libzfs_import.c revision 332550
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright 2015 RackTop Systems.
26 * Copyright 2016 Nexenta Systems, Inc.
27 */
28
29/*
30 * Pool import support functions.
31 *
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device.  If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
35 *
36 * 	pool guid -> toplevel vdev guid -> label txg
37 *
38 * Duplicate entries matching this same tuple will be discarded.  Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed.  Finally, we attempt to import the pool
42 * using our derived config, and record the results.
43 */
44
45#include <aio.h>
46#include <ctype.h>
47#include <devid.h>
48#include <dirent.h>
49#include <errno.h>
50#include <libintl.h>
51#include <stddef.h>
52#include <stdlib.h>
53#include <string.h>
54#include <sys/stat.h>
55#include <unistd.h>
56#include <fcntl.h>
57#include <thread_pool.h>
58#include <libgeom.h>
59
60#include <sys/vdev_impl.h>
61
62#include "libzfs.h"
63#include "libzfs_impl.h"
64
65/*
66 * Intermediate structures used to gather configuration information.
67 */
68typedef struct config_entry {
69	uint64_t		ce_txg;
70	nvlist_t		*ce_config;
71	struct config_entry	*ce_next;
72} config_entry_t;
73
74typedef struct vdev_entry {
75	uint64_t		ve_guid;
76	config_entry_t		*ve_configs;
77	struct vdev_entry	*ve_next;
78} vdev_entry_t;
79
80typedef struct pool_entry {
81	uint64_t		pe_guid;
82	vdev_entry_t		*pe_vdevs;
83	struct pool_entry	*pe_next;
84} pool_entry_t;
85
86typedef struct name_entry {
87	char			*ne_name;
88	uint64_t		ne_guid;
89	struct name_entry	*ne_next;
90} name_entry_t;
91
92typedef struct pool_list {
93	pool_entry_t		*pools;
94	name_entry_t		*names;
95} pool_list_t;
96
97static char *
98get_devid(const char *path)
99{
100#ifdef have_devid
101	int fd;
102	ddi_devid_t devid;
103	char *minor, *ret;
104
105	if ((fd = open(path, O_RDONLY)) < 0)
106		return (NULL);
107
108	minor = NULL;
109	ret = NULL;
110	if (devid_get(fd, &devid) == 0) {
111		if (devid_get_minor_name(fd, &minor) == 0)
112			ret = devid_str_encode(devid, minor);
113		if (minor != NULL)
114			devid_str_free(minor);
115		devid_free(devid);
116	}
117	(void) close(fd);
118
119	return (ret);
120#else
121	return (NULL);
122#endif
123}
124
125
126/*
127 * Go through and fix up any path and/or devid information for the given vdev
128 * configuration.
129 */
130static int
131fix_paths(nvlist_t *nv, name_entry_t *names)
132{
133	nvlist_t **child;
134	uint_t c, children;
135	uint64_t guid;
136	name_entry_t *ne, *best;
137	char *path, *devid;
138	int matched;
139
140	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
141	    &child, &children) == 0) {
142		for (c = 0; c < children; c++)
143			if (fix_paths(child[c], names) != 0)
144				return (-1);
145		return (0);
146	}
147
148	/*
149	 * This is a leaf (file or disk) vdev.  In either case, go through
150	 * the name list and see if we find a matching guid.  If so, replace
151	 * the path and see if we can calculate a new devid.
152	 *
153	 * There may be multiple names associated with a particular guid, in
154	 * which case we have overlapping slices or multiple paths to the same
155	 * disk.  If this is the case, then we want to pick the path that is
156	 * the most similar to the original, where "most similar" is the number
157	 * of matching characters starting from the end of the path.  This will
158	 * preserve slice numbers even if the disks have been reorganized, and
159	 * will also catch preferred disk names if multiple paths exist.
160	 */
161	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
162	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
163		path = NULL;
164
165	matched = 0;
166	best = NULL;
167	for (ne = names; ne != NULL; ne = ne->ne_next) {
168		if (ne->ne_guid == guid) {
169			const char *src, *dst;
170			int count;
171
172			if (path == NULL) {
173				best = ne;
174				break;
175			}
176
177			src = ne->ne_name + strlen(ne->ne_name) - 1;
178			dst = path + strlen(path) - 1;
179			for (count = 0; src >= ne->ne_name && dst >= path;
180			    src--, dst--, count++)
181				if (*src != *dst)
182					break;
183
184			/*
185			 * At this point, 'count' is the number of characters
186			 * matched from the end.
187			 */
188			if (count > matched || best == NULL) {
189				best = ne;
190				matched = count;
191			}
192		}
193	}
194
195	if (best == NULL)
196		return (0);
197
198	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
199		return (-1);
200
201	if ((devid = get_devid(best->ne_name)) == NULL) {
202		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
203	} else {
204		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
205			devid_str_free(devid);
206			return (-1);
207		}
208		devid_str_free(devid);
209	}
210
211	return (0);
212}
213
214/*
215 * Add the given configuration to the list of known devices.
216 */
217static int
218add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
219    nvlist_t *config)
220{
221	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
222	pool_entry_t *pe;
223	vdev_entry_t *ve;
224	config_entry_t *ce;
225	name_entry_t *ne;
226
227	/*
228	 * If this is a hot spare not currently in use or level 2 cache
229	 * device, add it to the list of names to translate, but don't do
230	 * anything else.
231	 */
232	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
233	    &state) == 0 &&
234	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
235	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
236		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
237			return (-1);
238
239		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
240			free(ne);
241			return (-1);
242		}
243
244		ne->ne_guid = vdev_guid;
245		ne->ne_next = pl->names;
246		pl->names = ne;
247
248		nvlist_free(config);
249		return (0);
250	}
251
252	/*
253	 * If we have a valid config but cannot read any of these fields, then
254	 * it means we have a half-initialized label.  In vdev_label_init()
255	 * we write a label with txg == 0 so that we can identify the device
256	 * in case the user refers to the same disk later on.  If we fail to
257	 * create the pool, we'll be left with a label in this state
258	 * which should not be considered part of a valid pool.
259	 */
260	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
261	    &pool_guid) != 0 ||
262	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
263	    &vdev_guid) != 0 ||
264	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
265	    &top_guid) != 0 ||
266	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
267	    &txg) != 0 || txg == 0) {
268		nvlist_free(config);
269		return (0);
270	}
271
272	/*
273	 * First, see if we know about this pool.  If not, then add it to the
274	 * list of known pools.
275	 */
276	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
277		if (pe->pe_guid == pool_guid)
278			break;
279	}
280
281	if (pe == NULL) {
282		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
283			nvlist_free(config);
284			return (-1);
285		}
286		pe->pe_guid = pool_guid;
287		pe->pe_next = pl->pools;
288		pl->pools = pe;
289	}
290
291	/*
292	 * Second, see if we know about this toplevel vdev.  Add it if its
293	 * missing.
294	 */
295	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
296		if (ve->ve_guid == top_guid)
297			break;
298	}
299
300	if (ve == NULL) {
301		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
302			nvlist_free(config);
303			return (-1);
304		}
305		ve->ve_guid = top_guid;
306		ve->ve_next = pe->pe_vdevs;
307		pe->pe_vdevs = ve;
308	}
309
310	/*
311	 * Third, see if we have a config with a matching transaction group.  If
312	 * so, then we do nothing.  Otherwise, add it to the list of known
313	 * configs.
314	 */
315	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
316		if (ce->ce_txg == txg)
317			break;
318	}
319
320	if (ce == NULL) {
321		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
322			nvlist_free(config);
323			return (-1);
324		}
325		ce->ce_txg = txg;
326		ce->ce_config = config;
327		ce->ce_next = ve->ve_configs;
328		ve->ve_configs = ce;
329	} else {
330		nvlist_free(config);
331	}
332
333	/*
334	 * At this point we've successfully added our config to the list of
335	 * known configs.  The last thing to do is add the vdev guid -> path
336	 * mappings so that we can fix up the configuration as necessary before
337	 * doing the import.
338	 */
339	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
340		return (-1);
341
342	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
343		free(ne);
344		return (-1);
345	}
346
347	ne->ne_guid = vdev_guid;
348	ne->ne_next = pl->names;
349	pl->names = ne;
350
351	return (0);
352}
353
354/*
355 * Returns true if the named pool matches the given GUID.
356 */
357static int
358pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
359    boolean_t *isactive)
360{
361	zpool_handle_t *zhp;
362	uint64_t theguid;
363
364	if (zpool_open_silent(hdl, name, &zhp) != 0)
365		return (-1);
366
367	if (zhp == NULL) {
368		*isactive = B_FALSE;
369		return (0);
370	}
371
372	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
373	    &theguid) == 0);
374
375	zpool_close(zhp);
376
377	*isactive = (theguid == guid);
378	return (0);
379}
380
381static nvlist_t *
382refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
383{
384	nvlist_t *nvl;
385	zfs_cmd_t zc = { 0 };
386	int err, dstbuf_size;
387
388	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
389		return (NULL);
390
391	dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4);
392
393	if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) {
394		zcmd_free_nvlists(&zc);
395		return (NULL);
396	}
397
398	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
399	    &zc)) != 0 && errno == ENOMEM) {
400		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
401			zcmd_free_nvlists(&zc);
402			return (NULL);
403		}
404	}
405
406	if (err) {
407		zcmd_free_nvlists(&zc);
408		return (NULL);
409	}
410
411	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
412		zcmd_free_nvlists(&zc);
413		return (NULL);
414	}
415
416	zcmd_free_nvlists(&zc);
417	return (nvl);
418}
419
420/*
421 * Determine if the vdev id is a hole in the namespace.
422 */
423boolean_t
424vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
425{
426	for (int c = 0; c < holes; c++) {
427
428		/* Top-level is a hole */
429		if (hole_array[c] == id)
430			return (B_TRUE);
431	}
432	return (B_FALSE);
433}
434
435/*
436 * Convert our list of pools into the definitive set of configurations.  We
437 * start by picking the best config for each toplevel vdev.  Once that's done,
438 * we assemble the toplevel vdevs into a full config for the pool.  We make a
439 * pass to fix up any incorrect paths, and then add it to the main list to
440 * return to the user.
441 */
442static nvlist_t *
443get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
444    nvlist_t *policy)
445{
446	pool_entry_t *pe;
447	vdev_entry_t *ve;
448	config_entry_t *ce;
449	nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
450	nvlist_t **spares, **l2cache;
451	uint_t i, nspares, nl2cache;
452	boolean_t config_seen;
453	uint64_t best_txg;
454	char *name, *hostname = NULL;
455	uint64_t guid;
456	uint_t children = 0;
457	nvlist_t **child = NULL;
458	uint_t holes;
459	uint64_t *hole_array, max_id;
460	uint_t c;
461	boolean_t isactive;
462	uint64_t hostid;
463	nvlist_t *nvl;
464	boolean_t found_one = B_FALSE;
465	boolean_t valid_top_config = B_FALSE;
466
467	if (nvlist_alloc(&ret, 0, 0) != 0)
468		goto nomem;
469
470	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
471		uint64_t id, max_txg = 0;
472
473		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
474			goto nomem;
475		config_seen = B_FALSE;
476
477		/*
478		 * Iterate over all toplevel vdevs.  Grab the pool configuration
479		 * from the first one we find, and then go through the rest and
480		 * add them as necessary to the 'vdevs' member of the config.
481		 */
482		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
483
484			/*
485			 * Determine the best configuration for this vdev by
486			 * selecting the config with the latest transaction
487			 * group.
488			 */
489			best_txg = 0;
490			for (ce = ve->ve_configs; ce != NULL;
491			    ce = ce->ce_next) {
492
493				if (ce->ce_txg > best_txg) {
494					tmp = ce->ce_config;
495					best_txg = ce->ce_txg;
496				}
497			}
498
499			/*
500			 * We rely on the fact that the max txg for the
501			 * pool will contain the most up-to-date information
502			 * about the valid top-levels in the vdev namespace.
503			 */
504			if (best_txg > max_txg) {
505				(void) nvlist_remove(config,
506				    ZPOOL_CONFIG_VDEV_CHILDREN,
507				    DATA_TYPE_UINT64);
508				(void) nvlist_remove(config,
509				    ZPOOL_CONFIG_HOLE_ARRAY,
510				    DATA_TYPE_UINT64_ARRAY);
511
512				max_txg = best_txg;
513				hole_array = NULL;
514				holes = 0;
515				max_id = 0;
516				valid_top_config = B_FALSE;
517
518				if (nvlist_lookup_uint64(tmp,
519				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
520					verify(nvlist_add_uint64(config,
521					    ZPOOL_CONFIG_VDEV_CHILDREN,
522					    max_id) == 0);
523					valid_top_config = B_TRUE;
524				}
525
526				if (nvlist_lookup_uint64_array(tmp,
527				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
528				    &holes) == 0) {
529					verify(nvlist_add_uint64_array(config,
530					    ZPOOL_CONFIG_HOLE_ARRAY,
531					    hole_array, holes) == 0);
532				}
533			}
534
535			if (!config_seen) {
536				/*
537				 * Copy the relevant pieces of data to the pool
538				 * configuration:
539				 *
540				 *	version
541				 *	pool guid
542				 *	name
543				 *	comment (if available)
544				 *	pool state
545				 *	hostid (if available)
546				 *	hostname (if available)
547				 */
548				uint64_t state, version;
549				char *comment = NULL;
550
551				version = fnvlist_lookup_uint64(tmp,
552				    ZPOOL_CONFIG_VERSION);
553				fnvlist_add_uint64(config,
554				    ZPOOL_CONFIG_VERSION, version);
555				guid = fnvlist_lookup_uint64(tmp,
556				    ZPOOL_CONFIG_POOL_GUID);
557				fnvlist_add_uint64(config,
558				    ZPOOL_CONFIG_POOL_GUID, guid);
559				name = fnvlist_lookup_string(tmp,
560				    ZPOOL_CONFIG_POOL_NAME);
561				fnvlist_add_string(config,
562				    ZPOOL_CONFIG_POOL_NAME, name);
563
564				if (nvlist_lookup_string(tmp,
565				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
566					fnvlist_add_string(config,
567					    ZPOOL_CONFIG_COMMENT, comment);
568
569				state = fnvlist_lookup_uint64(tmp,
570				    ZPOOL_CONFIG_POOL_STATE);
571				fnvlist_add_uint64(config,
572				    ZPOOL_CONFIG_POOL_STATE, state);
573
574				hostid = 0;
575				if (nvlist_lookup_uint64(tmp,
576				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
577					fnvlist_add_uint64(config,
578					    ZPOOL_CONFIG_HOSTID, hostid);
579					hostname = fnvlist_lookup_string(tmp,
580					    ZPOOL_CONFIG_HOSTNAME);
581					fnvlist_add_string(config,
582					    ZPOOL_CONFIG_HOSTNAME, hostname);
583				}
584
585				config_seen = B_TRUE;
586			}
587
588			/*
589			 * Add this top-level vdev to the child array.
590			 */
591			verify(nvlist_lookup_nvlist(tmp,
592			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
593			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
594			    &id) == 0);
595
596			if (id >= children) {
597				nvlist_t **newchild;
598
599				newchild = zfs_alloc(hdl, (id + 1) *
600				    sizeof (nvlist_t *));
601				if (newchild == NULL)
602					goto nomem;
603
604				for (c = 0; c < children; c++)
605					newchild[c] = child[c];
606
607				free(child);
608				child = newchild;
609				children = id + 1;
610			}
611			if (nvlist_dup(nvtop, &child[id], 0) != 0)
612				goto nomem;
613
614		}
615
616		/*
617		 * If we have information about all the top-levels then
618		 * clean up the nvlist which we've constructed. This
619		 * means removing any extraneous devices that are
620		 * beyond the valid range or adding devices to the end
621		 * of our array which appear to be missing.
622		 */
623		if (valid_top_config) {
624			if (max_id < children) {
625				for (c = max_id; c < children; c++)
626					nvlist_free(child[c]);
627				children = max_id;
628			} else if (max_id > children) {
629				nvlist_t **newchild;
630
631				newchild = zfs_alloc(hdl, (max_id) *
632				    sizeof (nvlist_t *));
633				if (newchild == NULL)
634					goto nomem;
635
636				for (c = 0; c < children; c++)
637					newchild[c] = child[c];
638
639				free(child);
640				child = newchild;
641				children = max_id;
642			}
643		}
644
645		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
646		    &guid) == 0);
647
648		/*
649		 * The vdev namespace may contain holes as a result of
650		 * device removal. We must add them back into the vdev
651		 * tree before we process any missing devices.
652		 */
653		if (holes > 0) {
654			ASSERT(valid_top_config);
655
656			for (c = 0; c < children; c++) {
657				nvlist_t *holey;
658
659				if (child[c] != NULL ||
660				    !vdev_is_hole(hole_array, holes, c))
661					continue;
662
663				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
664				    0) != 0)
665					goto nomem;
666
667				/*
668				 * Holes in the namespace are treated as
669				 * "hole" top-level vdevs and have a
670				 * special flag set on them.
671				 */
672				if (nvlist_add_string(holey,
673				    ZPOOL_CONFIG_TYPE,
674				    VDEV_TYPE_HOLE) != 0 ||
675				    nvlist_add_uint64(holey,
676				    ZPOOL_CONFIG_ID, c) != 0 ||
677				    nvlist_add_uint64(holey,
678				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
679					nvlist_free(holey);
680					goto nomem;
681				}
682				child[c] = holey;
683			}
684		}
685
686		/*
687		 * Look for any missing top-level vdevs.  If this is the case,
688		 * create a faked up 'missing' vdev as a placeholder.  We cannot
689		 * simply compress the child array, because the kernel performs
690		 * certain checks to make sure the vdev IDs match their location
691		 * in the configuration.
692		 */
693		for (c = 0; c < children; c++) {
694			if (child[c] == NULL) {
695				nvlist_t *missing;
696				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
697				    0) != 0)
698					goto nomem;
699				if (nvlist_add_string(missing,
700				    ZPOOL_CONFIG_TYPE,
701				    VDEV_TYPE_MISSING) != 0 ||
702				    nvlist_add_uint64(missing,
703				    ZPOOL_CONFIG_ID, c) != 0 ||
704				    nvlist_add_uint64(missing,
705				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
706					nvlist_free(missing);
707					goto nomem;
708				}
709				child[c] = missing;
710			}
711		}
712
713		/*
714		 * Put all of this pool's top-level vdevs into a root vdev.
715		 */
716		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
717			goto nomem;
718		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
719		    VDEV_TYPE_ROOT) != 0 ||
720		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
721		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
722		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
723		    child, children) != 0) {
724			nvlist_free(nvroot);
725			goto nomem;
726		}
727
728		for (c = 0; c < children; c++)
729			nvlist_free(child[c]);
730		free(child);
731		children = 0;
732		child = NULL;
733
734		/*
735		 * Go through and fix up any paths and/or devids based on our
736		 * known list of vdev GUID -> path mappings.
737		 */
738		if (fix_paths(nvroot, pl->names) != 0) {
739			nvlist_free(nvroot);
740			goto nomem;
741		}
742
743		/*
744		 * Add the root vdev to this pool's configuration.
745		 */
746		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
747		    nvroot) != 0) {
748			nvlist_free(nvroot);
749			goto nomem;
750		}
751		nvlist_free(nvroot);
752
753		/*
754		 * zdb uses this path to report on active pools that were
755		 * imported or created using -R.
756		 */
757		if (active_ok)
758			goto add_pool;
759
760		/*
761		 * Determine if this pool is currently active, in which case we
762		 * can't actually import it.
763		 */
764		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
765		    &name) == 0);
766		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
767		    &guid) == 0);
768
769		if (pool_active(hdl, name, guid, &isactive) != 0)
770			goto error;
771
772		if (isactive) {
773			nvlist_free(config);
774			config = NULL;
775			continue;
776		}
777
778		if (policy != NULL) {
779			if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY,
780			    policy) != 0)
781				goto nomem;
782		}
783
784		if ((nvl = refresh_config(hdl, config)) == NULL) {
785			nvlist_free(config);
786			config = NULL;
787			continue;
788		}
789
790		nvlist_free(config);
791		config = nvl;
792
793		/*
794		 * Go through and update the paths for spares, now that we have
795		 * them.
796		 */
797		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
798		    &nvroot) == 0);
799		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
800		    &spares, &nspares) == 0) {
801			for (i = 0; i < nspares; i++) {
802				if (fix_paths(spares[i], pl->names) != 0)
803					goto nomem;
804			}
805		}
806
807		/*
808		 * Update the paths for l2cache devices.
809		 */
810		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
811		    &l2cache, &nl2cache) == 0) {
812			for (i = 0; i < nl2cache; i++) {
813				if (fix_paths(l2cache[i], pl->names) != 0)
814					goto nomem;
815			}
816		}
817
818		/*
819		 * Restore the original information read from the actual label.
820		 */
821		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
822		    DATA_TYPE_UINT64);
823		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
824		    DATA_TYPE_STRING);
825		if (hostid != 0) {
826			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
827			    hostid) == 0);
828			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
829			    hostname) == 0);
830		}
831
832add_pool:
833		/*
834		 * Add this pool to the list of configs.
835		 */
836		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
837		    &name) == 0);
838		if (nvlist_add_nvlist(ret, name, config) != 0)
839			goto nomem;
840
841		found_one = B_TRUE;
842		nvlist_free(config);
843		config = NULL;
844	}
845
846	if (!found_one) {
847		nvlist_free(ret);
848		ret = NULL;
849	}
850
851	return (ret);
852
853nomem:
854	(void) no_memory(hdl);
855error:
856	nvlist_free(config);
857	nvlist_free(ret);
858	for (c = 0; c < children; c++)
859		nvlist_free(child[c]);
860	free(child);
861
862	return (NULL);
863}
864
865/*
866 * Return the offset of the given label.
867 */
868static uint64_t
869label_offset(uint64_t size, int l)
870{
871	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
872	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
873	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
874}
875
876/*
877 * Given a file descriptor, read the label information and return an nvlist
878 * describing the configuration, if there is one.
879 * Return 0 on success, or -1 on failure
880 */
881int
882zpool_read_label(int fd, nvlist_t **config)
883{
884	struct stat64 statbuf;
885	int l;
886	vdev_label_t *label;
887	uint64_t state, txg, size;
888
889	*config = NULL;
890
891	if (fstat64(fd, &statbuf) == -1)
892		return (-1);
893	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
894
895	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
896		return (-1);
897
898	for (l = 0; l < VDEV_LABELS; l++) {
899		if (pread64(fd, label, sizeof (vdev_label_t),
900		    label_offset(size, l)) != sizeof (vdev_label_t))
901			continue;
902
903		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
904		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
905			continue;
906
907		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
908		    &state) != 0 || state > POOL_STATE_L2CACHE) {
909			nvlist_free(*config);
910			continue;
911		}
912
913		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
914		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
915		    &txg) != 0 || txg == 0)) {
916			nvlist_free(*config);
917			continue;
918		}
919
920		free(label);
921		return (0);
922	}
923
924	free(label);
925	*config = NULL;
926	errno = ENOENT;
927	return (-1);
928}
929
930/*
931 * Given a file descriptor, read the label information and return an nvlist
932 * describing the configuration, if there is one.
933 * returns the number of valid labels found
934 * If a label is found, returns it via config.  The caller is responsible for
935 * freeing it.
936 */
937int
938zpool_read_all_labels(int fd, nvlist_t **config)
939{
940	struct stat64 statbuf;
941	struct aiocb aiocbs[VDEV_LABELS];
942	struct aiocb *aiocbps[VDEV_LABELS];
943	int l;
944	vdev_phys_t *labels;
945	uint64_t state, txg, size;
946	int nlabels = 0;
947
948	*config = NULL;
949
950	if (fstat64(fd, &statbuf) == -1)
951		return (0);
952	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
953
954	if ((labels = calloc(VDEV_LABELS, sizeof (vdev_phys_t))) == NULL)
955		return (0);
956
957	memset(aiocbs, 0, sizeof(aiocbs));
958	for (l = 0; l < VDEV_LABELS; l++) {
959		aiocbs[l].aio_fildes = fd;
960		aiocbs[l].aio_offset = label_offset(size, l) + VDEV_SKIP_SIZE;
961		aiocbs[l].aio_buf = &labels[l];
962		aiocbs[l].aio_nbytes = sizeof(vdev_phys_t);
963		aiocbs[l].aio_lio_opcode = LIO_READ;
964		aiocbps[l] = &aiocbs[l];
965	}
966
967	if (lio_listio(LIO_WAIT, aiocbps, VDEV_LABELS, NULL) != 0) {
968		if (errno == EAGAIN || errno == EINTR || errno == EIO) {
969			for (l = 0; l < VDEV_LABELS; l++) {
970				errno = 0;
971				int r = aio_error(&aiocbs[l]);
972				if (r != EINVAL)
973					(void)aio_return(&aiocbs[l]);
974			}
975		}
976		free(labels);
977		return (0);
978	}
979
980	for (l = 0; l < VDEV_LABELS; l++) {
981		nvlist_t *temp = NULL;
982
983		if (aio_return(&aiocbs[l]) != sizeof(vdev_phys_t))
984			continue;
985
986		if (nvlist_unpack(labels[l].vp_nvlist,
987		    sizeof (labels[l].vp_nvlist), &temp, 0) != 0)
988			continue;
989
990		if (nvlist_lookup_uint64(temp, ZPOOL_CONFIG_POOL_STATE,
991		    &state) != 0 || state > POOL_STATE_L2CACHE) {
992			nvlist_free(temp);
993			temp = NULL;
994			continue;
995		}
996
997		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
998		    (nvlist_lookup_uint64(temp, ZPOOL_CONFIG_POOL_TXG,
999		    &txg) != 0 || txg == 0)) {
1000			nvlist_free(temp);
1001			temp = NULL;
1002			continue;
1003		}
1004		if (temp)
1005			*config = temp;
1006
1007		nlabels++;
1008	}
1009
1010	free(labels);
1011	return (nlabels);
1012}
1013
1014typedef struct rdsk_node {
1015	char *rn_name;
1016	int rn_dfd;
1017	libzfs_handle_t *rn_hdl;
1018	nvlist_t *rn_config;
1019	avl_tree_t *rn_avl;
1020	avl_node_t rn_node;
1021	boolean_t rn_nozpool;
1022} rdsk_node_t;
1023
1024static int
1025slice_cache_compare(const void *arg1, const void *arg2)
1026{
1027	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
1028	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
1029	char *nm1slice, *nm2slice;
1030	int rv;
1031
1032	/*
1033	 * slices zero and two are the most likely to provide results,
1034	 * so put those first
1035	 */
1036	nm1slice = strstr(nm1, "s0");
1037	nm2slice = strstr(nm2, "s0");
1038	if (nm1slice && !nm2slice) {
1039		return (-1);
1040	}
1041	if (!nm1slice && nm2slice) {
1042		return (1);
1043	}
1044	nm1slice = strstr(nm1, "s2");
1045	nm2slice = strstr(nm2, "s2");
1046	if (nm1slice && !nm2slice) {
1047		return (-1);
1048	}
1049	if (!nm1slice && nm2slice) {
1050		return (1);
1051	}
1052
1053	rv = strcmp(nm1, nm2);
1054	if (rv == 0)
1055		return (0);
1056	return (rv > 0 ? 1 : -1);
1057}
1058
1059#ifdef illumos
1060static void
1061check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
1062    diskaddr_t size, uint_t blksz)
1063{
1064	rdsk_node_t tmpnode;
1065	rdsk_node_t *node;
1066	char sname[MAXNAMELEN];
1067
1068	tmpnode.rn_name = &sname[0];
1069	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
1070	    diskname, partno);
1071	/*
1072	 * protect against division by zero for disk labels that
1073	 * contain a bogus sector size
1074	 */
1075	if (blksz == 0)
1076		blksz = DEV_BSIZE;
1077	/* too small to contain a zpool? */
1078	if ((size < (SPA_MINDEVSIZE / blksz)) &&
1079	    (node = avl_find(r, &tmpnode, NULL)))
1080		node->rn_nozpool = B_TRUE;
1081}
1082#endif	/* illumos */
1083
1084static void
1085nozpool_all_slices(avl_tree_t *r, const char *sname)
1086{
1087#ifdef illumos
1088	char diskname[MAXNAMELEN];
1089	char *ptr;
1090	int i;
1091
1092	(void) strncpy(diskname, sname, MAXNAMELEN);
1093	if (((ptr = strrchr(diskname, 's')) == NULL) &&
1094	    ((ptr = strrchr(diskname, 'p')) == NULL))
1095		return;
1096	ptr[0] = 's';
1097	ptr[1] = '\0';
1098	for (i = 0; i < NDKMAP; i++)
1099		check_one_slice(r, diskname, i, 0, 1);
1100	ptr[0] = 'p';
1101	for (i = 0; i <= FD_NUMPART; i++)
1102		check_one_slice(r, diskname, i, 0, 1);
1103#endif	/* illumos */
1104}
1105
1106#ifdef illumos
1107static void
1108check_slices(avl_tree_t *r, int fd, const char *sname)
1109{
1110	struct extvtoc vtoc;
1111	struct dk_gpt *gpt;
1112	char diskname[MAXNAMELEN];
1113	char *ptr;
1114	int i;
1115
1116	(void) strncpy(diskname, sname, MAXNAMELEN);
1117	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1118		return;
1119	ptr[1] = '\0';
1120
1121	if (read_extvtoc(fd, &vtoc) >= 0) {
1122		for (i = 0; i < NDKMAP; i++)
1123			check_one_slice(r, diskname, i,
1124			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1125	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1126		/*
1127		 * on x86 we'll still have leftover links that point
1128		 * to slices s[9-15], so use NDKMAP instead
1129		 */
1130		for (i = 0; i < NDKMAP; i++)
1131			check_one_slice(r, diskname, i,
1132			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1133		/* nodes p[1-4] are never used with EFI labels */
1134		ptr[0] = 'p';
1135		for (i = 1; i <= FD_NUMPART; i++)
1136			check_one_slice(r, diskname, i, 0, 1);
1137		efi_free(gpt);
1138	}
1139}
1140#endif	/* illumos */
1141
1142static void
1143zpool_open_func(void *arg)
1144{
1145	rdsk_node_t *rn = arg;
1146	struct stat64 statbuf;
1147	nvlist_t *config;
1148	int fd;
1149
1150	if (rn->rn_nozpool)
1151		return;
1152	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1153		/* symlink to a device that's no longer there */
1154		if (errno == ENOENT)
1155			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1156		return;
1157	}
1158	/*
1159	 * Ignore failed stats.  We only want regular
1160	 * files, character devs and block devs.
1161	 */
1162	if (fstat64(fd, &statbuf) != 0 ||
1163	    (!S_ISREG(statbuf.st_mode) &&
1164	    !S_ISCHR(statbuf.st_mode) &&
1165	    !S_ISBLK(statbuf.st_mode))) {
1166		(void) close(fd);
1167		return;
1168	}
1169	/* this file is too small to hold a zpool */
1170#ifdef illumos
1171	if (S_ISREG(statbuf.st_mode) &&
1172	    statbuf.st_size < SPA_MINDEVSIZE) {
1173		(void) close(fd);
1174		return;
1175	} else if (!S_ISREG(statbuf.st_mode)) {
1176		/*
1177		 * Try to read the disk label first so we don't have to
1178		 * open a bunch of minor nodes that can't have a zpool.
1179		 */
1180		check_slices(rn->rn_avl, fd, rn->rn_name);
1181	}
1182#else	/* !illumos */
1183	if (statbuf.st_size < SPA_MINDEVSIZE) {
1184		(void) close(fd);
1185		return;
1186	}
1187#endif	/* illumos */
1188
1189	if ((zpool_read_label(fd, &config)) != 0 && errno == ENOMEM) {
1190		(void) close(fd);
1191		(void) no_memory(rn->rn_hdl);
1192		return;
1193	}
1194	(void) close(fd);
1195
1196	rn->rn_config = config;
1197}
1198
1199/*
1200 * Given a file descriptor, clear (zero) the label information.
1201 */
1202int
1203zpool_clear_label(int fd)
1204{
1205	struct stat64 statbuf;
1206	int l;
1207	vdev_label_t *label;
1208	uint64_t size;
1209
1210	if (fstat64(fd, &statbuf) == -1)
1211		return (0);
1212	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1213
1214	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1215		return (-1);
1216
1217	for (l = 0; l < VDEV_LABELS; l++) {
1218		if (pwrite64(fd, label, sizeof (vdev_label_t),
1219		    label_offset(size, l)) != sizeof (vdev_label_t)) {
1220			free(label);
1221			return (-1);
1222		}
1223	}
1224
1225	free(label);
1226	return (0);
1227}
1228
1229/*
1230 * Given a list of directories to search, find all pools stored on disk.  This
1231 * includes partial pools which are not available to import.  If no args are
1232 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1233 * poolname or guid (but not both) are provided by the caller when trying
1234 * to import a specific pool.
1235 */
1236static nvlist_t *
1237zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1238{
1239	int i, dirs = iarg->paths;
1240	struct dirent64 *dp;
1241	char path[MAXPATHLEN];
1242	char *end, **dir = iarg->path;
1243	size_t pathleft;
1244	nvlist_t *ret = NULL;
1245	static char *default_dir = "/dev";
1246	pool_list_t pools = { 0 };
1247	pool_entry_t *pe, *penext;
1248	vdev_entry_t *ve, *venext;
1249	config_entry_t *ce, *cenext;
1250	name_entry_t *ne, *nenext;
1251	avl_tree_t slice_cache;
1252	rdsk_node_t *slice;
1253	void *cookie;
1254
1255	if (dirs == 0) {
1256		dirs = 1;
1257		dir = &default_dir;
1258	}
1259
1260	/*
1261	 * Go through and read the label configuration information from every
1262	 * possible device, organizing the information according to pool GUID
1263	 * and toplevel GUID.
1264	 */
1265	for (i = 0; i < dirs; i++) {
1266		tpool_t *t;
1267		char rdsk[MAXPATHLEN];
1268		int dfd;
1269		boolean_t config_failed = B_FALSE;
1270		DIR *dirp;
1271
1272		/* use realpath to normalize the path */
1273		if (realpath(dir[i], path) == 0) {
1274			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1275			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1276			goto error;
1277		}
1278		end = &path[strlen(path)];
1279		*end++ = '/';
1280		*end = 0;
1281		pathleft = &path[sizeof (path)] - end;
1282
1283#ifdef illumos
1284		/*
1285		 * Using raw devices instead of block devices when we're
1286		 * reading the labels skips a bunch of slow operations during
1287		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1288		 */
1289		if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1290			(void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1291		else
1292#endif
1293			(void) strlcpy(rdsk, path, sizeof (rdsk));
1294
1295		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1296		    (dirp = fdopendir(dfd)) == NULL) {
1297			if (dfd >= 0)
1298				(void) close(dfd);
1299			zfs_error_aux(hdl, strerror(errno));
1300			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1301			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1302			    rdsk);
1303			goto error;
1304		}
1305
1306		avl_create(&slice_cache, slice_cache_compare,
1307		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1308
1309		if (strcmp(rdsk, "/dev/") == 0) {
1310			struct gmesh mesh;
1311			struct gclass *mp;
1312			struct ggeom *gp;
1313			struct gprovider *pp;
1314
1315			errno = geom_gettree(&mesh);
1316			if (errno != 0) {
1317				zfs_error_aux(hdl, strerror(errno));
1318				(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1319				    dgettext(TEXT_DOMAIN, "cannot get GEOM tree"));
1320				goto error;
1321			}
1322
1323			LIST_FOREACH(mp, &mesh.lg_class, lg_class) {
1324		        	LIST_FOREACH(gp, &mp->lg_geom, lg_geom) {
1325					LIST_FOREACH(pp, &gp->lg_provider, lg_provider) {
1326						slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1327						slice->rn_name = zfs_strdup(hdl, pp->lg_name);
1328						slice->rn_avl = &slice_cache;
1329						slice->rn_dfd = dfd;
1330						slice->rn_hdl = hdl;
1331						slice->rn_nozpool = B_FALSE;
1332						avl_add(&slice_cache, slice);
1333					}
1334				}
1335			}
1336
1337			geom_deletetree(&mesh);
1338			goto skipdir;
1339		}
1340
1341		/*
1342		 * This is not MT-safe, but we have no MT consumers of libzfs
1343		 */
1344		while ((dp = readdir64(dirp)) != NULL) {
1345			const char *name = dp->d_name;
1346			if (name[0] == '.' &&
1347			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1348				continue;
1349
1350			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1351			slice->rn_name = zfs_strdup(hdl, name);
1352			slice->rn_avl = &slice_cache;
1353			slice->rn_dfd = dfd;
1354			slice->rn_hdl = hdl;
1355			slice->rn_nozpool = B_FALSE;
1356			avl_add(&slice_cache, slice);
1357		}
1358skipdir:
1359		/*
1360		 * create a thread pool to do all of this in parallel;
1361		 * rn_nozpool is not protected, so this is racy in that
1362		 * multiple tasks could decide that the same slice can
1363		 * not hold a zpool, which is benign.  Also choose
1364		 * double the number of processors; we hold a lot of
1365		 * locks in the kernel, so going beyond this doesn't
1366		 * buy us much.
1367		 */
1368		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1369		    0, NULL);
1370		for (slice = avl_first(&slice_cache); slice;
1371		    (slice = avl_walk(&slice_cache, slice,
1372		    AVL_AFTER)))
1373			(void) tpool_dispatch(t, zpool_open_func, slice);
1374		tpool_wait(t);
1375		tpool_destroy(t);
1376
1377		cookie = NULL;
1378		while ((slice = avl_destroy_nodes(&slice_cache,
1379		    &cookie)) != NULL) {
1380			if (slice->rn_config != NULL && !config_failed) {
1381				nvlist_t *config = slice->rn_config;
1382				boolean_t matched = B_TRUE;
1383
1384				if (iarg->poolname != NULL) {
1385					char *pname;
1386
1387					matched = nvlist_lookup_string(config,
1388					    ZPOOL_CONFIG_POOL_NAME,
1389					    &pname) == 0 &&
1390					    strcmp(iarg->poolname, pname) == 0;
1391				} else if (iarg->guid != 0) {
1392					uint64_t this_guid;
1393
1394					matched = nvlist_lookup_uint64(config,
1395					    ZPOOL_CONFIG_POOL_GUID,
1396					    &this_guid) == 0 &&
1397					    iarg->guid == this_guid;
1398				}
1399				if (!matched) {
1400					nvlist_free(config);
1401				} else {
1402					/*
1403					 * use the non-raw path for the config
1404					 */
1405					(void) strlcpy(end, slice->rn_name,
1406					    pathleft);
1407					if (add_config(hdl, &pools, path,
1408					    config) != 0)
1409						config_failed = B_TRUE;
1410				}
1411			}
1412			free(slice->rn_name);
1413			free(slice);
1414		}
1415		avl_destroy(&slice_cache);
1416
1417		(void) closedir(dirp);
1418
1419		if (config_failed)
1420			goto error;
1421	}
1422
1423	ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);
1424
1425error:
1426	for (pe = pools.pools; pe != NULL; pe = penext) {
1427		penext = pe->pe_next;
1428		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1429			venext = ve->ve_next;
1430			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1431				cenext = ce->ce_next;
1432				nvlist_free(ce->ce_config);
1433				free(ce);
1434			}
1435			free(ve);
1436		}
1437		free(pe);
1438	}
1439
1440	for (ne = pools.names; ne != NULL; ne = nenext) {
1441		nenext = ne->ne_next;
1442		free(ne->ne_name);
1443		free(ne);
1444	}
1445
1446	return (ret);
1447}
1448
1449nvlist_t *
1450zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1451{
1452	importargs_t iarg = { 0 };
1453
1454	iarg.paths = argc;
1455	iarg.path = argv;
1456
1457	return (zpool_find_import_impl(hdl, &iarg));
1458}
1459
1460/*
1461 * Given a cache file, return the contents as a list of importable pools.
1462 * poolname or guid (but not both) are provided by the caller when trying
1463 * to import a specific pool.
1464 */
1465nvlist_t *
1466zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1467    char *poolname, uint64_t guid)
1468{
1469	char *buf;
1470	int fd;
1471	struct stat64 statbuf;
1472	nvlist_t *raw, *src, *dst;
1473	nvlist_t *pools;
1474	nvpair_t *elem;
1475	char *name;
1476	uint64_t this_guid;
1477	boolean_t active;
1478
1479	verify(poolname == NULL || guid == 0);
1480
1481	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1482		zfs_error_aux(hdl, "%s", strerror(errno));
1483		(void) zfs_error(hdl, EZFS_BADCACHE,
1484		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1485		return (NULL);
1486	}
1487
1488	if (fstat64(fd, &statbuf) != 0) {
1489		zfs_error_aux(hdl, "%s", strerror(errno));
1490		(void) close(fd);
1491		(void) zfs_error(hdl, EZFS_BADCACHE,
1492		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1493		return (NULL);
1494	}
1495
1496	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1497		(void) close(fd);
1498		return (NULL);
1499	}
1500
1501	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1502		(void) close(fd);
1503		free(buf);
1504		(void) zfs_error(hdl, EZFS_BADCACHE,
1505		    dgettext(TEXT_DOMAIN,
1506		    "failed to read cache file contents"));
1507		return (NULL);
1508	}
1509
1510	(void) close(fd);
1511
1512	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1513		free(buf);
1514		(void) zfs_error(hdl, EZFS_BADCACHE,
1515		    dgettext(TEXT_DOMAIN,
1516		    "invalid or corrupt cache file contents"));
1517		return (NULL);
1518	}
1519
1520	free(buf);
1521
1522	/*
1523	 * Go through and get the current state of the pools and refresh their
1524	 * state.
1525	 */
1526	if (nvlist_alloc(&pools, 0, 0) != 0) {
1527		(void) no_memory(hdl);
1528		nvlist_free(raw);
1529		return (NULL);
1530	}
1531
1532	elem = NULL;
1533	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1534		src = fnvpair_value_nvlist(elem);
1535
1536		name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1537		if (poolname != NULL && strcmp(poolname, name) != 0)
1538			continue;
1539
1540		this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1541		if (guid != 0 && guid != this_guid)
1542			continue;
1543
1544		if (pool_active(hdl, name, this_guid, &active) != 0) {
1545			nvlist_free(raw);
1546			nvlist_free(pools);
1547			return (NULL);
1548		}
1549
1550		if (active)
1551			continue;
1552
1553		if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
1554		    cachefile) != 0) {
1555			(void) no_memory(hdl);
1556			nvlist_free(raw);
1557			nvlist_free(pools);
1558			return (NULL);
1559		}
1560
1561		if ((dst = refresh_config(hdl, src)) == NULL) {
1562			nvlist_free(raw);
1563			nvlist_free(pools);
1564			return (NULL);
1565		}
1566
1567		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1568			(void) no_memory(hdl);
1569			nvlist_free(dst);
1570			nvlist_free(raw);
1571			nvlist_free(pools);
1572			return (NULL);
1573		}
1574		nvlist_free(dst);
1575	}
1576
1577	nvlist_free(raw);
1578	return (pools);
1579}
1580
1581static int
1582name_or_guid_exists(zpool_handle_t *zhp, void *data)
1583{
1584	importargs_t *import = data;
1585	int found = 0;
1586
1587	if (import->poolname != NULL) {
1588		char *pool_name;
1589
1590		verify(nvlist_lookup_string(zhp->zpool_config,
1591		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1592		if (strcmp(pool_name, import->poolname) == 0)
1593			found = 1;
1594	} else {
1595		uint64_t pool_guid;
1596
1597		verify(nvlist_lookup_uint64(zhp->zpool_config,
1598		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1599		if (pool_guid == import->guid)
1600			found = 1;
1601	}
1602
1603	zpool_close(zhp);
1604	return (found);
1605}
1606
1607nvlist_t *
1608zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1609{
1610	verify(import->poolname == NULL || import->guid == 0);
1611
1612	if (import->unique)
1613		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1614
1615	if (import->cachefile != NULL)
1616		return (zpool_find_import_cached(hdl, import->cachefile,
1617		    import->poolname, import->guid));
1618
1619	return (zpool_find_import_impl(hdl, import));
1620}
1621
1622boolean_t
1623find_guid(nvlist_t *nv, uint64_t guid)
1624{
1625	uint64_t tmp;
1626	nvlist_t **child;
1627	uint_t c, children;
1628
1629	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1630	if (tmp == guid)
1631		return (B_TRUE);
1632
1633	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1634	    &child, &children) == 0) {
1635		for (c = 0; c < children; c++)
1636			if (find_guid(child[c], guid))
1637				return (B_TRUE);
1638	}
1639
1640	return (B_FALSE);
1641}
1642
1643typedef struct aux_cbdata {
1644	const char	*cb_type;
1645	uint64_t	cb_guid;
1646	zpool_handle_t	*cb_zhp;
1647} aux_cbdata_t;
1648
1649static int
1650find_aux(zpool_handle_t *zhp, void *data)
1651{
1652	aux_cbdata_t *cbp = data;
1653	nvlist_t **list;
1654	uint_t i, count;
1655	uint64_t guid;
1656	nvlist_t *nvroot;
1657
1658	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1659	    &nvroot) == 0);
1660
1661	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1662	    &list, &count) == 0) {
1663		for (i = 0; i < count; i++) {
1664			verify(nvlist_lookup_uint64(list[i],
1665			    ZPOOL_CONFIG_GUID, &guid) == 0);
1666			if (guid == cbp->cb_guid) {
1667				cbp->cb_zhp = zhp;
1668				return (1);
1669			}
1670		}
1671	}
1672
1673	zpool_close(zhp);
1674	return (0);
1675}
1676
1677/*
1678 * Determines if the pool is in use.  If so, it returns true and the state of
1679 * the pool as well as the name of the pool.  Both strings are allocated and
1680 * must be freed by the caller.
1681 */
1682int
1683zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1684    boolean_t *inuse)
1685{
1686	nvlist_t *config;
1687	char *name;
1688	boolean_t ret;
1689	uint64_t guid, vdev_guid;
1690	zpool_handle_t *zhp;
1691	nvlist_t *pool_config;
1692	uint64_t stateval, isspare;
1693	aux_cbdata_t cb = { 0 };
1694	boolean_t isactive;
1695
1696	*inuse = B_FALSE;
1697
1698	if (zpool_read_label(fd, &config) != 0 && errno == ENOMEM) {
1699		(void) no_memory(hdl);
1700		return (-1);
1701	}
1702
1703	if (config == NULL)
1704		return (0);
1705
1706	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1707	    &stateval) == 0);
1708	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1709	    &vdev_guid) == 0);
1710
1711	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1712		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1713		    &name) == 0);
1714		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1715		    &guid) == 0);
1716	}
1717
1718	switch (stateval) {
1719	case POOL_STATE_EXPORTED:
1720		/*
1721		 * A pool with an exported state may in fact be imported
1722		 * read-only, so check the in-core state to see if it's
1723		 * active and imported read-only.  If it is, set
1724		 * its state to active.
1725		 */
1726		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1727		    (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1728			if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1729				stateval = POOL_STATE_ACTIVE;
1730
1731			/*
1732			 * All we needed the zpool handle for is the
1733			 * readonly prop check.
1734			 */
1735			zpool_close(zhp);
1736		}
1737
1738		ret = B_TRUE;
1739		break;
1740
1741	case POOL_STATE_ACTIVE:
1742		/*
1743		 * For an active pool, we have to determine if it's really part
1744		 * of a currently active pool (in which case the pool will exist
1745		 * and the guid will be the same), or whether it's part of an
1746		 * active pool that was disconnected without being explicitly
1747		 * exported.
1748		 */
1749		if (pool_active(hdl, name, guid, &isactive) != 0) {
1750			nvlist_free(config);
1751			return (-1);
1752		}
1753
1754		if (isactive) {
1755			/*
1756			 * Because the device may have been removed while
1757			 * offlined, we only report it as active if the vdev is
1758			 * still present in the config.  Otherwise, pretend like
1759			 * it's not in use.
1760			 */
1761			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1762			    (pool_config = zpool_get_config(zhp, NULL))
1763			    != NULL) {
1764				nvlist_t *nvroot;
1765
1766				verify(nvlist_lookup_nvlist(pool_config,
1767				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1768				ret = find_guid(nvroot, vdev_guid);
1769			} else {
1770				ret = B_FALSE;
1771			}
1772
1773			/*
1774			 * If this is an active spare within another pool, we
1775			 * treat it like an unused hot spare.  This allows the
1776			 * user to create a pool with a hot spare that currently
1777			 * in use within another pool.  Since we return B_TRUE,
1778			 * libdiskmgt will continue to prevent generic consumers
1779			 * from using the device.
1780			 */
1781			if (ret && nvlist_lookup_uint64(config,
1782			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1783				stateval = POOL_STATE_SPARE;
1784
1785			if (zhp != NULL)
1786				zpool_close(zhp);
1787		} else {
1788			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1789			ret = B_TRUE;
1790		}
1791		break;
1792
1793	case POOL_STATE_SPARE:
1794		/*
1795		 * For a hot spare, it can be either definitively in use, or
1796		 * potentially active.  To determine if it's in use, we iterate
1797		 * over all pools in the system and search for one with a spare
1798		 * with a matching guid.
1799		 *
1800		 * Due to the shared nature of spares, we don't actually report
1801		 * the potentially active case as in use.  This means the user
1802		 * can freely create pools on the hot spares of exported pools,
1803		 * but to do otherwise makes the resulting code complicated, and
1804		 * we end up having to deal with this case anyway.
1805		 */
1806		cb.cb_zhp = NULL;
1807		cb.cb_guid = vdev_guid;
1808		cb.cb_type = ZPOOL_CONFIG_SPARES;
1809		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1810			name = (char *)zpool_get_name(cb.cb_zhp);
1811			ret = B_TRUE;
1812		} else {
1813			ret = B_FALSE;
1814		}
1815		break;
1816
1817	case POOL_STATE_L2CACHE:
1818
1819		/*
1820		 * Check if any pool is currently using this l2cache device.
1821		 */
1822		cb.cb_zhp = NULL;
1823		cb.cb_guid = vdev_guid;
1824		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1825		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1826			name = (char *)zpool_get_name(cb.cb_zhp);
1827			ret = B_TRUE;
1828		} else {
1829			ret = B_FALSE;
1830		}
1831		break;
1832
1833	default:
1834		ret = B_FALSE;
1835	}
1836
1837
1838	if (ret) {
1839		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1840			if (cb.cb_zhp)
1841				zpool_close(cb.cb_zhp);
1842			nvlist_free(config);
1843			return (-1);
1844		}
1845		*state = (pool_state_t)stateval;
1846	}
1847
1848	if (cb.cb_zhp)
1849		zpool_close(cb.cb_zhp);
1850
1851	nvlist_free(config);
1852	*inuse = ret;
1853	return (0);
1854}
1855