we return a value of the atomic type.
1205    if (!HaveRetTy) {
1206      if (UseOptimizedLibcall) {
1207        // Value is returned directly.
1208        // The function returns an appropriately sized integer type.
1209        RetTy = getContext().getIntTypeForBitwidth(
1210            getContext().toBits(sizeChars), /*Signed=*/false);
1211      } else {
1212        // Value is returned through parameter before the order.
1213        RetTy = getContext().VoidTy;
1214        Args.add(RValue::get(EmitCastToVoidPtr(Dest.getPointer())),
1215                 getContext().VoidPtrTy);
1216      }
1217    }
1218    // order is always the last parameter
1219    Args.add(RValue::get(Order),
1220             getContext().IntTy);
1221    if (E->isOpenCL())
1222      Args.add(RValue::get(Scope), getContext().IntTy);
1223
1224    // PostOp is only needed for the atomic_*_fetch operations, and
1225    // thus is only needed for and implemented in the
1226    // UseOptimizedLibcall codepath.
1227    assert(UseOptimizedLibcall || (!PostOp && !PostOpMinMax));
1228
1229    RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args);
1230    // The value is returned directly from the libcall.
1231    if (E->isCmpXChg())
1232      return Res;
1233
1234    // The value is returned directly for optimized libcalls but the expr
1235    // provided an out-param.
1236    if (UseOptimizedLibcall && Res.getScalarVal()) {
1237      llvm::Value *ResVal = Res.getScalarVal();
1238      if (PostOpMinMax) {
1239        llvm::Value *LoadVal1 = Args[1].getRValue(*this).getScalarVal();
1240        ResVal = EmitPostAtomicMinMax(Builder, E->getOp(),
1241                                      E->getValueType()->isSignedIntegerType(),
1242                                      ResVal, LoadVal1);
1243      } else if (PostOp) {
1244        llvm::Value *LoadVal1 = Args[1].getRValue(*this).getScalarVal();
1245        ResVal = Builder.CreateBinOp(PostOp, ResVal, LoadVal1);
1246      }
1247      if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
1248        ResVal = Builder.CreateNot(ResVal);
1249
1250      Builder.CreateStore(
1251          ResVal,
1252          Builder.CreateBitCast(Dest, ResVal->getType()->getPointerTo()));
1253    }
1254
1255    if (RValTy->isVoidType())
1256      return RValue::get(nullptr);
1257
1258    return convertTempToRValue(
1259        Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()),
1260        RValTy, E->getExprLoc());
1261  }
1262
1263  bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
1264                 E->getOp() == AtomicExpr::AO__opencl_atomic_store ||
1265                 E->getOp() == AtomicExpr::AO__atomic_store ||
1266                 E->getOp() == AtomicExpr::AO__atomic_store_n;
1267  bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
1268                E->getOp() == AtomicExpr::AO__opencl_atomic_load ||
1269                E->getOp() == AtomicExpr::AO__atomic_load ||
1270                E->getOp() == AtomicExpr::AO__atomic_load_n;
1271
1272  if (isa<llvm::ConstantInt>(Order)) {
1273    auto ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1274    // We should not ever get to a case where the ordering isn't a valid C ABI
1275    // value, but it's hard to enforce that in general.
1276    if (llvm::isValidAtomicOrderingCABI(ord))
1277      switch ((llvm::AtomicOrderingCABI)ord) {
1278      case llvm::AtomicOrderingCABI::relaxed:
1279        EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1280                     llvm::AtomicOrdering::Monotonic, Scope);
1281        break;
1282      case llvm::AtomicOrderingCABI::consume:
1283      case llvm::AtomicOrderingCABI::acquire:
1284        if (IsStore)
1285          break; // Avoid crashing on code with undefined behavior
1286        EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1287                     llvm::AtomicOrdering::Acquire, Scope);
1288        break;
1289      case llvm::AtomicOrderingCABI::release:
1290        if (IsLoad)
1291          break; // Avoid crashing on code with undefined behavior
1292        EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1293                     llvm::AtomicOrdering::Release, Scope);
1294        break;
1295      case llvm::AtomicOrderingCABI::acq_rel:
1296        if (IsLoad || IsStore)
1297          break; // Avoid crashing on code with undefined behavior
1298        EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1299                     llvm::AtomicOrdering::AcquireRelease, Scope);
1300        break;
1301      case llvm::AtomicOrderingCABI::seq_cst:
1302        EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1303                     llvm::AtomicOrdering::SequentiallyConsistent, Scope);
1304        break;
1305      }
1306    if (RValTy->isVoidType())
1307      return RValue::get(nullptr);
1308
1309    return convertTempToRValue(
1310        Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo(
1311                                        Dest.getAddressSpace())),
1312        RValTy, E->getExprLoc());
1313  }
1314
1315  // Long case, when Order isn't obviously constant.
1316
1317  // Create all the relevant BB's
1318  llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
1319                   *ReleaseBB = nullptr, *AcqRelBB = nullptr,
1320                   *SeqCstBB = nullptr;
1321  MonotonicBB = createBasicBlock("monotonic", CurFn);
1322  if (!IsStore)
1323    AcquireBB = createBasicBlock("acquire", CurFn);
1324  if (!IsLoad)
1325    ReleaseBB = createBasicBlock("release", CurFn);
1326  if (!IsLoad && !IsStore)
1327    AcqRelBB = createBasicBlock("acqrel", CurFn);
1328  SeqCstBB = createBasicBlock("seqcst", CurFn);
1329  llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1330
1331  // Create the switch for the split
1332  // MonotonicBB is arbitrarily chosen as the default case; in practice, this
1333  // doesn't matter unless someone is crazy enough to use something that
1334  // doesn't fold to a constant for the ordering.
1335  Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1336  llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
1337
1338  // Emit all the different atomics
1339  Builder.SetInsertPoint(MonotonicBB);
1340  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1341               llvm::AtomicOrdering::Monotonic, Scope);
1342  Builder.CreateBr(ContBB);
1343  if (!IsStore) {
1344    Builder.SetInsertPoint(AcquireBB);
1345    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1346                 llvm::AtomicOrdering::Acquire, Scope);
1347    Builder.CreateBr(ContBB);
1348    SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::consume),
1349                AcquireBB);
1350    SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire),
1351                AcquireBB);
1352  }
1353  if (!IsLoad) {
1354    Builder.SetInsertPoint(ReleaseBB);
1355    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1356                 llvm::AtomicOrdering::Release, Scope);
1357    Builder.CreateBr(ContBB);
1358    SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::release),
1359                ReleaseBB);
1360  }
1361  if (!IsLoad && !IsStore) {
1362    Builder.SetInsertPoint(AcqRelBB);
1363    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1364                 llvm::AtomicOrdering::AcquireRelease, Scope);
1365    Builder.CreateBr(ContBB);
1366    SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acq_rel),
1367                AcqRelBB);
1368  }
1369  Builder.SetInsertPoint(SeqCstBB);
1370  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1371               llvm::AtomicOrdering::SequentiallyConsistent, Scope);
1372  Builder.CreateBr(ContBB);
1373  SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst),
1374              SeqCstBB);
1375
1376  // Cleanup and return
1377  Builder.SetInsertPoint(ContBB);
1378  if (RValTy->isVoidType())
1379    return RValue::get(nullptr);
1380
1381  assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits());
1382  return convertTempToRValue(
1383      Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo(
1384                                      Dest.getAddressSpace())),
1385      RValTy, E->getExprLoc());
1386}
1387
1388Address AtomicInfo::emitCastToAtomicIntPointer(Address addr) const {
1389  unsigned addrspace =
1390    cast<llvm::PointerType>(addr.getPointer()->getType())->getAddressSpace();
1391  llvm::IntegerType *ty =
1392    llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits);
1393  return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace));
1394}
1395
1396Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const {
1397  llvm::Type *Ty = Addr.getElementType();
1398  uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty);
1399  if (SourceSizeInBits != AtomicSizeInBits) {
1400    Address Tmp = CreateTempAlloca();
1401    CGF.Builder.CreateMemCpy(Tmp, Addr,
1402                             std::min(AtomicSizeInBits, SourceSizeInBits) / 8);
1403    Addr = Tmp;
1404  }
1405
1406  return emitCastToAtomicIntPointer(Addr);
1407}
1408
1409RValue AtomicInfo::convertAtomicTempToRValue(Address addr,
1410                                             AggValueSlot resultSlot,
1411                                             SourceLocation loc,
1412                                             bool asValue) const {
1413  if (LVal.isSimple()) {
1414    if (EvaluationKind == TEK_Aggregate)
1415      return resultSlot.asRValue();
1416
1417    // Drill into the padding structure if we have one.
1418    if (hasPadding())
1419      addr = CGF.Builder.CreateStructGEP(addr, 0);
1420
1421    // Otherwise, just convert the temporary to an r-value using the
1422    // normal conversion routine.
1423    return CGF.convertTempToRValue(addr, getValueType(), loc);
1424  }
1425  if (!asValue)
1426    // Get RValue from temp memory as atomic for non-simple lvalues
1427    return RValue::get(CGF.Builder.CreateLoad(addr));
1428  if (LVal.isBitField())
1429    return CGF.EmitLoadOfBitfieldLValue(
1430        LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(),
1431                             LVal.getBaseInfo(), TBAAAccessInfo()), loc);
1432  if (LVal.isVectorElt())
1433    return CGF.EmitLoadOfLValue(
1434        LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(),
1435                              LVal.getBaseInfo(), TBAAAccessInfo()), loc);
1436  assert(LVal.isExtVectorElt());
1437  return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt(
1438      addr, LVal.getExtVectorElts(), LVal.getType(),
1439      LVal.getBaseInfo(), TBAAAccessInfo()));
1440}
1441
1442RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal,
1443                                             AggValueSlot ResultSlot,
1444                                             SourceLocation Loc,
1445                                             bool AsValue) const {
1446  // Try not to in some easy cases.
1447  assert(IntVal->getType()->isIntegerTy() && "Expected integer value");
1448  if (getEvaluationKind() == TEK_Scalar &&
1449      (((!LVal.isBitField() ||
1450         LVal.getBitFieldInfo().Size == ValueSizeInBits) &&
1451        !hasPadding()) ||
1452       !AsValue)) {
1453    auto *ValTy = AsValue
1454                      ? CGF.ConvertTypeForMem(ValueTy)
1455                      : getAtomicAddress().getType()->getPointerElementType();
1456    if (ValTy->isIntegerTy()) {
1457      assert(IntVal->getType() == ValTy && "Different integer types.");
1458      return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy));
1459    } else if (ValTy->isPointerTy())
1460      return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy));
1461    else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy))
1462      return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy));
1463  }
1464
1465  // Create a temporary.  This needs to be big enough to hold the
1466  // atomic integer.
1467  Address Temp = Address::invalid();
1468  bool TempIsVolatile = false;
1469  if (AsValue && getEvaluationKind() == TEK_Aggregate) {
1470    assert(!ResultSlot.isIgnored());
1471    Temp = ResultSlot.getAddress();
1472    TempIsVolatile = ResultSlot.isVolatile();
1473  } else {
1474    Temp = CreateTempAlloca();
1475  }
1476
1477  // Slam the integer into the temporary.
1478  Address CastTemp = emitCastToAtomicIntPointer(Temp);
1479  CGF.Builder.CreateStore(IntVal, CastTemp)
1480      ->setVolatile(TempIsVolatile);
1481
1482  return convertAtomicTempToRValue(Temp, ResultSlot, Loc, AsValue);
1483}
1484
1485void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
1486                                       llvm::AtomicOrdering AO, bool) {
1487  // void __atomic_load(size_t size, void *mem, void *return, int order);
1488  CallArgList Args;
1489  Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
1490  Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())),
1491           CGF.getContext().VoidPtrTy);
1492  Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)),
1493           CGF.getContext().VoidPtrTy);
1494  Args.add(
1495      RValue::get(llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(AO))),
1496      CGF.getContext().IntTy);
1497  emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args);
1498}
1499
1500llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO,
1501                                          bool IsVolatile) {
1502  // Okay, we're doing this natively.
1503  Address Addr = getAtomicAddressAsAtomicIntPointer();
1504  llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load");
1505  Load->setAtomic(AO);
1506
1507  // Other decoration.
1508  if (IsVolatile)
1509    Load->setVolatile(true);
1510  CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo());
1511  return Load;
1512}
1513
1514/// An LValue is a candidate for having its loads and stores be made atomic if
1515/// we are operating under /volatile:ms *and* the LValue itself is volatile and
1516/// performing such an operation can be performed without a libcall.
1517bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) {
1518  if (!CGM.getCodeGenOpts().MSVolatile) return false;
1519  AtomicInfo AI(*this, LV);
1520  bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType());
1521  // An atomic is inline if we don't need to use a libcall.
1522  bool AtomicIsInline = !AI.shouldUseLibcall();
1523  // MSVC doesn't seem to do this for types wider than a pointer.
1524  if (getContext().getTypeSize(LV.getType()) >
1525      getContext().getTypeSize(getContext().getIntPtrType()))
1526    return false;
1527  return IsVolatile && AtomicIsInline;
1528}
1529
1530RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL,
1531                                       AggValueSlot Slot) {
1532  llvm::AtomicOrdering AO;
1533  bool IsVolatile = LV.isVolatileQualified();
1534  if (LV.getType()->isAtomicType()) {
1535    AO = llvm::AtomicOrdering::SequentiallyConsistent;
1536  } else {
1537    AO = llvm::AtomicOrdering::Acquire;
1538    IsVolatile = true;
1539  }
1540  return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot);
1541}
1542
1543RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
1544                                  bool AsValue, llvm::AtomicOrdering AO,
1545                                  bool IsVolatile) {
1546  // Check whether we should use a library call.
1547  if (shouldUseLibcall()) {
1548    Address TempAddr = Address::invalid();
1549    if (LVal.isSimple() && !ResultSlot.isIgnored()) {
1550      assert(getEvaluationKind() == TEK_Aggregate);
1551      TempAddr = ResultSlot.getAddress();
1552    } else
1553      TempAddr = CreateTempAlloca();
1554
1555    EmitAtomicLoadLibcall(TempAddr.getPointer(), AO, IsVolatile);
1556
1557    // Okay, turn that back into the original value or whole atomic (for
1558    // non-simple lvalues) type.
1559    return convertAtomicTempToRValue(TempAddr, ResultSlot, Loc, AsValue);
1560  }
1561
1562  // Okay, we're doing this natively.
1563  auto *Load = EmitAtomicLoadOp(AO, IsVolatile);
1564
1565  // If we're ignoring an aggregate return, don't do anything.
1566  if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored())
1567    return RValue::getAggregate(Address::invalid(), false);
1568
1569  // Okay, turn that back into the original value or atomic (for non-simple
1570  // lvalues) type.
1571  return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue);
1572}
1573
1574/// Emit a load from an l-value of atomic type.  Note that the r-value
1575/// we produce is an r-value of the atomic *value* type.
1576RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc,
1577                                       llvm::AtomicOrdering AO, bool IsVolatile,
1578                                       AggValueSlot resultSlot) {
1579  AtomicInfo Atomics(*this, src);
1580  return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO,
1581                                IsVolatile);
1582}
1583
1584/// Copy an r-value into memory as part of storing to an atomic type.
1585/// This needs to create a bit-pattern suitable for atomic operations.
1586void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const {
1587  assert(LVal.isSimple());
1588  // If we have an r-value, the rvalue should be of the atomic type,
1589  // which means that the caller is responsible for having zeroed
1590  // any padding.  Just do an aggregate copy of that type.
1591  if (rvalue.isAggregate()) {
1592    LValue Dest = CGF.MakeAddrLValue(getAtomicAddress(), getAtomicType());
1593    LValue Src = CGF.MakeAddrLValue(rvalue.getAggregateAddress(),
1594                                    getAtomicType());
1595    bool IsVolatile = rvalue.isVolatileQualified() ||
1596                      LVal.isVolatileQualified();
1597    CGF.EmitAggregateCopy(Dest, Src, getAtomicType(),
1598                          AggValueSlot::DoesNotOverlap, IsVolatile);
1599    return;
1600  }
1601
1602  // Okay, otherwise we're copying stuff.
1603
1604  // Zero out the buffer if necessary.
1605  emitMemSetZeroIfNecessary();
1606
1607  // Drill past the padding if present.
1608  LValue TempLVal = projectValue();
1609
1610  // Okay, store the rvalue in.
1611  if (rvalue.isScalar()) {
1612    CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true);
1613  } else {
1614    CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true);
1615  }
1616}
1617
1618
1619/// Materialize an r-value into memory for the purposes of storing it
1620/// to an atomic type.
1621Address AtomicInfo::materializeRValue(RValue rvalue) const {
1622  // Aggregate r-values are already in memory, and EmitAtomicStore
1623  // requires them to be values of the atomic type.
1624  if (rvalue.isAggregate())
1625    return rvalue.getAggregateAddress();
1626
1627  // Otherwise, make a temporary and materialize into it.
1628  LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType());
1629  AtomicInfo Atomics(CGF, TempLV);
1630  Atomics.emitCopyIntoMemory(rvalue);
1631  return TempLV.getAddress(CGF);
1632}
1633
1634llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const {
1635  // If we've got a scalar value of the right size, try to avoid going
1636  // through memory.
1637  if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) {
1638    llvm::Value *Value = RVal.getScalarVal();
1639    if (isa<llvm::IntegerType>(Value->getType()))
1640      return CGF.EmitToMemory(Value, ValueTy);
1641    else {
1642      llvm::IntegerType *InputIntTy = llvm::IntegerType::get(
1643          CGF.getLLVMContext(),
1644          LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits());
1645      if (isa<llvm::PointerType>(Value->getType()))
1646        return CGF.Builder.CreatePtrToInt(Value, InputIntTy);
1647      else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy))
1648        return CGF.Builder.CreateBitCast(Value, InputIntTy);
1649    }
1650  }
1651  // Otherwise, we need to go through memory.
1652  // Put the r-value in memory.
1653  Address Addr = materializeRValue(RVal);
1654
1655  // Cast the temporary to the atomic int type and pull a value out.
1656  Addr = emitCastToAtomicIntPointer(Addr);
1657  return CGF.Builder.CreateLoad(Addr);
1658}
1659
1660std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp(
1661    llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
1662    llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) {
1663  // Do the atomic store.
1664  Address Addr = getAtomicAddressAsAtomicIntPointer();
1665  auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr.getPointer(),
1666                                               ExpectedVal, DesiredVal,
1667                                               Success, Failure);
1668  // Other decoration.
1669  Inst->setVolatile(LVal.isVolatileQualified());
1670  Inst->setWeak(IsWeak);
1671
1672  // Okay, turn that back into the original value type.
1673  auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0);
1674  auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1);
1675  return std::make_pair(PreviousVal, SuccessFailureVal);
1676}
1677
1678llvm::Value *
1679AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr,
1680                                             llvm::Value *DesiredAddr,
1681                                             llvm::AtomicOrdering Success,
1682                                             llvm::AtomicOrdering Failure) {
1683  // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
1684  // void *desired, int success, int failure);
1685  CallArgList Args;
1686  Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
1687  Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())),
1688           CGF.getContext().VoidPtrTy);
1689  Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)),
1690           CGF.getContext().VoidPtrTy);
1691  Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)),
1692           CGF.getContext().VoidPtrTy);
1693  Args.add(RValue::get(
1694               llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Success))),
1695           CGF.getContext().IntTy);
1696  Args.add(RValue::get(
1697               llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Failure))),
1698           CGF.getContext().IntTy);
1699  auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange",
1700                                              CGF.getContext().BoolTy, Args);
1701
1702  return SuccessFailureRVal.getScalarVal();
1703}
1704
1705std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange(
1706    RValue Expected, RValue Desired, llvm::AtomicOrdering Success,
1707    llvm::AtomicOrdering Failure, bool IsWeak) {
1708  if (isStrongerThan(Failure, Success))
1709    // Don't assert on undefined behavior "failure argument shall be no stronger
1710    // than the success argument".
1711    Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success);
1712
1713  // Check whether we should use a library call.
1714  if (shouldUseLibcall()) {
1715    // Produce a source address.
1716    Address ExpectedAddr = materializeRValue(Expected);
1717    Address DesiredAddr = materializeRValue(Desired);
1718    auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(),
1719                                                 DesiredAddr.getPointer(),
1720                                                 Success, Failure);
1721    return std::make_pair(
1722        convertAtomicTempToRValue(ExpectedAddr, AggValueSlot::ignored(),
1723                                  SourceLocation(), /*AsValue=*/false),
1724        Res);
1725  }
1726
1727  // If we've got a scalar value of the right size, try to avoid going
1728  // through memory.
1729  auto *ExpectedVal = convertRValueToInt(Expected);
1730  auto *DesiredVal = convertRValueToInt(Desired);
1731  auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success,
1732                                         Failure, IsWeak);
1733  return std::make_pair(
1734      ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(),
1735                                SourceLocation(), /*AsValue=*/false),
1736      Res.second);
1737}
1738
1739static void
1740EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal,
1741                      const llvm::function_ref<RValue(RValue)> &UpdateOp,
1742                      Address DesiredAddr) {
1743  RValue UpRVal;
1744  LValue AtomicLVal = Atomics.getAtomicLValue();
1745  LValue DesiredLVal;
1746  if (AtomicLVal.isSimple()) {
1747    UpRVal = OldRVal;
1748    DesiredLVal = CGF.MakeAddrLValue(DesiredAddr, AtomicLVal.getType());
1749  } else {
1750    // Build new lvalue for temp address.
1751    Address Ptr = Atomics.materializeRValue(OldRVal);
1752    LValue UpdateLVal;
1753    if (AtomicLVal.isBitField()) {
1754      UpdateLVal =
1755          LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(),
1756                               AtomicLVal.getType(),
1757                               AtomicLVal.getBaseInfo(),
1758                               AtomicLVal.getTBAAInfo());
1759      DesiredLVal =
1760          LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
1761                               AtomicLVal.getType(), AtomicLVal.getBaseInfo(),
1762                               AtomicLVal.getTBAAInfo());
1763    } else if (AtomicLVal.isVectorElt()) {
1764      UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(),
1765                                         AtomicLVal.getType(),
1766                                         AtomicLVal.getBaseInfo(),
1767                                         AtomicLVal.getTBAAInfo());
1768      DesiredLVal = LValue::MakeVectorElt(
1769          DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(),
1770          AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo());
1771    } else {
1772      assert(AtomicLVal.isExtVectorElt());
1773      UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(),
1774                                            AtomicLVal.getType(),
1775                                            AtomicLVal.getBaseInfo(),
1776                                            AtomicLVal.getTBAAInfo());
1777      DesiredLVal = LValue::MakeExtVectorElt(
1778          DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
1779          AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo());
1780    }
1781    UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation());
1782  }
1783  // Store new value in the corresponding memory area.
1784  RValue NewRVal = UpdateOp(UpRVal);
1785  if (NewRVal.isScalar()) {
1786    CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal);
1787  } else {
1788    assert(NewRVal.isComplex());
1789    CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal,
1790                           /*isInit=*/false);
1791  }
1792}
1793
1794void AtomicInfo::EmitAtomicUpdateLibcall(
1795    llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1796    bool IsVolatile) {
1797  auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1798
1799  Address ExpectedAddr = CreateTempAlloca();
1800
1801  EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile);
1802  auto *ContBB = CGF.createBasicBlock("atomic_cont");
1803  auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1804  CGF.EmitBlock(ContBB);
1805  Address DesiredAddr = CreateTempAlloca();
1806  if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1807      requiresMemSetZero(getAtomicAddress().getElementType())) {
1808    auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr);
1809    CGF.Builder.CreateStore(OldVal, DesiredAddr);
1810  }
1811  auto OldRVal = convertAtomicTempToRValue(ExpectedAddr,
1812                                           AggValueSlot::ignored(),
1813                                           SourceLocation(), /*AsValue=*/false);
1814  EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr);
1815  auto *Res =
1816      EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(),
1817                                       DesiredAddr.getPointer(),
1818                                       AO, Failure);
1819  CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
1820  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1821}
1822
1823void AtomicInfo::EmitAtomicUpdateOp(
1824    llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1825    bool IsVolatile) {
1826  auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1827
1828  // Do the atomic load.
1829  auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
1830  // For non-simple lvalues perform compare-and-swap procedure.
1831  auto *ContBB = CGF.createBasicBlock("atomic_cont");
1832  auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1833  auto *CurBB = CGF.Builder.GetInsertBlock();
1834  CGF.EmitBlock(ContBB);
1835  llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
1836                                             /*NumReservedValues=*/2);
1837  PHI->addIncoming(OldVal, CurBB);
1838  Address NewAtomicAddr = CreateTempAlloca();
1839  Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
1840  if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1841      requiresMemSetZero(getAtomicAddress().getElementType())) {
1842    CGF.Builder.CreateStore(PHI, NewAtomicIntAddr);
1843  }
1844  auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(),
1845                                           SourceLocation(), /*AsValue=*/false);
1846  EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr);
1847  auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr);
1848  // Try to write new value using cmpxchg operation.
1849  auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1850  PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
1851  CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
1852  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1853}
1854
1855static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics,
1856                                  RValue UpdateRVal, Address DesiredAddr) {
1857  LValue AtomicLVal = Atomics.getAtomicLValue();
1858  LValue DesiredLVal;
1859  // Build new lvalue for temp address.
1860  if (AtomicLVal.isBitField()) {
1861    DesiredLVal =
1862        LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
1863                             AtomicLVal.getType(), AtomicLVal.getBaseInfo(),
1864                             AtomicLVal.getTBAAInfo());
1865  } else if (AtomicLVal.isVectorElt()) {
1866    DesiredLVal =
1867        LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(),
1868                              AtomicLVal.getType(), AtomicLVal.getBaseInfo(),
1869                              AtomicLVal.getTBAAInfo());
1870  } else {
1871    assert(AtomicLVal.isExtVectorElt());
1872    DesiredLVal = LValue::MakeExtVectorElt(
1873        DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
1874        AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo());
1875  }
1876  // Store new value in the corresponding memory area.
1877  assert(UpdateRVal.isScalar());
1878  CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal);
1879}
1880
1881void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
1882                                         RValue UpdateRVal, bool IsVolatile) {
1883  auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1884
1885  Address ExpectedAddr = CreateTempAlloca();
1886
1887  EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile);
1888  auto *ContBB = CGF.createBasicBlock("atomic_cont");
1889  auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1890  CGF.EmitBlock(ContBB);
1891  Address DesiredAddr = CreateTempAlloca();
1892  if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1893      requiresMemSetZero(getAtomicAddress().getElementType())) {
1894    auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr);
1895    CGF.Builder.CreateStore(OldVal, DesiredAddr);
1896  }
1897  EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr);
1898  auto *Res =
1899      EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(),
1900                                       DesiredAddr.getPointer(),
1901                                       AO, Failure);
1902  CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
1903  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1904}
1905
1906void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal,
1907                                    bool IsVolatile) {
1908  auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1909
1910  // Do the atomic load.
1911  auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
1912  // For non-simple lvalues perform compare-and-swap procedure.
1913  auto *ContBB = CGF.createBasicBlock("atomic_cont");
1914  auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1915  auto *CurBB = CGF.Builder.GetInsertBlock();
1916  CGF.EmitBlock(ContBB);
1917  llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
1918                                             /*NumReservedValues=*/2);
1919  PHI->addIncoming(OldVal, CurBB);
1920  Address NewAtomicAddr = CreateTempAlloca();
1921  Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
1922  if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1923      requiresMemSetZero(getAtomicAddress().getElementType())) {
1924    CGF.Builder.CreateStore(PHI, NewAtomicIntAddr);
1925  }
1926  EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr);
1927  auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr);
1928  // Try to write new value using cmpxchg operation.
1929  auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1930  PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
1931  CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
1932  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1933}
1934
1935void AtomicInfo::EmitAtomicUpdate(
1936    llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1937    bool IsVolatile) {
1938  if (shouldUseLibcall()) {
1939    EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile);
1940  } else {
1941    EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile);
1942  }
1943}
1944
1945void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
1946                                  bool IsVolatile) {
1947  if (shouldUseLibcall()) {
1948    EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile);
1949  } else {
1950    EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile);
1951  }
1952}
1953
1954void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue,
1955                                      bool isInit) {
1956  bool IsVolatile = lvalue.isVolatileQualified();
1957  llvm::AtomicOrdering AO;
1958  if (lvalue.getType()->isAtomicType()) {
1959    AO = llvm::AtomicOrdering::SequentiallyConsistent;
1960  } else {
1961    AO = llvm::AtomicOrdering::Release;
1962    IsVolatile = true;
1963  }
1964  return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit);
1965}
1966
1967/// Emit a store to an l-value of atomic type.
1968///
1969/// Note that the r-value is expected to be an r-value *of the atomic
1970/// type*; this means that for aggregate r-values, it should include
1971/// storage for any padding that was necessary.
1972void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest,
1973                                      llvm::AtomicOrdering AO, bool IsVolatile,
1974                                      bool isInit) {
1975  // If this is an aggregate r-value, it should agree in type except
1976  // maybe for address-space qualification.
1977  assert(!rvalue.isAggregate() ||
1978         rvalue.getAggregateAddress().getElementType() ==
1979             dest.getAddress(*this).getElementType());
1980
1981  AtomicInfo atomics(*this, dest);
1982  LValue LVal = atomics.getAtomicLValue();
1983
1984  // If this is an initialization, just put the value there normally.
1985  if (LVal.isSimple()) {
1986    if (isInit) {
1987      atomics.emitCopyIntoMemory(rvalue);
1988      return;
1989    }
1990
1991    // Check whether we should use a library call.
1992    if (atomics.shouldUseLibcall()) {
1993      // Produce a source address.
1994      Address srcAddr = atomics.materializeRValue(rvalue);
1995
1996      // void __atomic_store(size_t size, void *mem, void *val, int order)
1997      CallArgList args;
1998      args.add(RValue::get(atomics.getAtomicSizeValue()),
1999               getContext().getSizeType());
2000      args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicPointer())),
2001               getContext().VoidPtrTy);
2002      args.add(RValue::get(EmitCastToVoidPtr(srcAddr.getPointer())),
2003               getContext().VoidPtrTy);
2004      args.add(
2005          RValue::get(llvm::ConstantInt::get(IntTy, (int)llvm::toCABI(AO))),
2006          getContext().IntTy);
2007      emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
2008      return;
2009    }
2010
2011    // Okay, we're doing this natively.
2012    llvm::Value *intValue = atomics.convertRValueToInt(rvalue);
2013
2014    // Do the atomic store.
2015    Address addr =
2016        atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress());
2017    intValue = Builder.CreateIntCast(
2018        intValue, addr.getElementType(), /*isSigned=*/false);
2019    llvm::StoreInst *store = Builder.CreateStore(intValue, addr);
2020
2021    // Initializations don't need to be atomic.
2022    if (!isInit)
2023      store->setAtomic(AO);
2024
2025    // Other decoration.
2026    if (IsVolatile)
2027      store->setVolatile(true);
2028    CGM.DecorateInstructionWithTBAA(store, dest.getTBAAInfo());
2029    return;
2030  }
2031
2032  // Emit simple atomic update operation.
2033  atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile);
2034}
2035
2036/// Emit a compare-and-exchange op for atomic type.
2037///
2038std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange(
2039    LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2040    llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak,
2041    AggValueSlot Slot) {
2042  // If this is an aggregate r-value, it should agree in type except
2043  // maybe for address-space qualification.
2044  assert(!Expected.isAggregate() ||
2045         Expected.getAggregateAddress().getElementType() ==
2046             Obj.getAddress(*this).getElementType());
2047  assert(!Desired.isAggregate() ||
2048         Desired.getAggregateAddress().getElementType() ==
2049             Obj.getAddress(*this).getElementType());
2050  AtomicInfo Atomics(*this, Obj);
2051
2052  return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure,
2053                                           IsWeak);
2054}
2055
2056void CodeGenFunction::EmitAtomicUpdate(
2057    LValue LVal, llvm::AtomicOrdering AO,
2058    const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) {
2059  AtomicInfo Atomics(*this, LVal);
2060  Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile);
2061}
2062
2063void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) {
2064  AtomicInfo atomics(*this, dest);
2065
2066  switch (atomics.getEvaluationKind()) {
2067  case TEK_Scalar: {
2068    llvm::Value *value = EmitScalarExpr(init);
2069    atomics.emitCopyIntoMemory(RValue::get(value));
2070    return;
2071  }
2072
2073  case TEK_Complex: {
2074    ComplexPairTy value = EmitComplexExpr(init);
2075    atomics.emitCopyIntoMemory(RValue::getComplex(value));
2076    return;
2077  }
2078
2079  case TEK_Aggregate: {
2080    // Fix up the destination if the initializer isn't an expression
2081    // of atomic type.
2082    bool Zeroed = false;
2083    if (!init->getType()->isAtomicType()) {
2084      Zeroed = atomics.emitMemSetZeroIfNecessary();
2085      dest = atomics.projectValue();
2086    }
2087
2088    // Evaluate the expression directly into the destination.
2089    AggValueSlot slot = AggValueSlot::forLValue(
2090        dest, *this, AggValueSlot::IsNotDestructed,
2091        AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2092        AggValueSlot::DoesNotOverlap,
2093        Zeroed ? AggValueSlot::IsZeroed : AggValueSlot::IsNotZeroed);
2094
2095    EmitAggExpr(init, slot);
2096    return;
2097  }
2098  }
2099  llvm_unreachable("bad evaluation kind");
2100}
2101