1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1990 University of Utah.
5 * Copyright (c) 1991 The Regents of the University of California.
6 * All rights reserved.
7 * Copyright (c) 1993, 1994 John S. Dyson
8 * Copyright (c) 1995, David Greenman
9 *
10 * This code is derived from software contributed to Berkeley by
11 * the Systems Programming Group of the University of Utah Computer
12 * Science Department.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 */
42
43/*
44 * Page to/from files (vnodes).
45 */
46
47/*
48 * TODO:
49 *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50 *	greatly re-simplify the vnode_pager.
51 */
52
53#include <sys/cdefs.h>
54#include "opt_vm.h"
55
56#include <sys/param.h>
57#include <sys/kernel.h>
58#include <sys/systm.h>
59#include <sys/sysctl.h>
60#include <sys/proc.h>
61#include <sys/vnode.h>
62#include <sys/mount.h>
63#include <sys/bio.h>
64#include <sys/buf.h>
65#include <sys/vmmeter.h>
66#include <sys/ktr.h>
67#include <sys/limits.h>
68#include <sys/conf.h>
69#include <sys/refcount.h>
70#include <sys/rwlock.h>
71#include <sys/sf_buf.h>
72#include <sys/domainset.h>
73#include <sys/user.h>
74
75#include <machine/atomic.h>
76
77#include <vm/vm.h>
78#include <vm/vm_param.h>
79#include <vm/vm_object.h>
80#include <vm/vm_page.h>
81#include <vm/vm_pager.h>
82#include <vm/vm_map.h>
83#include <vm/vnode_pager.h>
84#include <vm/vm_extern.h>
85#include <vm/uma.h>
86
87static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
88    daddr_t *rtaddress, int *run);
89static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
90static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
91static void vnode_pager_dealloc(vm_object_t);
92static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
93static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
94    int *, vop_getpages_iodone_t, void *);
95static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
96static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
97static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
98    vm_ooffset_t, struct ucred *cred);
99static int vnode_pager_generic_getpages_done(struct buf *);
100static void vnode_pager_generic_getpages_done_async(struct buf *);
101static void vnode_pager_update_writecount(vm_object_t, vm_offset_t,
102    vm_offset_t);
103static void vnode_pager_release_writecount(vm_object_t, vm_offset_t,
104    vm_offset_t);
105static void vnode_pager_getvp(vm_object_t, struct vnode **, bool *);
106
107const struct pagerops vnodepagerops = {
108	.pgo_kvme_type = KVME_TYPE_VNODE,
109	.pgo_alloc =	vnode_pager_alloc,
110	.pgo_dealloc =	vnode_pager_dealloc,
111	.pgo_getpages =	vnode_pager_getpages,
112	.pgo_getpages_async = vnode_pager_getpages_async,
113	.pgo_putpages =	vnode_pager_putpages,
114	.pgo_haspage =	vnode_pager_haspage,
115	.pgo_update_writecount = vnode_pager_update_writecount,
116	.pgo_release_writecount = vnode_pager_release_writecount,
117	.pgo_set_writeable_dirty = vm_object_set_writeable_dirty_,
118	.pgo_mightbedirty = vm_object_mightbedirty_,
119	.pgo_getvp = vnode_pager_getvp,
120};
121
122static struct domainset *vnode_domainset = NULL;
123
124SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset,
125    CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_RW, &vnode_domainset, 0,
126    sysctl_handle_domainset, "A", "Default vnode NUMA policy");
127
128static int nvnpbufs;
129SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
130    &nvnpbufs, 0, "number of physical buffers allocated for vnode pager");
131
132static uma_zone_t vnode_pbuf_zone;
133
134static void
135vnode_pager_init(void *dummy)
136{
137
138#ifdef __LP64__
139	nvnpbufs = nswbuf * 2;
140#else
141	nvnpbufs = nswbuf / 2;
142#endif
143	TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs);
144	vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs);
145}
146SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL);
147
148/* Create the VM system backing object for this vnode */
149static int
150vnode_create_vobject_any(struct vnode *vp, off_t isize, struct thread *td)
151{
152	vm_object_t object;
153	vm_ooffset_t size;
154	bool last;
155
156	object = vp->v_object;
157	if (object != NULL)
158		return (0);
159
160	if (isize == VNODE_NO_SIZE) {
161		if (vn_getsize_locked(vp, &size, td->td_ucred) != 0)
162			return (0);
163	} else {
164		size = isize;
165	}
166
167	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
168	/*
169	 * Dereference the reference we just created.  This assumes
170	 * that the object is associated with the vp.  We still have
171	 * to serialize with vnode_pager_dealloc() for the last
172	 * potential reference.
173	 */
174	VM_OBJECT_RLOCK(object);
175	last = refcount_release(&object->ref_count);
176	VM_OBJECT_RUNLOCK(object);
177	if (last)
178		vrele(vp);
179
180	VNASSERT(vp->v_object != NULL, vp, ("%s: NULL object", __func__));
181
182	return (0);
183}
184
185int
186vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
187{
188	VNASSERT(!vn_isdisk(vp), vp, ("%s: disk vnode", __func__));
189	VNASSERT(isize == VNODE_NO_SIZE || isize >= 0, vp,
190	    ("%s: invalid size (%jd)", __func__, (intmax_t)isize));
191
192	if (!vn_canvmio(vp))
193		return (0);
194
195	return (vnode_create_vobject_any(vp, isize, td));
196}
197
198int
199vnode_create_disk_vobject(struct vnode *vp, off_t isize, struct thread *td)
200{
201	VNASSERT(isize > 0, vp, ("%s: invalid size (%jd)", __func__,
202	    (intmax_t)isize));
203
204	return (vnode_create_vobject_any(vp, isize, td));
205}
206
207void
208vnode_destroy_vobject(struct vnode *vp)
209{
210	struct vm_object *obj;
211
212	obj = vp->v_object;
213	if (obj == NULL || obj->handle != vp)
214		return;
215	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
216	VM_OBJECT_WLOCK(obj);
217	MPASS(obj->type == OBJT_VNODE);
218	umtx_shm_object_terminated(obj);
219	if (obj->ref_count == 0) {
220		KASSERT((obj->flags & OBJ_DEAD) == 0,
221		   ("vnode_destroy_vobject: Terminating dead object"));
222		vm_object_set_flag(obj, OBJ_DEAD);
223
224		/*
225		 * Clean pages and flush buffers.
226		 */
227		vm_object_page_clean(obj, 0, 0, OBJPC_SYNC);
228		VM_OBJECT_WUNLOCK(obj);
229
230		vinvalbuf(vp, V_SAVE, 0, 0);
231
232		BO_LOCK(&vp->v_bufobj);
233		vp->v_bufobj.bo_flag |= BO_DEAD;
234		BO_UNLOCK(&vp->v_bufobj);
235
236		VM_OBJECT_WLOCK(obj);
237		vm_object_terminate(obj);
238	} else {
239		/*
240		 * Woe to the process that tries to page now :-).
241		 */
242		vm_pager_deallocate(obj);
243		VM_OBJECT_WUNLOCK(obj);
244	}
245	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
246}
247
248/*
249 * Allocate (or lookup) pager for a vnode.
250 * Handle is a vnode pointer.
251 */
252vm_object_t
253vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
254    vm_ooffset_t offset, struct ucred *cred)
255{
256	vm_object_t object;
257	struct vnode *vp;
258
259	/*
260	 * Pageout to vnode, no can do yet.
261	 */
262	if (handle == NULL)
263		return (NULL);
264
265	vp = (struct vnode *)handle;
266	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
267	VNPASS(vp->v_usecount > 0, vp);
268retry:
269	object = vp->v_object;
270
271	if (object == NULL) {
272		/*
273		 * Add an object of the appropriate size
274		 */
275		object = vm_object_allocate(OBJT_VNODE,
276		    OFF_TO_IDX(round_page(size)));
277
278		object->un_pager.vnp.vnp_size = size;
279		object->un_pager.vnp.writemappings = 0;
280		object->domain.dr_policy = vnode_domainset;
281		object->handle = handle;
282		if ((vp->v_vflag & VV_VMSIZEVNLOCK) != 0) {
283			VM_OBJECT_WLOCK(object);
284			vm_object_set_flag(object, OBJ_SIZEVNLOCK);
285			VM_OBJECT_WUNLOCK(object);
286		}
287		VI_LOCK(vp);
288		if (vp->v_object != NULL) {
289			/*
290			 * Object has been created while we were allocating.
291			 */
292			VI_UNLOCK(vp);
293			VM_OBJECT_WLOCK(object);
294			KASSERT(object->ref_count == 1,
295			    ("leaked ref %p %d", object, object->ref_count));
296			object->type = OBJT_DEAD;
297			refcount_init(&object->ref_count, 0);
298			VM_OBJECT_WUNLOCK(object);
299			vm_object_destroy(object);
300			goto retry;
301		}
302		vp->v_object = object;
303		VI_UNLOCK(vp);
304		vrefact(vp);
305	} else {
306		vm_object_reference(object);
307#if VM_NRESERVLEVEL > 0
308		if ((object->flags & OBJ_COLORED) == 0) {
309			VM_OBJECT_WLOCK(object);
310			vm_object_color(object, 0);
311			VM_OBJECT_WUNLOCK(object);
312		}
313#endif
314	}
315	return (object);
316}
317
318/*
319 *	The object must be locked.
320 */
321static void
322vnode_pager_dealloc(vm_object_t object)
323{
324	struct vnode *vp;
325	int refs;
326
327	vp = object->handle;
328	if (vp == NULL)
329		panic("vnode_pager_dealloc: pager already dealloced");
330
331	VM_OBJECT_ASSERT_WLOCKED(object);
332	vm_object_pip_wait(object, "vnpdea");
333	refs = object->ref_count;
334
335	object->handle = NULL;
336	object->type = OBJT_DEAD;
337	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
338	if (object->un_pager.vnp.writemappings > 0) {
339		object->un_pager.vnp.writemappings = 0;
340		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
341		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
342		    __func__, vp, vp->v_writecount);
343	}
344	vp->v_object = NULL;
345	VI_LOCK(vp);
346
347	/*
348	 * vm_map_entry_set_vnode_text() cannot reach this vnode by
349	 * following object->handle.  Clear all text references now.
350	 * This also clears the transient references from
351	 * kern_execve(), which is fine because dead_vnodeops uses nop
352	 * for VOP_UNSET_TEXT().
353	 */
354	if (vp->v_writecount < 0)
355		vp->v_writecount = 0;
356	VI_UNLOCK(vp);
357	VM_OBJECT_WUNLOCK(object);
358	if (refs > 0)
359		vunref(vp);
360	VM_OBJECT_WLOCK(object);
361}
362
363static boolean_t
364vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
365    int *after)
366{
367	struct vnode *vp = object->handle;
368	daddr_t bn;
369	uintptr_t lockstate;
370	int err;
371	daddr_t reqblock;
372	int poff;
373	int bsize;
374	int pagesperblock, blocksperpage;
375
376	VM_OBJECT_ASSERT_LOCKED(object);
377	/*
378	 * If no vp or vp is doomed or marked transparent to VM, we do not
379	 * have the page.
380	 */
381	if (vp == NULL || VN_IS_DOOMED(vp))
382		return FALSE;
383	/*
384	 * If the offset is beyond end of file we do
385	 * not have the page.
386	 */
387	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
388		return FALSE;
389
390	bsize = vp->v_mount->mnt_stat.f_iosize;
391	pagesperblock = bsize / PAGE_SIZE;
392	blocksperpage = 0;
393	if (pagesperblock > 0) {
394		reqblock = pindex / pagesperblock;
395	} else {
396		blocksperpage = (PAGE_SIZE / bsize);
397		reqblock = pindex * blocksperpage;
398	}
399	lockstate = VM_OBJECT_DROP(object);
400	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
401	VM_OBJECT_PICKUP(object, lockstate);
402	if (err)
403		return TRUE;
404	if (bn == -1)
405		return FALSE;
406	if (pagesperblock > 0) {
407		poff = pindex - (reqblock * pagesperblock);
408		if (before) {
409			*before *= pagesperblock;
410			*before += poff;
411		}
412		if (after) {
413			/*
414			 * The BMAP vop can report a partial block in the
415			 * 'after', but must not report blocks after EOF.
416			 * Assert the latter, and truncate 'after' in case
417			 * of the former.
418			 */
419			KASSERT((reqblock + *after) * pagesperblock <
420			    roundup2(object->size, pagesperblock),
421			    ("%s: reqblock %jd after %d size %ju", __func__,
422			    (intmax_t )reqblock, *after,
423			    (uintmax_t )object->size));
424			*after *= pagesperblock;
425			*after += pagesperblock - (poff + 1);
426			if (pindex + *after >= object->size)
427				*after = object->size - 1 - pindex;
428		}
429	} else {
430		if (before) {
431			*before /= blocksperpage;
432		}
433
434		if (after) {
435			*after /= blocksperpage;
436		}
437	}
438	return TRUE;
439}
440
441/*
442 * Internal routine clearing partial-page content
443 */
444static void
445vnode_pager_subpage_purge(struct vm_page *m, int base, int end)
446{
447	int size;
448
449	KASSERT(end > base && end <= PAGE_SIZE,
450	    ("%s: start %d end %d", __func__, base, end));
451	size = end - base;
452
453	/*
454	 * Clear out partial-page garbage in case
455	 * the page has been mapped.
456	 */
457	pmap_zero_page_area(m, base, size);
458
459	/*
460	 * Update the valid bits to reflect the blocks
461	 * that have been zeroed.  Some of these valid
462	 * bits may have already been set.
463	 */
464	vm_page_set_valid_range(m, base, size);
465
466	/*
467	 * Round up "base" to the next block boundary so
468	 * that the dirty bit for a partially zeroed
469	 * block is not cleared.
470	 */
471	base = roundup2(base, DEV_BSIZE);
472	end = rounddown2(end, DEV_BSIZE);
473
474	if (end > base) {
475		/*
476		 * Clear out partial-page dirty bits.
477		 *
478		 * note that we do not clear out the
479		 * valid bits.  This would prevent
480		 * bogus_page replacement from working
481		 * properly.
482		 */
483		vm_page_clear_dirty(m, base, end - base);
484	}
485
486}
487
488/*
489 * Lets the VM system know about a change in size for a file.
490 * We adjust our own internal size and flush any cached pages in
491 * the associated object that are affected by the size change.
492 *
493 * Note: this routine may be invoked as a result of a pager put
494 * operation (possibly at object termination time), so we must be careful.
495 */
496void
497vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
498{
499	vm_object_t object;
500	vm_page_t m;
501	vm_pindex_t nobjsize;
502
503	if ((object = vp->v_object) == NULL)
504		return;
505#ifdef DEBUG_VFS_LOCKS
506	{
507		struct mount *mp;
508
509		mp = vp->v_mount;
510		if (mp != NULL && (mp->mnt_kern_flag & MNTK_VMSETSIZE_BUG) == 0)
511			assert_vop_elocked(vp,
512			    "vnode_pager_setsize and not locked vnode");
513	}
514#endif
515	VM_OBJECT_WLOCK(object);
516	if (object->type == OBJT_DEAD) {
517		VM_OBJECT_WUNLOCK(object);
518		return;
519	}
520	KASSERT(object->type == OBJT_VNODE,
521	    ("not vnode-backed object %p", object));
522	if (nsize == object->un_pager.vnp.vnp_size) {
523		/*
524		 * Hasn't changed size
525		 */
526		VM_OBJECT_WUNLOCK(object);
527		return;
528	}
529	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
530	if (nsize < object->un_pager.vnp.vnp_size) {
531		/*
532		 * File has shrunk. Toss any cached pages beyond the new EOF.
533		 */
534		if (nobjsize < object->size)
535			vm_object_page_remove(object, nobjsize, object->size,
536			    0);
537		/*
538		 * this gets rid of garbage at the end of a page that is now
539		 * only partially backed by the vnode.
540		 *
541		 * XXX for some reason (I don't know yet), if we take a
542		 * completely invalid page and mark it partially valid
543		 * it can screw up NFS reads, so we don't allow the case.
544		 */
545		if (!(nsize & PAGE_MASK))
546			goto out;
547		m = vm_page_grab(object, OFF_TO_IDX(nsize), VM_ALLOC_NOCREAT);
548		if (m == NULL)
549			goto out;
550		if (!vm_page_none_valid(m))
551			vnode_pager_subpage_purge(m, (int)nsize & PAGE_MASK,
552			    PAGE_SIZE);
553		vm_page_xunbusy(m);
554	}
555out:
556#if defined(__powerpc__) && !defined(__powerpc64__)
557	object->un_pager.vnp.vnp_size = nsize;
558#else
559	atomic_store_64(&object->un_pager.vnp.vnp_size, nsize);
560#endif
561	object->size = nobjsize;
562	VM_OBJECT_WUNLOCK(object);
563}
564
565/*
566 * Lets the VM system know about the purged range for a file. We toss away any
567 * cached pages in the associated object that are affected by the purge
568 * operation. Partial-page area not aligned to page boundaries will be zeroed
569 * and the dirty blocks in DEV_BSIZE unit within a page will not be flushed.
570 */
571void
572vnode_pager_purge_range(struct vnode *vp, vm_ooffset_t start, vm_ooffset_t end)
573{
574	struct vm_page *m;
575	struct vm_object *object;
576	vm_pindex_t pi, pistart, piend;
577	bool same_page;
578	int base, pend;
579
580	ASSERT_VOP_LOCKED(vp, "vnode_pager_purge_range");
581
582	object = vp->v_object;
583	pi = start + PAGE_MASK < start ? OBJ_MAX_SIZE :
584	    OFF_TO_IDX(start + PAGE_MASK);
585	pistart = OFF_TO_IDX(start);
586	piend = end == 0 ? OBJ_MAX_SIZE : OFF_TO_IDX(end);
587	same_page = pistart == piend;
588	if ((end != 0 && end <= start) || object == NULL)
589		return;
590
591	VM_OBJECT_WLOCK(object);
592
593	if (pi < piend)
594		vm_object_page_remove(object, pi, piend, 0);
595
596	if ((start & PAGE_MASK) != 0) {
597		base = (int)start & PAGE_MASK;
598		pend = same_page ? (int)end & PAGE_MASK : PAGE_SIZE;
599		m = vm_page_grab(object, pistart, VM_ALLOC_NOCREAT);
600		if (m != NULL) {
601			if (!vm_page_none_valid(m))
602				vnode_pager_subpage_purge(m, base, pend);
603			vm_page_xunbusy(m);
604		}
605		if (same_page)
606			goto out;
607	}
608	if ((end & PAGE_MASK) != 0) {
609		base = same_page ? (int)start & PAGE_MASK : 0 ;
610		pend = (int)end & PAGE_MASK;
611		m = vm_page_grab(object, piend, VM_ALLOC_NOCREAT);
612		if (m != NULL) {
613			if (!vm_page_none_valid(m))
614				vnode_pager_subpage_purge(m, base, pend);
615			vm_page_xunbusy(m);
616		}
617	}
618out:
619	VM_OBJECT_WUNLOCK(object);
620}
621
622/*
623 * calculate the linear (byte) disk address of specified virtual
624 * file address
625 */
626static int
627vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
628    int *run)
629{
630	int bsize;
631	int err;
632	daddr_t vblock;
633	daddr_t voffset;
634
635	if (VN_IS_DOOMED(vp))
636		return -1;
637
638	bsize = vp->v_mount->mnt_stat.f_iosize;
639	vblock = address / bsize;
640	voffset = address % bsize;
641
642	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
643	if (err == 0) {
644		if (*rtaddress != -1)
645			*rtaddress += voffset / DEV_BSIZE;
646		if (run) {
647			*run += 1;
648			*run *= bsize / PAGE_SIZE;
649			*run -= voffset / PAGE_SIZE;
650		}
651	}
652
653	return (err);
654}
655
656static void
657vnode_pager_input_bdone(struct buf *bp)
658{
659	runningbufwakeup(bp);
660	bdone(bp);
661}
662
663/*
664 * small block filesystem vnode pager input
665 */
666static int
667vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
668{
669	struct vnode *vp;
670	struct bufobj *bo;
671	struct buf *bp;
672	struct sf_buf *sf;
673	daddr_t fileaddr;
674	vm_offset_t bsize;
675	vm_page_bits_t bits;
676	int error, i;
677
678	error = 0;
679	vp = object->handle;
680	if (VN_IS_DOOMED(vp))
681		return VM_PAGER_BAD;
682
683	bsize = vp->v_mount->mnt_stat.f_iosize;
684
685	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
686
687	sf = sf_buf_alloc(m, 0);
688
689	for (i = 0; i < PAGE_SIZE / bsize; i++) {
690		vm_ooffset_t address;
691
692		bits = vm_page_bits(i * bsize, bsize);
693		if (m->valid & bits)
694			continue;
695
696		address = IDX_TO_OFF(m->pindex) + i * bsize;
697		if (address >= object->un_pager.vnp.vnp_size) {
698			fileaddr = -1;
699		} else {
700			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
701			if (error)
702				break;
703		}
704		if (fileaddr != -1) {
705			bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
706
707			/* build a minimal buffer header */
708			bp->b_iocmd = BIO_READ;
709			bp->b_iodone = vnode_pager_input_bdone;
710			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
711			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
712			bp->b_rcred = crhold(curthread->td_ucred);
713			bp->b_wcred = crhold(curthread->td_ucred);
714			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
715			bp->b_blkno = fileaddr;
716			pbgetbo(bo, bp);
717			bp->b_vp = vp;
718			bp->b_bcount = bsize;
719			bp->b_bufsize = bsize;
720			bp->b_runningbufspace = bp->b_bufsize;
721			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
722
723			/* do the input */
724			bp->b_iooffset = dbtob(bp->b_blkno);
725			bstrategy(bp);
726
727			bwait(bp, PVM, "vnsrd");
728
729			if ((bp->b_ioflags & BIO_ERROR) != 0) {
730				KASSERT(bp->b_error != 0,
731				    ("%s: buf error but b_error == 0\n", __func__));
732				error = bp->b_error;
733			}
734
735			/*
736			 * free the buffer header back to the swap buffer pool
737			 */
738			bp->b_vp = NULL;
739			pbrelbo(bp);
740			uma_zfree(vnode_pbuf_zone, bp);
741			if (error)
742				break;
743		} else
744			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
745		KASSERT((m->dirty & bits) == 0,
746		    ("vnode_pager_input_smlfs: page %p is dirty", m));
747		vm_page_bits_set(m, &m->valid, bits);
748	}
749	sf_buf_free(sf);
750	if (error) {
751		return VM_PAGER_ERROR;
752	}
753	return VM_PAGER_OK;
754}
755
756/*
757 * old style vnode pager input routine
758 */
759static int
760vnode_pager_input_old(vm_object_t object, vm_page_t m)
761{
762	struct uio auio;
763	struct iovec aiov;
764	int error;
765	int size;
766	struct sf_buf *sf;
767	struct vnode *vp;
768
769	VM_OBJECT_ASSERT_WLOCKED(object);
770	error = 0;
771
772	/*
773	 * Return failure if beyond current EOF
774	 */
775	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
776		return VM_PAGER_BAD;
777	} else {
778		size = PAGE_SIZE;
779		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
780			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
781		vp = object->handle;
782		VM_OBJECT_WUNLOCK(object);
783
784		/*
785		 * Allocate a kernel virtual address and initialize so that
786		 * we can use VOP_READ/WRITE routines.
787		 */
788		sf = sf_buf_alloc(m, 0);
789
790		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
791		aiov.iov_len = size;
792		auio.uio_iov = &aiov;
793		auio.uio_iovcnt = 1;
794		auio.uio_offset = IDX_TO_OFF(m->pindex);
795		auio.uio_segflg = UIO_SYSSPACE;
796		auio.uio_rw = UIO_READ;
797		auio.uio_resid = size;
798		auio.uio_td = curthread;
799
800		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
801		if (!error) {
802			int count = size - auio.uio_resid;
803
804			if (count == 0)
805				error = EINVAL;
806			else if (count != PAGE_SIZE)
807				bzero((caddr_t)sf_buf_kva(sf) + count,
808				    PAGE_SIZE - count);
809		}
810		sf_buf_free(sf);
811
812		VM_OBJECT_WLOCK(object);
813	}
814	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
815	if (!error)
816		vm_page_valid(m);
817	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
818}
819
820/*
821 * generic vnode pager input routine
822 */
823
824/*
825 * Local media VFS's that do not implement their own VOP_GETPAGES
826 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
827 * to implement the previous behaviour.
828 *
829 * All other FS's should use the bypass to get to the local media
830 * backing vp's VOP_GETPAGES.
831 */
832static int
833vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
834    int *rahead)
835{
836	struct vnode *vp;
837	int rtval;
838
839	/* Handle is stable with paging in progress. */
840	vp = object->handle;
841	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
842	KASSERT(rtval != EOPNOTSUPP,
843	    ("vnode_pager: FS getpages not implemented\n"));
844	return rtval;
845}
846
847static int
848vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
849    int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
850{
851	struct vnode *vp;
852	int rtval;
853
854	vp = object->handle;
855	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
856	KASSERT(rtval != EOPNOTSUPP,
857	    ("vnode_pager: FS getpages_async not implemented\n"));
858	return (rtval);
859}
860
861/*
862 * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
863 * local filesystems, where partially valid pages can only occur at
864 * the end of file.
865 */
866int
867vnode_pager_local_getpages(struct vop_getpages_args *ap)
868{
869
870	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
871	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
872}
873
874int
875vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
876{
877	int error;
878
879	error = vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
880	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg);
881	if (error != 0 && ap->a_iodone != NULL)
882		ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error);
883	return (error);
884}
885
886/*
887 * This is now called from local media FS's to operate against their
888 * own vnodes if they fail to implement VOP_GETPAGES.
889 */
890int
891vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
892    int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
893{
894	vm_object_t object;
895	struct bufobj *bo;
896	struct buf *bp;
897	off_t foff;
898#ifdef INVARIANTS
899	off_t blkno0;
900#endif
901	int bsize, pagesperblock;
902	int error, before, after, rbehind, rahead, poff, i;
903	int bytecount, secmask;
904
905	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
906	    ("%s does not support devices", __func__));
907
908	if (VN_IS_DOOMED(vp))
909		return (VM_PAGER_BAD);
910
911	object = vp->v_object;
912	foff = IDX_TO_OFF(m[0]->pindex);
913	bsize = vp->v_mount->mnt_stat.f_iosize;
914	pagesperblock = bsize / PAGE_SIZE;
915
916	KASSERT(foff < object->un_pager.vnp.vnp_size,
917	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
918	KASSERT(count <= atop(maxphys),
919	    ("%s: requested %d pages", __func__, count));
920
921	/*
922	 * The last page has valid blocks.  Invalid part can only
923	 * exist at the end of file, and the page is made fully valid
924	 * by zeroing in vm_pager_get_pages().
925	 */
926	if (!vm_page_none_valid(m[count - 1]) && --count == 0) {
927		if (iodone != NULL)
928			iodone(arg, m, 1, 0);
929		return (VM_PAGER_OK);
930	}
931
932	bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
933	MPASS((bp->b_flags & B_MAXPHYS) != 0);
934
935	/*
936	 * Get the underlying device blocks for the file with VOP_BMAP().
937	 * If the file system doesn't support VOP_BMAP, use old way of
938	 * getting pages via VOP_READ.
939	 */
940	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
941	if (error == EOPNOTSUPP) {
942		uma_zfree(vnode_pbuf_zone, bp);
943		VM_OBJECT_WLOCK(object);
944		for (i = 0; i < count; i++) {
945			VM_CNT_INC(v_vnodein);
946			VM_CNT_INC(v_vnodepgsin);
947			error = vnode_pager_input_old(object, m[i]);
948			if (error)
949				break;
950		}
951		VM_OBJECT_WUNLOCK(object);
952		return (error);
953	} else if (error != 0) {
954		uma_zfree(vnode_pbuf_zone, bp);
955		return (VM_PAGER_ERROR);
956	}
957
958	/*
959	 * If the file system supports BMAP, but blocksize is smaller
960	 * than a page size, then use special small filesystem code.
961	 */
962	if (pagesperblock == 0) {
963		uma_zfree(vnode_pbuf_zone, bp);
964		for (i = 0; i < count; i++) {
965			VM_CNT_INC(v_vnodein);
966			VM_CNT_INC(v_vnodepgsin);
967			error = vnode_pager_input_smlfs(object, m[i]);
968			if (error)
969				break;
970		}
971		return (error);
972	}
973
974	/*
975	 * A sparse file can be encountered only for a single page request,
976	 * which may not be preceded by call to vm_pager_haspage().
977	 */
978	if (bp->b_blkno == -1) {
979		KASSERT(count == 1,
980		    ("%s: array[%d] request to a sparse file %p", __func__,
981		    count, vp));
982		uma_zfree(vnode_pbuf_zone, bp);
983		pmap_zero_page(m[0]);
984		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
985		    __func__, m[0]));
986		vm_page_valid(m[0]);
987		return (VM_PAGER_OK);
988	}
989
990#ifdef INVARIANTS
991	blkno0 = bp->b_blkno;
992#endif
993	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
994
995	/* Recalculate blocks available after/before to pages. */
996	poff = (foff % bsize) / PAGE_SIZE;
997	before *= pagesperblock;
998	before += poff;
999	after *= pagesperblock;
1000	after += pagesperblock - (poff + 1);
1001	if (m[0]->pindex + after >= object->size)
1002		after = object->size - 1 - m[0]->pindex;
1003	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
1004	    __func__, count, after + 1));
1005	after -= count - 1;
1006
1007	/* Trim requested rbehind/rahead to possible values. */
1008	rbehind = a_rbehind ? *a_rbehind : 0;
1009	rahead = a_rahead ? *a_rahead : 0;
1010	rbehind = min(rbehind, before);
1011	rbehind = min(rbehind, m[0]->pindex);
1012	rahead = min(rahead, after);
1013	rahead = min(rahead, object->size - m[count - 1]->pindex);
1014	/*
1015	 * Check that total amount of pages fit into buf.  Trim rbehind and
1016	 * rahead evenly if not.
1017	 */
1018	if (rbehind + rahead + count > atop(maxphys)) {
1019		int trim, sum;
1020
1021		trim = rbehind + rahead + count - atop(maxphys) + 1;
1022		sum = rbehind + rahead;
1023		if (rbehind == before) {
1024			/* Roundup rbehind trim to block size. */
1025			rbehind -= roundup(trim * rbehind / sum, pagesperblock);
1026			if (rbehind < 0)
1027				rbehind = 0;
1028		} else
1029			rbehind -= trim * rbehind / sum;
1030		rahead -= trim * rahead / sum;
1031	}
1032	KASSERT(rbehind + rahead + count <= atop(maxphys),
1033	    ("%s: behind %d ahead %d count %d maxphys %lu", __func__,
1034	    rbehind, rahead, count, maxphys));
1035
1036	/*
1037	 * Fill in the bp->b_pages[] array with requested and optional
1038	 * read behind or read ahead pages.  Read behind pages are looked
1039	 * up in a backward direction, down to a first cached page.  Same
1040	 * for read ahead pages, but there is no need to shift the array
1041	 * in case of encountering a cached page.
1042	 */
1043	i = bp->b_npages = 0;
1044	if (rbehind) {
1045		vm_pindex_t startpindex, tpindex;
1046		vm_page_t p;
1047
1048		VM_OBJECT_WLOCK(object);
1049		startpindex = m[0]->pindex - rbehind;
1050		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
1051		    p->pindex >= startpindex)
1052			startpindex = p->pindex + 1;
1053
1054		/* tpindex is unsigned; beware of numeric underflow. */
1055		for (tpindex = m[0]->pindex - 1;
1056		    tpindex >= startpindex && tpindex < m[0]->pindex;
1057		    tpindex--, i++) {
1058			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1059			if (p == NULL) {
1060				/* Shift the array. */
1061				for (int j = 0; j < i; j++)
1062					bp->b_pages[j] = bp->b_pages[j +
1063					    tpindex + 1 - startpindex];
1064				break;
1065			}
1066			bp->b_pages[tpindex - startpindex] = p;
1067		}
1068
1069		bp->b_pgbefore = i;
1070		bp->b_npages += i;
1071		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
1072	} else
1073		bp->b_pgbefore = 0;
1074
1075	/* Requested pages. */
1076	for (int j = 0; j < count; j++, i++)
1077		bp->b_pages[i] = m[j];
1078	bp->b_npages += count;
1079
1080	if (rahead) {
1081		vm_pindex_t endpindex, tpindex;
1082		vm_page_t p;
1083
1084		if (!VM_OBJECT_WOWNED(object))
1085			VM_OBJECT_WLOCK(object);
1086		endpindex = m[count - 1]->pindex + rahead + 1;
1087		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
1088		    p->pindex < endpindex)
1089			endpindex = p->pindex;
1090		if (endpindex > object->size)
1091			endpindex = object->size;
1092
1093		for (tpindex = m[count - 1]->pindex + 1;
1094		    tpindex < endpindex; i++, tpindex++) {
1095			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1096			if (p == NULL)
1097				break;
1098			bp->b_pages[i] = p;
1099		}
1100
1101		bp->b_pgafter = i - bp->b_npages;
1102		bp->b_npages = i;
1103	} else
1104		bp->b_pgafter = 0;
1105
1106	if (VM_OBJECT_WOWNED(object))
1107		VM_OBJECT_WUNLOCK(object);
1108
1109	/* Report back actual behind/ahead read. */
1110	if (a_rbehind)
1111		*a_rbehind = bp->b_pgbefore;
1112	if (a_rahead)
1113		*a_rahead = bp->b_pgafter;
1114
1115#ifdef INVARIANTS
1116	KASSERT(bp->b_npages <= atop(maxphys),
1117	    ("%s: buf %p overflowed", __func__, bp));
1118	for (int j = 1, prev = 0; j < bp->b_npages; j++) {
1119		if (bp->b_pages[j] == bogus_page)
1120			continue;
1121		KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
1122		    j - prev, ("%s: pages array not consecutive, bp %p",
1123		     __func__, bp));
1124		prev = j;
1125	}
1126#endif
1127
1128	/*
1129	 * Recalculate first offset and bytecount with regards to read behind.
1130	 * Truncate bytecount to vnode real size and round up physical size
1131	 * for real devices.
1132	 */
1133	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1134	bytecount = bp->b_npages << PAGE_SHIFT;
1135	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
1136		bytecount = object->un_pager.vnp.vnp_size - foff;
1137	secmask = bo->bo_bsize - 1;
1138	KASSERT(secmask < PAGE_SIZE && secmask > 0,
1139	    ("%s: sector size %d too large", __func__, secmask + 1));
1140	bytecount = (bytecount + secmask) & ~secmask;
1141
1142	/*
1143	 * And map the pages to be read into the kva, if the filesystem
1144	 * requires mapped buffers.
1145	 */
1146	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1147	    unmapped_buf_allowed) {
1148		bp->b_data = unmapped_buf;
1149		bp->b_offset = 0;
1150	} else {
1151		bp->b_data = bp->b_kvabase;
1152		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1153	}
1154
1155	/* Build a minimal buffer header. */
1156	bp->b_iocmd = BIO_READ;
1157	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1158	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1159	bp->b_rcred = crhold(curthread->td_ucred);
1160	bp->b_wcred = crhold(curthread->td_ucred);
1161	pbgetbo(bo, bp);
1162	bp->b_vp = vp;
1163	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1164	bp->b_iooffset = dbtob(bp->b_blkno);
1165	KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1166	    (blkno0 - bp->b_blkno) * DEV_BSIZE +
1167	    IDX_TO_OFF(m[0]->pindex) % bsize,
1168	    ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1169	    "blkno0 %ju b_blkno %ju", bsize,
1170	    (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1171	    (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1172
1173	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1174	VM_CNT_INC(v_vnodein);
1175	VM_CNT_ADD(v_vnodepgsin, bp->b_npages);
1176
1177	if (iodone != NULL) { /* async */
1178		bp->b_pgiodone = iodone;
1179		bp->b_caller1 = arg;
1180		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1181		bp->b_flags |= B_ASYNC;
1182		BUF_KERNPROC(bp);
1183		bstrategy(bp);
1184		return (VM_PAGER_OK);
1185	} else {
1186		bp->b_iodone = bdone;
1187		bstrategy(bp);
1188		bwait(bp, PVM, "vnread");
1189		error = vnode_pager_generic_getpages_done(bp);
1190		for (i = 0; i < bp->b_npages; i++)
1191			bp->b_pages[i] = NULL;
1192		bp->b_vp = NULL;
1193		pbrelbo(bp);
1194		uma_zfree(vnode_pbuf_zone, bp);
1195		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1196	}
1197}
1198
1199static void
1200vnode_pager_generic_getpages_done_async(struct buf *bp)
1201{
1202	int error;
1203
1204	error = vnode_pager_generic_getpages_done(bp);
1205	/* Run the iodone upon the requested range. */
1206	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1207	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1208	for (int i = 0; i < bp->b_npages; i++)
1209		bp->b_pages[i] = NULL;
1210	bp->b_vp = NULL;
1211	pbrelbo(bp);
1212	uma_zfree(vnode_pbuf_zone, bp);
1213}
1214
1215static int
1216vnode_pager_generic_getpages_done(struct buf *bp)
1217{
1218	vm_object_t object;
1219	off_t tfoff, nextoff;
1220	int i, error;
1221
1222	KASSERT((bp->b_ioflags & BIO_ERROR) == 0 || bp->b_error != 0,
1223	    ("%s: buf error but b_error == 0\n", __func__));
1224	error = (bp->b_ioflags & BIO_ERROR) != 0 ? bp->b_error : 0;
1225	object = bp->b_vp->v_object;
1226
1227	runningbufwakeup(bp);
1228
1229	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1230		if (!buf_mapped(bp)) {
1231			bp->b_data = bp->b_kvabase;
1232			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1233			    bp->b_npages);
1234		}
1235		bzero(bp->b_data + bp->b_bcount,
1236		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1237	}
1238	if (buf_mapped(bp)) {
1239		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1240		bp->b_data = unmapped_buf;
1241	}
1242
1243	/*
1244	 * If the read failed, we must free any read ahead/behind pages here.
1245	 * The requested pages are freed by the caller (for sync requests)
1246	 * or by the bp->b_pgiodone callback (for async requests).
1247	 */
1248	if (error != 0) {
1249		VM_OBJECT_WLOCK(object);
1250		for (i = 0; i < bp->b_pgbefore; i++)
1251			vm_page_free_invalid(bp->b_pages[i]);
1252		for (i = bp->b_npages - bp->b_pgafter; i < bp->b_npages; i++)
1253			vm_page_free_invalid(bp->b_pages[i]);
1254		VM_OBJECT_WUNLOCK(object);
1255		return (error);
1256	}
1257
1258	/* Read lock to protect size. */
1259	VM_OBJECT_RLOCK(object);
1260	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1261	    i < bp->b_npages; i++, tfoff = nextoff) {
1262		vm_page_t mt;
1263
1264		nextoff = tfoff + PAGE_SIZE;
1265		mt = bp->b_pages[i];
1266		if (mt == bogus_page)
1267			continue;
1268
1269		if (nextoff <= object->un_pager.vnp.vnp_size) {
1270			/*
1271			 * Read filled up entire page.
1272			 */
1273			vm_page_valid(mt);
1274			KASSERT(mt->dirty == 0,
1275			    ("%s: page %p is dirty", __func__, mt));
1276			KASSERT(!pmap_page_is_mapped(mt),
1277			    ("%s: page %p is mapped", __func__, mt));
1278		} else {
1279			/*
1280			 * Read did not fill up entire page.
1281			 *
1282			 * Currently we do not set the entire page valid,
1283			 * we just try to clear the piece that we couldn't
1284			 * read.
1285			 */
1286			vm_page_set_valid_range(mt, 0,
1287			    object->un_pager.vnp.vnp_size - tfoff);
1288			KASSERT((mt->dirty & vm_page_bits(0,
1289			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1290			    ("%s: page %p is dirty", __func__, mt));
1291		}
1292
1293		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1294			vm_page_readahead_finish(mt);
1295	}
1296	VM_OBJECT_RUNLOCK(object);
1297
1298	return (error);
1299}
1300
1301/*
1302 * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1303 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1304 * vnode_pager_generic_putpages() to implement the previous behaviour.
1305 *
1306 * All other FS's should use the bypass to get to the local media
1307 * backing vp's VOP_PUTPAGES.
1308 */
1309static void
1310vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1311    int flags, int *rtvals)
1312{
1313	int rtval __diagused;
1314	struct vnode *vp;
1315	int bytes = count * PAGE_SIZE;
1316
1317	/*
1318	 * Force synchronous operation if we are extremely low on memory
1319	 * to prevent a low-memory deadlock.  VOP operations often need to
1320	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1321	 * operation ).  The swapper handles the case by limiting the amount
1322	 * of asynchronous I/O, but that sort of solution doesn't scale well
1323	 * for the vnode pager without a lot of work.
1324	 *
1325	 * Also, the backing vnode's iodone routine may not wake the pageout
1326	 * daemon up.  This should be probably be addressed XXX.
1327	 */
1328
1329	if (vm_page_count_min())
1330		flags |= VM_PAGER_PUT_SYNC;
1331
1332	/*
1333	 * Call device-specific putpages function
1334	 */
1335	vp = object->handle;
1336	VM_OBJECT_WUNLOCK(object);
1337	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1338	KASSERT(rtval != EOPNOTSUPP,
1339	    ("vnode_pager: stale FS putpages\n"));
1340	VM_OBJECT_WLOCK(object);
1341}
1342
1343static int
1344vn_off2bidx(vm_ooffset_t offset)
1345{
1346
1347	return ((offset & PAGE_MASK) / DEV_BSIZE);
1348}
1349
1350static bool
1351vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1352{
1353
1354	KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1355	    offset < IDX_TO_OFF(m->pindex + 1),
1356	    ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1357	    (uintmax_t)offset));
1358	return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1359}
1360
1361/*
1362 * This is now called from local media FS's to operate against their
1363 * own vnodes if they fail to implement VOP_PUTPAGES.
1364 *
1365 * This is typically called indirectly via the pageout daemon and
1366 * clustering has already typically occurred, so in general we ask the
1367 * underlying filesystem to write the data out asynchronously rather
1368 * then delayed.
1369 */
1370int
1371vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1372    int flags, int *rtvals)
1373{
1374	vm_object_t object;
1375	vm_page_t m;
1376	vm_ooffset_t max_offset, next_offset, poffset, prev_offset;
1377	struct uio auio;
1378	struct iovec aiov;
1379	off_t prev_resid, wrsz;
1380	int count, error, i, maxsize, ncount, pgoff, ppscheck;
1381	bool in_hole;
1382	static struct timeval lastfail;
1383	static int curfail;
1384
1385	object = vp->v_object;
1386	count = bytecount / PAGE_SIZE;
1387
1388	for (i = 0; i < count; i++)
1389		rtvals[i] = VM_PAGER_ERROR;
1390
1391	if ((int64_t)ma[0]->pindex < 0) {
1392		printf("vnode_pager_generic_putpages: "
1393		    "attempt to write meta-data 0x%jx(%lx)\n",
1394		    (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1395		rtvals[0] = VM_PAGER_BAD;
1396		return (VM_PAGER_BAD);
1397	}
1398
1399	maxsize = count * PAGE_SIZE;
1400	ncount = count;
1401
1402	poffset = IDX_TO_OFF(ma[0]->pindex);
1403
1404	/*
1405	 * If the page-aligned write is larger then the actual file we
1406	 * have to invalidate pages occurring beyond the file EOF.  However,
1407	 * there is an edge case where a file may not be page-aligned where
1408	 * the last page is partially invalid.  In this case the filesystem
1409	 * may not properly clear the dirty bits for the entire page (which
1410	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1411	 * With the page busied we are free to fix up the dirty bits here.
1412	 *
1413	 * We do not under any circumstances truncate the valid bits, as
1414	 * this will screw up bogus page replacement.
1415	 */
1416	VM_OBJECT_RLOCK(object);
1417	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1418		if (object->un_pager.vnp.vnp_size > poffset) {
1419			maxsize = object->un_pager.vnp.vnp_size - poffset;
1420			ncount = btoc(maxsize);
1421			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1422				pgoff = roundup2(pgoff, DEV_BSIZE);
1423
1424				/*
1425				 * If the page is busy and the following
1426				 * conditions hold, then the page's dirty
1427				 * field cannot be concurrently changed by a
1428				 * pmap operation.
1429				 */
1430				m = ma[ncount - 1];
1431				vm_page_assert_sbusied(m);
1432				KASSERT(!pmap_page_is_write_mapped(m),
1433		("vnode_pager_generic_putpages: page %p is not read-only", m));
1434				MPASS(m->dirty != 0);
1435				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1436				    pgoff);
1437			}
1438		} else {
1439			maxsize = 0;
1440			ncount = 0;
1441		}
1442		for (i = ncount; i < count; i++)
1443			rtvals[i] = VM_PAGER_BAD;
1444	}
1445	VM_OBJECT_RUNLOCK(object);
1446
1447	auio.uio_iov = &aiov;
1448	auio.uio_segflg = UIO_NOCOPY;
1449	auio.uio_rw = UIO_WRITE;
1450	auio.uio_td = NULL;
1451	max_offset = roundup2(poffset + maxsize, DEV_BSIZE);
1452
1453	for (prev_offset = poffset; prev_offset < max_offset;) {
1454		/* Skip clean blocks. */
1455		for (in_hole = true; in_hole && prev_offset < max_offset;) {
1456			m = ma[OFF_TO_IDX(prev_offset - poffset)];
1457			for (i = vn_off2bidx(prev_offset);
1458			    i < sizeof(vm_page_bits_t) * NBBY &&
1459			    prev_offset < max_offset; i++) {
1460				if (vn_dirty_blk(m, prev_offset)) {
1461					in_hole = false;
1462					break;
1463				}
1464				prev_offset += DEV_BSIZE;
1465			}
1466		}
1467		if (in_hole)
1468			goto write_done;
1469
1470		/* Find longest run of dirty blocks. */
1471		for (next_offset = prev_offset; next_offset < max_offset;) {
1472			m = ma[OFF_TO_IDX(next_offset - poffset)];
1473			for (i = vn_off2bidx(next_offset);
1474			    i < sizeof(vm_page_bits_t) * NBBY &&
1475			    next_offset < max_offset; i++) {
1476				if (!vn_dirty_blk(m, next_offset))
1477					goto start_write;
1478				next_offset += DEV_BSIZE;
1479			}
1480		}
1481start_write:
1482		if (next_offset > poffset + maxsize)
1483			next_offset = poffset + maxsize;
1484		if (prev_offset == next_offset)
1485			goto write_done;
1486
1487		/*
1488		 * Getting here requires finding a dirty block in the
1489		 * 'skip clean blocks' loop.
1490		 */
1491
1492		aiov.iov_base = NULL;
1493		auio.uio_iovcnt = 1;
1494		auio.uio_offset = prev_offset;
1495		prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1496		    prev_offset;
1497		error = VOP_WRITE(vp, &auio,
1498		    vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1499
1500		wrsz = prev_resid - auio.uio_resid;
1501		if (wrsz == 0) {
1502			if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1503				vn_printf(vp, "vnode_pager_putpages: "
1504				    "zero-length write at %ju resid %zd\n",
1505				    auio.uio_offset, auio.uio_resid);
1506			}
1507			break;
1508		}
1509
1510		/* Adjust the starting offset for next iteration. */
1511		prev_offset += wrsz;
1512		MPASS(auio.uio_offset == prev_offset);
1513
1514		ppscheck = 0;
1515		if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1516		    &curfail, 1)) != 0)
1517			vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1518			    error);
1519		if (auio.uio_resid != 0 && (ppscheck != 0 ||
1520		    ppsratecheck(&lastfail, &curfail, 1) != 0))
1521			vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1522			    "at %ju\n", auio.uio_resid,
1523			    (uintmax_t)ma[0]->pindex);
1524		if (error != 0 || auio.uio_resid != 0)
1525			break;
1526	}
1527write_done:
1528	/* Mark completely processed pages. */
1529	for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1530		rtvals[i] = VM_PAGER_OK;
1531	/* Mark partial EOF page. */
1532	if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1533		rtvals[i++] = VM_PAGER_OK;
1534	/* Unwritten pages in range, free bonus if the page is clean. */
1535	for (; i < ncount; i++)
1536		rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1537	VM_CNT_ADD(v_vnodepgsout, i);
1538	VM_CNT_INC(v_vnodeout);
1539	return (rtvals[0]);
1540}
1541
1542int
1543vnode_pager_putpages_ioflags(int pager_flags)
1544{
1545	int ioflags;
1546
1547	/*
1548	 * Pageouts are already clustered, use IO_ASYNC to force a
1549	 * bawrite() rather then a bdwrite() to prevent paging I/O
1550	 * from saturating the buffer cache.  Dummy-up the sequential
1551	 * heuristic to cause large ranges to cluster.  If neither
1552	 * IO_SYNC or IO_ASYNC is set, the system decides how to
1553	 * cluster.
1554	 */
1555	ioflags = IO_VMIO;
1556	if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1557		ioflags |= IO_SYNC;
1558	else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1559		ioflags |= IO_ASYNC;
1560	ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1561	ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1562	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1563	return (ioflags);
1564}
1565
1566/*
1567 * vnode_pager_undirty_pages().
1568 *
1569 * A helper to mark pages as clean after pageout that was possibly
1570 * done with a short write.  The lpos argument specifies the page run
1571 * length in bytes, and the written argument specifies how many bytes
1572 * were actually written.  eof is the offset past the last valid byte
1573 * in the vnode using the absolute file position of the first byte in
1574 * the run as the base from which it is computed.
1575 */
1576void
1577vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1578    int lpos)
1579{
1580	int i, pos, pos_devb;
1581
1582	if (written == 0 && eof >= lpos)
1583		return;
1584	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1585		if (pos < trunc_page(written)) {
1586			rtvals[i] = VM_PAGER_OK;
1587			vm_page_undirty(ma[i]);
1588		} else {
1589			/* Partially written page. */
1590			rtvals[i] = VM_PAGER_AGAIN;
1591			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1592		}
1593	}
1594	if (eof >= lpos) /* avoid truncation */
1595		return;
1596	for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1597		if (pos != trunc_page(pos)) {
1598			/*
1599			 * The page contains the last valid byte in
1600			 * the vnode, mark the rest of the page as
1601			 * clean, potentially making the whole page
1602			 * clean.
1603			 */
1604			pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1605			vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1606			    pos_devb);
1607
1608			/*
1609			 * If the page was cleaned, report the pageout
1610			 * on it as successful.  msync() no longer
1611			 * needs to write out the page, endlessly
1612			 * creating write requests and dirty buffers.
1613			 */
1614			if (ma[i]->dirty == 0)
1615				rtvals[i] = VM_PAGER_OK;
1616
1617			pos = round_page(pos);
1618		} else {
1619			/* vm_pageout_flush() clears dirty */
1620			rtvals[i] = VM_PAGER_BAD;
1621			pos += PAGE_SIZE;
1622		}
1623	}
1624}
1625
1626static void
1627vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1628    vm_offset_t end)
1629{
1630	struct vnode *vp;
1631	vm_ooffset_t old_wm;
1632
1633	VM_OBJECT_WLOCK(object);
1634	if (object->type != OBJT_VNODE) {
1635		VM_OBJECT_WUNLOCK(object);
1636		return;
1637	}
1638	old_wm = object->un_pager.vnp.writemappings;
1639	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1640	vp = object->handle;
1641	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1642		ASSERT_VOP_LOCKED(vp, "v_writecount inc");
1643		VOP_ADD_WRITECOUNT_CHECKED(vp, 1);
1644		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1645		    __func__, vp, vp->v_writecount);
1646	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1647		ASSERT_VOP_LOCKED(vp, "v_writecount dec");
1648		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1649		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1650		    __func__, vp, vp->v_writecount);
1651	}
1652	VM_OBJECT_WUNLOCK(object);
1653}
1654
1655static void
1656vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1657    vm_offset_t end)
1658{
1659	struct vnode *vp;
1660	struct mount *mp;
1661	vm_offset_t inc;
1662
1663	VM_OBJECT_WLOCK(object);
1664
1665	/*
1666	 * First, recheck the object type to account for the race when
1667	 * the vnode is reclaimed.
1668	 */
1669	if (object->type != OBJT_VNODE) {
1670		VM_OBJECT_WUNLOCK(object);
1671		return;
1672	}
1673
1674	/*
1675	 * Optimize for the case when writemappings is not going to
1676	 * zero.
1677	 */
1678	inc = end - start;
1679	if (object->un_pager.vnp.writemappings != inc) {
1680		object->un_pager.vnp.writemappings -= inc;
1681		VM_OBJECT_WUNLOCK(object);
1682		return;
1683	}
1684
1685	vp = object->handle;
1686	vhold(vp);
1687	VM_OBJECT_WUNLOCK(object);
1688	mp = NULL;
1689	vn_start_write(vp, &mp, V_WAIT);
1690	vn_lock(vp, LK_SHARED | LK_RETRY);
1691
1692	/*
1693	 * Decrement the object's writemappings, by swapping the start
1694	 * and end arguments for vnode_pager_update_writecount().  If
1695	 * there was not a race with vnode reclaimation, then the
1696	 * vnode's v_writecount is decremented.
1697	 */
1698	vnode_pager_update_writecount(object, end, start);
1699	VOP_UNLOCK(vp);
1700	vdrop(vp);
1701	if (mp != NULL)
1702		vn_finished_write(mp);
1703}
1704
1705static void
1706vnode_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
1707{
1708	*vpp = object->handle;
1709}
1710
1711static void
1712vnode_pager_clean1(struct vnode *vp, int sync_flags)
1713{
1714	struct vm_object *obj;
1715
1716	ASSERT_VOP_LOCKED(vp, "needs lock for writes");
1717	obj = vp->v_object;
1718	if (obj == NULL)
1719		return;
1720
1721	VM_OBJECT_WLOCK(obj);
1722	vm_object_page_clean(obj, 0, 0, sync_flags);
1723	VM_OBJECT_WUNLOCK(obj);
1724}
1725
1726void
1727vnode_pager_clean_sync(struct vnode *vp)
1728{
1729	vnode_pager_clean1(vp, OBJPC_SYNC);
1730}
1731
1732void
1733vnode_pager_clean_async(struct vnode *vp)
1734{
1735	vnode_pager_clean1(vp, 0);
1736}
1737