CFG.h revision 360784
1//===- CFG.h - Classes for representing and building CFGs -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file defines the CFG and CFGBuilder classes for representing and
10//  building Control-Flow Graphs (CFGs) from ASTs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_ANALYSIS_CFG_H
15#define LLVM_CLANG_ANALYSIS_CFG_H
16
17#include "clang/Analysis/Support/BumpVector.h"
18#include "clang/Analysis/ConstructionContext.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Basic/LLVM.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/GraphTraits.h"
24#include "llvm/ADT/None.h"
25#include "llvm/ADT/Optional.h"
26#include "llvm/ADT/PointerIntPair.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/Support/Allocator.h"
29#include "llvm/Support/raw_ostream.h"
30#include <bitset>
31#include <cassert>
32#include <cstddef>
33#include <iterator>
34#include <memory>
35#include <vector>
36
37namespace clang {
38
39class ASTContext;
40class BinaryOperator;
41class CFG;
42class CXXBaseSpecifier;
43class CXXBindTemporaryExpr;
44class CXXCtorInitializer;
45class CXXDeleteExpr;
46class CXXDestructorDecl;
47class CXXNewExpr;
48class CXXRecordDecl;
49class Decl;
50class FieldDecl;
51class LangOptions;
52class VarDecl;
53
54/// Represents a top-level expression in a basic block.
55class CFGElement {
56public:
57  enum Kind {
58    // main kind
59    Initializer,
60    ScopeBegin,
61    ScopeEnd,
62    NewAllocator,
63    LifetimeEnds,
64    LoopExit,
65    // stmt kind
66    Statement,
67    Constructor,
68    CXXRecordTypedCall,
69    STMT_BEGIN = Statement,
70    STMT_END = CXXRecordTypedCall,
71    // dtor kind
72    AutomaticObjectDtor,
73    DeleteDtor,
74    BaseDtor,
75    MemberDtor,
76    TemporaryDtor,
77    DTOR_BEGIN = AutomaticObjectDtor,
78    DTOR_END = TemporaryDtor
79  };
80
81protected:
82  // The int bits are used to mark the kind.
83  llvm::PointerIntPair<void *, 2> Data1;
84  llvm::PointerIntPair<void *, 2> Data2;
85
86  CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = nullptr)
87      : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
88        Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {
89    assert(getKind() == kind);
90  }
91
92  CFGElement() = default;
93
94public:
95  /// Convert to the specified CFGElement type, asserting that this
96  /// CFGElement is of the desired type.
97  template<typename T>
98  T castAs() const {
99    assert(T::isKind(*this));
100    T t;
101    CFGElement& e = t;
102    e = *this;
103    return t;
104  }
105
106  /// Convert to the specified CFGElement type, returning None if this
107  /// CFGElement is not of the desired type.
108  template<typename T>
109  Optional<T> getAs() const {
110    if (!T::isKind(*this))
111      return None;
112    T t;
113    CFGElement& e = t;
114    e = *this;
115    return t;
116  }
117
118  Kind getKind() const {
119    unsigned x = Data2.getInt();
120    x <<= 2;
121    x |= Data1.getInt();
122    return (Kind) x;
123  }
124
125  void dumpToStream(llvm::raw_ostream &OS) const;
126
127  void dump() const {
128    dumpToStream(llvm::errs());
129  }
130};
131
132class CFGStmt : public CFGElement {
133public:
134  explicit CFGStmt(Stmt *S, Kind K = Statement) : CFGElement(K, S) {
135    assert(isKind(*this));
136  }
137
138  const Stmt *getStmt() const {
139    return static_cast<const Stmt *>(Data1.getPointer());
140  }
141
142private:
143  friend class CFGElement;
144
145  static bool isKind(const CFGElement &E) {
146    return E.getKind() >= STMT_BEGIN && E.getKind() <= STMT_END;
147  }
148
149protected:
150  CFGStmt() = default;
151};
152
153/// Represents C++ constructor call. Maintains information necessary to figure
154/// out what memory is being initialized by the constructor expression. For now
155/// this is only used by the analyzer's CFG.
156class CFGConstructor : public CFGStmt {
157public:
158  explicit CFGConstructor(CXXConstructExpr *CE, const ConstructionContext *C)
159      : CFGStmt(CE, Constructor) {
160    assert(C);
161    Data2.setPointer(const_cast<ConstructionContext *>(C));
162  }
163
164  const ConstructionContext *getConstructionContext() const {
165    return static_cast<ConstructionContext *>(Data2.getPointer());
166  }
167
168private:
169  friend class CFGElement;
170
171  CFGConstructor() = default;
172
173  static bool isKind(const CFGElement &E) {
174    return E.getKind() == Constructor;
175  }
176};
177
178/// Represents a function call that returns a C++ object by value. This, like
179/// constructor, requires a construction context in order to understand the
180/// storage of the returned object . In C such tracking is not necessary because
181/// no additional effort is required for destroying the object or modeling copy
182/// elision. Like CFGConstructor, this element is for now only used by the
183/// analyzer's CFG.
184class CFGCXXRecordTypedCall : public CFGStmt {
185public:
186  /// Returns true when call expression \p CE needs to be represented
187  /// by CFGCXXRecordTypedCall, as opposed to a regular CFGStmt.
188  static bool isCXXRecordTypedCall(Expr *E) {
189    assert(isa<CallExpr>(E) || isa<ObjCMessageExpr>(E));
190    // There is no such thing as reference-type expression. If the function
191    // returns a reference, it'll return the respective lvalue or xvalue
192    // instead, and we're only interested in objects.
193    return !E->isGLValue() &&
194           E->getType().getCanonicalType()->getAsCXXRecordDecl();
195  }
196
197  explicit CFGCXXRecordTypedCall(Expr *E, const ConstructionContext *C)
198      : CFGStmt(E, CXXRecordTypedCall) {
199    assert(isCXXRecordTypedCall(E));
200    assert(C && (isa<TemporaryObjectConstructionContext>(C) ||
201                 // These are possible in C++17 due to mandatory copy elision.
202                 isa<ReturnedValueConstructionContext>(C) ||
203                 isa<VariableConstructionContext>(C) ||
204                 isa<ConstructorInitializerConstructionContext>(C) ||
205                 isa<ArgumentConstructionContext>(C)));
206    Data2.setPointer(const_cast<ConstructionContext *>(C));
207  }
208
209  const ConstructionContext *getConstructionContext() const {
210    return static_cast<ConstructionContext *>(Data2.getPointer());
211  }
212
213private:
214  friend class CFGElement;
215
216  CFGCXXRecordTypedCall() = default;
217
218  static bool isKind(const CFGElement &E) {
219    return E.getKind() == CXXRecordTypedCall;
220  }
221};
222
223/// Represents C++ base or member initializer from constructor's initialization
224/// list.
225class CFGInitializer : public CFGElement {
226public:
227  explicit CFGInitializer(CXXCtorInitializer *initializer)
228      : CFGElement(Initializer, initializer) {}
229
230  CXXCtorInitializer* getInitializer() const {
231    return static_cast<CXXCtorInitializer*>(Data1.getPointer());
232  }
233
234private:
235  friend class CFGElement;
236
237  CFGInitializer() = default;
238
239  static bool isKind(const CFGElement &E) {
240    return E.getKind() == Initializer;
241  }
242};
243
244/// Represents C++ allocator call.
245class CFGNewAllocator : public CFGElement {
246public:
247  explicit CFGNewAllocator(const CXXNewExpr *S)
248    : CFGElement(NewAllocator, S) {}
249
250  // Get the new expression.
251  const CXXNewExpr *getAllocatorExpr() const {
252    return static_cast<CXXNewExpr *>(Data1.getPointer());
253  }
254
255private:
256  friend class CFGElement;
257
258  CFGNewAllocator() = default;
259
260  static bool isKind(const CFGElement &elem) {
261    return elem.getKind() == NewAllocator;
262  }
263};
264
265/// Represents the point where a loop ends.
266/// This element is is only produced when building the CFG for the static
267/// analyzer and hidden behind the 'cfg-loopexit' analyzer config flag.
268///
269/// Note: a loop exit element can be reached even when the loop body was never
270/// entered.
271class CFGLoopExit : public CFGElement {
272public:
273  explicit CFGLoopExit(const Stmt *stmt) : CFGElement(LoopExit, stmt) {}
274
275  const Stmt *getLoopStmt() const {
276    return static_cast<Stmt *>(Data1.getPointer());
277  }
278
279private:
280  friend class CFGElement;
281
282  CFGLoopExit() = default;
283
284  static bool isKind(const CFGElement &elem) {
285    return elem.getKind() == LoopExit;
286  }
287};
288
289/// Represents the point where the lifetime of an automatic object ends
290class CFGLifetimeEnds : public CFGElement {
291public:
292  explicit CFGLifetimeEnds(const VarDecl *var, const Stmt *stmt)
293      : CFGElement(LifetimeEnds, var, stmt) {}
294
295  const VarDecl *getVarDecl() const {
296    return static_cast<VarDecl *>(Data1.getPointer());
297  }
298
299  const Stmt *getTriggerStmt() const {
300    return static_cast<Stmt *>(Data2.getPointer());
301  }
302
303private:
304  friend class CFGElement;
305
306  CFGLifetimeEnds() = default;
307
308  static bool isKind(const CFGElement &elem) {
309    return elem.getKind() == LifetimeEnds;
310  }
311};
312
313/// Represents beginning of a scope implicitly generated
314/// by the compiler on encountering a CompoundStmt
315class CFGScopeBegin : public CFGElement {
316public:
317  CFGScopeBegin() {}
318  CFGScopeBegin(const VarDecl *VD, const Stmt *S)
319      : CFGElement(ScopeBegin, VD, S) {}
320
321  // Get statement that triggered a new scope.
322  const Stmt *getTriggerStmt() const {
323    return static_cast<Stmt*>(Data2.getPointer());
324  }
325
326  // Get VD that triggered a new scope.
327  const VarDecl *getVarDecl() const {
328    return static_cast<VarDecl *>(Data1.getPointer());
329  }
330
331private:
332  friend class CFGElement;
333  static bool isKind(const CFGElement &E) {
334    Kind kind = E.getKind();
335    return kind == ScopeBegin;
336  }
337};
338
339/// Represents end of a scope implicitly generated by
340/// the compiler after the last Stmt in a CompoundStmt's body
341class CFGScopeEnd : public CFGElement {
342public:
343  CFGScopeEnd() {}
344  CFGScopeEnd(const VarDecl *VD, const Stmt *S) : CFGElement(ScopeEnd, VD, S) {}
345
346  const VarDecl *getVarDecl() const {
347    return static_cast<VarDecl *>(Data1.getPointer());
348  }
349
350  const Stmt *getTriggerStmt() const {
351    return static_cast<Stmt *>(Data2.getPointer());
352  }
353
354private:
355  friend class CFGElement;
356  static bool isKind(const CFGElement &E) {
357    Kind kind = E.getKind();
358    return kind == ScopeEnd;
359  }
360};
361
362/// Represents C++ object destructor implicitly generated by compiler on various
363/// occasions.
364class CFGImplicitDtor : public CFGElement {
365protected:
366  CFGImplicitDtor() = default;
367
368  CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = nullptr)
369    : CFGElement(kind, data1, data2) {
370    assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
371  }
372
373public:
374  const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
375  bool isNoReturn(ASTContext &astContext) const;
376
377private:
378  friend class CFGElement;
379
380  static bool isKind(const CFGElement &E) {
381    Kind kind = E.getKind();
382    return kind >= DTOR_BEGIN && kind <= DTOR_END;
383  }
384};
385
386/// Represents C++ object destructor implicitly generated for automatic object
387/// or temporary bound to const reference at the point of leaving its local
388/// scope.
389class CFGAutomaticObjDtor: public CFGImplicitDtor {
390public:
391  CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
392      : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
393
394  const VarDecl *getVarDecl() const {
395    return static_cast<VarDecl*>(Data1.getPointer());
396  }
397
398  // Get statement end of which triggered the destructor call.
399  const Stmt *getTriggerStmt() const {
400    return static_cast<Stmt*>(Data2.getPointer());
401  }
402
403private:
404  friend class CFGElement;
405
406  CFGAutomaticObjDtor() = default;
407
408  static bool isKind(const CFGElement &elem) {
409    return elem.getKind() == AutomaticObjectDtor;
410  }
411};
412
413/// Represents C++ object destructor generated from a call to delete.
414class CFGDeleteDtor : public CFGImplicitDtor {
415public:
416  CFGDeleteDtor(const CXXRecordDecl *RD, const CXXDeleteExpr *DE)
417      : CFGImplicitDtor(DeleteDtor, RD, DE) {}
418
419  const CXXRecordDecl *getCXXRecordDecl() const {
420    return static_cast<CXXRecordDecl*>(Data1.getPointer());
421  }
422
423  // Get Delete expression which triggered the destructor call.
424  const CXXDeleteExpr *getDeleteExpr() const {
425    return static_cast<CXXDeleteExpr *>(Data2.getPointer());
426  }
427
428private:
429  friend class CFGElement;
430
431  CFGDeleteDtor() = default;
432
433  static bool isKind(const CFGElement &elem) {
434    return elem.getKind() == DeleteDtor;
435  }
436};
437
438/// Represents C++ object destructor implicitly generated for base object in
439/// destructor.
440class CFGBaseDtor : public CFGImplicitDtor {
441public:
442  CFGBaseDtor(const CXXBaseSpecifier *base)
443      : CFGImplicitDtor(BaseDtor, base) {}
444
445  const CXXBaseSpecifier *getBaseSpecifier() const {
446    return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
447  }
448
449private:
450  friend class CFGElement;
451
452  CFGBaseDtor() = default;
453
454  static bool isKind(const CFGElement &E) {
455    return E.getKind() == BaseDtor;
456  }
457};
458
459/// Represents C++ object destructor implicitly generated for member object in
460/// destructor.
461class CFGMemberDtor : public CFGImplicitDtor {
462public:
463  CFGMemberDtor(const FieldDecl *field)
464      : CFGImplicitDtor(MemberDtor, field, nullptr) {}
465
466  const FieldDecl *getFieldDecl() const {
467    return static_cast<const FieldDecl*>(Data1.getPointer());
468  }
469
470private:
471  friend class CFGElement;
472
473  CFGMemberDtor() = default;
474
475  static bool isKind(const CFGElement &E) {
476    return E.getKind() == MemberDtor;
477  }
478};
479
480/// Represents C++ object destructor implicitly generated at the end of full
481/// expression for temporary object.
482class CFGTemporaryDtor : public CFGImplicitDtor {
483public:
484  CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
485      : CFGImplicitDtor(TemporaryDtor, expr, nullptr) {}
486
487  const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
488    return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
489  }
490
491private:
492  friend class CFGElement;
493
494  CFGTemporaryDtor() = default;
495
496  static bool isKind(const CFGElement &E) {
497    return E.getKind() == TemporaryDtor;
498  }
499};
500
501/// Represents CFGBlock terminator statement.
502///
503class CFGTerminator {
504public:
505  enum Kind {
506    /// A branch that corresponds to a statement in the code,
507    /// such as an if-statement.
508    StmtBranch,
509    /// A branch in control flow of destructors of temporaries. In this case
510    /// terminator statement is the same statement that branches control flow
511    /// in evaluation of matching full expression.
512    TemporaryDtorsBranch,
513    /// A shortcut around virtual base initializers. It gets taken when
514    /// virtual base classes have already been initialized by the constructor
515    /// of the most derived class while we're in the base class.
516    VirtualBaseBranch,
517
518    /// Number of different kinds, for sanity checks. We subtract 1 so that
519    /// to keep receiving compiler warnings when we don't cover all enum values
520    /// in a switch.
521    NumKindsMinusOne = VirtualBaseBranch
522  };
523
524private:
525  static constexpr int KindBits = 2;
526  static_assert((1 << KindBits) > NumKindsMinusOne,
527                "Not enough room for kind!");
528  llvm::PointerIntPair<Stmt *, KindBits> Data;
529
530public:
531  CFGTerminator() { assert(!isValid()); }
532  CFGTerminator(Stmt *S, Kind K = StmtBranch) : Data(S, K) {}
533
534  bool isValid() const { return Data.getOpaqueValue() != nullptr; }
535  Stmt *getStmt() { return Data.getPointer(); }
536  const Stmt *getStmt() const { return Data.getPointer(); }
537  Kind getKind() const { return static_cast<Kind>(Data.getInt()); }
538
539  bool isStmtBranch() const {
540    return getKind() == StmtBranch;
541  }
542  bool isTemporaryDtorsBranch() const {
543    return getKind() == TemporaryDtorsBranch;
544  }
545  bool isVirtualBaseBranch() const {
546    return getKind() == VirtualBaseBranch;
547  }
548};
549
550/// Represents a single basic block in a source-level CFG.
551///  It consists of:
552///
553///  (1) A set of statements/expressions (which may contain subexpressions).
554///  (2) A "terminator" statement (not in the set of statements).
555///  (3) A list of successors and predecessors.
556///
557/// Terminator: The terminator represents the type of control-flow that occurs
558/// at the end of the basic block.  The terminator is a Stmt* referring to an
559/// AST node that has control-flow: if-statements, breaks, loops, etc.
560/// If the control-flow is conditional, the condition expression will appear
561/// within the set of statements in the block (usually the last statement).
562///
563/// Predecessors: the order in the set of predecessors is arbitrary.
564///
565/// Successors: the order in the set of successors is NOT arbitrary.  We
566///  currently have the following orderings based on the terminator:
567///
568///     Terminator     |   Successor Ordering
569///  ------------------|------------------------------------
570///       if           |  Then Block;  Else Block
571///     ? operator     |  LHS expression;  RHS expression
572///     logical and/or |  expression that consumes the op, RHS
573///     vbase inits    |  already handled by the most derived class; not yet
574///
575/// But note that any of that may be NULL in case of optimized-out edges.
576class CFGBlock {
577  class ElementList {
578    using ImplTy = BumpVector<CFGElement>;
579
580    ImplTy Impl;
581
582  public:
583    ElementList(BumpVectorContext &C) : Impl(C, 4) {}
584
585    using iterator = std::reverse_iterator<ImplTy::iterator>;
586    using const_iterator = std::reverse_iterator<ImplTy::const_iterator>;
587    using reverse_iterator = ImplTy::iterator;
588    using const_reverse_iterator = ImplTy::const_iterator;
589    using const_reference = ImplTy::const_reference;
590
591    void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
592
593    reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
594        BumpVectorContext &C) {
595      return Impl.insert(I, Cnt, E, C);
596    }
597
598    const_reference front() const { return Impl.back(); }
599    const_reference back() const { return Impl.front(); }
600
601    iterator begin() { return Impl.rbegin(); }
602    iterator end() { return Impl.rend(); }
603    const_iterator begin() const { return Impl.rbegin(); }
604    const_iterator end() const { return Impl.rend(); }
605    reverse_iterator rbegin() { return Impl.begin(); }
606    reverse_iterator rend() { return Impl.end(); }
607    const_reverse_iterator rbegin() const { return Impl.begin(); }
608    const_reverse_iterator rend() const { return Impl.end(); }
609
610    CFGElement operator[](size_t i) const  {
611      assert(i < Impl.size());
612      return Impl[Impl.size() - 1 - i];
613    }
614
615    size_t size() const { return Impl.size(); }
616    bool empty() const { return Impl.empty(); }
617  };
618
619  /// A convenience class for comparing CFGElements, since methods of CFGBlock
620  /// like operator[] return CFGElements by value. This is practically a wrapper
621  /// around a (CFGBlock, Index) pair.
622  template <bool IsConst> class ElementRefImpl {
623
624    template <bool IsOtherConst> friend class ElementRefImpl;
625
626    using CFGBlockPtr =
627        typename std::conditional<IsConst, const CFGBlock *, CFGBlock *>::type;
628
629    using CFGElementPtr = typename std::conditional<IsConst, const CFGElement *,
630                                                    CFGElement *>::type;
631
632  protected:
633    CFGBlockPtr Parent;
634    size_t Index;
635
636  public:
637    ElementRefImpl(CFGBlockPtr Parent, size_t Index)
638        : Parent(Parent), Index(Index) {}
639
640    template <bool IsOtherConst>
641    ElementRefImpl(ElementRefImpl<IsOtherConst> Other)
642        : ElementRefImpl(Other.Parent, Other.Index) {}
643
644    size_t getIndexInBlock() const { return Index; }
645
646    CFGBlockPtr getParent() { return Parent; }
647    CFGBlockPtr getParent() const { return Parent; }
648
649    bool operator<(ElementRefImpl Other) const {
650      return std::make_pair(Parent, Index) <
651             std::make_pair(Other.Parent, Other.Index);
652    }
653
654    bool operator==(ElementRefImpl Other) const {
655      return Parent == Other.Parent && Index == Other.Index;
656    }
657
658    bool operator!=(ElementRefImpl Other) const { return !(*this == Other); }
659    CFGElement operator*() const { return (*Parent)[Index]; }
660    CFGElementPtr operator->() const { return &*(Parent->begin() + Index); }
661
662    void dumpToStream(llvm::raw_ostream &OS) const {
663      OS << getIndexInBlock() + 1 << ": ";
664      (*this)->dumpToStream(OS);
665    }
666
667    void dump() const {
668      dumpToStream(llvm::errs());
669    }
670  };
671
672  template <bool IsReverse, bool IsConst> class ElementRefIterator {
673
674    template <bool IsOtherReverse, bool IsOtherConst>
675    friend class ElementRefIterator;
676
677    using CFGBlockRef =
678        typename std::conditional<IsConst, const CFGBlock *, CFGBlock *>::type;
679
680    using UnderlayingIteratorTy = typename std::conditional<
681        IsConst,
682        typename std::conditional<IsReverse,
683                                  ElementList::const_reverse_iterator,
684                                  ElementList::const_iterator>::type,
685        typename std::conditional<IsReverse, ElementList::reverse_iterator,
686                                  ElementList::iterator>::type>::type;
687
688    using IteratorTraits = typename std::iterator_traits<UnderlayingIteratorTy>;
689    using ElementRef = typename CFGBlock::ElementRefImpl<IsConst>;
690
691  public:
692    using difference_type = typename IteratorTraits::difference_type;
693    using value_type = ElementRef;
694    using pointer = ElementRef *;
695    using iterator_category = typename IteratorTraits::iterator_category;
696
697  private:
698    CFGBlockRef Parent;
699    UnderlayingIteratorTy Pos;
700
701  public:
702    ElementRefIterator(CFGBlockRef Parent, UnderlayingIteratorTy Pos)
703        : Parent(Parent), Pos(Pos) {}
704
705    template <bool IsOtherConst>
706    ElementRefIterator(ElementRefIterator<false, IsOtherConst> E)
707        : ElementRefIterator(E.Parent, E.Pos.base()) {}
708
709    template <bool IsOtherConst>
710    ElementRefIterator(ElementRefIterator<true, IsOtherConst> E)
711        : ElementRefIterator(E.Parent, llvm::make_reverse_iterator(E.Pos)) {}
712
713    bool operator<(ElementRefIterator Other) const {
714      assert(Parent == Other.Parent);
715      return Pos < Other.Pos;
716    }
717
718    bool operator==(ElementRefIterator Other) const {
719      return Parent == Other.Parent && Pos == Other.Pos;
720    }
721
722    bool operator!=(ElementRefIterator Other) const {
723      return !(*this == Other);
724    }
725
726  private:
727    template <bool IsOtherConst>
728    static size_t
729    getIndexInBlock(CFGBlock::ElementRefIterator<true, IsOtherConst> E) {
730      return E.Parent->size() - (E.Pos - E.Parent->rbegin()) - 1;
731    }
732
733    template <bool IsOtherConst>
734    static size_t
735    getIndexInBlock(CFGBlock::ElementRefIterator<false, IsOtherConst> E) {
736      return E.Pos - E.Parent->begin();
737    }
738
739  public:
740    value_type operator*() { return {Parent, getIndexInBlock(*this)}; }
741
742    difference_type operator-(ElementRefIterator Other) const {
743      return Pos - Other.Pos;
744    }
745
746    ElementRefIterator operator++() {
747      ++this->Pos;
748      return *this;
749    }
750    ElementRefIterator operator++(int) {
751      ElementRefIterator Ret = *this;
752      ++*this;
753      return Ret;
754    }
755    ElementRefIterator operator+(size_t count) {
756      this->Pos += count;
757      return *this;
758    }
759    ElementRefIterator operator-(size_t count) {
760      this->Pos -= count;
761      return *this;
762    }
763  };
764
765public:
766  /// The set of statements in the basic block.
767  ElementList Elements;
768
769  /// An (optional) label that prefixes the executable statements in the block.
770  /// When this variable is non-NULL, it is either an instance of LabelStmt,
771  /// SwitchCase or CXXCatchStmt.
772  Stmt *Label = nullptr;
773
774  /// The terminator for a basic block that indicates the type of control-flow
775  /// that occurs between a block and its successors.
776  CFGTerminator Terminator;
777
778  /// Some blocks are used to represent the "loop edge" to the start of a loop
779  /// from within the loop body. This Stmt* will be refer to the loop statement
780  /// for such blocks (and be null otherwise).
781  const Stmt *LoopTarget = nullptr;
782
783  /// A numerical ID assigned to a CFGBlock during construction of the CFG.
784  unsigned BlockID;
785
786public:
787  /// This class represents a potential adjacent block in the CFG.  It encodes
788  /// whether or not the block is actually reachable, or can be proved to be
789  /// trivially unreachable.  For some cases it allows one to encode scenarios
790  /// where a block was substituted because the original (now alternate) block
791  /// is unreachable.
792  class AdjacentBlock {
793    enum Kind {
794      AB_Normal,
795      AB_Unreachable,
796      AB_Alternate
797    };
798
799    CFGBlock *ReachableBlock;
800    llvm::PointerIntPair<CFGBlock *, 2> UnreachableBlock;
801
802  public:
803    /// Construct an AdjacentBlock with a possibly unreachable block.
804    AdjacentBlock(CFGBlock *B, bool IsReachable);
805
806    /// Construct an AdjacentBlock with a reachable block and an alternate
807    /// unreachable block.
808    AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock);
809
810    /// Get the reachable block, if one exists.
811    CFGBlock *getReachableBlock() const {
812      return ReachableBlock;
813    }
814
815    /// Get the potentially unreachable block.
816    CFGBlock *getPossiblyUnreachableBlock() const {
817      return UnreachableBlock.getPointer();
818    }
819
820    /// Provide an implicit conversion to CFGBlock* so that
821    /// AdjacentBlock can be substituted for CFGBlock*.
822    operator CFGBlock*() const {
823      return getReachableBlock();
824    }
825
826    CFGBlock& operator *() const {
827      return *getReachableBlock();
828    }
829
830    CFGBlock* operator ->() const {
831      return getReachableBlock();
832    }
833
834    bool isReachable() const {
835      Kind K = (Kind) UnreachableBlock.getInt();
836      return K == AB_Normal || K == AB_Alternate;
837    }
838  };
839
840private:
841  /// Keep track of the predecessor / successor CFG blocks.
842  using AdjacentBlocks = BumpVector<AdjacentBlock>;
843  AdjacentBlocks Preds;
844  AdjacentBlocks Succs;
845
846  /// This bit is set when the basic block contains a function call
847  /// or implicit destructor that is attributed as 'noreturn'. In that case,
848  /// control cannot technically ever proceed past this block. All such blocks
849  /// will have a single immediate successor: the exit block. This allows them
850  /// to be easily reached from the exit block and using this bit quickly
851  /// recognized without scanning the contents of the block.
852  ///
853  /// Optimization Note: This bit could be profitably folded with Terminator's
854  /// storage if the memory usage of CFGBlock becomes an issue.
855  unsigned HasNoReturnElement : 1;
856
857  /// The parent CFG that owns this CFGBlock.
858  CFG *Parent;
859
860public:
861  explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent)
862      : Elements(C), Terminator(nullptr), BlockID(blockid), Preds(C, 1),
863        Succs(C, 1), HasNoReturnElement(false), Parent(parent) {}
864
865  // Statement iterators
866  using iterator = ElementList::iterator;
867  using const_iterator = ElementList::const_iterator;
868  using reverse_iterator = ElementList::reverse_iterator;
869  using const_reverse_iterator = ElementList::const_reverse_iterator;
870
871  size_t getIndexInCFG() const;
872
873  CFGElement                 front()       const { return Elements.front();   }
874  CFGElement                 back()        const { return Elements.back();    }
875
876  iterator                   begin()             { return Elements.begin();   }
877  iterator                   end()               { return Elements.end();     }
878  const_iterator             begin()       const { return Elements.begin();   }
879  const_iterator             end()         const { return Elements.end();     }
880
881  reverse_iterator           rbegin()            { return Elements.rbegin();  }
882  reverse_iterator           rend()              { return Elements.rend();    }
883  const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
884  const_reverse_iterator     rend()        const { return Elements.rend();    }
885
886  using CFGElementRef = ElementRefImpl<false>;
887  using ConstCFGElementRef = ElementRefImpl<true>;
888
889  using ref_iterator = ElementRefIterator<false, false>;
890  using ref_iterator_range = llvm::iterator_range<ref_iterator>;
891  using const_ref_iterator = ElementRefIterator<false, true>;
892  using const_ref_iterator_range = llvm::iterator_range<const_ref_iterator>;
893
894  using reverse_ref_iterator = ElementRefIterator<true, false>;
895  using reverse_ref_iterator_range = llvm::iterator_range<reverse_ref_iterator>;
896
897  using const_reverse_ref_iterator = ElementRefIterator<true, true>;
898  using const_reverse_ref_iterator_range =
899      llvm::iterator_range<const_reverse_ref_iterator>;
900
901  ref_iterator ref_begin() { return {this, begin()}; }
902  ref_iterator ref_end() { return {this, end()}; }
903  const_ref_iterator ref_begin() const { return {this, begin()}; }
904  const_ref_iterator ref_end() const { return {this, end()}; }
905
906  reverse_ref_iterator rref_begin() { return {this, rbegin()}; }
907  reverse_ref_iterator rref_end() { return {this, rend()}; }
908  const_reverse_ref_iterator rref_begin() const { return {this, rbegin()}; }
909  const_reverse_ref_iterator rref_end() const { return {this, rend()}; }
910
911  ref_iterator_range refs() { return {ref_begin(), ref_end()}; }
912  const_ref_iterator_range refs() const { return {ref_begin(), ref_end()}; }
913  reverse_ref_iterator_range rrefs() { return {rref_begin(), rref_end()}; }
914  const_reverse_ref_iterator_range rrefs() const {
915    return {rref_begin(), rref_end()};
916  }
917
918  unsigned                   size()        const { return Elements.size();    }
919  bool                       empty()       const { return Elements.empty();   }
920
921  CFGElement operator[](size_t i) const  { return Elements[i]; }
922
923  // CFG iterators
924  using pred_iterator = AdjacentBlocks::iterator;
925  using const_pred_iterator = AdjacentBlocks::const_iterator;
926  using pred_reverse_iterator = AdjacentBlocks::reverse_iterator;
927  using const_pred_reverse_iterator = AdjacentBlocks::const_reverse_iterator;
928  using pred_range = llvm::iterator_range<pred_iterator>;
929  using pred_const_range = llvm::iterator_range<const_pred_iterator>;
930
931  using succ_iterator = AdjacentBlocks::iterator;
932  using const_succ_iterator = AdjacentBlocks::const_iterator;
933  using succ_reverse_iterator = AdjacentBlocks::reverse_iterator;
934  using const_succ_reverse_iterator = AdjacentBlocks::const_reverse_iterator;
935  using succ_range = llvm::iterator_range<succ_iterator>;
936  using succ_const_range = llvm::iterator_range<const_succ_iterator>;
937
938  pred_iterator                pred_begin()        { return Preds.begin();   }
939  pred_iterator                pred_end()          { return Preds.end();     }
940  const_pred_iterator          pred_begin()  const { return Preds.begin();   }
941  const_pred_iterator          pred_end()    const { return Preds.end();     }
942
943  pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
944  pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
945  const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
946  const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
947
948  pred_range preds() {
949    return pred_range(pred_begin(), pred_end());
950  }
951
952  pred_const_range preds() const {
953    return pred_const_range(pred_begin(), pred_end());
954  }
955
956  succ_iterator                succ_begin()        { return Succs.begin();   }
957  succ_iterator                succ_end()          { return Succs.end();     }
958  const_succ_iterator          succ_begin()  const { return Succs.begin();   }
959  const_succ_iterator          succ_end()    const { return Succs.end();     }
960
961  succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
962  succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
963  const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
964  const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
965
966  succ_range succs() {
967    return succ_range(succ_begin(), succ_end());
968  }
969
970  succ_const_range succs() const {
971    return succ_const_range(succ_begin(), succ_end());
972  }
973
974  unsigned                     succ_size()   const { return Succs.size();    }
975  bool                         succ_empty()  const { return Succs.empty();   }
976
977  unsigned                     pred_size()   const { return Preds.size();    }
978  bool                         pred_empty()  const { return Preds.empty();   }
979
980
981  class FilterOptions {
982  public:
983    unsigned IgnoreNullPredecessors : 1;
984    unsigned IgnoreDefaultsWithCoveredEnums : 1;
985
986    FilterOptions()
987        : IgnoreNullPredecessors(1), IgnoreDefaultsWithCoveredEnums(0) {}
988  };
989
990  static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
991       const CFGBlock *Dst);
992
993  template <typename IMPL, bool IsPred>
994  class FilteredCFGBlockIterator {
995  private:
996    IMPL I, E;
997    const FilterOptions F;
998    const CFGBlock *From;
999
1000  public:
1001    explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
1002                                      const CFGBlock *from,
1003                                      const FilterOptions &f)
1004        : I(i), E(e), F(f), From(from) {
1005      while (hasMore() && Filter(*I))
1006        ++I;
1007    }
1008
1009    bool hasMore() const { return I != E; }
1010
1011    FilteredCFGBlockIterator &operator++() {
1012      do { ++I; } while (hasMore() && Filter(*I));
1013      return *this;
1014    }
1015
1016    const CFGBlock *operator*() const { return *I; }
1017
1018  private:
1019    bool Filter(const CFGBlock *To) {
1020      return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
1021    }
1022  };
1023
1024  using filtered_pred_iterator =
1025      FilteredCFGBlockIterator<const_pred_iterator, true>;
1026
1027  using filtered_succ_iterator =
1028      FilteredCFGBlockIterator<const_succ_iterator, false>;
1029
1030  filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
1031    return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
1032  }
1033
1034  filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
1035    return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
1036  }
1037
1038  // Manipulation of block contents
1039
1040  void setTerminator(CFGTerminator Term) { Terminator = Term; }
1041  void setLabel(Stmt *Statement) { Label = Statement; }
1042  void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
1043  void setHasNoReturnElement() { HasNoReturnElement = true; }
1044
1045  /// Returns true if the block would eventually end with a sink (a noreturn
1046  /// node).
1047  bool isInevitablySinking() const;
1048
1049  CFGTerminator getTerminator() const { return Terminator; }
1050
1051  Stmt *getTerminatorStmt() { return Terminator.getStmt(); }
1052  const Stmt *getTerminatorStmt() const { return Terminator.getStmt(); }
1053
1054  /// \returns the last (\c rbegin()) condition, e.g. observe the following code
1055  /// snippet:
1056  ///   if (A && B && C)
1057  /// A block would be created for \c A, \c B, and \c C. For the latter,
1058  /// \c getTerminatorStmt() would retrieve the entire condition, rather than
1059  /// C itself, while this method would only return C.
1060  const Expr *getLastCondition() const;
1061
1062  Stmt *getTerminatorCondition(bool StripParens = true);
1063
1064  const Stmt *getTerminatorCondition(bool StripParens = true) const {
1065    return const_cast<CFGBlock*>(this)->getTerminatorCondition(StripParens);
1066  }
1067
1068  const Stmt *getLoopTarget() const { return LoopTarget; }
1069
1070  Stmt *getLabel() { return Label; }
1071  const Stmt *getLabel() const { return Label; }
1072
1073  bool hasNoReturnElement() const { return HasNoReturnElement; }
1074
1075  unsigned getBlockID() const { return BlockID; }
1076
1077  CFG *getParent() const { return Parent; }
1078
1079  void dump() const;
1080
1081  void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const;
1082  void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO,
1083             bool ShowColors) const;
1084
1085  void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
1086  void printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
1087                           bool AddQuotes) const;
1088
1089  void printAsOperand(raw_ostream &OS, bool /*PrintType*/) {
1090    OS << "BB#" << getBlockID();
1091  }
1092
1093  /// Adds a (potentially unreachable) successor block to the current block.
1094  void addSuccessor(AdjacentBlock Succ, BumpVectorContext &C);
1095
1096  void appendStmt(Stmt *statement, BumpVectorContext &C) {
1097    Elements.push_back(CFGStmt(statement), C);
1098  }
1099
1100  void appendConstructor(CXXConstructExpr *CE, const ConstructionContext *CC,
1101                         BumpVectorContext &C) {
1102    Elements.push_back(CFGConstructor(CE, CC), C);
1103  }
1104
1105  void appendCXXRecordTypedCall(Expr *E,
1106                                const ConstructionContext *CC,
1107                                BumpVectorContext &C) {
1108    Elements.push_back(CFGCXXRecordTypedCall(E, CC), C);
1109  }
1110
1111  void appendInitializer(CXXCtorInitializer *initializer,
1112                        BumpVectorContext &C) {
1113    Elements.push_back(CFGInitializer(initializer), C);
1114  }
1115
1116  void appendNewAllocator(CXXNewExpr *NE,
1117                          BumpVectorContext &C) {
1118    Elements.push_back(CFGNewAllocator(NE), C);
1119  }
1120
1121  void appendScopeBegin(const VarDecl *VD, const Stmt *S,
1122                        BumpVectorContext &C) {
1123    Elements.push_back(CFGScopeBegin(VD, S), C);
1124  }
1125
1126  void prependScopeBegin(const VarDecl *VD, const Stmt *S,
1127                         BumpVectorContext &C) {
1128    Elements.insert(Elements.rbegin(), 1, CFGScopeBegin(VD, S), C);
1129  }
1130
1131  void appendScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) {
1132    Elements.push_back(CFGScopeEnd(VD, S), C);
1133  }
1134
1135  void prependScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) {
1136    Elements.insert(Elements.rbegin(), 1, CFGScopeEnd(VD, S), C);
1137  }
1138
1139  void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
1140    Elements.push_back(CFGBaseDtor(BS), C);
1141  }
1142
1143  void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
1144    Elements.push_back(CFGMemberDtor(FD), C);
1145  }
1146
1147  void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
1148    Elements.push_back(CFGTemporaryDtor(E), C);
1149  }
1150
1151  void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
1152    Elements.push_back(CFGAutomaticObjDtor(VD, S), C);
1153  }
1154
1155  void appendLifetimeEnds(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
1156    Elements.push_back(CFGLifetimeEnds(VD, S), C);
1157  }
1158
1159  void appendLoopExit(const Stmt *LoopStmt, BumpVectorContext &C) {
1160    Elements.push_back(CFGLoopExit(LoopStmt), C);
1161  }
1162
1163  void appendDeleteDtor(CXXRecordDecl *RD, CXXDeleteExpr *DE, BumpVectorContext &C) {
1164    Elements.push_back(CFGDeleteDtor(RD, DE), C);
1165  }
1166
1167  // Destructors must be inserted in reversed order. So insertion is in two
1168  // steps. First we prepare space for some number of elements, then we insert
1169  // the elements beginning at the last position in prepared space.
1170  iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
1171      BumpVectorContext &C) {
1172    return iterator(Elements.insert(I.base(), Cnt,
1173                                    CFGAutomaticObjDtor(nullptr, nullptr), C));
1174  }
1175  iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) {
1176    *I = CFGAutomaticObjDtor(VD, S);
1177    return ++I;
1178  }
1179
1180  // Scope leaving must be performed in reversed order. So insertion is in two
1181  // steps. First we prepare space for some number of elements, then we insert
1182  // the elements beginning at the last position in prepared space.
1183  iterator beginLifetimeEndsInsert(iterator I, size_t Cnt,
1184                                   BumpVectorContext &C) {
1185    return iterator(
1186        Elements.insert(I.base(), Cnt, CFGLifetimeEnds(nullptr, nullptr), C));
1187  }
1188  iterator insertLifetimeEnds(iterator I, VarDecl *VD, Stmt *S) {
1189    *I = CFGLifetimeEnds(VD, S);
1190    return ++I;
1191  }
1192
1193  // Scope leaving must be performed in reversed order. So insertion is in two
1194  // steps. First we prepare space for some number of elements, then we insert
1195  // the elements beginning at the last position in prepared space.
1196  iterator beginScopeEndInsert(iterator I, size_t Cnt, BumpVectorContext &C) {
1197    return iterator(
1198        Elements.insert(I.base(), Cnt, CFGScopeEnd(nullptr, nullptr), C));
1199  }
1200  iterator insertScopeEnd(iterator I, VarDecl *VD, Stmt *S) {
1201    *I = CFGScopeEnd(VD, S);
1202    return ++I;
1203  }
1204};
1205
1206/// CFGCallback defines methods that should be called when a logical
1207/// operator error is found when building the CFG.
1208class CFGCallback {
1209public:
1210  CFGCallback() = default;
1211  virtual ~CFGCallback() = default;
1212
1213  virtual void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {}
1214  virtual void compareBitwiseEquality(const BinaryOperator *B,
1215                                      bool isAlwaysTrue) {}
1216  virtual void compareBitwiseOr(const BinaryOperator *B) {}
1217};
1218
1219/// Represents a source-level, intra-procedural CFG that represents the
1220///  control-flow of a Stmt.  The Stmt can represent an entire function body,
1221///  or a single expression.  A CFG will always contain one empty block that
1222///  represents the Exit point of the CFG.  A CFG will also contain a designated
1223///  Entry block.  The CFG solely represents control-flow; it consists of
1224///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
1225///  was constructed from.
1226class CFG {
1227public:
1228  //===--------------------------------------------------------------------===//
1229  // CFG Construction & Manipulation.
1230  //===--------------------------------------------------------------------===//
1231
1232  class BuildOptions {
1233    std::bitset<Stmt::lastStmtConstant> alwaysAddMask;
1234
1235  public:
1236    using ForcedBlkExprs = llvm::DenseMap<const Stmt *, const CFGBlock *>;
1237
1238    ForcedBlkExprs **forcedBlkExprs = nullptr;
1239    CFGCallback *Observer = nullptr;
1240    bool PruneTriviallyFalseEdges = true;
1241    bool AddEHEdges = false;
1242    bool AddInitializers = false;
1243    bool AddImplicitDtors = false;
1244    bool AddLifetime = false;
1245    bool AddLoopExit = false;
1246    bool AddTemporaryDtors = false;
1247    bool AddScopes = false;
1248    bool AddStaticInitBranches = false;
1249    bool AddCXXNewAllocator = false;
1250    bool AddCXXDefaultInitExprInCtors = false;
1251    bool AddCXXDefaultInitExprInAggregates = false;
1252    bool AddRichCXXConstructors = false;
1253    bool MarkElidedCXXConstructors = false;
1254    bool AddVirtualBaseBranches = false;
1255    bool OmitImplicitValueInitializers = false;
1256
1257    BuildOptions() = default;
1258
1259    bool alwaysAdd(const Stmt *stmt) const {
1260      return alwaysAddMask[stmt->getStmtClass()];
1261    }
1262
1263    BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
1264      alwaysAddMask[stmtClass] = val;
1265      return *this;
1266    }
1267
1268    BuildOptions &setAllAlwaysAdd() {
1269      alwaysAddMask.set();
1270      return *this;
1271    }
1272  };
1273
1274  /// Builds a CFG from an AST.
1275  static std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
1276                                       const BuildOptions &BO);
1277
1278  /// Create a new block in the CFG. The CFG owns the block; the caller should
1279  /// not directly free it.
1280  CFGBlock *createBlock();
1281
1282  /// Set the entry block of the CFG. This is typically used only during CFG
1283  /// construction. Most CFG clients expect that the entry block has no
1284  /// predecessors and contains no statements.
1285  void setEntry(CFGBlock *B) { Entry = B; }
1286
1287  /// Set the block used for indirect goto jumps. This is typically used only
1288  /// during CFG construction.
1289  void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }
1290
1291  //===--------------------------------------------------------------------===//
1292  // Block Iterators
1293  //===--------------------------------------------------------------------===//
1294
1295  using CFGBlockListTy = BumpVector<CFGBlock *>;
1296  using iterator = CFGBlockListTy::iterator;
1297  using const_iterator = CFGBlockListTy::const_iterator;
1298  using reverse_iterator = std::reverse_iterator<iterator>;
1299  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
1300
1301  CFGBlock &                front()                { return *Blocks.front(); }
1302  CFGBlock &                back()                 { return *Blocks.back(); }
1303
1304  iterator                  begin()                { return Blocks.begin(); }
1305  iterator                  end()                  { return Blocks.end(); }
1306  const_iterator            begin()       const    { return Blocks.begin(); }
1307  const_iterator            end()         const    { return Blocks.end(); }
1308
1309  iterator nodes_begin() { return iterator(Blocks.begin()); }
1310  iterator nodes_end() { return iterator(Blocks.end()); }
1311  const_iterator nodes_begin() const { return const_iterator(Blocks.begin()); }
1312  const_iterator nodes_end() const { return const_iterator(Blocks.end()); }
1313
1314  reverse_iterator          rbegin()               { return Blocks.rbegin(); }
1315  reverse_iterator          rend()                 { return Blocks.rend(); }
1316  const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
1317  const_reverse_iterator    rend()        const    { return Blocks.rend(); }
1318
1319  CFGBlock &                getEntry()             { return *Entry; }
1320  const CFGBlock &          getEntry()    const    { return *Entry; }
1321  CFGBlock &                getExit()              { return *Exit; }
1322  const CFGBlock &          getExit()     const    { return *Exit; }
1323
1324  CFGBlock *       getIndirectGotoBlock() { return IndirectGotoBlock; }
1325  const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }
1326
1327  using try_block_iterator = std::vector<const CFGBlock *>::const_iterator;
1328
1329  try_block_iterator try_blocks_begin() const {
1330    return TryDispatchBlocks.begin();
1331  }
1332
1333  try_block_iterator try_blocks_end() const {
1334    return TryDispatchBlocks.end();
1335  }
1336
1337  void addTryDispatchBlock(const CFGBlock *block) {
1338    TryDispatchBlocks.push_back(block);
1339  }
1340
1341  /// Records a synthetic DeclStmt and the DeclStmt it was constructed from.
1342  ///
1343  /// The CFG uses synthetic DeclStmts when a single AST DeclStmt contains
1344  /// multiple decls.
1345  void addSyntheticDeclStmt(const DeclStmt *Synthetic,
1346                            const DeclStmt *Source) {
1347    assert(Synthetic->isSingleDecl() && "Can handle single declarations only");
1348    assert(Synthetic != Source && "Don't include original DeclStmts in map");
1349    assert(!SyntheticDeclStmts.count(Synthetic) && "Already in map");
1350    SyntheticDeclStmts[Synthetic] = Source;
1351  }
1352
1353  using synthetic_stmt_iterator =
1354      llvm::DenseMap<const DeclStmt *, const DeclStmt *>::const_iterator;
1355  using synthetic_stmt_range = llvm::iterator_range<synthetic_stmt_iterator>;
1356
1357  /// Iterates over synthetic DeclStmts in the CFG.
1358  ///
1359  /// Each element is a (synthetic statement, source statement) pair.
1360  ///
1361  /// \sa addSyntheticDeclStmt
1362  synthetic_stmt_iterator synthetic_stmt_begin() const {
1363    return SyntheticDeclStmts.begin();
1364  }
1365
1366  /// \sa synthetic_stmt_begin
1367  synthetic_stmt_iterator synthetic_stmt_end() const {
1368    return SyntheticDeclStmts.end();
1369  }
1370
1371  /// \sa synthetic_stmt_begin
1372  synthetic_stmt_range synthetic_stmts() const {
1373    return synthetic_stmt_range(synthetic_stmt_begin(), synthetic_stmt_end());
1374  }
1375
1376  //===--------------------------------------------------------------------===//
1377  // Member templates useful for various batch operations over CFGs.
1378  //===--------------------------------------------------------------------===//
1379
1380  template <typename CALLBACK>
1381  void VisitBlockStmts(CALLBACK& O) const {
1382    for (const_iterator I = begin(), E = end(); I != E; ++I)
1383      for (CFGBlock::const_iterator BI = (*I)->begin(), BE = (*I)->end();
1384           BI != BE; ++BI) {
1385        if (Optional<CFGStmt> stmt = BI->getAs<CFGStmt>())
1386          O(const_cast<Stmt*>(stmt->getStmt()));
1387      }
1388  }
1389
1390  //===--------------------------------------------------------------------===//
1391  // CFG Introspection.
1392  //===--------------------------------------------------------------------===//
1393
1394  /// Returns the total number of BlockIDs allocated (which start at 0).
1395  unsigned getNumBlockIDs() const { return NumBlockIDs; }
1396
1397  /// Return the total number of CFGBlocks within the CFG This is simply a
1398  /// renaming of the getNumBlockIDs(). This is necessary because the dominator
1399  /// implementation needs such an interface.
1400  unsigned size() const { return NumBlockIDs; }
1401
1402  /// Returns true if the CFG has no branches. Usually it boils down to the CFG
1403  /// having exactly three blocks (entry, the actual code, exit), but sometimes
1404  /// more blocks appear due to having control flow that can be fully
1405  /// resolved in compile time.
1406  bool isLinear() const;
1407
1408  //===--------------------------------------------------------------------===//
1409  // CFG Debugging: Pretty-Printing and Visualization.
1410  //===--------------------------------------------------------------------===//
1411
1412  void viewCFG(const LangOptions &LO) const;
1413  void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const;
1414  void dump(const LangOptions &LO, bool ShowColors) const;
1415
1416  //===--------------------------------------------------------------------===//
1417  // Internal: constructors and data.
1418  //===--------------------------------------------------------------------===//
1419
1420  CFG() : Blocks(BlkBVC, 10) {}
1421
1422  llvm::BumpPtrAllocator& getAllocator() {
1423    return BlkBVC.getAllocator();
1424  }
1425
1426  BumpVectorContext &getBumpVectorContext() {
1427    return BlkBVC;
1428  }
1429
1430private:
1431  CFGBlock *Entry = nullptr;
1432  CFGBlock *Exit = nullptr;
1433
1434  // Special block to contain collective dispatch for indirect gotos
1435  CFGBlock* IndirectGotoBlock = nullptr;
1436
1437  unsigned  NumBlockIDs = 0;
1438
1439  BumpVectorContext BlkBVC;
1440
1441  CFGBlockListTy Blocks;
1442
1443  /// C++ 'try' statements are modeled with an indirect dispatch block.
1444  /// This is the collection of such blocks present in the CFG.
1445  std::vector<const CFGBlock *> TryDispatchBlocks;
1446
1447  /// Collects DeclStmts synthesized for this CFG and maps each one back to its
1448  /// source DeclStmt.
1449  llvm::DenseMap<const DeclStmt *, const DeclStmt *> SyntheticDeclStmts;
1450};
1451
1452} // namespace clang
1453
1454//===----------------------------------------------------------------------===//
1455// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
1456//===----------------------------------------------------------------------===//
1457
1458namespace llvm {
1459
1460/// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
1461/// CFGTerminator to a specific Stmt class.
1462template <> struct simplify_type< ::clang::CFGTerminator> {
1463  using SimpleType = ::clang::Stmt *;
1464
1465  static SimpleType getSimplifiedValue(::clang::CFGTerminator Val) {
1466    return Val.getStmt();
1467  }
1468};
1469
1470// Traits for: CFGBlock
1471
1472template <> struct GraphTraits< ::clang::CFGBlock *> {
1473  using NodeRef = ::clang::CFGBlock *;
1474  using ChildIteratorType = ::clang::CFGBlock::succ_iterator;
1475
1476  static NodeRef getEntryNode(::clang::CFGBlock *BB) { return BB; }
1477  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1478  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1479};
1480
1481template <> struct GraphTraits<clang::CFGBlock>
1482    : GraphTraits<clang::CFGBlock *> {};
1483
1484template <> struct GraphTraits< const ::clang::CFGBlock *> {
1485  using NodeRef = const ::clang::CFGBlock *;
1486  using ChildIteratorType = ::clang::CFGBlock::const_succ_iterator;
1487
1488  static NodeRef getEntryNode(const clang::CFGBlock *BB) { return BB; }
1489  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1490  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1491};
1492
1493template <> struct GraphTraits<const clang::CFGBlock>
1494    : GraphTraits<clang::CFGBlock *> {};
1495
1496template <> struct GraphTraits<Inverse< ::clang::CFGBlock *>> {
1497  using NodeRef = ::clang::CFGBlock *;
1498  using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator;
1499
1500  static NodeRef getEntryNode(Inverse<::clang::CFGBlock *> G) {
1501    return G.Graph;
1502  }
1503
1504  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1505  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1506};
1507
1508template <> struct GraphTraits<Inverse<clang::CFGBlock>>
1509    : GraphTraits<clang::CFGBlock *> {};
1510
1511template <> struct GraphTraits<Inverse<const ::clang::CFGBlock *>> {
1512  using NodeRef = const ::clang::CFGBlock *;
1513  using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator;
1514
1515  static NodeRef getEntryNode(Inverse<const ::clang::CFGBlock *> G) {
1516    return G.Graph;
1517  }
1518
1519  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1520  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1521};
1522
1523template <> struct GraphTraits<const Inverse<clang::CFGBlock>>
1524    : GraphTraits<clang::CFGBlock *> {};
1525
1526// Traits for: CFG
1527
1528template <> struct GraphTraits< ::clang::CFG* >
1529    : public GraphTraits< ::clang::CFGBlock *>  {
1530  using nodes_iterator = ::clang::CFG::iterator;
1531
1532  static NodeRef getEntryNode(::clang::CFG *F) { return &F->getEntry(); }
1533  static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();}
1534  static nodes_iterator   nodes_end(::clang::CFG* F) { return F->nodes_end(); }
1535  static unsigned              size(::clang::CFG* F) { return F->size(); }
1536};
1537
1538template <> struct GraphTraits<const ::clang::CFG* >
1539    : public GraphTraits<const ::clang::CFGBlock *>  {
1540  using nodes_iterator = ::clang::CFG::const_iterator;
1541
1542  static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getEntry(); }
1543
1544  static nodes_iterator nodes_begin( const ::clang::CFG* F) {
1545    return F->nodes_begin();
1546  }
1547
1548  static nodes_iterator nodes_end( const ::clang::CFG* F) {
1549    return F->nodes_end();
1550  }
1551
1552  static unsigned size(const ::clang::CFG* F) {
1553    return F->size();
1554  }
1555};
1556
1557template <> struct GraphTraits<Inverse< ::clang::CFG *>>
1558  : public GraphTraits<Inverse< ::clang::CFGBlock *>> {
1559  using nodes_iterator = ::clang::CFG::iterator;
1560
1561  static NodeRef getEntryNode(::clang::CFG *F) { return &F->getExit(); }
1562  static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();}
1563  static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); }
1564};
1565
1566template <> struct GraphTraits<Inverse<const ::clang::CFG *>>
1567  : public GraphTraits<Inverse<const ::clang::CFGBlock *>> {
1568  using nodes_iterator = ::clang::CFG::const_iterator;
1569
1570  static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getExit(); }
1571
1572  static nodes_iterator nodes_begin(const ::clang::CFG* F) {
1573    return F->nodes_begin();
1574  }
1575
1576  static nodes_iterator nodes_end(const ::clang::CFG* F) {
1577    return F->nodes_end();
1578  }
1579};
1580
1581} // namespace llvm
1582
1583#endif // LLVM_CLANG_ANALYSIS_CFG_H
1584