Preprocessor.h revision 360784
1//===- Preprocessor.h - C Language Family Preprocessor ----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the clang::Preprocessor interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_LEX_PREPROCESSOR_H
15#define LLVM_CLANG_LEX_PREPROCESSOR_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/LLVM.h"
20#include "clang/Basic/LangOptions.h"
21#include "clang/Basic/Module.h"
22#include "clang/Basic/SourceLocation.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TokenKinds.h"
25#include "clang/Lex/Lexer.h"
26#include "clang/Lex/MacroInfo.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/ModuleMap.h"
29#include "clang/Lex/PPCallbacks.h"
30#include "clang/Lex/PreprocessorExcludedConditionalDirectiveSkipMapping.h"
31#include "clang/Lex/Token.h"
32#include "clang/Lex/TokenLexer.h"
33#include "llvm/ADT/ArrayRef.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/FunctionExtras.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/StringRef.h"
44#include "llvm/ADT/TinyPtrVector.h"
45#include "llvm/ADT/iterator_range.h"
46#include "llvm/Support/Allocator.h"
47#include "llvm/Support/Casting.h"
48#include "llvm/Support/Registry.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <map>
53#include <memory>
54#include <string>
55#include <utility>
56#include <vector>
57
58namespace llvm {
59
60template<unsigned InternalLen> class SmallString;
61
62} // namespace llvm
63
64namespace clang {
65
66class CodeCompletionHandler;
67class CommentHandler;
68class DirectoryEntry;
69class DirectoryLookup;
70class ExternalPreprocessorSource;
71class FileEntry;
72class FileManager;
73class HeaderSearch;
74class MacroArgs;
75class PragmaHandler;
76class PragmaNamespace;
77class PreprocessingRecord;
78class PreprocessorLexer;
79class PreprocessorOptions;
80class ScratchBuffer;
81class TargetInfo;
82
83namespace Builtin {
84class Context;
85}
86
87/// Stores token information for comparing actual tokens with
88/// predefined values.  Only handles simple tokens and identifiers.
89class TokenValue {
90  tok::TokenKind Kind;
91  IdentifierInfo *II;
92
93public:
94  TokenValue(tok::TokenKind Kind) : Kind(Kind), II(nullptr) {
95    assert(Kind != tok::raw_identifier && "Raw identifiers are not supported.");
96    assert(Kind != tok::identifier &&
97           "Identifiers should be created by TokenValue(IdentifierInfo *)");
98    assert(!tok::isLiteral(Kind) && "Literals are not supported.");
99    assert(!tok::isAnnotation(Kind) && "Annotations are not supported.");
100  }
101
102  TokenValue(IdentifierInfo *II) : Kind(tok::identifier), II(II) {}
103
104  bool operator==(const Token &Tok) const {
105    return Tok.getKind() == Kind &&
106        (!II || II == Tok.getIdentifierInfo());
107  }
108};
109
110/// Context in which macro name is used.
111enum MacroUse {
112  // other than #define or #undef
113  MU_Other  = 0,
114
115  // macro name specified in #define
116  MU_Define = 1,
117
118  // macro name specified in #undef
119  MU_Undef  = 2
120};
121
122/// Engages in a tight little dance with the lexer to efficiently
123/// preprocess tokens.
124///
125/// Lexers know only about tokens within a single source file, and don't
126/// know anything about preprocessor-level issues like the \#include stack,
127/// token expansion, etc.
128class Preprocessor {
129  friend class VAOptDefinitionContext;
130  friend class VariadicMacroScopeGuard;
131
132  llvm::unique_function<void(const clang::Token &)> OnToken;
133  std::shared_ptr<PreprocessorOptions> PPOpts;
134  DiagnosticsEngine        *Diags;
135  LangOptions       &LangOpts;
136  const TargetInfo *Target = nullptr;
137  const TargetInfo *AuxTarget = nullptr;
138  FileManager       &FileMgr;
139  SourceManager     &SourceMgr;
140  std::unique_ptr<ScratchBuffer> ScratchBuf;
141  HeaderSearch      &HeaderInfo;
142  ModuleLoader      &TheModuleLoader;
143
144  /// External source of macros.
145  ExternalPreprocessorSource *ExternalSource;
146
147  /// A BumpPtrAllocator object used to quickly allocate and release
148  /// objects internal to the Preprocessor.
149  llvm::BumpPtrAllocator BP;
150
151  /// Identifiers for builtin macros and other builtins.
152  IdentifierInfo *Ident__LINE__, *Ident__FILE__;   // __LINE__, __FILE__
153  IdentifierInfo *Ident__DATE__, *Ident__TIME__;   // __DATE__, __TIME__
154  IdentifierInfo *Ident__INCLUDE_LEVEL__;          // __INCLUDE_LEVEL__
155  IdentifierInfo *Ident__BASE_FILE__;              // __BASE_FILE__
156  IdentifierInfo *Ident__FILE_NAME__;              // __FILE_NAME__
157  IdentifierInfo *Ident__TIMESTAMP__;              // __TIMESTAMP__
158  IdentifierInfo *Ident__COUNTER__;                // __COUNTER__
159  IdentifierInfo *Ident_Pragma, *Ident__pragma;    // _Pragma, __pragma
160  IdentifierInfo *Ident__identifier;               // __identifier
161  IdentifierInfo *Ident__VA_ARGS__;                // __VA_ARGS__
162  IdentifierInfo *Ident__VA_OPT__;                 // __VA_OPT__
163  IdentifierInfo *Ident__has_feature;              // __has_feature
164  IdentifierInfo *Ident__has_extension;            // __has_extension
165  IdentifierInfo *Ident__has_builtin;              // __has_builtin
166  IdentifierInfo *Ident__has_attribute;            // __has_attribute
167  IdentifierInfo *Ident__has_include;              // __has_include
168  IdentifierInfo *Ident__has_include_next;         // __has_include_next
169  IdentifierInfo *Ident__has_warning;              // __has_warning
170  IdentifierInfo *Ident__is_identifier;            // __is_identifier
171  IdentifierInfo *Ident__building_module;          // __building_module
172  IdentifierInfo *Ident__MODULE__;                 // __MODULE__
173  IdentifierInfo *Ident__has_cpp_attribute;        // __has_cpp_attribute
174  IdentifierInfo *Ident__has_c_attribute;          // __has_c_attribute
175  IdentifierInfo *Ident__has_declspec;             // __has_declspec_attribute
176  IdentifierInfo *Ident__is_target_arch;           // __is_target_arch
177  IdentifierInfo *Ident__is_target_vendor;         // __is_target_vendor
178  IdentifierInfo *Ident__is_target_os;             // __is_target_os
179  IdentifierInfo *Ident__is_target_environment;    // __is_target_environment
180
181  // Weak, only valid (and set) while InMacroArgs is true.
182  Token* ArgMacro;
183
184  SourceLocation DATELoc, TIMELoc;
185
186  // Next __COUNTER__ value, starts at 0.
187  unsigned CounterValue = 0;
188
189  enum {
190    /// Maximum depth of \#includes.
191    MaxAllowedIncludeStackDepth = 200
192  };
193
194  // State that is set before the preprocessor begins.
195  bool KeepComments : 1;
196  bool KeepMacroComments : 1;
197  bool SuppressIncludeNotFoundError : 1;
198
199  // State that changes while the preprocessor runs:
200  bool InMacroArgs : 1;            // True if parsing fn macro invocation args.
201
202  /// Whether the preprocessor owns the header search object.
203  bool OwnsHeaderSearch : 1;
204
205  /// True if macro expansion is disabled.
206  bool DisableMacroExpansion : 1;
207
208  /// Temporarily disables DisableMacroExpansion (i.e. enables expansion)
209  /// when parsing preprocessor directives.
210  bool MacroExpansionInDirectivesOverride : 1;
211
212  class ResetMacroExpansionHelper;
213
214  /// Whether we have already loaded macros from the external source.
215  mutable bool ReadMacrosFromExternalSource : 1;
216
217  /// True if pragmas are enabled.
218  bool PragmasEnabled : 1;
219
220  /// True if the current build action is a preprocessing action.
221  bool PreprocessedOutput : 1;
222
223  /// True if we are currently preprocessing a #if or #elif directive
224  bool ParsingIfOrElifDirective;
225
226  /// True if we are pre-expanding macro arguments.
227  bool InMacroArgPreExpansion;
228
229  /// Mapping/lookup information for all identifiers in
230  /// the program, including program keywords.
231  mutable IdentifierTable Identifiers;
232
233  /// This table contains all the selectors in the program.
234  ///
235  /// Unlike IdentifierTable above, this table *isn't* populated by the
236  /// preprocessor. It is declared/expanded here because its role/lifetime is
237  /// conceptually similar to the IdentifierTable. In addition, the current
238  /// control flow (in clang::ParseAST()), make it convenient to put here.
239  ///
240  /// FIXME: Make sure the lifetime of Identifiers/Selectors *isn't* tied to
241  /// the lifetime of the preprocessor.
242  SelectorTable Selectors;
243
244  /// Information about builtins.
245  std::unique_ptr<Builtin::Context> BuiltinInfo;
246
247  /// Tracks all of the pragmas that the client registered
248  /// with this preprocessor.
249  std::unique_ptr<PragmaNamespace> PragmaHandlers;
250
251  /// Pragma handlers of the original source is stored here during the
252  /// parsing of a model file.
253  std::unique_ptr<PragmaNamespace> PragmaHandlersBackup;
254
255  /// Tracks all of the comment handlers that the client registered
256  /// with this preprocessor.
257  std::vector<CommentHandler *> CommentHandlers;
258
259  /// True if we want to ignore EOF token and continue later on (thus
260  /// avoid tearing the Lexer and etc. down).
261  bool IncrementalProcessing = false;
262
263  /// The kind of translation unit we are processing.
264  TranslationUnitKind TUKind;
265
266  /// The code-completion handler.
267  CodeCompletionHandler *CodeComplete = nullptr;
268
269  /// The file that we're performing code-completion for, if any.
270  const FileEntry *CodeCompletionFile = nullptr;
271
272  /// The offset in file for the code-completion point.
273  unsigned CodeCompletionOffset = 0;
274
275  /// The location for the code-completion point. This gets instantiated
276  /// when the CodeCompletionFile gets \#include'ed for preprocessing.
277  SourceLocation CodeCompletionLoc;
278
279  /// The start location for the file of the code-completion point.
280  ///
281  /// This gets instantiated when the CodeCompletionFile gets \#include'ed
282  /// for preprocessing.
283  SourceLocation CodeCompletionFileLoc;
284
285  /// The source location of the \c import contextual keyword we just
286  /// lexed, if any.
287  SourceLocation ModuleImportLoc;
288
289  /// The module import path that we're currently processing.
290  SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> ModuleImportPath;
291
292  /// Whether the last token we lexed was an '@'.
293  bool LastTokenWasAt = false;
294
295  /// A position within a C++20 import-seq.
296  class ImportSeq {
297  public:
298    enum State : int {
299      // Positive values represent a number of unclosed brackets.
300      AtTopLevel = 0,
301      AfterTopLevelTokenSeq = -1,
302      AfterExport = -2,
303      AfterImportSeq = -3,
304    };
305
306    ImportSeq(State S) : S(S) {}
307
308    /// Saw any kind of open bracket.
309    void handleOpenBracket() {
310      S = static_cast<State>(std::max<int>(S, 0) + 1);
311    }
312    /// Saw any kind of close bracket other than '}'.
313    void handleCloseBracket() {
314      S = static_cast<State>(std::max<int>(S, 1) - 1);
315    }
316    /// Saw a close brace.
317    void handleCloseBrace() {
318      handleCloseBracket();
319      if (S == AtTopLevel && !AfterHeaderName)
320        S = AfterTopLevelTokenSeq;
321    }
322    /// Saw a semicolon.
323    void handleSemi() {
324      if (atTopLevel()) {
325        S = AfterTopLevelTokenSeq;
326        AfterHeaderName = false;
327      }
328    }
329
330    /// Saw an 'export' identifier.
331    void handleExport() {
332      if (S == AfterTopLevelTokenSeq)
333        S = AfterExport;
334      else if (S <= 0)
335        S = AtTopLevel;
336    }
337    /// Saw an 'import' identifier.
338    void handleImport() {
339      if (S == AfterTopLevelTokenSeq || S == AfterExport)
340        S = AfterImportSeq;
341      else if (S <= 0)
342        S = AtTopLevel;
343    }
344
345    /// Saw a 'header-name' token; do not recognize any more 'import' tokens
346    /// until we reach a top-level semicolon.
347    void handleHeaderName() {
348      if (S == AfterImportSeq)
349        AfterHeaderName = true;
350      handleMisc();
351    }
352
353    /// Saw any other token.
354    void handleMisc() {
355      if (S <= 0)
356        S = AtTopLevel;
357    }
358
359    bool atTopLevel() { return S <= 0; }
360    bool afterImportSeq() { return S == AfterImportSeq; }
361
362  private:
363    State S;
364    /// Whether we're in the pp-import-suffix following the header-name in a
365    /// pp-import. If so, a close-brace is not sufficient to end the
366    /// top-level-token-seq of an import-seq.
367    bool AfterHeaderName = false;
368  };
369
370  /// Our current position within a C++20 import-seq.
371  ImportSeq ImportSeqState = ImportSeq::AfterTopLevelTokenSeq;
372
373  /// Whether the module import expects an identifier next. Otherwise,
374  /// it expects a '.' or ';'.
375  bool ModuleImportExpectsIdentifier = false;
376
377  /// The identifier and source location of the currently-active
378  /// \#pragma clang arc_cf_code_audited begin.
379  std::pair<IdentifierInfo *, SourceLocation> PragmaARCCFCodeAuditedInfo;
380
381  /// The source location of the currently-active
382  /// \#pragma clang assume_nonnull begin.
383  SourceLocation PragmaAssumeNonNullLoc;
384
385  /// True if we hit the code-completion point.
386  bool CodeCompletionReached = false;
387
388  /// The code completion token containing the information
389  /// on the stem that is to be code completed.
390  IdentifierInfo *CodeCompletionII = nullptr;
391
392  /// Range for the code completion token.
393  SourceRange CodeCompletionTokenRange;
394
395  /// The directory that the main file should be considered to occupy,
396  /// if it does not correspond to a real file (as happens when building a
397  /// module).
398  const DirectoryEntry *MainFileDir = nullptr;
399
400  /// The number of bytes that we will initially skip when entering the
401  /// main file, along with a flag that indicates whether skipping this number
402  /// of bytes will place the lexer at the start of a line.
403  ///
404  /// This is used when loading a precompiled preamble.
405  std::pair<int, bool> SkipMainFilePreamble;
406
407  /// Whether we hit an error due to reaching max allowed include depth. Allows
408  /// to avoid hitting the same error over and over again.
409  bool HasReachedMaxIncludeDepth = false;
410
411  /// The number of currently-active calls to Lex.
412  ///
413  /// Lex is reentrant, and asking for an (end-of-phase-4) token can often
414  /// require asking for multiple additional tokens. This counter makes it
415  /// possible for Lex to detect whether it's producing a token for the end
416  /// of phase 4 of translation or for some other situation.
417  unsigned LexLevel = 0;
418
419public:
420  struct PreambleSkipInfo {
421    SourceLocation HashTokenLoc;
422    SourceLocation IfTokenLoc;
423    bool FoundNonSkipPortion;
424    bool FoundElse;
425    SourceLocation ElseLoc;
426
427    PreambleSkipInfo(SourceLocation HashTokenLoc, SourceLocation IfTokenLoc,
428                     bool FoundNonSkipPortion, bool FoundElse,
429                     SourceLocation ElseLoc)
430        : HashTokenLoc(HashTokenLoc), IfTokenLoc(IfTokenLoc),
431          FoundNonSkipPortion(FoundNonSkipPortion), FoundElse(FoundElse),
432          ElseLoc(ElseLoc) {}
433  };
434
435private:
436  friend class ASTReader;
437  friend class MacroArgs;
438
439  class PreambleConditionalStackStore {
440    enum State {
441      Off = 0,
442      Recording = 1,
443      Replaying = 2,
444    };
445
446  public:
447    PreambleConditionalStackStore() = default;
448
449    void startRecording() { ConditionalStackState = Recording; }
450    void startReplaying() { ConditionalStackState = Replaying; }
451    bool isRecording() const { return ConditionalStackState == Recording; }
452    bool isReplaying() const { return ConditionalStackState == Replaying; }
453
454    ArrayRef<PPConditionalInfo> getStack() const {
455      return ConditionalStack;
456    }
457
458    void doneReplaying() {
459      ConditionalStack.clear();
460      ConditionalStackState = Off;
461    }
462
463    void setStack(ArrayRef<PPConditionalInfo> s) {
464      if (!isRecording() && !isReplaying())
465        return;
466      ConditionalStack.clear();
467      ConditionalStack.append(s.begin(), s.end());
468    }
469
470    bool hasRecordedPreamble() const { return !ConditionalStack.empty(); }
471
472    bool reachedEOFWhileSkipping() const { return SkipInfo.hasValue(); }
473
474    void clearSkipInfo() { SkipInfo.reset(); }
475
476    llvm::Optional<PreambleSkipInfo> SkipInfo;
477
478  private:
479    SmallVector<PPConditionalInfo, 4> ConditionalStack;
480    State ConditionalStackState = Off;
481  } PreambleConditionalStack;
482
483  /// The current top of the stack that we're lexing from if
484  /// not expanding a macro and we are lexing directly from source code.
485  ///
486  /// Only one of CurLexer, or CurTokenLexer will be non-null.
487  std::unique_ptr<Lexer> CurLexer;
488
489  /// The current top of the stack what we're lexing from
490  /// if not expanding a macro.
491  ///
492  /// This is an alias for CurLexer.
493  PreprocessorLexer *CurPPLexer = nullptr;
494
495  /// Used to find the current FileEntry, if CurLexer is non-null
496  /// and if applicable.
497  ///
498  /// This allows us to implement \#include_next and find directory-specific
499  /// properties.
500  const DirectoryLookup *CurDirLookup = nullptr;
501
502  /// The current macro we are expanding, if we are expanding a macro.
503  ///
504  /// One of CurLexer and CurTokenLexer must be null.
505  std::unique_ptr<TokenLexer> CurTokenLexer;
506
507  /// The kind of lexer we're currently working with.
508  enum CurLexerKind {
509    CLK_Lexer,
510    CLK_TokenLexer,
511    CLK_CachingLexer,
512    CLK_LexAfterModuleImport
513  } CurLexerKind = CLK_Lexer;
514
515  /// If the current lexer is for a submodule that is being built, this
516  /// is that submodule.
517  Module *CurLexerSubmodule = nullptr;
518
519  /// Keeps track of the stack of files currently
520  /// \#included, and macros currently being expanded from, not counting
521  /// CurLexer/CurTokenLexer.
522  struct IncludeStackInfo {
523    enum CurLexerKind           CurLexerKind;
524    Module                     *TheSubmodule;
525    std::unique_ptr<Lexer>      TheLexer;
526    PreprocessorLexer          *ThePPLexer;
527    std::unique_ptr<TokenLexer> TheTokenLexer;
528    const DirectoryLookup      *TheDirLookup;
529
530    // The following constructors are completely useless copies of the default
531    // versions, only needed to pacify MSVC.
532    IncludeStackInfo(enum CurLexerKind CurLexerKind, Module *TheSubmodule,
533                     std::unique_ptr<Lexer> &&TheLexer,
534                     PreprocessorLexer *ThePPLexer,
535                     std::unique_ptr<TokenLexer> &&TheTokenLexer,
536                     const DirectoryLookup *TheDirLookup)
537        : CurLexerKind(std::move(CurLexerKind)),
538          TheSubmodule(std::move(TheSubmodule)), TheLexer(std::move(TheLexer)),
539          ThePPLexer(std::move(ThePPLexer)),
540          TheTokenLexer(std::move(TheTokenLexer)),
541          TheDirLookup(std::move(TheDirLookup)) {}
542  };
543  std::vector<IncludeStackInfo> IncludeMacroStack;
544
545  /// Actions invoked when some preprocessor activity is
546  /// encountered (e.g. a file is \#included, etc).
547  std::unique_ptr<PPCallbacks> Callbacks;
548
549  struct MacroExpandsInfo {
550    Token Tok;
551    MacroDefinition MD;
552    SourceRange Range;
553
554    MacroExpandsInfo(Token Tok, MacroDefinition MD, SourceRange Range)
555        : Tok(Tok), MD(MD), Range(Range) {}
556  };
557  SmallVector<MacroExpandsInfo, 2> DelayedMacroExpandsCallbacks;
558
559  /// Information about a name that has been used to define a module macro.
560  struct ModuleMacroInfo {
561    /// The most recent macro directive for this identifier.
562    MacroDirective *MD;
563
564    /// The active module macros for this identifier.
565    llvm::TinyPtrVector<ModuleMacro *> ActiveModuleMacros;
566
567    /// The generation number at which we last updated ActiveModuleMacros.
568    /// \see Preprocessor::VisibleModules.
569    unsigned ActiveModuleMacrosGeneration = 0;
570
571    /// Whether this macro name is ambiguous.
572    bool IsAmbiguous = false;
573
574    /// The module macros that are overridden by this macro.
575    llvm::TinyPtrVector<ModuleMacro *> OverriddenMacros;
576
577    ModuleMacroInfo(MacroDirective *MD) : MD(MD) {}
578  };
579
580  /// The state of a macro for an identifier.
581  class MacroState {
582    mutable llvm::PointerUnion<MacroDirective *, ModuleMacroInfo *> State;
583
584    ModuleMacroInfo *getModuleInfo(Preprocessor &PP,
585                                   const IdentifierInfo *II) const {
586      if (II->isOutOfDate())
587        PP.updateOutOfDateIdentifier(const_cast<IdentifierInfo&>(*II));
588      // FIXME: Find a spare bit on IdentifierInfo and store a
589      //        HasModuleMacros flag.
590      if (!II->hasMacroDefinition() ||
591          (!PP.getLangOpts().Modules &&
592           !PP.getLangOpts().ModulesLocalVisibility) ||
593          !PP.CurSubmoduleState->VisibleModules.getGeneration())
594        return nullptr;
595
596      auto *Info = State.dyn_cast<ModuleMacroInfo*>();
597      if (!Info) {
598        Info = new (PP.getPreprocessorAllocator())
599            ModuleMacroInfo(State.get<MacroDirective *>());
600        State = Info;
601      }
602
603      if (PP.CurSubmoduleState->VisibleModules.getGeneration() !=
604          Info->ActiveModuleMacrosGeneration)
605        PP.updateModuleMacroInfo(II, *Info);
606      return Info;
607    }
608
609  public:
610    MacroState() : MacroState(nullptr) {}
611    MacroState(MacroDirective *MD) : State(MD) {}
612
613    MacroState(MacroState &&O) noexcept : State(O.State) {
614      O.State = (MacroDirective *)nullptr;
615    }
616
617    MacroState &operator=(MacroState &&O) noexcept {
618      auto S = O.State;
619      O.State = (MacroDirective *)nullptr;
620      State = S;
621      return *this;
622    }
623
624    ~MacroState() {
625      if (auto *Info = State.dyn_cast<ModuleMacroInfo*>())
626        Info->~ModuleMacroInfo();
627    }
628
629    MacroDirective *getLatest() const {
630      if (auto *Info = State.dyn_cast<ModuleMacroInfo*>())
631        return Info->MD;
632      return State.get<MacroDirective*>();
633    }
634
635    void setLatest(MacroDirective *MD) {
636      if (auto *Info = State.dyn_cast<ModuleMacroInfo*>())
637        Info->MD = MD;
638      else
639        State = MD;
640    }
641
642    bool isAmbiguous(Preprocessor &PP, const IdentifierInfo *II) const {
643      auto *Info = getModuleInfo(PP, II);
644      return Info ? Info->IsAmbiguous : false;
645    }
646
647    ArrayRef<ModuleMacro *>
648    getActiveModuleMacros(Preprocessor &PP, const IdentifierInfo *II) const {
649      if (auto *Info = getModuleInfo(PP, II))
650        return Info->ActiveModuleMacros;
651      return None;
652    }
653
654    MacroDirective::DefInfo findDirectiveAtLoc(SourceLocation Loc,
655                                               SourceManager &SourceMgr) const {
656      // FIXME: Incorporate module macros into the result of this.
657      if (auto *Latest = getLatest())
658        return Latest->findDirectiveAtLoc(Loc, SourceMgr);
659      return {};
660    }
661
662    void overrideActiveModuleMacros(Preprocessor &PP, IdentifierInfo *II) {
663      if (auto *Info = getModuleInfo(PP, II)) {
664        Info->OverriddenMacros.insert(Info->OverriddenMacros.end(),
665                                      Info->ActiveModuleMacros.begin(),
666                                      Info->ActiveModuleMacros.end());
667        Info->ActiveModuleMacros.clear();
668        Info->IsAmbiguous = false;
669      }
670    }
671
672    ArrayRef<ModuleMacro*> getOverriddenMacros() const {
673      if (auto *Info = State.dyn_cast<ModuleMacroInfo*>())
674        return Info->OverriddenMacros;
675      return None;
676    }
677
678    void setOverriddenMacros(Preprocessor &PP,
679                             ArrayRef<ModuleMacro *> Overrides) {
680      auto *Info = State.dyn_cast<ModuleMacroInfo*>();
681      if (!Info) {
682        if (Overrides.empty())
683          return;
684        Info = new (PP.getPreprocessorAllocator())
685            ModuleMacroInfo(State.get<MacroDirective *>());
686        State = Info;
687      }
688      Info->OverriddenMacros.clear();
689      Info->OverriddenMacros.insert(Info->OverriddenMacros.end(),
690                                    Overrides.begin(), Overrides.end());
691      Info->ActiveModuleMacrosGeneration = 0;
692    }
693  };
694
695  /// For each IdentifierInfo that was associated with a macro, we
696  /// keep a mapping to the history of all macro definitions and #undefs in
697  /// the reverse order (the latest one is in the head of the list).
698  ///
699  /// This mapping lives within the \p CurSubmoduleState.
700  using MacroMap = llvm::DenseMap<const IdentifierInfo *, MacroState>;
701
702  struct SubmoduleState;
703
704  /// Information about a submodule that we're currently building.
705  struct BuildingSubmoduleInfo {
706    /// The module that we are building.
707    Module *M;
708
709    /// The location at which the module was included.
710    SourceLocation ImportLoc;
711
712    /// Whether we entered this submodule via a pragma.
713    bool IsPragma;
714
715    /// The previous SubmoduleState.
716    SubmoduleState *OuterSubmoduleState;
717
718    /// The number of pending module macro names when we started building this.
719    unsigned OuterPendingModuleMacroNames;
720
721    BuildingSubmoduleInfo(Module *M, SourceLocation ImportLoc, bool IsPragma,
722                          SubmoduleState *OuterSubmoduleState,
723                          unsigned OuterPendingModuleMacroNames)
724        : M(M), ImportLoc(ImportLoc), IsPragma(IsPragma),
725          OuterSubmoduleState(OuterSubmoduleState),
726          OuterPendingModuleMacroNames(OuterPendingModuleMacroNames) {}
727  };
728  SmallVector<BuildingSubmoduleInfo, 8> BuildingSubmoduleStack;
729
730  /// Information about a submodule's preprocessor state.
731  struct SubmoduleState {
732    /// The macros for the submodule.
733    MacroMap Macros;
734
735    /// The set of modules that are visible within the submodule.
736    VisibleModuleSet VisibleModules;
737
738    // FIXME: CounterValue?
739    // FIXME: PragmaPushMacroInfo?
740  };
741  std::map<Module *, SubmoduleState> Submodules;
742
743  /// The preprocessor state for preprocessing outside of any submodule.
744  SubmoduleState NullSubmoduleState;
745
746  /// The current submodule state. Will be \p NullSubmoduleState if we're not
747  /// in a submodule.
748  SubmoduleState *CurSubmoduleState;
749
750  /// The set of known macros exported from modules.
751  llvm::FoldingSet<ModuleMacro> ModuleMacros;
752
753  /// The names of potential module macros that we've not yet processed.
754  llvm::SmallVector<const IdentifierInfo *, 32> PendingModuleMacroNames;
755
756  /// The list of module macros, for each identifier, that are not overridden by
757  /// any other module macro.
758  llvm::DenseMap<const IdentifierInfo *, llvm::TinyPtrVector<ModuleMacro *>>
759      LeafModuleMacros;
760
761  /// Macros that we want to warn because they are not used at the end
762  /// of the translation unit.
763  ///
764  /// We store just their SourceLocations instead of
765  /// something like MacroInfo*. The benefit of this is that when we are
766  /// deserializing from PCH, we don't need to deserialize identifier & macros
767  /// just so that we can report that they are unused, we just warn using
768  /// the SourceLocations of this set (that will be filled by the ASTReader).
769  /// We are using SmallPtrSet instead of a vector for faster removal.
770  using WarnUnusedMacroLocsTy = llvm::SmallPtrSet<SourceLocation, 32>;
771  WarnUnusedMacroLocsTy WarnUnusedMacroLocs;
772
773  /// A "freelist" of MacroArg objects that can be
774  /// reused for quick allocation.
775  MacroArgs *MacroArgCache = nullptr;
776
777  /// For each IdentifierInfo used in a \#pragma push_macro directive,
778  /// we keep a MacroInfo stack used to restore the previous macro value.
779  llvm::DenseMap<IdentifierInfo *, std::vector<MacroInfo *>>
780      PragmaPushMacroInfo;
781
782  // Various statistics we track for performance analysis.
783  unsigned NumDirectives = 0;
784  unsigned NumDefined = 0;
785  unsigned NumUndefined = 0;
786  unsigned NumPragma = 0;
787  unsigned NumIf = 0;
788  unsigned NumElse = 0;
789  unsigned NumEndif = 0;
790  unsigned NumEnteredSourceFiles = 0;
791  unsigned MaxIncludeStackDepth = 0;
792  unsigned NumMacroExpanded = 0;
793  unsigned NumFnMacroExpanded = 0;
794  unsigned NumBuiltinMacroExpanded = 0;
795  unsigned NumFastMacroExpanded = 0;
796  unsigned NumTokenPaste = 0;
797  unsigned NumFastTokenPaste = 0;
798  unsigned NumSkipped = 0;
799
800  /// The predefined macros that preprocessor should use from the
801  /// command line etc.
802  std::string Predefines;
803
804  /// The file ID for the preprocessor predefines.
805  FileID PredefinesFileID;
806
807  /// The file ID for the PCH through header.
808  FileID PCHThroughHeaderFileID;
809
810  /// Whether tokens are being skipped until a #pragma hdrstop is seen.
811  bool SkippingUntilPragmaHdrStop = false;
812
813  /// Whether tokens are being skipped until the through header is seen.
814  bool SkippingUntilPCHThroughHeader = false;
815
816  /// \{
817  /// Cache of macro expanders to reduce malloc traffic.
818  enum { TokenLexerCacheSize = 8 };
819  unsigned NumCachedTokenLexers;
820  std::unique_ptr<TokenLexer> TokenLexerCache[TokenLexerCacheSize];
821  /// \}
822
823  /// Keeps macro expanded tokens for TokenLexers.
824  //
825  /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
826  /// going to lex in the cache and when it finishes the tokens are removed
827  /// from the end of the cache.
828  SmallVector<Token, 16> MacroExpandedTokens;
829  std::vector<std::pair<TokenLexer *, size_t>> MacroExpandingLexersStack;
830
831  /// A record of the macro definitions and expansions that
832  /// occurred during preprocessing.
833  ///
834  /// This is an optional side structure that can be enabled with
835  /// \c createPreprocessingRecord() prior to preprocessing.
836  PreprocessingRecord *Record = nullptr;
837
838  /// Cached tokens state.
839  using CachedTokensTy = SmallVector<Token, 1>;
840
841  /// Cached tokens are stored here when we do backtracking or
842  /// lookahead. They are "lexed" by the CachingLex() method.
843  CachedTokensTy CachedTokens;
844
845  /// The position of the cached token that CachingLex() should
846  /// "lex" next.
847  ///
848  /// If it points beyond the CachedTokens vector, it means that a normal
849  /// Lex() should be invoked.
850  CachedTokensTy::size_type CachedLexPos = 0;
851
852  /// Stack of backtrack positions, allowing nested backtracks.
853  ///
854  /// The EnableBacktrackAtThisPos() method pushes a position to
855  /// indicate where CachedLexPos should be set when the BackTrack() method is
856  /// invoked (at which point the last position is popped).
857  std::vector<CachedTokensTy::size_type> BacktrackPositions;
858
859  struct MacroInfoChain {
860    MacroInfo MI;
861    MacroInfoChain *Next;
862  };
863
864  /// MacroInfos are managed as a chain for easy disposal.  This is the head
865  /// of that list.
866  MacroInfoChain *MIChainHead = nullptr;
867
868  void updateOutOfDateIdentifier(IdentifierInfo &II) const;
869
870public:
871  Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts,
872               DiagnosticsEngine &diags, LangOptions &opts, SourceManager &SM,
873               HeaderSearch &Headers, ModuleLoader &TheModuleLoader,
874               IdentifierInfoLookup *IILookup = nullptr,
875               bool OwnsHeaderSearch = false,
876               TranslationUnitKind TUKind = TU_Complete);
877
878  ~Preprocessor();
879
880  /// Initialize the preprocessor using information about the target.
881  ///
882  /// \param Target is owned by the caller and must remain valid for the
883  /// lifetime of the preprocessor.
884  /// \param AuxTarget is owned by the caller and must remain valid for
885  /// the lifetime of the preprocessor.
886  void Initialize(const TargetInfo &Target,
887                  const TargetInfo *AuxTarget = nullptr);
888
889  /// Initialize the preprocessor to parse a model file
890  ///
891  /// To parse model files the preprocessor of the original source is reused to
892  /// preserver the identifier table. However to avoid some duplicate
893  /// information in the preprocessor some cleanup is needed before it is used
894  /// to parse model files. This method does that cleanup.
895  void InitializeForModelFile();
896
897  /// Cleanup after model file parsing
898  void FinalizeForModelFile();
899
900  /// Retrieve the preprocessor options used to initialize this
901  /// preprocessor.
902  PreprocessorOptions &getPreprocessorOpts() const { return *PPOpts; }
903
904  DiagnosticsEngine &getDiagnostics() const { return *Diags; }
905  void setDiagnostics(DiagnosticsEngine &D) { Diags = &D; }
906
907  const LangOptions &getLangOpts() const { return LangOpts; }
908  const TargetInfo &getTargetInfo() const { return *Target; }
909  const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
910  FileManager &getFileManager() const { return FileMgr; }
911  SourceManager &getSourceManager() const { return SourceMgr; }
912  HeaderSearch &getHeaderSearchInfo() const { return HeaderInfo; }
913
914  IdentifierTable &getIdentifierTable() { return Identifiers; }
915  const IdentifierTable &getIdentifierTable() const { return Identifiers; }
916  SelectorTable &getSelectorTable() { return Selectors; }
917  Builtin::Context &getBuiltinInfo() { return *BuiltinInfo; }
918  llvm::BumpPtrAllocator &getPreprocessorAllocator() { return BP; }
919
920  void setExternalSource(ExternalPreprocessorSource *Source) {
921    ExternalSource = Source;
922  }
923
924  ExternalPreprocessorSource *getExternalSource() const {
925    return ExternalSource;
926  }
927
928  /// Retrieve the module loader associated with this preprocessor.
929  ModuleLoader &getModuleLoader() const { return TheModuleLoader; }
930
931  bool hadModuleLoaderFatalFailure() const {
932    return TheModuleLoader.HadFatalFailure;
933  }
934
935  /// Retrieve the number of Directives that have been processed by the
936  /// Preprocessor.
937  unsigned getNumDirectives() const {
938    return NumDirectives;
939  }
940
941  /// True if we are currently preprocessing a #if or #elif directive
942  bool isParsingIfOrElifDirective() const {
943    return ParsingIfOrElifDirective;
944  }
945
946  /// Control whether the preprocessor retains comments in output.
947  void SetCommentRetentionState(bool KeepComments, bool KeepMacroComments) {
948    this->KeepComments = KeepComments | KeepMacroComments;
949    this->KeepMacroComments = KeepMacroComments;
950  }
951
952  bool getCommentRetentionState() const { return KeepComments; }
953
954  void setPragmasEnabled(bool Enabled) { PragmasEnabled = Enabled; }
955  bool getPragmasEnabled() const { return PragmasEnabled; }
956
957  void SetSuppressIncludeNotFoundError(bool Suppress) {
958    SuppressIncludeNotFoundError = Suppress;
959  }
960
961  bool GetSuppressIncludeNotFoundError() {
962    return SuppressIncludeNotFoundError;
963  }
964
965  /// Sets whether the preprocessor is responsible for producing output or if
966  /// it is producing tokens to be consumed by Parse and Sema.
967  void setPreprocessedOutput(bool IsPreprocessedOutput) {
968    PreprocessedOutput = IsPreprocessedOutput;
969  }
970
971  /// Returns true if the preprocessor is responsible for generating output,
972  /// false if it is producing tokens to be consumed by Parse and Sema.
973  bool isPreprocessedOutput() const { return PreprocessedOutput; }
974
975  /// Return true if we are lexing directly from the specified lexer.
976  bool isCurrentLexer(const PreprocessorLexer *L) const {
977    return CurPPLexer == L;
978  }
979
980  /// Return the current lexer being lexed from.
981  ///
982  /// Note that this ignores any potentially active macro expansions and _Pragma
983  /// expansions going on at the time.
984  PreprocessorLexer *getCurrentLexer() const { return CurPPLexer; }
985
986  /// Return the current file lexer being lexed from.
987  ///
988  /// Note that this ignores any potentially active macro expansions and _Pragma
989  /// expansions going on at the time.
990  PreprocessorLexer *getCurrentFileLexer() const;
991
992  /// Return the submodule owning the file being lexed. This may not be
993  /// the current module if we have changed modules since entering the file.
994  Module *getCurrentLexerSubmodule() const { return CurLexerSubmodule; }
995
996  /// Returns the FileID for the preprocessor predefines.
997  FileID getPredefinesFileID() const { return PredefinesFileID; }
998
999  /// \{
1000  /// Accessors for preprocessor callbacks.
1001  ///
1002  /// Note that this class takes ownership of any PPCallbacks object given to
1003  /// it.
1004  PPCallbacks *getPPCallbacks() const { return Callbacks.get(); }
1005  void addPPCallbacks(std::unique_ptr<PPCallbacks> C) {
1006    if (Callbacks)
1007      C = std::make_unique<PPChainedCallbacks>(std::move(C),
1008                                                std::move(Callbacks));
1009    Callbacks = std::move(C);
1010  }
1011  /// \}
1012
1013  /// Register a function that would be called on each token in the final
1014  /// expanded token stream.
1015  /// This also reports annotation tokens produced by the parser.
1016  void setTokenWatcher(llvm::unique_function<void(const clang::Token &)> F) {
1017    OnToken = std::move(F);
1018  }
1019
1020  bool isMacroDefined(StringRef Id) {
1021    return isMacroDefined(&Identifiers.get(Id));
1022  }
1023  bool isMacroDefined(const IdentifierInfo *II) {
1024    return II->hasMacroDefinition() &&
1025           (!getLangOpts().Modules || (bool)getMacroDefinition(II));
1026  }
1027
1028  /// Determine whether II is defined as a macro within the module M,
1029  /// if that is a module that we've already preprocessed. Does not check for
1030  /// macros imported into M.
1031  bool isMacroDefinedInLocalModule(const IdentifierInfo *II, Module *M) {
1032    if (!II->hasMacroDefinition())
1033      return false;
1034    auto I = Submodules.find(M);
1035    if (I == Submodules.end())
1036      return false;
1037    auto J = I->second.Macros.find(II);
1038    if (J == I->second.Macros.end())
1039      return false;
1040    auto *MD = J->second.getLatest();
1041    return MD && MD->isDefined();
1042  }
1043
1044  MacroDefinition getMacroDefinition(const IdentifierInfo *II) {
1045    if (!II->hasMacroDefinition())
1046      return {};
1047
1048    MacroState &S = CurSubmoduleState->Macros[II];
1049    auto *MD = S.getLatest();
1050    while (MD && isa<VisibilityMacroDirective>(MD))
1051      MD = MD->getPrevious();
1052    return MacroDefinition(dyn_cast_or_null<DefMacroDirective>(MD),
1053                           S.getActiveModuleMacros(*this, II),
1054                           S.isAmbiguous(*this, II));
1055  }
1056
1057  MacroDefinition getMacroDefinitionAtLoc(const IdentifierInfo *II,
1058                                          SourceLocation Loc) {
1059    if (!II->hadMacroDefinition())
1060      return {};
1061
1062    MacroState &S = CurSubmoduleState->Macros[II];
1063    MacroDirective::DefInfo DI;
1064    if (auto *MD = S.getLatest())
1065      DI = MD->findDirectiveAtLoc(Loc, getSourceManager());
1066    // FIXME: Compute the set of active module macros at the specified location.
1067    return MacroDefinition(DI.getDirective(),
1068                           S.getActiveModuleMacros(*this, II),
1069                           S.isAmbiguous(*this, II));
1070  }
1071
1072  /// Given an identifier, return its latest non-imported MacroDirective
1073  /// if it is \#define'd and not \#undef'd, or null if it isn't \#define'd.
1074  MacroDirective *getLocalMacroDirective(const IdentifierInfo *II) const {
1075    if (!II->hasMacroDefinition())
1076      return nullptr;
1077
1078    auto *MD = getLocalMacroDirectiveHistory(II);
1079    if (!MD || MD->getDefinition().isUndefined())
1080      return nullptr;
1081
1082    return MD;
1083  }
1084
1085  const MacroInfo *getMacroInfo(const IdentifierInfo *II) const {
1086    return const_cast<Preprocessor*>(this)->getMacroInfo(II);
1087  }
1088
1089  MacroInfo *getMacroInfo(const IdentifierInfo *II) {
1090    if (!II->hasMacroDefinition())
1091      return nullptr;
1092    if (auto MD = getMacroDefinition(II))
1093      return MD.getMacroInfo();
1094    return nullptr;
1095  }
1096
1097  /// Given an identifier, return the latest non-imported macro
1098  /// directive for that identifier.
1099  ///
1100  /// One can iterate over all previous macro directives from the most recent
1101  /// one.
1102  MacroDirective *getLocalMacroDirectiveHistory(const IdentifierInfo *II) const;
1103
1104  /// Add a directive to the macro directive history for this identifier.
1105  void appendMacroDirective(IdentifierInfo *II, MacroDirective *MD);
1106  DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, MacroInfo *MI,
1107                                             SourceLocation Loc) {
1108    DefMacroDirective *MD = AllocateDefMacroDirective(MI, Loc);
1109    appendMacroDirective(II, MD);
1110    return MD;
1111  }
1112  DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II,
1113                                             MacroInfo *MI) {
1114    return appendDefMacroDirective(II, MI, MI->getDefinitionLoc());
1115  }
1116
1117  /// Set a MacroDirective that was loaded from a PCH file.
1118  void setLoadedMacroDirective(IdentifierInfo *II, MacroDirective *ED,
1119                               MacroDirective *MD);
1120
1121  /// Register an exported macro for a module and identifier.
1122  ModuleMacro *addModuleMacro(Module *Mod, IdentifierInfo *II, MacroInfo *Macro,
1123                              ArrayRef<ModuleMacro *> Overrides, bool &IsNew);
1124  ModuleMacro *getModuleMacro(Module *Mod, IdentifierInfo *II);
1125
1126  /// Get the list of leaf (non-overridden) module macros for a name.
1127  ArrayRef<ModuleMacro*> getLeafModuleMacros(const IdentifierInfo *II) const {
1128    if (II->isOutOfDate())
1129      updateOutOfDateIdentifier(const_cast<IdentifierInfo&>(*II));
1130    auto I = LeafModuleMacros.find(II);
1131    if (I != LeafModuleMacros.end())
1132      return I->second;
1133    return None;
1134  }
1135
1136  /// \{
1137  /// Iterators for the macro history table. Currently defined macros have
1138  /// IdentifierInfo::hasMacroDefinition() set and an empty
1139  /// MacroInfo::getUndefLoc() at the head of the list.
1140  using macro_iterator = MacroMap::const_iterator;
1141
1142  macro_iterator macro_begin(bool IncludeExternalMacros = true) const;
1143  macro_iterator macro_end(bool IncludeExternalMacros = true) const;
1144
1145  llvm::iterator_range<macro_iterator>
1146  macros(bool IncludeExternalMacros = true) const {
1147    macro_iterator begin = macro_begin(IncludeExternalMacros);
1148    macro_iterator end = macro_end(IncludeExternalMacros);
1149    return llvm::make_range(begin, end);
1150  }
1151
1152  /// \}
1153
1154  /// Return the name of the macro defined before \p Loc that has
1155  /// spelling \p Tokens.  If there are multiple macros with same spelling,
1156  /// return the last one defined.
1157  StringRef getLastMacroWithSpelling(SourceLocation Loc,
1158                                     ArrayRef<TokenValue> Tokens) const;
1159
1160  const std::string &getPredefines() const { return Predefines; }
1161
1162  /// Set the predefines for this Preprocessor.
1163  ///
1164  /// These predefines are automatically injected when parsing the main file.
1165  void setPredefines(const char *P) { Predefines = P; }
1166  void setPredefines(StringRef P) { Predefines = P; }
1167
1168  /// Return information about the specified preprocessor
1169  /// identifier token.
1170  IdentifierInfo *getIdentifierInfo(StringRef Name) const {
1171    return &Identifiers.get(Name);
1172  }
1173
1174  /// Add the specified pragma handler to this preprocessor.
1175  ///
1176  /// If \p Namespace is non-null, then it is a token required to exist on the
1177  /// pragma line before the pragma string starts, e.g. "STDC" or "GCC".
1178  void AddPragmaHandler(StringRef Namespace, PragmaHandler *Handler);
1179  void AddPragmaHandler(PragmaHandler *Handler) {
1180    AddPragmaHandler(StringRef(), Handler);
1181  }
1182
1183  /// Remove the specific pragma handler from this preprocessor.
1184  ///
1185  /// If \p Namespace is non-null, then it should be the namespace that
1186  /// \p Handler was added to. It is an error to remove a handler that
1187  /// has not been registered.
1188  void RemovePragmaHandler(StringRef Namespace, PragmaHandler *Handler);
1189  void RemovePragmaHandler(PragmaHandler *Handler) {
1190    RemovePragmaHandler(StringRef(), Handler);
1191  }
1192
1193  /// Install empty handlers for all pragmas (making them ignored).
1194  void IgnorePragmas();
1195
1196  /// Add the specified comment handler to the preprocessor.
1197  void addCommentHandler(CommentHandler *Handler);
1198
1199  /// Remove the specified comment handler.
1200  ///
1201  /// It is an error to remove a handler that has not been registered.
1202  void removeCommentHandler(CommentHandler *Handler);
1203
1204  /// Set the code completion handler to the given object.
1205  void setCodeCompletionHandler(CodeCompletionHandler &Handler) {
1206    CodeComplete = &Handler;
1207  }
1208
1209  /// Retrieve the current code-completion handler.
1210  CodeCompletionHandler *getCodeCompletionHandler() const {
1211    return CodeComplete;
1212  }
1213
1214  /// Clear out the code completion handler.
1215  void clearCodeCompletionHandler() {
1216    CodeComplete = nullptr;
1217  }
1218
1219  /// Hook used by the lexer to invoke the "included file" code
1220  /// completion point.
1221  void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
1222
1223  /// Hook used by the lexer to invoke the "natural language" code
1224  /// completion point.
1225  void CodeCompleteNaturalLanguage();
1226
1227  /// Set the code completion token for filtering purposes.
1228  void setCodeCompletionIdentifierInfo(IdentifierInfo *Filter) {
1229    CodeCompletionII = Filter;
1230  }
1231
1232  /// Set the code completion token range for detecting replacement range later
1233  /// on.
1234  void setCodeCompletionTokenRange(const SourceLocation Start,
1235                                   const SourceLocation End) {
1236    CodeCompletionTokenRange = {Start, End};
1237  }
1238  SourceRange getCodeCompletionTokenRange() const {
1239    return CodeCompletionTokenRange;
1240  }
1241
1242  /// Get the code completion token for filtering purposes.
1243  StringRef getCodeCompletionFilter() {
1244    if (CodeCompletionII)
1245      return CodeCompletionII->getName();
1246    return {};
1247  }
1248
1249  /// Retrieve the preprocessing record, or NULL if there is no
1250  /// preprocessing record.
1251  PreprocessingRecord *getPreprocessingRecord() const { return Record; }
1252
1253  /// Create a new preprocessing record, which will keep track of
1254  /// all macro expansions, macro definitions, etc.
1255  void createPreprocessingRecord();
1256
1257  /// Returns true if the FileEntry is the PCH through header.
1258  bool isPCHThroughHeader(const FileEntry *FE);
1259
1260  /// True if creating a PCH with a through header.
1261  bool creatingPCHWithThroughHeader();
1262
1263  /// True if using a PCH with a through header.
1264  bool usingPCHWithThroughHeader();
1265
1266  /// True if creating a PCH with a #pragma hdrstop.
1267  bool creatingPCHWithPragmaHdrStop();
1268
1269  /// True if using a PCH with a #pragma hdrstop.
1270  bool usingPCHWithPragmaHdrStop();
1271
1272  /// Skip tokens until after the #include of the through header or
1273  /// until after a #pragma hdrstop.
1274  void SkipTokensWhileUsingPCH();
1275
1276  /// Process directives while skipping until the through header or
1277  /// #pragma hdrstop is found.
1278  void HandleSkippedDirectiveWhileUsingPCH(Token &Result,
1279                                           SourceLocation HashLoc);
1280
1281  /// Enter the specified FileID as the main source file,
1282  /// which implicitly adds the builtin defines etc.
1283  void EnterMainSourceFile();
1284
1285  /// Inform the preprocessor callbacks that processing is complete.
1286  void EndSourceFile();
1287
1288  /// Add a source file to the top of the include stack and
1289  /// start lexing tokens from it instead of the current buffer.
1290  ///
1291  /// Emits a diagnostic, doesn't enter the file, and returns true on error.
1292  bool EnterSourceFile(FileID FID, const DirectoryLookup *Dir,
1293                       SourceLocation Loc);
1294
1295  /// Add a Macro to the top of the include stack and start lexing
1296  /// tokens from it instead of the current buffer.
1297  ///
1298  /// \param Args specifies the tokens input to a function-like macro.
1299  /// \param ILEnd specifies the location of the ')' for a function-like macro
1300  /// or the identifier for an object-like macro.
1301  void EnterMacro(Token &Tok, SourceLocation ILEnd, MacroInfo *Macro,
1302                  MacroArgs *Args);
1303
1304private:
1305  /// Add a "macro" context to the top of the include stack,
1306  /// which will cause the lexer to start returning the specified tokens.
1307  ///
1308  /// If \p DisableMacroExpansion is true, tokens lexed from the token stream
1309  /// will not be subject to further macro expansion. Otherwise, these tokens
1310  /// will be re-macro-expanded when/if expansion is enabled.
1311  ///
1312  /// If \p OwnsTokens is false, this method assumes that the specified stream
1313  /// of tokens has a permanent owner somewhere, so they do not need to be
1314  /// copied. If it is true, it assumes the array of tokens is allocated with
1315  /// \c new[] and the Preprocessor will delete[] it.
1316  ///
1317  /// If \p IsReinject the resulting tokens will have Token::IsReinjected flag
1318  /// set, see the flag documentation for details.
1319  void EnterTokenStream(const Token *Toks, unsigned NumToks,
1320                        bool DisableMacroExpansion, bool OwnsTokens,
1321                        bool IsReinject);
1322
1323public:
1324  void EnterTokenStream(std::unique_ptr<Token[]> Toks, unsigned NumToks,
1325                        bool DisableMacroExpansion, bool IsReinject) {
1326    EnterTokenStream(Toks.release(), NumToks, DisableMacroExpansion, true,
1327                     IsReinject);
1328  }
1329
1330  void EnterTokenStream(ArrayRef<Token> Toks, bool DisableMacroExpansion,
1331                        bool IsReinject) {
1332    EnterTokenStream(Toks.data(), Toks.size(), DisableMacroExpansion, false,
1333                     IsReinject);
1334  }
1335
1336  /// Pop the current lexer/macro exp off the top of the lexer stack.
1337  ///
1338  /// This should only be used in situations where the current state of the
1339  /// top-of-stack lexer is known.
1340  void RemoveTopOfLexerStack();
1341
1342  /// From the point that this method is called, and until
1343  /// CommitBacktrackedTokens() or Backtrack() is called, the Preprocessor
1344  /// keeps track of the lexed tokens so that a subsequent Backtrack() call will
1345  /// make the Preprocessor re-lex the same tokens.
1346  ///
1347  /// Nested backtracks are allowed, meaning that EnableBacktrackAtThisPos can
1348  /// be called multiple times and CommitBacktrackedTokens/Backtrack calls will
1349  /// be combined with the EnableBacktrackAtThisPos calls in reverse order.
1350  ///
1351  /// NOTE: *DO NOT* forget to call either CommitBacktrackedTokens or Backtrack
1352  /// at some point after EnableBacktrackAtThisPos. If you don't, caching of
1353  /// tokens will continue indefinitely.
1354  ///
1355  void EnableBacktrackAtThisPos();
1356
1357  /// Disable the last EnableBacktrackAtThisPos call.
1358  void CommitBacktrackedTokens();
1359
1360  /// Make Preprocessor re-lex the tokens that were lexed since
1361  /// EnableBacktrackAtThisPos() was previously called.
1362  void Backtrack();
1363
1364  /// True if EnableBacktrackAtThisPos() was called and
1365  /// caching of tokens is on.
1366  bool isBacktrackEnabled() const { return !BacktrackPositions.empty(); }
1367
1368  /// Lex the next token for this preprocessor.
1369  void Lex(Token &Result);
1370
1371  /// Lex a token, forming a header-name token if possible.
1372  bool LexHeaderName(Token &Result, bool AllowMacroExpansion = true);
1373
1374  bool LexAfterModuleImport(Token &Result);
1375  void CollectPpImportSuffix(SmallVectorImpl<Token> &Toks);
1376
1377  void makeModuleVisible(Module *M, SourceLocation Loc);
1378
1379  SourceLocation getModuleImportLoc(Module *M) const {
1380    return CurSubmoduleState->VisibleModules.getImportLoc(M);
1381  }
1382
1383  /// Lex a string literal, which may be the concatenation of multiple
1384  /// string literals and may even come from macro expansion.
1385  /// \returns true on success, false if a error diagnostic has been generated.
1386  bool LexStringLiteral(Token &Result, std::string &String,
1387                        const char *DiagnosticTag, bool AllowMacroExpansion) {
1388    if (AllowMacroExpansion)
1389      Lex(Result);
1390    else
1391      LexUnexpandedToken(Result);
1392    return FinishLexStringLiteral(Result, String, DiagnosticTag,
1393                                  AllowMacroExpansion);
1394  }
1395
1396  /// Complete the lexing of a string literal where the first token has
1397  /// already been lexed (see LexStringLiteral).
1398  bool FinishLexStringLiteral(Token &Result, std::string &String,
1399                              const char *DiagnosticTag,
1400                              bool AllowMacroExpansion);
1401
1402  /// Lex a token.  If it's a comment, keep lexing until we get
1403  /// something not a comment.
1404  ///
1405  /// This is useful in -E -C mode where comments would foul up preprocessor
1406  /// directive handling.
1407  void LexNonComment(Token &Result) {
1408    do
1409      Lex(Result);
1410    while (Result.getKind() == tok::comment);
1411  }
1412
1413  /// Just like Lex, but disables macro expansion of identifier tokens.
1414  void LexUnexpandedToken(Token &Result) {
1415    // Disable macro expansion.
1416    bool OldVal = DisableMacroExpansion;
1417    DisableMacroExpansion = true;
1418    // Lex the token.
1419    Lex(Result);
1420
1421    // Reenable it.
1422    DisableMacroExpansion = OldVal;
1423  }
1424
1425  /// Like LexNonComment, but this disables macro expansion of
1426  /// identifier tokens.
1427  void LexUnexpandedNonComment(Token &Result) {
1428    do
1429      LexUnexpandedToken(Result);
1430    while (Result.getKind() == tok::comment);
1431  }
1432
1433  /// Parses a simple integer literal to get its numeric value.  Floating
1434  /// point literals and user defined literals are rejected.  Used primarily to
1435  /// handle pragmas that accept integer arguments.
1436  bool parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value);
1437
1438  /// Disables macro expansion everywhere except for preprocessor directives.
1439  void SetMacroExpansionOnlyInDirectives() {
1440    DisableMacroExpansion = true;
1441    MacroExpansionInDirectivesOverride = true;
1442  }
1443
1444  /// Peeks ahead N tokens and returns that token without consuming any
1445  /// tokens.
1446  ///
1447  /// LookAhead(0) returns the next token that would be returned by Lex(),
1448  /// LookAhead(1) returns the token after it, etc.  This returns normal
1449  /// tokens after phase 5.  As such, it is equivalent to using
1450  /// 'Lex', not 'LexUnexpandedToken'.
1451  const Token &LookAhead(unsigned N) {
1452    assert(LexLevel == 0 && "cannot use lookahead while lexing");
1453    if (CachedLexPos + N < CachedTokens.size())
1454      return CachedTokens[CachedLexPos+N];
1455    else
1456      return PeekAhead(N+1);
1457  }
1458
1459  /// When backtracking is enabled and tokens are cached,
1460  /// this allows to revert a specific number of tokens.
1461  ///
1462  /// Note that the number of tokens being reverted should be up to the last
1463  /// backtrack position, not more.
1464  void RevertCachedTokens(unsigned N) {
1465    assert(isBacktrackEnabled() &&
1466           "Should only be called when tokens are cached for backtracking");
1467    assert(signed(CachedLexPos) - signed(N) >= signed(BacktrackPositions.back())
1468         && "Should revert tokens up to the last backtrack position, not more");
1469    assert(signed(CachedLexPos) - signed(N) >= 0 &&
1470           "Corrupted backtrack positions ?");
1471    CachedLexPos -= N;
1472  }
1473
1474  /// Enters a token in the token stream to be lexed next.
1475  ///
1476  /// If BackTrack() is called afterwards, the token will remain at the
1477  /// insertion point.
1478  /// If \p IsReinject is true, resulting token will have Token::IsReinjected
1479  /// flag set. See the flag documentation for details.
1480  void EnterToken(const Token &Tok, bool IsReinject) {
1481    if (LexLevel) {
1482      // It's not correct in general to enter caching lex mode while in the
1483      // middle of a nested lexing action.
1484      auto TokCopy = std::make_unique<Token[]>(1);
1485      TokCopy[0] = Tok;
1486      EnterTokenStream(std::move(TokCopy), 1, true, IsReinject);
1487    } else {
1488      EnterCachingLexMode();
1489      assert(IsReinject && "new tokens in the middle of cached stream");
1490      CachedTokens.insert(CachedTokens.begin()+CachedLexPos, Tok);
1491    }
1492  }
1493
1494  /// We notify the Preprocessor that if it is caching tokens (because
1495  /// backtrack is enabled) it should replace the most recent cached tokens
1496  /// with the given annotation token. This function has no effect if
1497  /// backtracking is not enabled.
1498  ///
1499  /// Note that the use of this function is just for optimization, so that the
1500  /// cached tokens doesn't get re-parsed and re-resolved after a backtrack is
1501  /// invoked.
1502  void AnnotateCachedTokens(const Token &Tok) {
1503    assert(Tok.isAnnotation() && "Expected annotation token");
1504    if (CachedLexPos != 0 && isBacktrackEnabled())
1505      AnnotatePreviousCachedTokens(Tok);
1506  }
1507
1508  /// Get the location of the last cached token, suitable for setting the end
1509  /// location of an annotation token.
1510  SourceLocation getLastCachedTokenLocation() const {
1511    assert(CachedLexPos != 0);
1512    return CachedTokens[CachedLexPos-1].getLastLoc();
1513  }
1514
1515  /// Whether \p Tok is the most recent token (`CachedLexPos - 1`) in
1516  /// CachedTokens.
1517  bool IsPreviousCachedToken(const Token &Tok) const;
1518
1519  /// Replace token in `CachedLexPos - 1` in CachedTokens by the tokens
1520  /// in \p NewToks.
1521  ///
1522  /// Useful when a token needs to be split in smaller ones and CachedTokens
1523  /// most recent token must to be updated to reflect that.
1524  void ReplacePreviousCachedToken(ArrayRef<Token> NewToks);
1525
1526  /// Replace the last token with an annotation token.
1527  ///
1528  /// Like AnnotateCachedTokens(), this routine replaces an
1529  /// already-parsed (and resolved) token with an annotation
1530  /// token. However, this routine only replaces the last token with
1531  /// the annotation token; it does not affect any other cached
1532  /// tokens. This function has no effect if backtracking is not
1533  /// enabled.
1534  void ReplaceLastTokenWithAnnotation(const Token &Tok) {
1535    assert(Tok.isAnnotation() && "Expected annotation token");
1536    if (CachedLexPos != 0 && isBacktrackEnabled())
1537      CachedTokens[CachedLexPos-1] = Tok;
1538  }
1539
1540  /// Enter an annotation token into the token stream.
1541  void EnterAnnotationToken(SourceRange Range, tok::TokenKind Kind,
1542                            void *AnnotationVal);
1543
1544  /// Update the current token to represent the provided
1545  /// identifier, in order to cache an action performed by typo correction.
1546  void TypoCorrectToken(const Token &Tok) {
1547    assert(Tok.getIdentifierInfo() && "Expected identifier token");
1548    if (CachedLexPos != 0 && isBacktrackEnabled())
1549      CachedTokens[CachedLexPos-1] = Tok;
1550  }
1551
1552  /// Recompute the current lexer kind based on the CurLexer/
1553  /// CurTokenLexer pointers.
1554  void recomputeCurLexerKind();
1555
1556  /// Returns true if incremental processing is enabled
1557  bool isIncrementalProcessingEnabled() const { return IncrementalProcessing; }
1558
1559  /// Enables the incremental processing
1560  void enableIncrementalProcessing(bool value = true) {
1561    IncrementalProcessing = value;
1562  }
1563
1564  /// Specify the point at which code-completion will be performed.
1565  ///
1566  /// \param File the file in which code completion should occur. If
1567  /// this file is included multiple times, code-completion will
1568  /// perform completion the first time it is included. If NULL, this
1569  /// function clears out the code-completion point.
1570  ///
1571  /// \param Line the line at which code completion should occur
1572  /// (1-based).
1573  ///
1574  /// \param Column the column at which code completion should occur
1575  /// (1-based).
1576  ///
1577  /// \returns true if an error occurred, false otherwise.
1578  bool SetCodeCompletionPoint(const FileEntry *File,
1579                              unsigned Line, unsigned Column);
1580
1581  /// Determine if we are performing code completion.
1582  bool isCodeCompletionEnabled() const { return CodeCompletionFile != nullptr; }
1583
1584  /// Returns the location of the code-completion point.
1585  ///
1586  /// Returns an invalid location if code-completion is not enabled or the file
1587  /// containing the code-completion point has not been lexed yet.
1588  SourceLocation getCodeCompletionLoc() const { return CodeCompletionLoc; }
1589
1590  /// Returns the start location of the file of code-completion point.
1591  ///
1592  /// Returns an invalid location if code-completion is not enabled or the file
1593  /// containing the code-completion point has not been lexed yet.
1594  SourceLocation getCodeCompletionFileLoc() const {
1595    return CodeCompletionFileLoc;
1596  }
1597
1598  /// Returns true if code-completion is enabled and we have hit the
1599  /// code-completion point.
1600  bool isCodeCompletionReached() const { return CodeCompletionReached; }
1601
1602  /// Note that we hit the code-completion point.
1603  void setCodeCompletionReached() {
1604    assert(isCodeCompletionEnabled() && "Code-completion not enabled!");
1605    CodeCompletionReached = true;
1606    // Silence any diagnostics that occur after we hit the code-completion.
1607    getDiagnostics().setSuppressAllDiagnostics(true);
1608  }
1609
1610  /// The location of the currently-active \#pragma clang
1611  /// arc_cf_code_audited begin.
1612  ///
1613  /// Returns an invalid location if there is no such pragma active.
1614  std::pair<IdentifierInfo *, SourceLocation>
1615  getPragmaARCCFCodeAuditedInfo() const {
1616    return PragmaARCCFCodeAuditedInfo;
1617  }
1618
1619  /// Set the location of the currently-active \#pragma clang
1620  /// arc_cf_code_audited begin.  An invalid location ends the pragma.
1621  void setPragmaARCCFCodeAuditedInfo(IdentifierInfo *Ident,
1622                                     SourceLocation Loc) {
1623    PragmaARCCFCodeAuditedInfo = {Ident, Loc};
1624  }
1625
1626  /// The location of the currently-active \#pragma clang
1627  /// assume_nonnull begin.
1628  ///
1629  /// Returns an invalid location if there is no such pragma active.
1630  SourceLocation getPragmaAssumeNonNullLoc() const {
1631    return PragmaAssumeNonNullLoc;
1632  }
1633
1634  /// Set the location of the currently-active \#pragma clang
1635  /// assume_nonnull begin.  An invalid location ends the pragma.
1636  void setPragmaAssumeNonNullLoc(SourceLocation Loc) {
1637    PragmaAssumeNonNullLoc = Loc;
1638  }
1639
1640  /// Set the directory in which the main file should be considered
1641  /// to have been found, if it is not a real file.
1642  void setMainFileDir(const DirectoryEntry *Dir) {
1643    MainFileDir = Dir;
1644  }
1645
1646  /// Instruct the preprocessor to skip part of the main source file.
1647  ///
1648  /// \param Bytes The number of bytes in the preamble to skip.
1649  ///
1650  /// \param StartOfLine Whether skipping these bytes puts the lexer at the
1651  /// start of a line.
1652  void setSkipMainFilePreamble(unsigned Bytes, bool StartOfLine) {
1653    SkipMainFilePreamble.first = Bytes;
1654    SkipMainFilePreamble.second = StartOfLine;
1655  }
1656
1657  /// Forwarding function for diagnostics.  This emits a diagnostic at
1658  /// the specified Token's location, translating the token's start
1659  /// position in the current buffer into a SourcePosition object for rendering.
1660  DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) const {
1661    return Diags->Report(Loc, DiagID);
1662  }
1663
1664  DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID) const {
1665    return Diags->Report(Tok.getLocation(), DiagID);
1666  }
1667
1668  /// Return the 'spelling' of the token at the given
1669  /// location; does not go up to the spelling location or down to the
1670  /// expansion location.
1671  ///
1672  /// \param buffer A buffer which will be used only if the token requires
1673  ///   "cleaning", e.g. if it contains trigraphs or escaped newlines
1674  /// \param invalid If non-null, will be set \c true if an error occurs.
1675  StringRef getSpelling(SourceLocation loc,
1676                        SmallVectorImpl<char> &buffer,
1677                        bool *invalid = nullptr) const {
1678    return Lexer::getSpelling(loc, buffer, SourceMgr, LangOpts, invalid);
1679  }
1680
1681  /// Return the 'spelling' of the Tok token.
1682  ///
1683  /// The spelling of a token is the characters used to represent the token in
1684  /// the source file after trigraph expansion and escaped-newline folding.  In
1685  /// particular, this wants to get the true, uncanonicalized, spelling of
1686  /// things like digraphs, UCNs, etc.
1687  ///
1688  /// \param Invalid If non-null, will be set \c true if an error occurs.
1689  std::string getSpelling(const Token &Tok, bool *Invalid = nullptr) const {
1690    return Lexer::getSpelling(Tok, SourceMgr, LangOpts, Invalid);
1691  }
1692
1693  /// Get the spelling of a token into a preallocated buffer, instead
1694  /// of as an std::string.
1695  ///
1696  /// The caller is required to allocate enough space for the token, which is
1697  /// guaranteed to be at least Tok.getLength() bytes long. The length of the
1698  /// actual result is returned.
1699  ///
1700  /// Note that this method may do two possible things: it may either fill in
1701  /// the buffer specified with characters, or it may *change the input pointer*
1702  /// to point to a constant buffer with the data already in it (avoiding a
1703  /// copy).  The caller is not allowed to modify the returned buffer pointer
1704  /// if an internal buffer is returned.
1705  unsigned getSpelling(const Token &Tok, const char *&Buffer,
1706                       bool *Invalid = nullptr) const {
1707    return Lexer::getSpelling(Tok, Buffer, SourceMgr, LangOpts, Invalid);
1708  }
1709
1710  /// Get the spelling of a token into a SmallVector.
1711  ///
1712  /// Note that the returned StringRef may not point to the
1713  /// supplied buffer if a copy can be avoided.
1714  StringRef getSpelling(const Token &Tok,
1715                        SmallVectorImpl<char> &Buffer,
1716                        bool *Invalid = nullptr) const;
1717
1718  /// Relex the token at the specified location.
1719  /// \returns true if there was a failure, false on success.
1720  bool getRawToken(SourceLocation Loc, Token &Result,
1721                   bool IgnoreWhiteSpace = false) {
1722    return Lexer::getRawToken(Loc, Result, SourceMgr, LangOpts, IgnoreWhiteSpace);
1723  }
1724
1725  /// Given a Token \p Tok that is a numeric constant with length 1,
1726  /// return the character.
1727  char
1728  getSpellingOfSingleCharacterNumericConstant(const Token &Tok,
1729                                              bool *Invalid = nullptr) const {
1730    assert(Tok.is(tok::numeric_constant) &&
1731           Tok.getLength() == 1 && "Called on unsupported token");
1732    assert(!Tok.needsCleaning() && "Token can't need cleaning with length 1");
1733
1734    // If the token is carrying a literal data pointer, just use it.
1735    if (const char *D = Tok.getLiteralData())
1736      return *D;
1737
1738    // Otherwise, fall back on getCharacterData, which is slower, but always
1739    // works.
1740    return *SourceMgr.getCharacterData(Tok.getLocation(), Invalid);
1741  }
1742
1743  /// Retrieve the name of the immediate macro expansion.
1744  ///
1745  /// This routine starts from a source location, and finds the name of the
1746  /// macro responsible for its immediate expansion. It looks through any
1747  /// intervening macro argument expansions to compute this. It returns a
1748  /// StringRef that refers to the SourceManager-owned buffer of the source
1749  /// where that macro name is spelled. Thus, the result shouldn't out-live
1750  /// the SourceManager.
1751  StringRef getImmediateMacroName(SourceLocation Loc) {
1752    return Lexer::getImmediateMacroName(Loc, SourceMgr, getLangOpts());
1753  }
1754
1755  /// Plop the specified string into a scratch buffer and set the
1756  /// specified token's location and length to it.
1757  ///
1758  /// If specified, the source location provides a location of the expansion
1759  /// point of the token.
1760  void CreateString(StringRef Str, Token &Tok,
1761                    SourceLocation ExpansionLocStart = SourceLocation(),
1762                    SourceLocation ExpansionLocEnd = SourceLocation());
1763
1764  /// Split the first Length characters out of the token starting at TokLoc
1765  /// and return a location pointing to the split token. Re-lexing from the
1766  /// split token will return the split token rather than the original.
1767  SourceLocation SplitToken(SourceLocation TokLoc, unsigned Length);
1768
1769  /// Computes the source location just past the end of the
1770  /// token at this source location.
1771  ///
1772  /// This routine can be used to produce a source location that
1773  /// points just past the end of the token referenced by \p Loc, and
1774  /// is generally used when a diagnostic needs to point just after a
1775  /// token where it expected something different that it received. If
1776  /// the returned source location would not be meaningful (e.g., if
1777  /// it points into a macro), this routine returns an invalid
1778  /// source location.
1779  ///
1780  /// \param Offset an offset from the end of the token, where the source
1781  /// location should refer to. The default offset (0) produces a source
1782  /// location pointing just past the end of the token; an offset of 1 produces
1783  /// a source location pointing to the last character in the token, etc.
1784  SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0) {
1785    return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts);
1786  }
1787
1788  /// Returns true if the given MacroID location points at the first
1789  /// token of the macro expansion.
1790  ///
1791  /// \param MacroBegin If non-null and function returns true, it is set to
1792  /// begin location of the macro.
1793  bool isAtStartOfMacroExpansion(SourceLocation loc,
1794                                 SourceLocation *MacroBegin = nullptr) const {
1795    return Lexer::isAtStartOfMacroExpansion(loc, SourceMgr, LangOpts,
1796                                            MacroBegin);
1797  }
1798
1799  /// Returns true if the given MacroID location points at the last
1800  /// token of the macro expansion.
1801  ///
1802  /// \param MacroEnd If non-null and function returns true, it is set to
1803  /// end location of the macro.
1804  bool isAtEndOfMacroExpansion(SourceLocation loc,
1805                               SourceLocation *MacroEnd = nullptr) const {
1806    return Lexer::isAtEndOfMacroExpansion(loc, SourceMgr, LangOpts, MacroEnd);
1807  }
1808
1809  /// Print the token to stderr, used for debugging.
1810  void DumpToken(const Token &Tok, bool DumpFlags = false) const;
1811  void DumpLocation(SourceLocation Loc) const;
1812  void DumpMacro(const MacroInfo &MI) const;
1813  void dumpMacroInfo(const IdentifierInfo *II);
1814
1815  /// Given a location that specifies the start of a
1816  /// token, return a new location that specifies a character within the token.
1817  SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart,
1818                                         unsigned Char) const {
1819    return Lexer::AdvanceToTokenCharacter(TokStart, Char, SourceMgr, LangOpts);
1820  }
1821
1822  /// Increment the counters for the number of token paste operations
1823  /// performed.
1824  ///
1825  /// If fast was specified, this is a 'fast paste' case we handled.
1826  void IncrementPasteCounter(bool isFast) {
1827    if (isFast)
1828      ++NumFastTokenPaste;
1829    else
1830      ++NumTokenPaste;
1831  }
1832
1833  void PrintStats();
1834
1835  size_t getTotalMemory() const;
1836
1837  /// When the macro expander pastes together a comment (/##/) in Microsoft
1838  /// mode, this method handles updating the current state, returning the
1839  /// token on the next source line.
1840  void HandleMicrosoftCommentPaste(Token &Tok);
1841
1842  //===--------------------------------------------------------------------===//
1843  // Preprocessor callback methods.  These are invoked by a lexer as various
1844  // directives and events are found.
1845
1846  /// Given a tok::raw_identifier token, look up the
1847  /// identifier information for the token and install it into the token,
1848  /// updating the token kind accordingly.
1849  IdentifierInfo *LookUpIdentifierInfo(Token &Identifier) const;
1850
1851private:
1852  llvm::DenseMap<IdentifierInfo*,unsigned> PoisonReasons;
1853
1854public:
1855  /// Specifies the reason for poisoning an identifier.
1856  ///
1857  /// If that identifier is accessed while poisoned, then this reason will be
1858  /// used instead of the default "poisoned" diagnostic.
1859  void SetPoisonReason(IdentifierInfo *II, unsigned DiagID);
1860
1861  /// Display reason for poisoned identifier.
1862  void HandlePoisonedIdentifier(Token & Identifier);
1863
1864  void MaybeHandlePoisonedIdentifier(Token & Identifier) {
1865    if(IdentifierInfo * II = Identifier.getIdentifierInfo()) {
1866      if(II->isPoisoned()) {
1867        HandlePoisonedIdentifier(Identifier);
1868      }
1869    }
1870  }
1871
1872private:
1873  /// Identifiers used for SEH handling in Borland. These are only
1874  /// allowed in particular circumstances
1875  // __except block
1876  IdentifierInfo *Ident__exception_code,
1877                 *Ident___exception_code,
1878                 *Ident_GetExceptionCode;
1879  // __except filter expression
1880  IdentifierInfo *Ident__exception_info,
1881                 *Ident___exception_info,
1882                 *Ident_GetExceptionInfo;
1883  // __finally
1884  IdentifierInfo *Ident__abnormal_termination,
1885                 *Ident___abnormal_termination,
1886                 *Ident_AbnormalTermination;
1887
1888  const char *getCurLexerEndPos();
1889  void diagnoseMissingHeaderInUmbrellaDir(const Module &Mod);
1890
1891public:
1892  void PoisonSEHIdentifiers(bool Poison = true); // Borland
1893
1894  /// Callback invoked when the lexer reads an identifier and has
1895  /// filled in the tokens IdentifierInfo member.
1896  ///
1897  /// This callback potentially macro expands it or turns it into a named
1898  /// token (like 'for').
1899  ///
1900  /// \returns true if we actually computed a token, false if we need to
1901  /// lex again.
1902  bool HandleIdentifier(Token &Identifier);
1903
1904  /// Callback invoked when the lexer hits the end of the current file.
1905  ///
1906  /// This either returns the EOF token and returns true, or
1907  /// pops a level off the include stack and returns false, at which point the
1908  /// client should call lex again.
1909  bool HandleEndOfFile(Token &Result, bool isEndOfMacro = false);
1910
1911  /// Callback invoked when the current TokenLexer hits the end of its
1912  /// token stream.
1913  bool HandleEndOfTokenLexer(Token &Result);
1914
1915  /// Callback invoked when the lexer sees a # token at the start of a
1916  /// line.
1917  ///
1918  /// This consumes the directive, modifies the lexer/preprocessor state, and
1919  /// advances the lexer(s) so that the next token read is the correct one.
1920  void HandleDirective(Token &Result);
1921
1922  /// Ensure that the next token is a tok::eod token.
1923  ///
1924  /// If not, emit a diagnostic and consume up until the eod.
1925  /// If \p EnableMacros is true, then we consider macros that expand to zero
1926  /// tokens as being ok.
1927  ///
1928  /// \return The location of the end of the directive (the terminating
1929  /// newline).
1930  SourceLocation CheckEndOfDirective(const char *DirType,
1931                                     bool EnableMacros = false);
1932
1933  /// Read and discard all tokens remaining on the current line until
1934  /// the tok::eod token is found. Returns the range of the skipped tokens.
1935  SourceRange DiscardUntilEndOfDirective();
1936
1937  /// Returns true if the preprocessor has seen a use of
1938  /// __DATE__ or __TIME__ in the file so far.
1939  bool SawDateOrTime() const {
1940    return DATELoc != SourceLocation() || TIMELoc != SourceLocation();
1941  }
1942  unsigned getCounterValue() const { return CounterValue; }
1943  void setCounterValue(unsigned V) { CounterValue = V; }
1944
1945  /// Retrieves the module that we're currently building, if any.
1946  Module *getCurrentModule();
1947
1948  /// Allocate a new MacroInfo object with the provided SourceLocation.
1949  MacroInfo *AllocateMacroInfo(SourceLocation L);
1950
1951  /// Turn the specified lexer token into a fully checked and spelled
1952  /// filename, e.g. as an operand of \#include.
1953  ///
1954  /// The caller is expected to provide a buffer that is large enough to hold
1955  /// the spelling of the filename, but is also expected to handle the case
1956  /// when this method decides to use a different buffer.
1957  ///
1958  /// \returns true if the input filename was in <>'s or false if it was
1959  /// in ""'s.
1960  bool GetIncludeFilenameSpelling(SourceLocation Loc,StringRef &Buffer);
1961
1962  /// Given a "foo" or \<foo> reference, look up the indicated file.
1963  ///
1964  /// Returns None on failure.  \p isAngled indicates whether the file
1965  /// reference is for system \#include's or not (i.e. using <> instead of "").
1966  Optional<FileEntryRef>
1967  LookupFile(SourceLocation FilenameLoc, StringRef Filename, bool isAngled,
1968             const DirectoryLookup *FromDir, const FileEntry *FromFile,
1969             const DirectoryLookup *&CurDir, SmallVectorImpl<char> *SearchPath,
1970             SmallVectorImpl<char> *RelativePath,
1971             ModuleMap::KnownHeader *SuggestedModule, bool *IsMapped,
1972             bool *IsFrameworkFound, bool SkipCache = false);
1973
1974  /// Get the DirectoryLookup structure used to find the current
1975  /// FileEntry, if CurLexer is non-null and if applicable.
1976  ///
1977  /// This allows us to implement \#include_next and find directory-specific
1978  /// properties.
1979  const DirectoryLookup *GetCurDirLookup() { return CurDirLookup; }
1980
1981  /// Return true if we're in the top-level file, not in a \#include.
1982  bool isInPrimaryFile() const;
1983
1984  /// Lex an on-off-switch (C99 6.10.6p2) and verify that it is
1985  /// followed by EOD.  Return true if the token is not a valid on-off-switch.
1986  bool LexOnOffSwitch(tok::OnOffSwitch &Result);
1987
1988  bool CheckMacroName(Token &MacroNameTok, MacroUse isDefineUndef,
1989                      bool *ShadowFlag = nullptr);
1990
1991  void EnterSubmodule(Module *M, SourceLocation ImportLoc, bool ForPragma);
1992  Module *LeaveSubmodule(bool ForPragma);
1993
1994private:
1995  friend void TokenLexer::ExpandFunctionArguments();
1996
1997  void PushIncludeMacroStack() {
1998    assert(CurLexerKind != CLK_CachingLexer && "cannot push a caching lexer");
1999    IncludeMacroStack.emplace_back(CurLexerKind, CurLexerSubmodule,
2000                                   std::move(CurLexer), CurPPLexer,
2001                                   std::move(CurTokenLexer), CurDirLookup);
2002    CurPPLexer = nullptr;
2003  }
2004
2005  void PopIncludeMacroStack() {
2006    CurLexer = std::move(IncludeMacroStack.back().TheLexer);
2007    CurPPLexer = IncludeMacroStack.back().ThePPLexer;
2008    CurTokenLexer = std::move(IncludeMacroStack.back().TheTokenLexer);
2009    CurDirLookup  = IncludeMacroStack.back().TheDirLookup;
2010    CurLexerSubmodule = IncludeMacroStack.back().TheSubmodule;
2011    CurLexerKind = IncludeMacroStack.back().CurLexerKind;
2012    IncludeMacroStack.pop_back();
2013  }
2014
2015  void PropagateLineStartLeadingSpaceInfo(Token &Result);
2016
2017  /// Determine whether we need to create module macros for #defines in the
2018  /// current context.
2019  bool needModuleMacros() const;
2020
2021  /// Update the set of active module macros and ambiguity flag for a module
2022  /// macro name.
2023  void updateModuleMacroInfo(const IdentifierInfo *II, ModuleMacroInfo &Info);
2024
2025  DefMacroDirective *AllocateDefMacroDirective(MacroInfo *MI,
2026                                               SourceLocation Loc);
2027  UndefMacroDirective *AllocateUndefMacroDirective(SourceLocation UndefLoc);
2028  VisibilityMacroDirective *AllocateVisibilityMacroDirective(SourceLocation Loc,
2029                                                             bool isPublic);
2030
2031  /// Lex and validate a macro name, which occurs after a
2032  /// \#define or \#undef.
2033  ///
2034  /// \param MacroNameTok Token that represents the name defined or undefined.
2035  /// \param IsDefineUndef Kind if preprocessor directive.
2036  /// \param ShadowFlag Points to flag that is set if macro name shadows
2037  ///                   a keyword.
2038  ///
2039  /// This emits a diagnostic, sets the token kind to eod,
2040  /// and discards the rest of the macro line if the macro name is invalid.
2041  void ReadMacroName(Token &MacroNameTok, MacroUse IsDefineUndef = MU_Other,
2042                     bool *ShadowFlag = nullptr);
2043
2044  /// ReadOptionalMacroParameterListAndBody - This consumes all (i.e. the
2045  /// entire line) of the macro's tokens and adds them to MacroInfo, and while
2046  /// doing so performs certain validity checks including (but not limited to):
2047  ///   - # (stringization) is followed by a macro parameter
2048  /// \param MacroNameTok - Token that represents the macro name
2049  /// \param ImmediatelyAfterHeaderGuard - Macro follows an #ifdef header guard
2050  ///
2051  ///  Either returns a pointer to a MacroInfo object OR emits a diagnostic and
2052  ///  returns a nullptr if an invalid sequence of tokens is encountered.
2053  MacroInfo *ReadOptionalMacroParameterListAndBody(
2054      const Token &MacroNameTok, bool ImmediatelyAfterHeaderGuard);
2055
2056  /// The ( starting an argument list of a macro definition has just been read.
2057  /// Lex the rest of the parameters and the closing ), updating \p MI with
2058  /// what we learn and saving in \p LastTok the last token read.
2059  /// Return true if an error occurs parsing the arg list.
2060  bool ReadMacroParameterList(MacroInfo *MI, Token& LastTok);
2061
2062  /// We just read a \#if or related directive and decided that the
2063  /// subsequent tokens are in the \#if'd out portion of the
2064  /// file.  Lex the rest of the file, until we see an \#endif.  If \p
2065  /// FoundNonSkipPortion is true, then we have already emitted code for part of
2066  /// this \#if directive, so \#else/\#elif blocks should never be entered. If
2067  /// \p FoundElse is false, then \#else directives are ok, if not, then we have
2068  /// already seen one so a \#else directive is a duplicate.  When this returns,
2069  /// the caller can lex the first valid token.
2070  void SkipExcludedConditionalBlock(SourceLocation HashTokenLoc,
2071                                    SourceLocation IfTokenLoc,
2072                                    bool FoundNonSkipPortion, bool FoundElse,
2073                                    SourceLocation ElseLoc = SourceLocation());
2074
2075  /// Information about the result for evaluating an expression for a
2076  /// preprocessor directive.
2077  struct DirectiveEvalResult {
2078    /// Whether the expression was evaluated as true or not.
2079    bool Conditional;
2080
2081    /// True if the expression contained identifiers that were undefined.
2082    bool IncludedUndefinedIds;
2083
2084    /// The source range for the expression.
2085    SourceRange ExprRange;
2086  };
2087
2088  /// Evaluate an integer constant expression that may occur after a
2089  /// \#if or \#elif directive and return a \p DirectiveEvalResult object.
2090  ///
2091  /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro.
2092  DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro);
2093
2094  /// Install the standard preprocessor pragmas:
2095  /// \#pragma GCC poison/system_header/dependency and \#pragma once.
2096  void RegisterBuiltinPragmas();
2097
2098  /// Register builtin macros such as __LINE__ with the identifier table.
2099  void RegisterBuiltinMacros();
2100
2101  /// If an identifier token is read that is to be expanded as a macro, handle
2102  /// it and return the next token as 'Tok'.  If we lexed a token, return true;
2103  /// otherwise the caller should lex again.
2104  bool HandleMacroExpandedIdentifier(Token &Identifier, const MacroDefinition &MD);
2105
2106  /// Cache macro expanded tokens for TokenLexers.
2107  //
2108  /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
2109  /// going to lex in the cache and when it finishes the tokens are removed
2110  /// from the end of the cache.
2111  Token *cacheMacroExpandedTokens(TokenLexer *tokLexer,
2112                                  ArrayRef<Token> tokens);
2113
2114  void removeCachedMacroExpandedTokensOfLastLexer();
2115
2116  /// Determine whether the next preprocessor token to be
2117  /// lexed is a '('.  If so, consume the token and return true, if not, this
2118  /// method should have no observable side-effect on the lexed tokens.
2119  bool isNextPPTokenLParen();
2120
2121  /// After reading "MACRO(", this method is invoked to read all of the formal
2122  /// arguments specified for the macro invocation.  Returns null on error.
2123  MacroArgs *ReadMacroCallArgumentList(Token &MacroName, MacroInfo *MI,
2124                                       SourceLocation &MacroEnd);
2125
2126  /// If an identifier token is read that is to be expanded
2127  /// as a builtin macro, handle it and return the next token as 'Tok'.
2128  void ExpandBuiltinMacro(Token &Tok);
2129
2130  /// Read a \c _Pragma directive, slice it up, process it, then
2131  /// return the first token after the directive.
2132  /// This assumes that the \c _Pragma token has just been read into \p Tok.
2133  void Handle_Pragma(Token &Tok);
2134
2135  /// Like Handle_Pragma except the pragma text is not enclosed within
2136  /// a string literal.
2137  void HandleMicrosoft__pragma(Token &Tok);
2138
2139  /// Add a lexer to the top of the include stack and
2140  /// start lexing tokens from it instead of the current buffer.
2141  void EnterSourceFileWithLexer(Lexer *TheLexer, const DirectoryLookup *Dir);
2142
2143  /// Set the FileID for the preprocessor predefines.
2144  void setPredefinesFileID(FileID FID) {
2145    assert(PredefinesFileID.isInvalid() && "PredefinesFileID already set!");
2146    PredefinesFileID = FID;
2147  }
2148
2149  /// Set the FileID for the PCH through header.
2150  void setPCHThroughHeaderFileID(FileID FID);
2151
2152  /// Returns true if we are lexing from a file and not a
2153  /// pragma or a macro.
2154  static bool IsFileLexer(const Lexer* L, const PreprocessorLexer* P) {
2155    return L ? !L->isPragmaLexer() : P != nullptr;
2156  }
2157
2158  static bool IsFileLexer(const IncludeStackInfo& I) {
2159    return IsFileLexer(I.TheLexer.get(), I.ThePPLexer);
2160  }
2161
2162  bool IsFileLexer() const {
2163    return IsFileLexer(CurLexer.get(), CurPPLexer);
2164  }
2165
2166  //===--------------------------------------------------------------------===//
2167  // Caching stuff.
2168  void CachingLex(Token &Result);
2169
2170  bool InCachingLexMode() const {
2171    // If the Lexer pointers are 0 and IncludeMacroStack is empty, it means
2172    // that we are past EOF, not that we are in CachingLex mode.
2173    return !CurPPLexer && !CurTokenLexer && !IncludeMacroStack.empty();
2174  }
2175
2176  void EnterCachingLexMode();
2177  void EnterCachingLexModeUnchecked();
2178
2179  void ExitCachingLexMode() {
2180    if (InCachingLexMode())
2181      RemoveTopOfLexerStack();
2182  }
2183
2184  const Token &PeekAhead(unsigned N);
2185  void AnnotatePreviousCachedTokens(const Token &Tok);
2186
2187  //===--------------------------------------------------------------------===//
2188  /// Handle*Directive - implement the various preprocessor directives.  These
2189  /// should side-effect the current preprocessor object so that the next call
2190  /// to Lex() will return the appropriate token next.
2191  void HandleLineDirective();
2192  void HandleDigitDirective(Token &Tok);
2193  void HandleUserDiagnosticDirective(Token &Tok, bool isWarning);
2194  void HandleIdentSCCSDirective(Token &Tok);
2195  void HandleMacroPublicDirective(Token &Tok);
2196  void HandleMacroPrivateDirective();
2197
2198  /// An additional notification that can be produced by a header inclusion or
2199  /// import to tell the parser what happened.
2200  struct ImportAction {
2201    enum ActionKind {
2202      None,
2203      ModuleBegin,
2204      ModuleImport,
2205      SkippedModuleImport,
2206    } Kind;
2207    Module *ModuleForHeader = nullptr;
2208
2209    ImportAction(ActionKind AK, Module *Mod = nullptr)
2210        : Kind(AK), ModuleForHeader(Mod) {
2211      assert((AK == None || Mod) && "no module for module action");
2212    }
2213  };
2214
2215  Optional<FileEntryRef> LookupHeaderIncludeOrImport(
2216      const DirectoryLookup *&CurDir, StringRef Filename,
2217      SourceLocation FilenameLoc, CharSourceRange FilenameRange,
2218      const Token &FilenameTok, bool &IsFrameworkFound, bool IsImportDecl,
2219      bool &IsMapped, const DirectoryLookup *LookupFrom,
2220      const FileEntry *LookupFromFile, StringRef LookupFilename,
2221      SmallVectorImpl<char> &RelativePath, SmallVectorImpl<char> &SearchPath,
2222      ModuleMap::KnownHeader &SuggestedModule, bool isAngled);
2223
2224  // File inclusion.
2225  void HandleIncludeDirective(SourceLocation HashLoc, Token &Tok,
2226                              const DirectoryLookup *LookupFrom = nullptr,
2227                              const FileEntry *LookupFromFile = nullptr);
2228  ImportAction
2229  HandleHeaderIncludeOrImport(SourceLocation HashLoc, Token &IncludeTok,
2230                              Token &FilenameTok, SourceLocation EndLoc,
2231                              const DirectoryLookup *LookupFrom = nullptr,
2232                              const FileEntry *LookupFromFile = nullptr);
2233  void HandleIncludeNextDirective(SourceLocation HashLoc, Token &Tok);
2234  void HandleIncludeMacrosDirective(SourceLocation HashLoc, Token &Tok);
2235  void HandleImportDirective(SourceLocation HashLoc, Token &Tok);
2236  void HandleMicrosoftImportDirective(Token &Tok);
2237
2238public:
2239  /// Check that the given module is available, producing a diagnostic if not.
2240  /// \return \c true if the check failed (because the module is not available).
2241  ///         \c false if the module appears to be usable.
2242  static bool checkModuleIsAvailable(const LangOptions &LangOpts,
2243                                     const TargetInfo &TargetInfo,
2244                                     DiagnosticsEngine &Diags, Module *M);
2245
2246  // Module inclusion testing.
2247  /// Find the module that owns the source or header file that
2248  /// \p Loc points to. If the location is in a file that was included
2249  /// into a module, or is outside any module, returns nullptr.
2250  Module *getModuleForLocation(SourceLocation Loc);
2251
2252  /// We want to produce a diagnostic at location IncLoc concerning a
2253  /// missing module import.
2254  ///
2255  /// \param IncLoc The location at which the missing import was detected.
2256  /// \param M The desired module.
2257  /// \param MLoc A location within the desired module at which some desired
2258  ///        effect occurred (eg, where a desired entity was declared).
2259  ///
2260  /// \return A file that can be #included to import a module containing MLoc.
2261  ///         Null if no such file could be determined or if a #include is not
2262  ///         appropriate.
2263  const FileEntry *getModuleHeaderToIncludeForDiagnostics(SourceLocation IncLoc,
2264                                                          Module *M,
2265                                                          SourceLocation MLoc);
2266
2267  bool isRecordingPreamble() const {
2268    return PreambleConditionalStack.isRecording();
2269  }
2270
2271  bool hasRecordedPreamble() const {
2272    return PreambleConditionalStack.hasRecordedPreamble();
2273  }
2274
2275  ArrayRef<PPConditionalInfo> getPreambleConditionalStack() const {
2276      return PreambleConditionalStack.getStack();
2277  }
2278
2279  void setRecordedPreambleConditionalStack(ArrayRef<PPConditionalInfo> s) {
2280    PreambleConditionalStack.setStack(s);
2281  }
2282
2283  void setReplayablePreambleConditionalStack(ArrayRef<PPConditionalInfo> s,
2284                                             llvm::Optional<PreambleSkipInfo> SkipInfo) {
2285    PreambleConditionalStack.startReplaying();
2286    PreambleConditionalStack.setStack(s);
2287    PreambleConditionalStack.SkipInfo = SkipInfo;
2288  }
2289
2290  llvm::Optional<PreambleSkipInfo> getPreambleSkipInfo() const {
2291    return PreambleConditionalStack.SkipInfo;
2292  }
2293
2294private:
2295  /// After processing predefined file, initialize the conditional stack from
2296  /// the preamble.
2297  void replayPreambleConditionalStack();
2298
2299  // Macro handling.
2300  void HandleDefineDirective(Token &Tok, bool ImmediatelyAfterHeaderGuard);
2301  void HandleUndefDirective();
2302
2303  // Conditional Inclusion.
2304  void HandleIfdefDirective(Token &Result, const Token &HashToken,
2305                            bool isIfndef, bool ReadAnyTokensBeforeDirective);
2306  void HandleIfDirective(Token &IfToken, const Token &HashToken,
2307                         bool ReadAnyTokensBeforeDirective);
2308  void HandleEndifDirective(Token &EndifToken);
2309  void HandleElseDirective(Token &Result, const Token &HashToken);
2310  void HandleElifDirective(Token &ElifToken, const Token &HashToken);
2311
2312  // Pragmas.
2313  void HandlePragmaDirective(PragmaIntroducer Introducer);
2314
2315public:
2316  void HandlePragmaOnce(Token &OnceTok);
2317  void HandlePragmaMark();
2318  void HandlePragmaPoison();
2319  void HandlePragmaSystemHeader(Token &SysHeaderTok);
2320  void HandlePragmaDependency(Token &DependencyTok);
2321  void HandlePragmaPushMacro(Token &Tok);
2322  void HandlePragmaPopMacro(Token &Tok);
2323  void HandlePragmaIncludeAlias(Token &Tok);
2324  void HandlePragmaModuleBuild(Token &Tok);
2325  void HandlePragmaHdrstop(Token &Tok);
2326  IdentifierInfo *ParsePragmaPushOrPopMacro(Token &Tok);
2327
2328  // Return true and store the first token only if any CommentHandler
2329  // has inserted some tokens and getCommentRetentionState() is false.
2330  bool HandleComment(Token &result, SourceRange Comment);
2331
2332  /// A macro is used, update information about macros that need unused
2333  /// warnings.
2334  void markMacroAsUsed(MacroInfo *MI);
2335
2336private:
2337  Optional<unsigned>
2338  getSkippedRangeForExcludedConditionalBlock(SourceLocation HashLoc);
2339
2340  /// Contains the currently active skipped range mappings for skipping excluded
2341  /// conditional directives.
2342  ExcludedPreprocessorDirectiveSkipMapping
2343      *ExcludedConditionalDirectiveSkipMappings;
2344};
2345
2346/// Abstract base class that describes a handler that will receive
2347/// source ranges for each of the comments encountered in the source file.
2348class CommentHandler {
2349public:
2350  virtual ~CommentHandler();
2351
2352  // The handler shall return true if it has pushed any tokens
2353  // to be read using e.g. EnterToken or EnterTokenStream.
2354  virtual bool HandleComment(Preprocessor &PP, SourceRange Comment) = 0;
2355};
2356
2357/// Registry of pragma handlers added by plugins
2358using PragmaHandlerRegistry = llvm::Registry<PragmaHandler>;
2359
2360} // namespace clang
2361
2362#endif // LLVM_CLANG_LEX_PREPROCESSOR_H
2363