1/*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61#ifndef	_VM_PAGEQUEUE_
62#define	_VM_PAGEQUEUE_
63
64#ifdef _KERNEL
65struct vm_pagequeue {
66	struct mtx	pq_mutex;
67	struct pglist	pq_pl;
68	int		pq_cnt;
69	const char	* const pq_name;
70	uint64_t	pq_pdpages;
71} __aligned(CACHE_LINE_SIZE);
72
73#if __SIZEOF_LONG__ == 8
74#define	VM_BATCHQUEUE_SIZE	63
75#else
76#define	VM_BATCHQUEUE_SIZE	15
77#endif
78
79struct vm_batchqueue {
80	vm_page_t	bq_pa[VM_BATCHQUEUE_SIZE];
81	int		bq_cnt;
82} __aligned(CACHE_LINE_SIZE);
83
84#include <vm/uma.h>
85#include <sys/_blockcount.h>
86#include <sys/pidctrl.h>
87struct sysctl_oid;
88
89/*
90 * One vm_domain per NUMA domain.  Contains pagequeues, free page structures,
91 * and accounting.
92 *
93 * Lock Key:
94 * f	vmd_free_mtx
95 * p	vmd_pageout_mtx
96 * d	vm_domainset_lock
97 * a	atomic
98 * c	const after boot
99 * q	page queue lock
100 *
101 * A unique page daemon thread manages each vm_domain structure and is
102 * responsible for ensuring that some free memory is available by freeing
103 * inactive pages and aging active pages.  To decide how many pages to process,
104 * it uses thresholds derived from the number of pages in the domain:
105 *
106 *  vmd_page_count
107 *       ---
108 *        |
109 *        |-> vmd_inactive_target (~3%)
110 *        |   - The active queue scan target is given by
111 *        |     (vmd_inactive_target + vmd_free_target - vmd_free_count).
112 *        |
113 *        |
114 *        |-> vmd_free_target (~2%)
115 *        |   - Target for page reclamation.
116 *        |
117 *        |-> vmd_pageout_wakeup_thresh (~1.8%)
118 *        |   - Threshold for waking up the page daemon.
119 *        |
120 *        |
121 *        |-> vmd_free_min (~0.5%)
122 *        |   - First low memory threshold.
123 *        |   - Causes per-CPU caching to be lazily disabled in UMA.
124 *        |   - vm_wait() sleeps below this threshold.
125 *        |
126 *        |-> vmd_free_severe (~0.25%)
127 *        |   - Second low memory threshold.
128 *        |   - Triggers aggressive UMA reclamation, disables delayed buffer
129 *        |     writes.
130 *        |
131 *        |-> vmd_free_reserved (~0.13%)
132 *        |   - Minimum for VM_ALLOC_NORMAL page allocations.
133 *        |-> vmd_pageout_free_min (32 + 2 pages)
134 *        |   - Minimum for waking a page daemon thread sleeping in vm_wait().
135 *        |-> vmd_interrupt_free_min (2 pages)
136 *        |   - Minimum for VM_ALLOC_SYSTEM page allocations.
137 *       ---
138 *
139 *--
140 * Free page count regulation:
141 *
142 * The page daemon attempts to ensure that the free page count is above the free
143 * target.  It wakes up periodically (every 100ms) to input the current free
144 * page shortage (free_target - free_count) to a PID controller, which in
145 * response outputs the number of pages to attempt to reclaim.  The shortage's
146 * current magnitude, rate of change, and cumulative value are together used to
147 * determine the controller's output.  The page daemon target thus adapts
148 * dynamically to the system's demand for free pages, resulting in less
149 * burstiness than a simple hysteresis loop.
150 *
151 * When the free page count drops below the wakeup threshold,
152 * vm_domain_allocate() proactively wakes up the page daemon.  This helps ensure
153 * that the system responds promptly to a large instantaneous free page
154 * shortage.
155 *
156 * The page daemon also attempts to ensure that some fraction of the system's
157 * memory is present in the inactive (I) and laundry (L) page queues, so that it
158 * can respond promptly to a sudden free page shortage.  In particular, the page
159 * daemon thread aggressively scans active pages so long as the following
160 * condition holds:
161 *
162 *         len(I) + len(L) + free_target - free_count < inactive_target
163 *
164 * Otherwise, when the inactive target is met, the page daemon periodically
165 * scans a small portion of the active queue in order to maintain up-to-date
166 * per-page access history.  Unreferenced pages in the active queue thus
167 * eventually migrate to the inactive queue.
168 *
169 * The per-domain laundry thread periodically launders dirty pages based on the
170 * number of clean pages freed by the page daemon since the last laundering.  If
171 * the page daemon fails to meet its scan target (i.e., the PID controller
172 * output) because of a shortage of clean inactive pages, the laundry thread
173 * attempts to launder enough pages to meet the free page target.
174 *
175 *--
176 * Page allocation priorities:
177 *
178 * The system defines three page allocation priorities: VM_ALLOC_NORMAL,
179 * VM_ALLOC_SYSTEM and VM_ALLOC_INTERRUPT.  An interrupt-priority allocation can
180 * claim any free page.  This priority is used in the pmap layer when attempting
181 * to allocate a page for the kernel page tables; in such cases an allocation
182 * failure will usually result in a kernel panic.  The system priority is used
183 * for most other kernel memory allocations, for instance by UMA's slab
184 * allocator or the buffer cache.  Such allocations will fail if the free count
185 * is below interrupt_free_min.  All other allocations occur at the normal
186 * priority, which is typically used for allocation of user pages, for instance
187 * in the page fault handler or when allocating page table pages or pv_entry
188 * structures for user pmaps.  Such allocations fail if the free count is below
189 * the free_reserved threshold.
190 *
191 *--
192 * Free memory shortages:
193 *
194 * The system uses the free_min and free_severe thresholds to apply
195 * back-pressure and give the page daemon a chance to recover.  When a page
196 * allocation fails due to a shortage and the allocating thread cannot handle
197 * failure, it may call vm_wait() to sleep until free pages are available.
198 * vm_domain_freecnt_inc() wakes sleeping threads once the free page count rises
199 * above the free_min threshold; the page daemon and laundry threads are given
200 * priority and will wake up once free_count reaches the (much smaller)
201 * pageout_free_min threshold.
202 *
203 * On NUMA systems, the domainset iterators always prefer NUMA domains where the
204 * free page count is above the free_min threshold.  This means that given the
205 * choice between two NUMA domains, one above the free_min threshold and one
206 * below, the former will be used to satisfy the allocation request regardless
207 * of the domain selection policy.
208 *
209 * In addition to reclaiming memory from the page queues, the vm_lowmem event
210 * fires every ten seconds so long as the system is under memory pressure (i.e.,
211 * vmd_free_count < vmd_free_target).  This allows kernel subsystems to register
212 * for notifications of free page shortages, upon which they may shrink their
213 * caches.  Following a vm_lowmem event, UMA's caches are pruned to ensure that
214 * they do not contain an excess of unused memory.  When a domain is below the
215 * free_min threshold, UMA limits the population of per-CPU caches.  When a
216 * domain falls below the free_severe threshold, UMA's caches are completely
217 * drained.
218 *
219 * If the system encounters a global memory shortage, it may resort to the
220 * out-of-memory (OOM) killer, which selects a process and delivers SIGKILL in a
221 * last-ditch attempt to free up some pages.  Either of the two following
222 * conditions will activate the OOM killer:
223 *
224 *  1. The page daemons collectively fail to reclaim any pages during their
225 *     inactive queue scans.  After vm_pageout_oom_seq consecutive scans fail,
226 *     the page daemon thread votes for an OOM kill, and an OOM kill is
227 *     triggered when all page daemons have voted.  This heuristic is strict and
228 *     may fail to trigger even when the system is effectively deadlocked.
229 *
230 *  2. Threads in the user fault handler are repeatedly unable to make progress
231 *     while allocating a page to satisfy the fault.  After
232 *     vm_pfault_oom_attempts page allocation failures with intervening
233 *     vm_wait() calls, the faulting thread will trigger an OOM kill.
234 */
235struct vm_domain {
236	struct vm_pagequeue vmd_pagequeues[PQ_COUNT];
237	struct mtx_padalign vmd_free_mtx;
238	struct mtx_padalign vmd_pageout_mtx;
239	struct vm_pgcache {
240		int domain;
241		int pool;
242		uma_zone_t zone;
243	} vmd_pgcache[VM_NFREEPOOL];
244	struct vmem *vmd_kernel_arena;	/* (c) per-domain kva R/W arena. */
245	struct vmem *vmd_kernel_rwx_arena; /* (c) per-domain kva R/W/X arena. */
246	u_int vmd_domain;		/* (c) Domain number. */
247	u_int vmd_page_count;		/* (c) Total page count. */
248	long vmd_segs;			/* (c) bitmask of the segments */
249	u_int __aligned(CACHE_LINE_SIZE) vmd_free_count; /* (a,f) free page count */
250	u_int vmd_pageout_deficit;	/* (a) Estimated number of pages deficit */
251	uint8_t vmd_pad[CACHE_LINE_SIZE - (sizeof(u_int) * 2)];
252
253	/* Paging control variables, used within single threaded page daemon. */
254	struct pidctrl vmd_pid;		/* Pageout controller. */
255	boolean_t vmd_oom;
256	u_int vmd_inactive_threads;
257	u_int vmd_inactive_shortage;		/* Per-thread shortage. */
258	blockcount_t vmd_inactive_running;	/* Number of inactive threads. */
259	blockcount_t vmd_inactive_starting;	/* Number of threads started. */
260	volatile u_int vmd_addl_shortage;	/* Shortage accumulator. */
261	volatile u_int vmd_inactive_freed;	/* Successful inactive frees. */
262	volatile u_int vmd_inactive_us;		/* Microseconds for above. */
263	u_int vmd_inactive_pps;		/* Exponential decay frees/second. */
264	int vmd_oom_seq;
265	int vmd_last_active_scan;
266	struct vm_page vmd_markers[PQ_COUNT]; /* (q) markers for queue scans */
267	struct vm_page vmd_inacthead; /* marker for LRU-defeating insertions */
268	struct vm_page vmd_clock[2]; /* markers for active queue scan */
269
270	int vmd_pageout_wanted;		/* (a, p) pageout daemon wait channel */
271	int vmd_pageout_pages_needed;	/* (d) page daemon waiting for pages? */
272	bool vmd_minset;		/* (d) Are we in vm_min_domains? */
273	bool vmd_severeset;		/* (d) Are we in vm_severe_domains? */
274	enum {
275		VM_LAUNDRY_IDLE = 0,
276		VM_LAUNDRY_BACKGROUND,
277		VM_LAUNDRY_SHORTFALL
278	} vmd_laundry_request;
279
280	/* Paging thresholds and targets. */
281	u_int vmd_clean_pages_freed;	/* (q) accumulator for laundry thread */
282	u_int vmd_background_launder_target; /* (c) */
283	u_int vmd_free_reserved;	/* (c) pages reserved for deadlock */
284	u_int vmd_free_target;		/* (c) pages desired free */
285	u_int vmd_free_min;		/* (c) pages desired free */
286	u_int vmd_inactive_target;	/* (c) pages desired inactive */
287	u_int vmd_pageout_free_min;	/* (c) min pages reserved for kernel */
288	u_int vmd_pageout_wakeup_thresh;/* (c) min pages to wake pagedaemon */
289	u_int vmd_interrupt_free_min;	/* (c) reserved pages for int code */
290	u_int vmd_free_severe;		/* (c) severe page depletion point */
291
292	/* Name for sysctl etc. */
293	struct sysctl_oid *vmd_oid;
294	char vmd_name[sizeof(__XSTRING(MAXMEMDOM))];
295} __aligned(CACHE_LINE_SIZE);
296
297extern struct vm_domain vm_dom[MAXMEMDOM];
298
299#define	VM_DOMAIN(n)		(&vm_dom[(n)])
300#define	VM_DOMAIN_EMPTY(n)	(vm_dom[(n)].vmd_page_count == 0)
301
302#define	vm_pagequeue_assert_locked(pq)	mtx_assert(&(pq)->pq_mutex, MA_OWNED)
303#define	vm_pagequeue_lock(pq)		mtx_lock(&(pq)->pq_mutex)
304#define	vm_pagequeue_lockptr(pq)	(&(pq)->pq_mutex)
305#define	vm_pagequeue_trylock(pq)	mtx_trylock(&(pq)->pq_mutex)
306#define	vm_pagequeue_unlock(pq)		mtx_unlock(&(pq)->pq_mutex)
307
308#define	vm_domain_free_assert_locked(n)					\
309	    mtx_assert(vm_domain_free_lockptr((n)), MA_OWNED)
310#define	vm_domain_free_assert_unlocked(n)				\
311	    mtx_assert(vm_domain_free_lockptr((n)), MA_NOTOWNED)
312#define	vm_domain_free_lock(d)						\
313	    mtx_lock(vm_domain_free_lockptr((d)))
314#define	vm_domain_free_lockptr(d)					\
315	    (&(d)->vmd_free_mtx)
316#define	vm_domain_free_trylock(d)					\
317	    mtx_trylock(vm_domain_free_lockptr((d)))
318#define	vm_domain_free_unlock(d)					\
319	    mtx_unlock(vm_domain_free_lockptr((d)))
320
321#define	vm_domain_pageout_lockptr(d)					\
322	    (&(d)->vmd_pageout_mtx)
323#define	vm_domain_pageout_assert_locked(n)				\
324	    mtx_assert(vm_domain_pageout_lockptr((n)), MA_OWNED)
325#define	vm_domain_pageout_assert_unlocked(n)				\
326	    mtx_assert(vm_domain_pageout_lockptr((n)), MA_NOTOWNED)
327#define	vm_domain_pageout_lock(d)					\
328	    mtx_lock(vm_domain_pageout_lockptr((d)))
329#define	vm_domain_pageout_unlock(d)					\
330	    mtx_unlock(vm_domain_pageout_lockptr((d)))
331
332static __inline void
333vm_pagequeue_cnt_add(struct vm_pagequeue *pq, int addend)
334{
335
336	vm_pagequeue_assert_locked(pq);
337	pq->pq_cnt += addend;
338}
339#define	vm_pagequeue_cnt_inc(pq)	vm_pagequeue_cnt_add((pq), 1)
340#define	vm_pagequeue_cnt_dec(pq)	vm_pagequeue_cnt_add((pq), -1)
341
342static inline void
343vm_pagequeue_remove(struct vm_pagequeue *pq, vm_page_t m)
344{
345
346	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
347	vm_pagequeue_cnt_dec(pq);
348}
349
350static inline void
351vm_batchqueue_init(struct vm_batchqueue *bq)
352{
353
354	bq->bq_cnt = 0;
355}
356
357static inline bool
358vm_batchqueue_empty(const struct vm_batchqueue *bq)
359{
360	return (bq->bq_cnt == 0);
361}
362
363static inline int
364vm_batchqueue_insert(struct vm_batchqueue *bq, vm_page_t m)
365{
366	int slots_free;
367
368	slots_free = nitems(bq->bq_pa) - bq->bq_cnt;
369	if (slots_free > 0) {
370		bq->bq_pa[bq->bq_cnt++] = m;
371		return (slots_free);
372	}
373	return (slots_free);
374}
375
376static inline vm_page_t
377vm_batchqueue_pop(struct vm_batchqueue *bq)
378{
379
380	if (bq->bq_cnt == 0)
381		return (NULL);
382	return (bq->bq_pa[--bq->bq_cnt]);
383}
384
385void vm_domain_set(struct vm_domain *vmd);
386void vm_domain_clear(struct vm_domain *vmd);
387int vm_domain_allocate(struct vm_domain *vmd, int req, int npages);
388
389/*
390 *      vm_pagequeue_domain:
391 *
392 *      Return the memory domain the page belongs to.
393 */
394static inline struct vm_domain *
395vm_pagequeue_domain(vm_page_t m)
396{
397
398	return (VM_DOMAIN(vm_page_domain(m)));
399}
400
401/*
402 * Return the number of pages we need to free-up or cache
403 * A positive number indicates that we do not have enough free pages.
404 */
405static inline int
406vm_paging_target(struct vm_domain *vmd)
407{
408
409	return (vmd->vmd_free_target - vmd->vmd_free_count);
410}
411
412/*
413 * Returns TRUE if the pagedaemon needs to be woken up.
414 */
415static inline int
416vm_paging_needed(struct vm_domain *vmd, u_int free_count)
417{
418
419	return (free_count < vmd->vmd_pageout_wakeup_thresh);
420}
421
422/*
423 * Returns TRUE if the domain is below the min paging target.
424 */
425static inline int
426vm_paging_min(struct vm_domain *vmd)
427{
428
429        return (vmd->vmd_free_min > vmd->vmd_free_count);
430}
431
432/*
433 * Returns TRUE if the domain is below the severe paging target.
434 */
435static inline int
436vm_paging_severe(struct vm_domain *vmd)
437{
438
439        return (vmd->vmd_free_severe > vmd->vmd_free_count);
440}
441
442/*
443 * Return the number of pages we need to launder.
444 * A positive number indicates that we have a shortfall of clean pages.
445 */
446static inline int
447vm_laundry_target(struct vm_domain *vmd)
448{
449
450	return (vm_paging_target(vmd));
451}
452
453void pagedaemon_wakeup(int domain);
454
455static inline void
456vm_domain_freecnt_inc(struct vm_domain *vmd, int adj)
457{
458	u_int old, new;
459
460	old = atomic_fetchadd_int(&vmd->vmd_free_count, adj);
461	new = old + adj;
462	/*
463	 * Only update bitsets on transitions.  Notice we short-circuit the
464	 * rest of the checks if we're above min already.
465	 */
466	if (old < vmd->vmd_free_min && (new >= vmd->vmd_free_min ||
467	    (old < vmd->vmd_free_severe && new >= vmd->vmd_free_severe) ||
468	    (old < vmd->vmd_pageout_free_min &&
469	    new >= vmd->vmd_pageout_free_min)))
470		vm_domain_clear(vmd);
471}
472
473#endif	/* _KERNEL */
474#endif				/* !_VM_PAGEQUEUE_ */
475