1/*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#include <sys/elf.h>
68#include <sys/kernel.h>
69#include <sys/ktr.h>
70#include <sys/lock.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/vmmeter.h>
74#include <sys/mman.h>
75#include <sys/vnode.h>
76#include <sys/racct.h>
77#include <sys/resourcevar.h>
78#include <sys/rwlock.h>
79#include <sys/file.h>
80#include <sys/sysctl.h>
81#include <sys/sysent.h>
82#include <sys/shm.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_page.h>
89#include <vm/vm_pageout.h>
90#include <vm/vm_object.h>
91#include <vm/vm_pager.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_extern.h>
94#include <vm/vnode_pager.h>
95#include <vm/swap_pager.h>
96#include <vm/uma.h>
97
98/*
99 *	Virtual memory maps provide for the mapping, protection,
100 *	and sharing of virtual memory objects.  In addition,
101 *	this module provides for an efficient virtual copy of
102 *	memory from one map to another.
103 *
104 *	Synchronization is required prior to most operations.
105 *
106 *	Maps consist of an ordered doubly-linked list of simple
107 *	entries; a self-adjusting binary search tree of these
108 *	entries is used to speed up lookups.
109 *
110 *	Since portions of maps are specified by start/end addresses,
111 *	which may not align with existing map entries, all
112 *	routines merely "clip" entries to these start/end values.
113 *	[That is, an entry is split into two, bordering at a
114 *	start or end value.]  Note that these clippings may not
115 *	always be necessary (as the two resulting entries are then
116 *	not changed); however, the clipping is done for convenience.
117 *
118 *	As mentioned above, virtual copy operations are performed
119 *	by copying VM object references from one map to
120 *	another, and then marking both regions as copy-on-write.
121 */
122
123static struct mtx map_sleep_mtx;
124static uma_zone_t mapentzone;
125static uma_zone_t kmapentzone;
126static uma_zone_t vmspace_zone;
127static int vmspace_zinit(void *mem, int size, int flags);
128static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
129    vm_offset_t max);
130static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
131static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
132static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
133static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
134    vm_map_entry_t gap_entry);
135static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
136    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
137#ifdef INVARIANTS
138static void vmspace_zdtor(void *mem, int size, void *arg);
139#endif
140static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
141    vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
142    int cow);
143static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
144    vm_offset_t failed_addr);
145
146#define	CONTAINS_BITS(set, bits)	((~(set) & (bits)) == 0)
147
148#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
149    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151
152/*
153 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154 * stable.
155 */
156#define PROC_VMSPACE_LOCK(p) do { } while (0)
157#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158
159/*
160 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161 *
162 *	Asserts that the starting and ending region
163 *	addresses fall within the valid range of the map.
164 */
165#define	VM_MAP_RANGE_CHECK(map, start, end)		\
166		{					\
167		if (start < vm_map_min(map))		\
168			start = vm_map_min(map);	\
169		if (end > vm_map_max(map))		\
170			end = vm_map_max(map);		\
171		if (start > end)			\
172			start = end;			\
173		}
174
175#ifndef UMA_USE_DMAP
176
177/*
178 * Allocate a new slab for kernel map entries.  The kernel map may be locked or
179 * unlocked, depending on whether the request is coming from the kernel map or a
180 * submap.  This function allocates a virtual address range directly from the
181 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
182 * lock and also to avoid triggering allocator recursion in the vmem boundary
183 * tag allocator.
184 */
185static void *
186kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
187    int wait)
188{
189	vm_offset_t addr;
190	int error, locked;
191
192	*pflag = UMA_SLAB_PRIV;
193
194	if (!(locked = vm_map_locked(kernel_map)))
195		vm_map_lock(kernel_map);
196	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
197	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
198		panic("%s: kernel map is exhausted", __func__);
199	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
200	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
201	if (error != KERN_SUCCESS)
202		panic("%s: vm_map_insert() failed: %d", __func__, error);
203	if (!locked)
204		vm_map_unlock(kernel_map);
205	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
206	    M_USE_RESERVE | (wait & M_ZERO));
207	if (error == KERN_SUCCESS) {
208		return ((void *)addr);
209	} else {
210		if (!locked)
211			vm_map_lock(kernel_map);
212		vm_map_delete(kernel_map, addr, bytes);
213		if (!locked)
214			vm_map_unlock(kernel_map);
215		return (NULL);
216	}
217}
218
219static void
220kmapent_free(void *item, vm_size_t size, uint8_t pflag)
221{
222	vm_offset_t addr;
223	int error __diagused;
224
225	if ((pflag & UMA_SLAB_PRIV) == 0)
226		/* XXX leaked */
227		return;
228
229	addr = (vm_offset_t)item;
230	kmem_unback(kernel_object, addr, size);
231	error = vm_map_remove(kernel_map, addr, addr + size);
232	KASSERT(error == KERN_SUCCESS,
233	    ("%s: vm_map_remove failed: %d", __func__, error));
234}
235
236/*
237 * The worst-case upper bound on the number of kernel map entries that may be
238 * created before the zone must be replenished in _vm_map_unlock().
239 */
240#define	KMAPENT_RESERVE		1
241
242#endif /* !UMD_MD_SMALL_ALLOC */
243
244/*
245 *	vm_map_startup:
246 *
247 *	Initialize the vm_map module.  Must be called before any other vm_map
248 *	routines.
249 *
250 *	User map and entry structures are allocated from the general purpose
251 *	memory pool.  Kernel maps are statically defined.  Kernel map entries
252 *	require special handling to avoid recursion; see the comments above
253 *	kmapent_alloc() and in vm_map_entry_create().
254 */
255void
256vm_map_startup(void)
257{
258	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
259
260	/*
261	 * Disable the use of per-CPU buckets: map entry allocation is
262	 * serialized by the kernel map lock.
263	 */
264	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
265	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
266	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
267#ifndef UMA_USE_DMAP
268	/* Reserve an extra map entry for use when replenishing the reserve. */
269	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
270	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
271	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
272	uma_zone_set_freef(kmapentzone, kmapent_free);
273#endif
274
275	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
276	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
277	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
278#ifdef INVARIANTS
279	    vmspace_zdtor,
280#else
281	    NULL,
282#endif
283	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
284}
285
286static int
287vmspace_zinit(void *mem, int size, int flags)
288{
289	struct vmspace *vm;
290	vm_map_t map;
291
292	vm = (struct vmspace *)mem;
293	map = &vm->vm_map;
294
295	memset(map, 0, sizeof(*map));
296	mtx_init(&map->system_mtx, "vm map (system)", NULL,
297	    MTX_DEF | MTX_DUPOK);
298	sx_init(&map->lock, "vm map (user)");
299	PMAP_LOCK_INIT(vmspace_pmap(vm));
300	return (0);
301}
302
303#ifdef INVARIANTS
304static void
305vmspace_zdtor(void *mem, int size, void *arg)
306{
307	struct vmspace *vm;
308
309	vm = (struct vmspace *)mem;
310	KASSERT(vm->vm_map.nentries == 0,
311	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
312	KASSERT(vm->vm_map.size == 0,
313	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
314}
315#endif	/* INVARIANTS */
316
317/*
318 * Allocate a vmspace structure, including a vm_map and pmap,
319 * and initialize those structures.  The refcnt is set to 1.
320 */
321struct vmspace *
322vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
323{
324	struct vmspace *vm;
325
326	vm = uma_zalloc(vmspace_zone, M_WAITOK);
327	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
328	if (!pinit(vmspace_pmap(vm))) {
329		uma_zfree(vmspace_zone, vm);
330		return (NULL);
331	}
332	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
333	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
334	refcount_init(&vm->vm_refcnt, 1);
335	vm->vm_shm = NULL;
336	vm->vm_swrss = 0;
337	vm->vm_tsize = 0;
338	vm->vm_dsize = 0;
339	vm->vm_ssize = 0;
340	vm->vm_taddr = 0;
341	vm->vm_daddr = 0;
342	vm->vm_maxsaddr = 0;
343	return (vm);
344}
345
346#ifdef RACCT
347static void
348vmspace_container_reset(struct proc *p)
349{
350
351	PROC_LOCK(p);
352	racct_set(p, RACCT_DATA, 0);
353	racct_set(p, RACCT_STACK, 0);
354	racct_set(p, RACCT_RSS, 0);
355	racct_set(p, RACCT_MEMLOCK, 0);
356	racct_set(p, RACCT_VMEM, 0);
357	PROC_UNLOCK(p);
358}
359#endif
360
361static inline void
362vmspace_dofree(struct vmspace *vm)
363{
364
365	CTR1(KTR_VM, "vmspace_free: %p", vm);
366
367	/*
368	 * Make sure any SysV shm is freed, it might not have been in
369	 * exit1().
370	 */
371	shmexit(vm);
372
373	/*
374	 * Lock the map, to wait out all other references to it.
375	 * Delete all of the mappings and pages they hold, then call
376	 * the pmap module to reclaim anything left.
377	 */
378	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
379	    vm_map_max(&vm->vm_map));
380
381	pmap_release(vmspace_pmap(vm));
382	vm->vm_map.pmap = NULL;
383	uma_zfree(vmspace_zone, vm);
384}
385
386void
387vmspace_free(struct vmspace *vm)
388{
389
390	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
391	    "vmspace_free() called");
392
393	if (refcount_release(&vm->vm_refcnt))
394		vmspace_dofree(vm);
395}
396
397void
398vmspace_exitfree(struct proc *p)
399{
400	struct vmspace *vm;
401
402	PROC_VMSPACE_LOCK(p);
403	vm = p->p_vmspace;
404	p->p_vmspace = NULL;
405	PROC_VMSPACE_UNLOCK(p);
406	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
407	vmspace_free(vm);
408}
409
410void
411vmspace_exit(struct thread *td)
412{
413	struct vmspace *vm;
414	struct proc *p;
415	bool released;
416
417	p = td->td_proc;
418	vm = p->p_vmspace;
419
420	/*
421	 * Prepare to release the vmspace reference.  The thread that releases
422	 * the last reference is responsible for tearing down the vmspace.
423	 * However, threads not releasing the final reference must switch to the
424	 * kernel's vmspace0 before the decrement so that the subsequent pmap
425	 * deactivation does not modify a freed vmspace.
426	 */
427	refcount_acquire(&vmspace0.vm_refcnt);
428	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
429		if (p->p_vmspace != &vmspace0) {
430			PROC_VMSPACE_LOCK(p);
431			p->p_vmspace = &vmspace0;
432			PROC_VMSPACE_UNLOCK(p);
433			pmap_activate(td);
434		}
435		released = refcount_release(&vm->vm_refcnt);
436	}
437	if (released) {
438		/*
439		 * pmap_remove_pages() expects the pmap to be active, so switch
440		 * back first if necessary.
441		 */
442		if (p->p_vmspace != vm) {
443			PROC_VMSPACE_LOCK(p);
444			p->p_vmspace = vm;
445			PROC_VMSPACE_UNLOCK(p);
446			pmap_activate(td);
447		}
448		pmap_remove_pages(vmspace_pmap(vm));
449		PROC_VMSPACE_LOCK(p);
450		p->p_vmspace = &vmspace0;
451		PROC_VMSPACE_UNLOCK(p);
452		pmap_activate(td);
453		vmspace_dofree(vm);
454	}
455#ifdef RACCT
456	if (racct_enable)
457		vmspace_container_reset(p);
458#endif
459}
460
461/* Acquire reference to vmspace owned by another process. */
462
463struct vmspace *
464vmspace_acquire_ref(struct proc *p)
465{
466	struct vmspace *vm;
467
468	PROC_VMSPACE_LOCK(p);
469	vm = p->p_vmspace;
470	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
471		PROC_VMSPACE_UNLOCK(p);
472		return (NULL);
473	}
474	if (vm != p->p_vmspace) {
475		PROC_VMSPACE_UNLOCK(p);
476		vmspace_free(vm);
477		return (NULL);
478	}
479	PROC_VMSPACE_UNLOCK(p);
480	return (vm);
481}
482
483/*
484 * Switch between vmspaces in an AIO kernel process.
485 *
486 * The new vmspace is either the vmspace of a user process obtained
487 * from an active AIO request or the initial vmspace of the AIO kernel
488 * process (when it is idling).  Because user processes will block to
489 * drain any active AIO requests before proceeding in exit() or
490 * execve(), the reference count for vmspaces from AIO requests can
491 * never be 0.  Similarly, AIO kernel processes hold an extra
492 * reference on their initial vmspace for the life of the process.  As
493 * a result, the 'newvm' vmspace always has a non-zero reference
494 * count.  This permits an additional reference on 'newvm' to be
495 * acquired via a simple atomic increment rather than the loop in
496 * vmspace_acquire_ref() above.
497 */
498void
499vmspace_switch_aio(struct vmspace *newvm)
500{
501	struct vmspace *oldvm;
502
503	/* XXX: Need some way to assert that this is an aio daemon. */
504
505	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
506	    ("vmspace_switch_aio: newvm unreferenced"));
507
508	oldvm = curproc->p_vmspace;
509	if (oldvm == newvm)
510		return;
511
512	/*
513	 * Point to the new address space and refer to it.
514	 */
515	curproc->p_vmspace = newvm;
516	refcount_acquire(&newvm->vm_refcnt);
517
518	/* Activate the new mapping. */
519	pmap_activate(curthread);
520
521	vmspace_free(oldvm);
522}
523
524void
525_vm_map_lock(vm_map_t map, const char *file, int line)
526{
527
528	if (map->system_map)
529		mtx_lock_flags_(&map->system_mtx, 0, file, line);
530	else
531		sx_xlock_(&map->lock, file, line);
532	map->timestamp++;
533}
534
535void
536vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
537{
538	vm_object_t object;
539	struct vnode *vp;
540	bool vp_held;
541
542	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
543		return;
544	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
545	    ("Submap with execs"));
546	object = entry->object.vm_object;
547	KASSERT(object != NULL, ("No object for text, entry %p", entry));
548	if ((object->flags & OBJ_ANON) != 0)
549		object = object->handle;
550	else
551		KASSERT(object->backing_object == NULL,
552		    ("non-anon object %p shadows", object));
553	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
554	    entry, entry->object.vm_object));
555
556	/*
557	 * Mostly, we do not lock the backing object.  It is
558	 * referenced by the entry we are processing, so it cannot go
559	 * away.
560	 */
561	vm_pager_getvp(object, &vp, &vp_held);
562	if (vp != NULL) {
563		if (add) {
564			VOP_SET_TEXT_CHECKED(vp);
565		} else {
566			vn_lock(vp, LK_SHARED | LK_RETRY);
567			VOP_UNSET_TEXT_CHECKED(vp);
568			VOP_UNLOCK(vp);
569		}
570		if (vp_held)
571			vdrop(vp);
572	}
573}
574
575/*
576 * Use a different name for this vm_map_entry field when it's use
577 * is not consistent with its use as part of an ordered search tree.
578 */
579#define defer_next right
580
581static void
582vm_map_process_deferred(void)
583{
584	struct thread *td;
585	vm_map_entry_t entry, next;
586	vm_object_t object;
587
588	td = curthread;
589	entry = td->td_map_def_user;
590	td->td_map_def_user = NULL;
591	while (entry != NULL) {
592		next = entry->defer_next;
593		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
594		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
595		    MAP_ENTRY_VN_EXEC));
596		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
597			/*
598			 * Decrement the object's writemappings and
599			 * possibly the vnode's v_writecount.
600			 */
601			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
602			    ("Submap with writecount"));
603			object = entry->object.vm_object;
604			KASSERT(object != NULL, ("No object for writecount"));
605			vm_pager_release_writecount(object, entry->start,
606			    entry->end);
607		}
608		vm_map_entry_set_vnode_text(entry, false);
609		vm_map_entry_deallocate(entry, FALSE);
610		entry = next;
611	}
612}
613
614#ifdef INVARIANTS
615static void
616_vm_map_assert_locked(vm_map_t map, const char *file, int line)
617{
618
619	if (map->system_map)
620		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621	else
622		sx_assert_(&map->lock, SA_XLOCKED, file, line);
623}
624
625#define	VM_MAP_ASSERT_LOCKED(map) \
626    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
627
628enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
629#ifdef DIAGNOSTIC
630static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
631#else
632static int enable_vmmap_check = VMMAP_CHECK_NONE;
633#endif
634SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
635    &enable_vmmap_check, 0, "Enable vm map consistency checking");
636
637static void _vm_map_assert_consistent(vm_map_t map, int check);
638
639#define VM_MAP_ASSERT_CONSISTENT(map) \
640    _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
641#ifdef DIAGNOSTIC
642#define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
643	if (map->nupdates > map->nentries) {				\
644		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
645		map->nupdates = 0;					\
646	}								\
647} while (0)
648#else
649#define VM_MAP_UNLOCK_CONSISTENT(map)
650#endif
651#else
652#define	VM_MAP_ASSERT_LOCKED(map)
653#define VM_MAP_ASSERT_CONSISTENT(map)
654#define VM_MAP_UNLOCK_CONSISTENT(map)
655#endif /* INVARIANTS */
656
657void
658_vm_map_unlock(vm_map_t map, const char *file, int line)
659{
660
661	VM_MAP_UNLOCK_CONSISTENT(map);
662	if (map->system_map) {
663#ifndef UMA_USE_DMAP
664		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
665			uma_prealloc(kmapentzone, 1);
666			map->flags &= ~MAP_REPLENISH;
667		}
668#endif
669		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
670	} else {
671		sx_xunlock_(&map->lock, file, line);
672		vm_map_process_deferred();
673	}
674}
675
676void
677_vm_map_lock_read(vm_map_t map, const char *file, int line)
678{
679
680	if (map->system_map)
681		mtx_lock_flags_(&map->system_mtx, 0, file, line);
682	else
683		sx_slock_(&map->lock, file, line);
684}
685
686void
687_vm_map_unlock_read(vm_map_t map, const char *file, int line)
688{
689
690	if (map->system_map) {
691		KASSERT((map->flags & MAP_REPLENISH) == 0,
692		    ("%s: MAP_REPLENISH leaked", __func__));
693		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
694	} else {
695		sx_sunlock_(&map->lock, file, line);
696		vm_map_process_deferred();
697	}
698}
699
700int
701_vm_map_trylock(vm_map_t map, const char *file, int line)
702{
703	int error;
704
705	error = map->system_map ?
706	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
707	    !sx_try_xlock_(&map->lock, file, line);
708	if (error == 0)
709		map->timestamp++;
710	return (error == 0);
711}
712
713int
714_vm_map_trylock_read(vm_map_t map, const char *file, int line)
715{
716	int error;
717
718	error = map->system_map ?
719	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
720	    !sx_try_slock_(&map->lock, file, line);
721	return (error == 0);
722}
723
724/*
725 *	_vm_map_lock_upgrade:	[ internal use only ]
726 *
727 *	Tries to upgrade a read (shared) lock on the specified map to a write
728 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
729 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
730 *	returned without a read or write lock held.
731 *
732 *	Requires that the map be read locked.
733 */
734int
735_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
736{
737	unsigned int last_timestamp;
738
739	if (map->system_map) {
740		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
741	} else {
742		if (!sx_try_upgrade_(&map->lock, file, line)) {
743			last_timestamp = map->timestamp;
744			sx_sunlock_(&map->lock, file, line);
745			vm_map_process_deferred();
746			/*
747			 * If the map's timestamp does not change while the
748			 * map is unlocked, then the upgrade succeeds.
749			 */
750			sx_xlock_(&map->lock, file, line);
751			if (last_timestamp != map->timestamp) {
752				sx_xunlock_(&map->lock, file, line);
753				return (1);
754			}
755		}
756	}
757	map->timestamp++;
758	return (0);
759}
760
761void
762_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
763{
764
765	if (map->system_map) {
766		KASSERT((map->flags & MAP_REPLENISH) == 0,
767		    ("%s: MAP_REPLENISH leaked", __func__));
768		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
769	} else {
770		VM_MAP_UNLOCK_CONSISTENT(map);
771		sx_downgrade_(&map->lock, file, line);
772	}
773}
774
775/*
776 *	vm_map_locked:
777 *
778 *	Returns a non-zero value if the caller holds a write (exclusive) lock
779 *	on the specified map and the value "0" otherwise.
780 */
781int
782vm_map_locked(vm_map_t map)
783{
784
785	if (map->system_map)
786		return (mtx_owned(&map->system_mtx));
787	else
788		return (sx_xlocked(&map->lock));
789}
790
791/*
792 *	_vm_map_unlock_and_wait:
793 *
794 *	Atomically releases the lock on the specified map and puts the calling
795 *	thread to sleep.  The calling thread will remain asleep until either
796 *	vm_map_wakeup() is performed on the map or the specified timeout is
797 *	exceeded.
798 *
799 *	WARNING!  This function does not perform deferred deallocations of
800 *	objects and map	entries.  Therefore, the calling thread is expected to
801 *	reacquire the map lock after reawakening and later perform an ordinary
802 *	unlock operation, such as vm_map_unlock(), before completing its
803 *	operation on the map.
804 */
805int
806_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
807{
808
809	VM_MAP_UNLOCK_CONSISTENT(map);
810	mtx_lock(&map_sleep_mtx);
811	if (map->system_map) {
812		KASSERT((map->flags & MAP_REPLENISH) == 0,
813		    ("%s: MAP_REPLENISH leaked", __func__));
814		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
815	} else {
816		sx_xunlock_(&map->lock, file, line);
817	}
818	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
819	    timo));
820}
821
822/*
823 *	vm_map_wakeup:
824 *
825 *	Awaken any threads that have slept on the map using
826 *	vm_map_unlock_and_wait().
827 */
828void
829vm_map_wakeup(vm_map_t map)
830{
831
832	/*
833	 * Acquire and release map_sleep_mtx to prevent a wakeup()
834	 * from being performed (and lost) between the map unlock
835	 * and the msleep() in _vm_map_unlock_and_wait().
836	 */
837	mtx_lock(&map_sleep_mtx);
838	mtx_unlock(&map_sleep_mtx);
839	wakeup(&map->root);
840}
841
842void
843vm_map_busy(vm_map_t map)
844{
845
846	VM_MAP_ASSERT_LOCKED(map);
847	map->busy++;
848}
849
850void
851vm_map_unbusy(vm_map_t map)
852{
853
854	VM_MAP_ASSERT_LOCKED(map);
855	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
856	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
857		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
858		wakeup(&map->busy);
859	}
860}
861
862void
863vm_map_wait_busy(vm_map_t map)
864{
865
866	VM_MAP_ASSERT_LOCKED(map);
867	while (map->busy) {
868		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
869		if (map->system_map)
870			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
871		else
872			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
873	}
874	map->timestamp++;
875}
876
877long
878vmspace_resident_count(struct vmspace *vmspace)
879{
880	return pmap_resident_count(vmspace_pmap(vmspace));
881}
882
883/*
884 * Initialize an existing vm_map structure
885 * such as that in the vmspace structure.
886 */
887static void
888_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
889{
890
891	map->header.eflags = MAP_ENTRY_HEADER;
892	map->needs_wakeup = FALSE;
893	map->system_map = 0;
894	map->pmap = pmap;
895	map->header.end = min;
896	map->header.start = max;
897	map->flags = 0;
898	map->header.left = map->header.right = &map->header;
899	map->root = NULL;
900	map->timestamp = 0;
901	map->busy = 0;
902	map->anon_loc = 0;
903#ifdef DIAGNOSTIC
904	map->nupdates = 0;
905#endif
906}
907
908void
909vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
910{
911
912	_vm_map_init(map, pmap, min, max);
913	mtx_init(&map->system_mtx, "vm map (system)", NULL,
914	    MTX_DEF | MTX_DUPOK);
915	sx_init(&map->lock, "vm map (user)");
916}
917
918/*
919 *	vm_map_entry_dispose:	[ internal use only ]
920 *
921 *	Inverse of vm_map_entry_create.
922 */
923static void
924vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
925{
926	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
927}
928
929/*
930 *	vm_map_entry_create:	[ internal use only ]
931 *
932 *	Allocates a VM map entry for insertion.
933 *	No entry fields are filled in.
934 */
935static vm_map_entry_t
936vm_map_entry_create(vm_map_t map)
937{
938	vm_map_entry_t new_entry;
939
940#ifndef UMA_USE_DMAP
941	if (map == kernel_map) {
942		VM_MAP_ASSERT_LOCKED(map);
943
944		/*
945		 * A new slab of kernel map entries cannot be allocated at this
946		 * point because the kernel map has not yet been updated to
947		 * reflect the caller's request.  Therefore, we allocate a new
948		 * map entry, dipping into the reserve if necessary, and set a
949		 * flag indicating that the reserve must be replenished before
950		 * the map is unlocked.
951		 */
952		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
953		if (new_entry == NULL) {
954			new_entry = uma_zalloc(kmapentzone,
955			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
956			kernel_map->flags |= MAP_REPLENISH;
957		}
958	} else
959#endif
960	if (map->system_map) {
961		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
962	} else {
963		new_entry = uma_zalloc(mapentzone, M_WAITOK);
964	}
965	KASSERT(new_entry != NULL,
966	    ("vm_map_entry_create: kernel resources exhausted"));
967	return (new_entry);
968}
969
970/*
971 *	vm_map_entry_set_behavior:
972 *
973 *	Set the expected access behavior, either normal, random, or
974 *	sequential.
975 */
976static inline void
977vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
978{
979	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
980	    (behavior & MAP_ENTRY_BEHAV_MASK);
981}
982
983/*
984 *	vm_map_entry_max_free_{left,right}:
985 *
986 *	Compute the size of the largest free gap between two entries,
987 *	one the root of a tree and the other the ancestor of that root
988 *	that is the least or greatest ancestor found on the search path.
989 */
990static inline vm_size_t
991vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
992{
993
994	return (root->left != left_ancestor ?
995	    root->left->max_free : root->start - left_ancestor->end);
996}
997
998static inline vm_size_t
999vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1000{
1001
1002	return (root->right != right_ancestor ?
1003	    root->right->max_free : right_ancestor->start - root->end);
1004}
1005
1006/*
1007 *	vm_map_entry_{pred,succ}:
1008 *
1009 *	Find the {predecessor, successor} of the entry by taking one step
1010 *	in the appropriate direction and backtracking as much as necessary.
1011 *	vm_map_entry_succ is defined in vm_map.h.
1012 */
1013static inline vm_map_entry_t
1014vm_map_entry_pred(vm_map_entry_t entry)
1015{
1016	vm_map_entry_t prior;
1017
1018	prior = entry->left;
1019	if (prior->right->start < entry->start) {
1020		do
1021			prior = prior->right;
1022		while (prior->right != entry);
1023	}
1024	return (prior);
1025}
1026
1027static inline vm_size_t
1028vm_size_max(vm_size_t a, vm_size_t b)
1029{
1030
1031	return (a > b ? a : b);
1032}
1033
1034#define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1035	vm_map_entry_t z;						\
1036	vm_size_t max_free;						\
1037									\
1038	/*								\
1039	 * Infer root->right->max_free == root->max_free when		\
1040	 * y->max_free < root->max_free || root->max_free == 0.		\
1041	 * Otherwise, look right to find it.				\
1042	 */								\
1043	y = root->left;							\
1044	max_free = root->max_free;					\
1045	KASSERT(max_free == vm_size_max(				\
1046	    vm_map_entry_max_free_left(root, llist),			\
1047	    vm_map_entry_max_free_right(root, rlist)),			\
1048	    ("%s: max_free invariant fails", __func__));		\
1049	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1050		max_free = vm_map_entry_max_free_right(root, rlist);	\
1051	if (y != llist && (test)) {					\
1052		/* Rotate right and make y root. */			\
1053		z = y->right;						\
1054		if (z != root) {					\
1055			root->left = z;					\
1056			y->right = root;				\
1057			if (max_free < y->max_free)			\
1058			    root->max_free = max_free =			\
1059			    vm_size_max(max_free, z->max_free);		\
1060		} else if (max_free < y->max_free)			\
1061			root->max_free = max_free =			\
1062			    vm_size_max(max_free, root->start - y->end);\
1063		root = y;						\
1064		y = root->left;						\
1065	}								\
1066	/* Copy right->max_free.  Put root on rlist. */			\
1067	root->max_free = max_free;					\
1068	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1069	    ("%s: max_free not copied from right", __func__));		\
1070	root->left = rlist;						\
1071	rlist = root;							\
1072	root = y != llist ? y : NULL;					\
1073} while (0)
1074
1075#define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1076	vm_map_entry_t z;						\
1077	vm_size_t max_free;						\
1078									\
1079	/*								\
1080	 * Infer root->left->max_free == root->max_free when		\
1081	 * y->max_free < root->max_free || root->max_free == 0.		\
1082	 * Otherwise, look left to find it.				\
1083	 */								\
1084	y = root->right;						\
1085	max_free = root->max_free;					\
1086	KASSERT(max_free == vm_size_max(				\
1087	    vm_map_entry_max_free_left(root, llist),			\
1088	    vm_map_entry_max_free_right(root, rlist)),			\
1089	    ("%s: max_free invariant fails", __func__));		\
1090	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1091		max_free = vm_map_entry_max_free_left(root, llist);	\
1092	if (y != rlist && (test)) {					\
1093		/* Rotate left and make y root. */			\
1094		z = y->left;						\
1095		if (z != root) {					\
1096			root->right = z;				\
1097			y->left = root;					\
1098			if (max_free < y->max_free)			\
1099			    root->max_free = max_free =			\
1100			    vm_size_max(max_free, z->max_free);		\
1101		} else if (max_free < y->max_free)			\
1102			root->max_free = max_free =			\
1103			    vm_size_max(max_free, y->start - root->end);\
1104		root = y;						\
1105		y = root->right;					\
1106	}								\
1107	/* Copy left->max_free.  Put root on llist. */			\
1108	root->max_free = max_free;					\
1109	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1110	    ("%s: max_free not copied from left", __func__));		\
1111	root->right = llist;						\
1112	llist = root;							\
1113	root = y != rlist ? y : NULL;					\
1114} while (0)
1115
1116/*
1117 * Walk down the tree until we find addr or a gap where addr would go, breaking
1118 * off left and right subtrees of nodes less than, or greater than addr.  Treat
1119 * subtrees with root->max_free < length as empty trees.  llist and rlist are
1120 * the two sides in reverse order (bottom-up), with llist linked by the right
1121 * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1122 * lists terminated by &map->header.  This function, and the subsequent call to
1123 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1124 * values in &map->header.
1125 */
1126static __always_inline vm_map_entry_t
1127vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1128    vm_map_entry_t *llist, vm_map_entry_t *rlist)
1129{
1130	vm_map_entry_t left, right, root, y;
1131
1132	left = right = &map->header;
1133	root = map->root;
1134	while (root != NULL && root->max_free >= length) {
1135		KASSERT(left->end <= root->start &&
1136		    root->end <= right->start,
1137		    ("%s: root not within tree bounds", __func__));
1138		if (addr < root->start) {
1139			SPLAY_LEFT_STEP(root, y, left, right,
1140			    y->max_free >= length && addr < y->start);
1141		} else if (addr >= root->end) {
1142			SPLAY_RIGHT_STEP(root, y, left, right,
1143			    y->max_free >= length && addr >= y->end);
1144		} else
1145			break;
1146	}
1147	*llist = left;
1148	*rlist = right;
1149	return (root);
1150}
1151
1152static __always_inline void
1153vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1154{
1155	vm_map_entry_t hi, right, y;
1156
1157	right = *rlist;
1158	hi = root->right == right ? NULL : root->right;
1159	if (hi == NULL)
1160		return;
1161	do
1162		SPLAY_LEFT_STEP(hi, y, root, right, true);
1163	while (hi != NULL);
1164	*rlist = right;
1165}
1166
1167static __always_inline void
1168vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1169{
1170	vm_map_entry_t left, lo, y;
1171
1172	left = *llist;
1173	lo = root->left == left ? NULL : root->left;
1174	if (lo == NULL)
1175		return;
1176	do
1177		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1178	while (lo != NULL);
1179	*llist = left;
1180}
1181
1182static inline void
1183vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1184{
1185	vm_map_entry_t tmp;
1186
1187	tmp = *b;
1188	*b = *a;
1189	*a = tmp;
1190}
1191
1192/*
1193 * Walk back up the two spines, flip the pointers and set max_free.  The
1194 * subtrees of the root go at the bottom of llist and rlist.
1195 */
1196static vm_size_t
1197vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1198    vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1199{
1200	do {
1201		/*
1202		 * The max_free values of the children of llist are in
1203		 * llist->max_free and max_free.  Update with the
1204		 * max value.
1205		 */
1206		llist->max_free = max_free =
1207		    vm_size_max(llist->max_free, max_free);
1208		vm_map_entry_swap(&llist->right, &tail);
1209		vm_map_entry_swap(&tail, &llist);
1210	} while (llist != header);
1211	root->left = tail;
1212	return (max_free);
1213}
1214
1215/*
1216 * When llist is known to be the predecessor of root.
1217 */
1218static inline vm_size_t
1219vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1220    vm_map_entry_t llist)
1221{
1222	vm_size_t max_free;
1223
1224	max_free = root->start - llist->end;
1225	if (llist != header) {
1226		max_free = vm_map_splay_merge_left_walk(header, root,
1227		    root, max_free, llist);
1228	} else {
1229		root->left = header;
1230		header->right = root;
1231	}
1232	return (max_free);
1233}
1234
1235/*
1236 * When llist may or may not be the predecessor of root.
1237 */
1238static inline vm_size_t
1239vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1240    vm_map_entry_t llist)
1241{
1242	vm_size_t max_free;
1243
1244	max_free = vm_map_entry_max_free_left(root, llist);
1245	if (llist != header) {
1246		max_free = vm_map_splay_merge_left_walk(header, root,
1247		    root->left == llist ? root : root->left,
1248		    max_free, llist);
1249	}
1250	return (max_free);
1251}
1252
1253static vm_size_t
1254vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1255    vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1256{
1257	do {
1258		/*
1259		 * The max_free values of the children of rlist are in
1260		 * rlist->max_free and max_free.  Update with the
1261		 * max value.
1262		 */
1263		rlist->max_free = max_free =
1264		    vm_size_max(rlist->max_free, max_free);
1265		vm_map_entry_swap(&rlist->left, &tail);
1266		vm_map_entry_swap(&tail, &rlist);
1267	} while (rlist != header);
1268	root->right = tail;
1269	return (max_free);
1270}
1271
1272/*
1273 * When rlist is known to be the succecessor of root.
1274 */
1275static inline vm_size_t
1276vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1277    vm_map_entry_t rlist)
1278{
1279	vm_size_t max_free;
1280
1281	max_free = rlist->start - root->end;
1282	if (rlist != header) {
1283		max_free = vm_map_splay_merge_right_walk(header, root,
1284		    root, max_free, rlist);
1285	} else {
1286		root->right = header;
1287		header->left = root;
1288	}
1289	return (max_free);
1290}
1291
1292/*
1293 * When rlist may or may not be the succecessor of root.
1294 */
1295static inline vm_size_t
1296vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1297    vm_map_entry_t rlist)
1298{
1299	vm_size_t max_free;
1300
1301	max_free = vm_map_entry_max_free_right(root, rlist);
1302	if (rlist != header) {
1303		max_free = vm_map_splay_merge_right_walk(header, root,
1304		    root->right == rlist ? root : root->right,
1305		    max_free, rlist);
1306	}
1307	return (max_free);
1308}
1309
1310/*
1311 *	vm_map_splay:
1312 *
1313 *	The Sleator and Tarjan top-down splay algorithm with the
1314 *	following variation.  Max_free must be computed bottom-up, so
1315 *	on the downward pass, maintain the left and right spines in
1316 *	reverse order.  Then, make a second pass up each side to fix
1317 *	the pointers and compute max_free.  The time bound is O(log n)
1318 *	amortized.
1319 *
1320 *	The tree is threaded, which means that there are no null pointers.
1321 *	When a node has no left child, its left pointer points to its
1322 *	predecessor, which the last ancestor on the search path from the root
1323 *	where the search branched right.  Likewise, when a node has no right
1324 *	child, its right pointer points to its successor.  The map header node
1325 *	is the predecessor of the first map entry, and the successor of the
1326 *	last.
1327 *
1328 *	The new root is the vm_map_entry containing "addr", or else an
1329 *	adjacent entry (lower if possible) if addr is not in the tree.
1330 *
1331 *	The map must be locked, and leaves it so.
1332 *
1333 *	Returns: the new root.
1334 */
1335static vm_map_entry_t
1336vm_map_splay(vm_map_t map, vm_offset_t addr)
1337{
1338	vm_map_entry_t header, llist, rlist, root;
1339	vm_size_t max_free_left, max_free_right;
1340
1341	header = &map->header;
1342	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1343	if (root != NULL) {
1344		max_free_left = vm_map_splay_merge_left(header, root, llist);
1345		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1346	} else if (llist != header) {
1347		/*
1348		 * Recover the greatest node in the left
1349		 * subtree and make it the root.
1350		 */
1351		root = llist;
1352		llist = root->right;
1353		max_free_left = vm_map_splay_merge_left(header, root, llist);
1354		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1355	} else if (rlist != header) {
1356		/*
1357		 * Recover the least node in the right
1358		 * subtree and make it the root.
1359		 */
1360		root = rlist;
1361		rlist = root->left;
1362		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1363		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1364	} else {
1365		/* There is no root. */
1366		return (NULL);
1367	}
1368	root->max_free = vm_size_max(max_free_left, max_free_right);
1369	map->root = root;
1370	VM_MAP_ASSERT_CONSISTENT(map);
1371	return (root);
1372}
1373
1374/*
1375 *	vm_map_entry_{un,}link:
1376 *
1377 *	Insert/remove entries from maps.  On linking, if new entry clips
1378 *	existing entry, trim existing entry to avoid overlap, and manage
1379 *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1380 *	called for, and manage offsets.  Callers should not modify fields in
1381 *	entries already mapped.
1382 */
1383static void
1384vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1385{
1386	vm_map_entry_t header, llist, rlist, root;
1387	vm_size_t max_free_left, max_free_right;
1388
1389	CTR3(KTR_VM,
1390	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1391	    map->nentries, entry);
1392	VM_MAP_ASSERT_LOCKED(map);
1393	map->nentries++;
1394	header = &map->header;
1395	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1396	if (root == NULL) {
1397		/*
1398		 * The new entry does not overlap any existing entry in the
1399		 * map, so it becomes the new root of the map tree.
1400		 */
1401		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1402		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1403	} else if (entry->start == root->start) {
1404		/*
1405		 * The new entry is a clone of root, with only the end field
1406		 * changed.  The root entry will be shrunk to abut the new
1407		 * entry, and will be the right child of the new root entry in
1408		 * the modified map.
1409		 */
1410		KASSERT(entry->end < root->end,
1411		    ("%s: clip_start not within entry", __func__));
1412		vm_map_splay_findprev(root, &llist);
1413		if ((root->eflags & (MAP_ENTRY_STACK_GAP_DN |
1414		    MAP_ENTRY_STACK_GAP_UP)) == 0)
1415			root->offset += entry->end - root->start;
1416		root->start = entry->end;
1417		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1418		max_free_right = root->max_free = vm_size_max(
1419		    vm_map_splay_merge_pred(entry, root, entry),
1420		    vm_map_splay_merge_right(header, root, rlist));
1421	} else {
1422		/*
1423		 * The new entry is a clone of root, with only the start field
1424		 * changed.  The root entry will be shrunk to abut the new
1425		 * entry, and will be the left child of the new root entry in
1426		 * the modified map.
1427		 */
1428		KASSERT(entry->end == root->end,
1429		    ("%s: clip_start not within entry", __func__));
1430		vm_map_splay_findnext(root, &rlist);
1431		if ((entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
1432		    MAP_ENTRY_STACK_GAP_UP)) == 0)
1433			entry->offset += entry->start - root->start;
1434		root->end = entry->start;
1435		max_free_left = root->max_free = vm_size_max(
1436		    vm_map_splay_merge_left(header, root, llist),
1437		    vm_map_splay_merge_succ(entry, root, entry));
1438		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1439	}
1440	entry->max_free = vm_size_max(max_free_left, max_free_right);
1441	map->root = entry;
1442	VM_MAP_ASSERT_CONSISTENT(map);
1443}
1444
1445enum unlink_merge_type {
1446	UNLINK_MERGE_NONE,
1447	UNLINK_MERGE_NEXT
1448};
1449
1450static void
1451vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1452    enum unlink_merge_type op)
1453{
1454	vm_map_entry_t header, llist, rlist, root;
1455	vm_size_t max_free_left, max_free_right;
1456
1457	VM_MAP_ASSERT_LOCKED(map);
1458	header = &map->header;
1459	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1460	KASSERT(root != NULL,
1461	    ("vm_map_entry_unlink: unlink object not mapped"));
1462
1463	vm_map_splay_findprev(root, &llist);
1464	vm_map_splay_findnext(root, &rlist);
1465	if (op == UNLINK_MERGE_NEXT) {
1466		rlist->start = root->start;
1467		MPASS((rlist->eflags & (MAP_ENTRY_STACK_GAP_DN |
1468		    MAP_ENTRY_STACK_GAP_UP)) == 0);
1469		rlist->offset = root->offset;
1470	}
1471	if (llist != header) {
1472		root = llist;
1473		llist = root->right;
1474		max_free_left = vm_map_splay_merge_left(header, root, llist);
1475		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1476	} else if (rlist != header) {
1477		root = rlist;
1478		rlist = root->left;
1479		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1480		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1481	} else {
1482		header->left = header->right = header;
1483		root = NULL;
1484	}
1485	if (root != NULL)
1486		root->max_free = vm_size_max(max_free_left, max_free_right);
1487	map->root = root;
1488	VM_MAP_ASSERT_CONSISTENT(map);
1489	map->nentries--;
1490	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1491	    map->nentries, entry);
1492}
1493
1494/*
1495 *	vm_map_entry_resize:
1496 *
1497 *	Resize a vm_map_entry, recompute the amount of free space that
1498 *	follows it and propagate that value up the tree.
1499 *
1500 *	The map must be locked, and leaves it so.
1501 */
1502static void
1503vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1504{
1505	vm_map_entry_t header, llist, rlist, root;
1506
1507	VM_MAP_ASSERT_LOCKED(map);
1508	header = &map->header;
1509	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1510	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1511	vm_map_splay_findnext(root, &rlist);
1512	entry->end += grow_amount;
1513	root->max_free = vm_size_max(
1514	    vm_map_splay_merge_left(header, root, llist),
1515	    vm_map_splay_merge_succ(header, root, rlist));
1516	map->root = root;
1517	VM_MAP_ASSERT_CONSISTENT(map);
1518	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1519	    __func__, map, map->nentries, entry);
1520}
1521
1522/*
1523 *	vm_map_lookup_entry:	[ internal use only ]
1524 *
1525 *	Finds the map entry containing (or
1526 *	immediately preceding) the specified address
1527 *	in the given map; the entry is returned
1528 *	in the "entry" parameter.  The boolean
1529 *	result indicates whether the address is
1530 *	actually contained in the map.
1531 */
1532boolean_t
1533vm_map_lookup_entry(
1534	vm_map_t map,
1535	vm_offset_t address,
1536	vm_map_entry_t *entry)	/* OUT */
1537{
1538	vm_map_entry_t cur, header, lbound, ubound;
1539	boolean_t locked;
1540
1541	/*
1542	 * If the map is empty, then the map entry immediately preceding
1543	 * "address" is the map's header.
1544	 */
1545	header = &map->header;
1546	cur = map->root;
1547	if (cur == NULL) {
1548		*entry = header;
1549		return (FALSE);
1550	}
1551	if (address >= cur->start && cur->end > address) {
1552		*entry = cur;
1553		return (TRUE);
1554	}
1555	if ((locked = vm_map_locked(map)) ||
1556	    sx_try_upgrade(&map->lock)) {
1557		/*
1558		 * Splay requires a write lock on the map.  However, it only
1559		 * restructures the binary search tree; it does not otherwise
1560		 * change the map.  Thus, the map's timestamp need not change
1561		 * on a temporary upgrade.
1562		 */
1563		cur = vm_map_splay(map, address);
1564		if (!locked) {
1565			VM_MAP_UNLOCK_CONSISTENT(map);
1566			sx_downgrade(&map->lock);
1567		}
1568
1569		/*
1570		 * If "address" is contained within a map entry, the new root
1571		 * is that map entry.  Otherwise, the new root is a map entry
1572		 * immediately before or after "address".
1573		 */
1574		if (address < cur->start) {
1575			*entry = header;
1576			return (FALSE);
1577		}
1578		*entry = cur;
1579		return (address < cur->end);
1580	}
1581	/*
1582	 * Since the map is only locked for read access, perform a
1583	 * standard binary search tree lookup for "address".
1584	 */
1585	lbound = ubound = header;
1586	for (;;) {
1587		if (address < cur->start) {
1588			ubound = cur;
1589			cur = cur->left;
1590			if (cur == lbound)
1591				break;
1592		} else if (cur->end <= address) {
1593			lbound = cur;
1594			cur = cur->right;
1595			if (cur == ubound)
1596				break;
1597		} else {
1598			*entry = cur;
1599			return (TRUE);
1600		}
1601	}
1602	*entry = lbound;
1603	return (FALSE);
1604}
1605
1606/*
1607 * vm_map_insert1() is identical to vm_map_insert() except that it
1608 * returns the newly inserted map entry in '*res'.  In case the new
1609 * entry is coalesced with a neighbor or an existing entry was
1610 * resized, that entry is returned.  In any case, the returned entry
1611 * covers the specified address range.
1612 */
1613static int
1614vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1615    vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1616    vm_map_entry_t *res)
1617{
1618	vm_map_entry_t new_entry, next_entry, prev_entry;
1619	struct ucred *cred;
1620	vm_eflags_t protoeflags;
1621	vm_inherit_t inheritance;
1622	u_long bdry;
1623	u_int bidx;
1624
1625	VM_MAP_ASSERT_LOCKED(map);
1626	KASSERT(object != kernel_object ||
1627	    (cow & MAP_COPY_ON_WRITE) == 0,
1628	    ("vm_map_insert: kernel object and COW"));
1629	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1630	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1631	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1632	    object, cow));
1633	KASSERT((prot & ~max) == 0,
1634	    ("prot %#x is not subset of max_prot %#x", prot, max));
1635
1636	/*
1637	 * Check that the start and end points are not bogus.
1638	 */
1639	if (start == end || !vm_map_range_valid(map, start, end))
1640		return (KERN_INVALID_ADDRESS);
1641
1642	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1643	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1644		return (KERN_PROTECTION_FAILURE);
1645
1646	/*
1647	 * Find the entry prior to the proposed starting address; if it's part
1648	 * of an existing entry, this range is bogus.
1649	 */
1650	if (vm_map_lookup_entry(map, start, &prev_entry))
1651		return (KERN_NO_SPACE);
1652
1653	/*
1654	 * Assert that the next entry doesn't overlap the end point.
1655	 */
1656	next_entry = vm_map_entry_succ(prev_entry);
1657	if (next_entry->start < end)
1658		return (KERN_NO_SPACE);
1659
1660	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1661	    max != VM_PROT_NONE))
1662		return (KERN_INVALID_ARGUMENT);
1663
1664	protoeflags = 0;
1665	if (cow & MAP_COPY_ON_WRITE)
1666		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1667	if (cow & MAP_NOFAULT)
1668		protoeflags |= MAP_ENTRY_NOFAULT;
1669	if (cow & MAP_DISABLE_SYNCER)
1670		protoeflags |= MAP_ENTRY_NOSYNC;
1671	if (cow & MAP_DISABLE_COREDUMP)
1672		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1673	if (cow & MAP_STACK_GROWS_DOWN)
1674		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1675	if (cow & MAP_STACK_GROWS_UP)
1676		protoeflags |= MAP_ENTRY_GROWS_UP;
1677	if (cow & MAP_WRITECOUNT)
1678		protoeflags |= MAP_ENTRY_WRITECNT;
1679	if (cow & MAP_VN_EXEC)
1680		protoeflags |= MAP_ENTRY_VN_EXEC;
1681	if ((cow & MAP_CREATE_GUARD) != 0)
1682		protoeflags |= MAP_ENTRY_GUARD;
1683	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1684		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1685	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1686		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1687	if (cow & MAP_INHERIT_SHARE)
1688		inheritance = VM_INHERIT_SHARE;
1689	else
1690		inheritance = VM_INHERIT_DEFAULT;
1691	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1692		/* This magically ignores index 0, for usual page size. */
1693		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1694		    MAP_SPLIT_BOUNDARY_SHIFT;
1695		if (bidx >= MAXPAGESIZES)
1696			return (KERN_INVALID_ARGUMENT);
1697		bdry = pagesizes[bidx] - 1;
1698		if ((start & bdry) != 0 || (end & bdry) != 0)
1699			return (KERN_INVALID_ARGUMENT);
1700		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1701	}
1702
1703	cred = NULL;
1704	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1705		goto charged;
1706	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1707	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1708		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1709			return (KERN_RESOURCE_SHORTAGE);
1710		KASSERT(object == NULL ||
1711		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1712		    object->cred == NULL,
1713		    ("overcommit: vm_map_insert o %p", object));
1714		cred = curthread->td_ucred;
1715	}
1716
1717charged:
1718	/* Expand the kernel pmap, if necessary. */
1719	if (map == kernel_map && end > kernel_vm_end)
1720		pmap_growkernel(end);
1721	if (object != NULL) {
1722		/*
1723		 * OBJ_ONEMAPPING must be cleared unless this mapping
1724		 * is trivially proven to be the only mapping for any
1725		 * of the object's pages.  (Object granularity
1726		 * reference counting is insufficient to recognize
1727		 * aliases with precision.)
1728		 */
1729		if ((object->flags & OBJ_ANON) != 0) {
1730			VM_OBJECT_WLOCK(object);
1731			if (object->ref_count > 1 || object->shadow_count != 0)
1732				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1733			VM_OBJECT_WUNLOCK(object);
1734		}
1735	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1736	    protoeflags &&
1737	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1738	    MAP_VN_EXEC)) == 0 &&
1739	    prev_entry->end == start && (prev_entry->cred == cred ||
1740	    (prev_entry->object.vm_object != NULL &&
1741	    prev_entry->object.vm_object->cred == cred)) &&
1742	    vm_object_coalesce(prev_entry->object.vm_object,
1743	    prev_entry->offset,
1744	    (vm_size_t)(prev_entry->end - prev_entry->start),
1745	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1746	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1747		/*
1748		 * We were able to extend the object.  Determine if we
1749		 * can extend the previous map entry to include the
1750		 * new range as well.
1751		 */
1752		if (prev_entry->inheritance == inheritance &&
1753		    prev_entry->protection == prot &&
1754		    prev_entry->max_protection == max &&
1755		    prev_entry->wired_count == 0) {
1756			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1757			    0, ("prev_entry %p has incoherent wiring",
1758			    prev_entry));
1759			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1760				map->size += end - prev_entry->end;
1761			vm_map_entry_resize(map, prev_entry,
1762			    end - prev_entry->end);
1763			*res = vm_map_try_merge_entries(map, prev_entry,
1764			    next_entry);
1765			return (KERN_SUCCESS);
1766		}
1767
1768		/*
1769		 * If we can extend the object but cannot extend the
1770		 * map entry, we have to create a new map entry.  We
1771		 * must bump the ref count on the extended object to
1772		 * account for it.  object may be NULL.
1773		 */
1774		object = prev_entry->object.vm_object;
1775		offset = prev_entry->offset +
1776		    (prev_entry->end - prev_entry->start);
1777		vm_object_reference(object);
1778		if (cred != NULL && object != NULL && object->cred != NULL &&
1779		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1780			/* Object already accounts for this uid. */
1781			cred = NULL;
1782		}
1783	}
1784	if (cred != NULL)
1785		crhold(cred);
1786
1787	/*
1788	 * Create a new entry
1789	 */
1790	new_entry = vm_map_entry_create(map);
1791	new_entry->start = start;
1792	new_entry->end = end;
1793	new_entry->cred = NULL;
1794
1795	new_entry->eflags = protoeflags;
1796	new_entry->object.vm_object = object;
1797	new_entry->offset = offset;
1798
1799	new_entry->inheritance = inheritance;
1800	new_entry->protection = prot;
1801	new_entry->max_protection = max;
1802	new_entry->wired_count = 0;
1803	new_entry->wiring_thread = NULL;
1804	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1805	new_entry->next_read = start;
1806
1807	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1808	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1809	new_entry->cred = cred;
1810
1811	/*
1812	 * Insert the new entry into the list
1813	 */
1814	vm_map_entry_link(map, new_entry);
1815	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1816		map->size += new_entry->end - new_entry->start;
1817
1818	/*
1819	 * Try to coalesce the new entry with both the previous and next
1820	 * entries in the list.  Previously, we only attempted to coalesce
1821	 * with the previous entry when object is NULL.  Here, we handle the
1822	 * other cases, which are less common.
1823	 */
1824	vm_map_try_merge_entries(map, prev_entry, new_entry);
1825	*res = vm_map_try_merge_entries(map, new_entry, next_entry);
1826
1827	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1828		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1829		    end - start, cow & MAP_PREFAULT_PARTIAL);
1830	}
1831
1832	return (KERN_SUCCESS);
1833}
1834
1835/*
1836 *	vm_map_insert:
1837 *
1838 *	Inserts the given VM object into the target map at the
1839 *	specified address range.
1840 *
1841 *	Requires that the map be locked, and leaves it so.
1842 *
1843 *	If object is non-NULL, ref count must be bumped by caller
1844 *	prior to making call to account for the new entry.
1845 */
1846int
1847vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1848    vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1849{
1850	vm_map_entry_t res;
1851
1852	return (vm_map_insert1(map, object, offset, start, end, prot, max,
1853	    cow, &res));
1854}
1855
1856/*
1857 *	vm_map_findspace:
1858 *
1859 *	Find the first fit (lowest VM address) for "length" free bytes
1860 *	beginning at address >= start in the given map.
1861 *
1862 *	In a vm_map_entry, "max_free" is the maximum amount of
1863 *	contiguous free space between an entry in its subtree and a
1864 *	neighbor of that entry.  This allows finding a free region in
1865 *	one path down the tree, so O(log n) amortized with splay
1866 *	trees.
1867 *
1868 *	The map must be locked, and leaves it so.
1869 *
1870 *	Returns: starting address if sufficient space,
1871 *		 vm_map_max(map)-length+1 if insufficient space.
1872 */
1873vm_offset_t
1874vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1875{
1876	vm_map_entry_t header, llist, rlist, root, y;
1877	vm_size_t left_length, max_free_left, max_free_right;
1878	vm_offset_t gap_end;
1879
1880	VM_MAP_ASSERT_LOCKED(map);
1881
1882	/*
1883	 * Request must fit within min/max VM address and must avoid
1884	 * address wrap.
1885	 */
1886	start = MAX(start, vm_map_min(map));
1887	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1888		return (vm_map_max(map) - length + 1);
1889
1890	/* Empty tree means wide open address space. */
1891	if (map->root == NULL)
1892		return (start);
1893
1894	/*
1895	 * After splay_split, if start is within an entry, push it to the start
1896	 * of the following gap.  If rlist is at the end of the gap containing
1897	 * start, save the end of that gap in gap_end to see if the gap is big
1898	 * enough; otherwise set gap_end to start skip gap-checking and move
1899	 * directly to a search of the right subtree.
1900	 */
1901	header = &map->header;
1902	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1903	gap_end = rlist->start;
1904	if (root != NULL) {
1905		start = root->end;
1906		if (root->right != rlist)
1907			gap_end = start;
1908		max_free_left = vm_map_splay_merge_left(header, root, llist);
1909		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1910	} else if (rlist != header) {
1911		root = rlist;
1912		rlist = root->left;
1913		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1914		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1915	} else {
1916		root = llist;
1917		llist = root->right;
1918		max_free_left = vm_map_splay_merge_left(header, root, llist);
1919		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1920	}
1921	root->max_free = vm_size_max(max_free_left, max_free_right);
1922	map->root = root;
1923	VM_MAP_ASSERT_CONSISTENT(map);
1924	if (length <= gap_end - start)
1925		return (start);
1926
1927	/* With max_free, can immediately tell if no solution. */
1928	if (root->right == header || length > root->right->max_free)
1929		return (vm_map_max(map) - length + 1);
1930
1931	/*
1932	 * Splay for the least large-enough gap in the right subtree.
1933	 */
1934	llist = rlist = header;
1935	for (left_length = 0;;
1936	    left_length = vm_map_entry_max_free_left(root, llist)) {
1937		if (length <= left_length)
1938			SPLAY_LEFT_STEP(root, y, llist, rlist,
1939			    length <= vm_map_entry_max_free_left(y, llist));
1940		else
1941			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1942			    length > vm_map_entry_max_free_left(y, root));
1943		if (root == NULL)
1944			break;
1945	}
1946	root = llist;
1947	llist = root->right;
1948	max_free_left = vm_map_splay_merge_left(header, root, llist);
1949	if (rlist == header) {
1950		root->max_free = vm_size_max(max_free_left,
1951		    vm_map_splay_merge_succ(header, root, rlist));
1952	} else {
1953		y = rlist;
1954		rlist = y->left;
1955		y->max_free = vm_size_max(
1956		    vm_map_splay_merge_pred(root, y, root),
1957		    vm_map_splay_merge_right(header, y, rlist));
1958		root->max_free = vm_size_max(max_free_left, y->max_free);
1959	}
1960	map->root = root;
1961	VM_MAP_ASSERT_CONSISTENT(map);
1962	return (root->end);
1963}
1964
1965int
1966vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1967    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1968    vm_prot_t max, int cow)
1969{
1970	vm_offset_t end;
1971	int result;
1972
1973	end = start + length;
1974	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1975	    object == NULL,
1976	    ("vm_map_fixed: non-NULL backing object for stack"));
1977	vm_map_lock(map);
1978	VM_MAP_RANGE_CHECK(map, start, end);
1979	if ((cow & MAP_CHECK_EXCL) == 0) {
1980		result = vm_map_delete(map, start, end);
1981		if (result != KERN_SUCCESS)
1982			goto out;
1983	}
1984	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1985		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1986		    prot, max, cow);
1987	} else {
1988		result = vm_map_insert(map, object, offset, start, end,
1989		    prot, max, cow);
1990	}
1991out:
1992	vm_map_unlock(map);
1993	return (result);
1994}
1995
1996static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1997static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1998
1999static int cluster_anon = 1;
2000SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2001    &cluster_anon, 0,
2002    "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2003
2004static bool
2005clustering_anon_allowed(vm_offset_t addr, int cow)
2006{
2007
2008	switch (cluster_anon) {
2009	case 0:
2010		return (false);
2011	case 1:
2012		return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2013	case 2:
2014	default:
2015		return (true);
2016	}
2017}
2018
2019static long aslr_restarts;
2020SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2021    &aslr_restarts, 0,
2022    "Number of aslr failures");
2023
2024/*
2025 * Searches for the specified amount of free space in the given map with the
2026 * specified alignment.  Performs an address-ordered, first-fit search from
2027 * the given address "*addr", with an optional upper bound "max_addr".  If the
2028 * parameter "alignment" is zero, then the alignment is computed from the
2029 * given (object, offset) pair so as to enable the greatest possible use of
2030 * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2031 * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2032 *
2033 * The map must be locked.  Initially, there must be at least "length" bytes
2034 * of free space at the given address.
2035 */
2036static int
2037vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2038    vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2039    vm_offset_t alignment)
2040{
2041	vm_offset_t aligned_addr, free_addr;
2042
2043	VM_MAP_ASSERT_LOCKED(map);
2044	free_addr = *addr;
2045	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2046	    ("caller failed to provide space %#jx at address %p",
2047	     (uintmax_t)length, (void *)free_addr));
2048	for (;;) {
2049		/*
2050		 * At the start of every iteration, the free space at address
2051		 * "*addr" is at least "length" bytes.
2052		 */
2053		if (alignment == 0)
2054			pmap_align_superpage(object, offset, addr, length);
2055		else
2056			*addr = roundup2(*addr, alignment);
2057		aligned_addr = *addr;
2058		if (aligned_addr == free_addr) {
2059			/*
2060			 * Alignment did not change "*addr", so "*addr" must
2061			 * still provide sufficient free space.
2062			 */
2063			return (KERN_SUCCESS);
2064		}
2065
2066		/*
2067		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2068		 * be a valid address, in which case vm_map_findspace() cannot
2069		 * be relied upon to fail.
2070		 */
2071		if (aligned_addr < free_addr)
2072			return (KERN_NO_SPACE);
2073		*addr = vm_map_findspace(map, aligned_addr, length);
2074		if (*addr + length > vm_map_max(map) ||
2075		    (max_addr != 0 && *addr + length > max_addr))
2076			return (KERN_NO_SPACE);
2077		free_addr = *addr;
2078		if (free_addr == aligned_addr) {
2079			/*
2080			 * If a successful call to vm_map_findspace() did not
2081			 * change "*addr", then "*addr" must still be aligned
2082			 * and provide sufficient free space.
2083			 */
2084			return (KERN_SUCCESS);
2085		}
2086	}
2087}
2088
2089int
2090vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2091    vm_offset_t max_addr, vm_offset_t alignment)
2092{
2093	/* XXXKIB ASLR eh ? */
2094	*addr = vm_map_findspace(map, *addr, length);
2095	if (*addr + length > vm_map_max(map) ||
2096	    (max_addr != 0 && *addr + length > max_addr))
2097		return (KERN_NO_SPACE);
2098	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2099	    alignment));
2100}
2101
2102/*
2103 *	vm_map_find finds an unallocated region in the target address
2104 *	map with the given length.  The search is defined to be
2105 *	first-fit from the specified address; the region found is
2106 *	returned in the same parameter.
2107 *
2108 *	If object is non-NULL, ref count must be bumped by caller
2109 *	prior to making call to account for the new entry.
2110 */
2111int
2112vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2113	    vm_offset_t *addr,	/* IN/OUT */
2114	    vm_size_t length, vm_offset_t max_addr, int find_space,
2115	    vm_prot_t prot, vm_prot_t max, int cow)
2116{
2117	vm_offset_t alignment, curr_min_addr, min_addr;
2118	int gap, pidx, rv, try;
2119	bool cluster, en_aslr, update_anon;
2120
2121	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2122	    object == NULL,
2123	    ("vm_map_find: non-NULL backing object for stack"));
2124	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2125	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2126	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2127	    (object->flags & OBJ_COLORED) == 0))
2128		find_space = VMFS_ANY_SPACE;
2129	if (find_space >> 8 != 0) {
2130		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2131		alignment = (vm_offset_t)1 << (find_space >> 8);
2132	} else
2133		alignment = 0;
2134	en_aslr = (map->flags & MAP_ASLR) != 0;
2135	update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2136	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2137	    find_space != VMFS_NO_SPACE && object == NULL &&
2138	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2139	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2140	curr_min_addr = min_addr = *addr;
2141	if (en_aslr && min_addr == 0 && !cluster &&
2142	    find_space != VMFS_NO_SPACE &&
2143	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2144		curr_min_addr = min_addr = vm_map_min(map);
2145	try = 0;
2146	vm_map_lock(map);
2147	if (cluster) {
2148		curr_min_addr = map->anon_loc;
2149		if (curr_min_addr == 0)
2150			cluster = false;
2151	}
2152	if (find_space != VMFS_NO_SPACE) {
2153		KASSERT(find_space == VMFS_ANY_SPACE ||
2154		    find_space == VMFS_OPTIMAL_SPACE ||
2155		    find_space == VMFS_SUPER_SPACE ||
2156		    alignment != 0, ("unexpected VMFS flag"));
2157again:
2158		/*
2159		 * When creating an anonymous mapping, try clustering
2160		 * with an existing anonymous mapping first.
2161		 *
2162		 * We make up to two attempts to find address space
2163		 * for a given find_space value. The first attempt may
2164		 * apply randomization or may cluster with an existing
2165		 * anonymous mapping. If this first attempt fails,
2166		 * perform a first-fit search of the available address
2167		 * space.
2168		 *
2169		 * If all tries failed, and find_space is
2170		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2171		 * Again enable clustering and randomization.
2172		 */
2173		try++;
2174		MPASS(try <= 2);
2175
2176		if (try == 2) {
2177			/*
2178			 * Second try: we failed either to find a
2179			 * suitable region for randomizing the
2180			 * allocation, or to cluster with an existing
2181			 * mapping.  Retry with free run.
2182			 */
2183			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2184			    vm_map_min(map) : min_addr;
2185			atomic_add_long(&aslr_restarts, 1);
2186		}
2187
2188		if (try == 1 && en_aslr && !cluster) {
2189			/*
2190			 * Find space for allocation, including
2191			 * gap needed for later randomization.
2192			 */
2193			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2194			    (find_space == VMFS_SUPER_SPACE || find_space ==
2195			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
2196			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2197			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2198			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2199			*addr = vm_map_findspace(map, curr_min_addr,
2200			    length + gap * pagesizes[pidx]);
2201			if (*addr + length + gap * pagesizes[pidx] >
2202			    vm_map_max(map))
2203				goto again;
2204			/* And randomize the start address. */
2205			*addr += (arc4random() % gap) * pagesizes[pidx];
2206			if (max_addr != 0 && *addr + length > max_addr)
2207				goto again;
2208		} else {
2209			*addr = vm_map_findspace(map, curr_min_addr, length);
2210			if (*addr + length > vm_map_max(map) ||
2211			    (max_addr != 0 && *addr + length > max_addr)) {
2212				if (cluster) {
2213					cluster = false;
2214					MPASS(try == 1);
2215					goto again;
2216				}
2217				rv = KERN_NO_SPACE;
2218				goto done;
2219			}
2220		}
2221
2222		if (find_space != VMFS_ANY_SPACE &&
2223		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2224		    max_addr, alignment)) != KERN_SUCCESS) {
2225			if (find_space == VMFS_OPTIMAL_SPACE) {
2226				find_space = VMFS_ANY_SPACE;
2227				curr_min_addr = min_addr;
2228				cluster = update_anon;
2229				try = 0;
2230				goto again;
2231			}
2232			goto done;
2233		}
2234	} else if ((cow & MAP_REMAP) != 0) {
2235		if (!vm_map_range_valid(map, *addr, *addr + length)) {
2236			rv = KERN_INVALID_ADDRESS;
2237			goto done;
2238		}
2239		rv = vm_map_delete(map, *addr, *addr + length);
2240		if (rv != KERN_SUCCESS)
2241			goto done;
2242	}
2243	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2244		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2245		    max, cow);
2246	} else {
2247		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2248		    prot, max, cow);
2249	}
2250	if (rv == KERN_SUCCESS && update_anon)
2251		map->anon_loc = *addr + length;
2252done:
2253	vm_map_unlock(map);
2254	return (rv);
2255}
2256
2257/*
2258 *	vm_map_find_min() is a variant of vm_map_find() that takes an
2259 *	additional parameter ("default_addr") and treats the given address
2260 *	("*addr") differently.  Specifically, it treats "*addr" as a hint
2261 *	and not as the minimum address where the mapping is created.
2262 *
2263 *	This function works in two phases.  First, it tries to
2264 *	allocate above the hint.  If that fails and the hint is
2265 *	greater than "default_addr", it performs a second pass, replacing
2266 *	the hint with "default_addr" as the minimum address for the
2267 *	allocation.
2268 */
2269int
2270vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2271    vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2272    vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2273    int cow)
2274{
2275	vm_offset_t hint;
2276	int rv;
2277
2278	hint = *addr;
2279	if (hint == 0) {
2280		cow |= MAP_NO_HINT;
2281		*addr = hint = default_addr;
2282	}
2283	for (;;) {
2284		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2285		    find_space, prot, max, cow);
2286		if (rv == KERN_SUCCESS || default_addr >= hint)
2287			return (rv);
2288		*addr = hint = default_addr;
2289	}
2290}
2291
2292/*
2293 * A map entry with any of the following flags set must not be merged with
2294 * another entry.
2295 */
2296#define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2297    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2298    MAP_ENTRY_STACK_GAP_UP | MAP_ENTRY_STACK_GAP_DN)
2299
2300static bool
2301vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2302{
2303
2304	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2305	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2306	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2307	    prev, entry));
2308	return (prev->end == entry->start &&
2309	    prev->object.vm_object == entry->object.vm_object &&
2310	    (prev->object.vm_object == NULL ||
2311	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2312	    prev->eflags == entry->eflags &&
2313	    prev->protection == entry->protection &&
2314	    prev->max_protection == entry->max_protection &&
2315	    prev->inheritance == entry->inheritance &&
2316	    prev->wired_count == entry->wired_count &&
2317	    prev->cred == entry->cred);
2318}
2319
2320static void
2321vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2322{
2323
2324	/*
2325	 * If the backing object is a vnode object, vm_object_deallocate()
2326	 * calls vrele().  However, vrele() does not lock the vnode because
2327	 * the vnode has additional references.  Thus, the map lock can be
2328	 * kept without causing a lock-order reversal with the vnode lock.
2329	 *
2330	 * Since we count the number of virtual page mappings in
2331	 * object->un_pager.vnp.writemappings, the writemappings value
2332	 * should not be adjusted when the entry is disposed of.
2333	 */
2334	if (entry->object.vm_object != NULL)
2335		vm_object_deallocate(entry->object.vm_object);
2336	if (entry->cred != NULL)
2337		crfree(entry->cred);
2338	vm_map_entry_dispose(map, entry);
2339}
2340
2341/*
2342 *	vm_map_try_merge_entries:
2343 *
2344 *	Compare two map entries that represent consecutive ranges. If
2345 *	the entries can be merged, expand the range of the second to
2346 *	cover the range of the first and delete the first. Then return
2347 *	the map entry that includes the first range.
2348 *
2349 *	The map must be locked.
2350 */
2351vm_map_entry_t
2352vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2353    vm_map_entry_t entry)
2354{
2355
2356	VM_MAP_ASSERT_LOCKED(map);
2357	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2358	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2359		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2360		vm_map_merged_neighbor_dispose(map, prev_entry);
2361		return (entry);
2362	}
2363	return (prev_entry);
2364}
2365
2366/*
2367 *	vm_map_entry_back:
2368 *
2369 *	Allocate an object to back a map entry.
2370 */
2371static inline void
2372vm_map_entry_back(vm_map_entry_t entry)
2373{
2374	vm_object_t object;
2375
2376	KASSERT(entry->object.vm_object == NULL,
2377	    ("map entry %p has backing object", entry));
2378	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2379	    ("map entry %p is a submap", entry));
2380	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2381	    entry->cred, entry->end - entry->start);
2382	entry->object.vm_object = object;
2383	entry->offset = 0;
2384	entry->cred = NULL;
2385}
2386
2387/*
2388 *	vm_map_entry_charge_object
2389 *
2390 *	If there is no object backing this entry, create one.  Otherwise, if
2391 *	the entry has cred, give it to the backing object.
2392 */
2393static inline void
2394vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2395{
2396
2397	VM_MAP_ASSERT_LOCKED(map);
2398	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2399	    ("map entry %p is a submap", entry));
2400	if (entry->object.vm_object == NULL && !map->system_map &&
2401	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2402		vm_map_entry_back(entry);
2403	else if (entry->object.vm_object != NULL &&
2404	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2405	    entry->cred != NULL) {
2406		VM_OBJECT_WLOCK(entry->object.vm_object);
2407		KASSERT(entry->object.vm_object->cred == NULL,
2408		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2409		entry->object.vm_object->cred = entry->cred;
2410		entry->object.vm_object->charge = entry->end - entry->start;
2411		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2412		entry->cred = NULL;
2413	}
2414}
2415
2416/*
2417 *	vm_map_entry_clone
2418 *
2419 *	Create a duplicate map entry for clipping.
2420 */
2421static vm_map_entry_t
2422vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2423{
2424	vm_map_entry_t new_entry;
2425
2426	VM_MAP_ASSERT_LOCKED(map);
2427
2428	/*
2429	 * Create a backing object now, if none exists, so that more individual
2430	 * objects won't be created after the map entry is split.
2431	 */
2432	vm_map_entry_charge_object(map, entry);
2433
2434	/* Clone the entry. */
2435	new_entry = vm_map_entry_create(map);
2436	*new_entry = *entry;
2437	if (new_entry->cred != NULL)
2438		crhold(entry->cred);
2439	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2440		vm_object_reference(new_entry->object.vm_object);
2441		vm_map_entry_set_vnode_text(new_entry, true);
2442		/*
2443		 * The object->un_pager.vnp.writemappings for the object of
2444		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2445		 * virtual pages are re-distributed among the clipped entries,
2446		 * so the sum is left the same.
2447		 */
2448	}
2449	return (new_entry);
2450}
2451
2452/*
2453 *	vm_map_clip_start:	[ internal use only ]
2454 *
2455 *	Asserts that the given entry begins at or after
2456 *	the specified address; if necessary,
2457 *	it splits the entry into two.
2458 */
2459static int
2460vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2461{
2462	vm_map_entry_t new_entry;
2463	int bdry_idx;
2464
2465	if (!map->system_map)
2466		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2467		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2468		    (uintmax_t)startaddr);
2469
2470	if (startaddr <= entry->start)
2471		return (KERN_SUCCESS);
2472
2473	VM_MAP_ASSERT_LOCKED(map);
2474	KASSERT(entry->end > startaddr && entry->start < startaddr,
2475	    ("%s: invalid clip of entry %p", __func__, entry));
2476
2477	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2478	if (bdry_idx != 0) {
2479		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2480			return (KERN_INVALID_ARGUMENT);
2481	}
2482
2483	new_entry = vm_map_entry_clone(map, entry);
2484
2485	/*
2486	 * Split off the front portion.  Insert the new entry BEFORE this one,
2487	 * so that this entry has the specified starting address.
2488	 */
2489	new_entry->end = startaddr;
2490	vm_map_entry_link(map, new_entry);
2491	return (KERN_SUCCESS);
2492}
2493
2494/*
2495 *	vm_map_lookup_clip_start:
2496 *
2497 *	Find the entry at or just after 'start', and clip it if 'start' is in
2498 *	the interior of the entry.  Return entry after 'start', and in
2499 *	prev_entry set the entry before 'start'.
2500 */
2501static int
2502vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2503    vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2504{
2505	vm_map_entry_t entry;
2506	int rv;
2507
2508	if (!map->system_map)
2509		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2510		    "%s: map %p start 0x%jx prev %p", __func__, map,
2511		    (uintmax_t)start, prev_entry);
2512
2513	if (vm_map_lookup_entry(map, start, prev_entry)) {
2514		entry = *prev_entry;
2515		rv = vm_map_clip_start(map, entry, start);
2516		if (rv != KERN_SUCCESS)
2517			return (rv);
2518		*prev_entry = vm_map_entry_pred(entry);
2519	} else
2520		entry = vm_map_entry_succ(*prev_entry);
2521	*res_entry = entry;
2522	return (KERN_SUCCESS);
2523}
2524
2525/*
2526 *	vm_map_clip_end:	[ internal use only ]
2527 *
2528 *	Asserts that the given entry ends at or before
2529 *	the specified address; if necessary,
2530 *	it splits the entry into two.
2531 */
2532static int
2533vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2534{
2535	vm_map_entry_t new_entry;
2536	int bdry_idx;
2537
2538	if (!map->system_map)
2539		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2540		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2541		    (uintmax_t)endaddr);
2542
2543	if (endaddr >= entry->end)
2544		return (KERN_SUCCESS);
2545
2546	VM_MAP_ASSERT_LOCKED(map);
2547	KASSERT(entry->start < endaddr && entry->end > endaddr,
2548	    ("%s: invalid clip of entry %p", __func__, entry));
2549
2550	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2551	if (bdry_idx != 0) {
2552		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2553			return (KERN_INVALID_ARGUMENT);
2554	}
2555
2556	new_entry = vm_map_entry_clone(map, entry);
2557
2558	/*
2559	 * Split off the back portion.  Insert the new entry AFTER this one,
2560	 * so that this entry has the specified ending address.
2561	 */
2562	new_entry->start = endaddr;
2563	vm_map_entry_link(map, new_entry);
2564
2565	return (KERN_SUCCESS);
2566}
2567
2568/*
2569 *	vm_map_submap:		[ kernel use only ]
2570 *
2571 *	Mark the given range as handled by a subordinate map.
2572 *
2573 *	This range must have been created with vm_map_find,
2574 *	and no other operations may have been performed on this
2575 *	range prior to calling vm_map_submap.
2576 *
2577 *	Only a limited number of operations can be performed
2578 *	within this rage after calling vm_map_submap:
2579 *		vm_fault
2580 *	[Don't try vm_map_copy!]
2581 *
2582 *	To remove a submapping, one must first remove the
2583 *	range from the superior map, and then destroy the
2584 *	submap (if desired).  [Better yet, don't try it.]
2585 */
2586int
2587vm_map_submap(
2588	vm_map_t map,
2589	vm_offset_t start,
2590	vm_offset_t end,
2591	vm_map_t submap)
2592{
2593	vm_map_entry_t entry;
2594	int result;
2595
2596	result = KERN_INVALID_ARGUMENT;
2597
2598	vm_map_lock(submap);
2599	submap->flags |= MAP_IS_SUB_MAP;
2600	vm_map_unlock(submap);
2601
2602	vm_map_lock(map);
2603	VM_MAP_RANGE_CHECK(map, start, end);
2604	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2605	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2606	    entry->object.vm_object == NULL) {
2607		result = vm_map_clip_start(map, entry, start);
2608		if (result != KERN_SUCCESS)
2609			goto unlock;
2610		result = vm_map_clip_end(map, entry, end);
2611		if (result != KERN_SUCCESS)
2612			goto unlock;
2613		entry->object.sub_map = submap;
2614		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2615		result = KERN_SUCCESS;
2616	}
2617unlock:
2618	vm_map_unlock(map);
2619
2620	if (result != KERN_SUCCESS) {
2621		vm_map_lock(submap);
2622		submap->flags &= ~MAP_IS_SUB_MAP;
2623		vm_map_unlock(submap);
2624	}
2625	return (result);
2626}
2627
2628/*
2629 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2630 */
2631#define	MAX_INIT_PT	96
2632
2633/*
2634 *	vm_map_pmap_enter:
2635 *
2636 *	Preload the specified map's pmap with mappings to the specified
2637 *	object's memory-resident pages.  No further physical pages are
2638 *	allocated, and no further virtual pages are retrieved from secondary
2639 *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2640 *	limited number of page mappings are created at the low-end of the
2641 *	specified address range.  (For this purpose, a superpage mapping
2642 *	counts as one page mapping.)  Otherwise, all resident pages within
2643 *	the specified address range are mapped.
2644 */
2645static void
2646vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2647    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2648{
2649	vm_offset_t start;
2650	vm_page_t p, p_start;
2651	vm_pindex_t mask, psize, threshold, tmpidx;
2652
2653	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2654		return;
2655	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2656		VM_OBJECT_WLOCK(object);
2657		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2658			pmap_object_init_pt(map->pmap, addr, object, pindex,
2659			    size);
2660			VM_OBJECT_WUNLOCK(object);
2661			return;
2662		}
2663		VM_OBJECT_LOCK_DOWNGRADE(object);
2664	} else
2665		VM_OBJECT_RLOCK(object);
2666
2667	psize = atop(size);
2668	if (psize + pindex > object->size) {
2669		if (pindex >= object->size) {
2670			VM_OBJECT_RUNLOCK(object);
2671			return;
2672		}
2673		psize = object->size - pindex;
2674	}
2675
2676	start = 0;
2677	p_start = NULL;
2678	threshold = MAX_INIT_PT;
2679
2680	p = vm_page_find_least(object, pindex);
2681	/*
2682	 * Assert: the variable p is either (1) the page with the
2683	 * least pindex greater than or equal to the parameter pindex
2684	 * or (2) NULL.
2685	 */
2686	for (;
2687	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2688	     p = TAILQ_NEXT(p, listq)) {
2689		/*
2690		 * don't allow an madvise to blow away our really
2691		 * free pages allocating pv entries.
2692		 */
2693		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2694		    vm_page_count_severe()) ||
2695		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2696		    tmpidx >= threshold)) {
2697			psize = tmpidx;
2698			break;
2699		}
2700		if (vm_page_all_valid(p)) {
2701			if (p_start == NULL) {
2702				start = addr + ptoa(tmpidx);
2703				p_start = p;
2704			}
2705			/* Jump ahead if a superpage mapping is possible. */
2706			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2707			    (pagesizes[p->psind] - 1)) == 0) {
2708				mask = atop(pagesizes[p->psind]) - 1;
2709				if (tmpidx + mask < psize &&
2710				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2711					p += mask;
2712					threshold += mask;
2713				}
2714			}
2715		} else if (p_start != NULL) {
2716			pmap_enter_object(map->pmap, start, addr +
2717			    ptoa(tmpidx), p_start, prot);
2718			p_start = NULL;
2719		}
2720	}
2721	if (p_start != NULL)
2722		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2723		    p_start, prot);
2724	VM_OBJECT_RUNLOCK(object);
2725}
2726
2727static void
2728vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2729    vm_prot_t new_maxprot, int flags)
2730{
2731	vm_prot_t old_prot;
2732
2733	MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2734	if ((entry->eflags & (MAP_ENTRY_STACK_GAP_UP |
2735	    MAP_ENTRY_STACK_GAP_DN)) == 0)
2736		return;
2737
2738	old_prot = PROT_EXTRACT(entry->offset);
2739	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2740		entry->offset = PROT_MAX(new_maxprot) |
2741		    (new_maxprot & old_prot);
2742	}
2743	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2744		entry->offset = new_prot | PROT_MAX(
2745		    PROT_MAX_EXTRACT(entry->offset));
2746	}
2747}
2748
2749/*
2750 *	vm_map_protect:
2751 *
2752 *	Sets the protection and/or the maximum protection of the
2753 *	specified address region in the target map.
2754 */
2755int
2756vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2757    vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2758{
2759	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2760	vm_object_t obj;
2761	struct ucred *cred;
2762	vm_offset_t orig_start;
2763	vm_prot_t check_prot, max_prot, old_prot;
2764	int rv;
2765
2766	if (start == end)
2767		return (KERN_SUCCESS);
2768
2769	if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2770	    VM_MAP_PROTECT_SET_MAXPROT) &&
2771	    !CONTAINS_BITS(new_maxprot, new_prot))
2772		return (KERN_OUT_OF_BOUNDS);
2773
2774	orig_start = start;
2775again:
2776	in_tran = NULL;
2777	start = orig_start;
2778	vm_map_lock(map);
2779
2780	if ((map->flags & MAP_WXORX) != 0 &&
2781	    (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2782	    CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2783		vm_map_unlock(map);
2784		return (KERN_PROTECTION_FAILURE);
2785	}
2786
2787	/*
2788	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2789	 * need to fault pages into the map and will drop the map lock while
2790	 * doing so, and the VM object may end up in an inconsistent state if we
2791	 * update the protection on the map entry in between faults.
2792	 */
2793	vm_map_wait_busy(map);
2794
2795	VM_MAP_RANGE_CHECK(map, start, end);
2796
2797	if (!vm_map_lookup_entry(map, start, &first_entry))
2798		first_entry = vm_map_entry_succ(first_entry);
2799
2800	if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2801	    (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2802		/*
2803		 * Handle Linux's PROT_GROWSDOWN flag.
2804		 * It means that protection is applied down to the
2805		 * whole stack, including the specified range of the
2806		 * mapped region, and the grow down region (AKA
2807		 * guard).
2808		 */
2809		while (!CONTAINS_BITS(first_entry->eflags,
2810		    MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP_DN) &&
2811		    first_entry != vm_map_entry_first(map))
2812			first_entry = vm_map_entry_pred(first_entry);
2813		start = first_entry->start;
2814	}
2815
2816	/*
2817	 * Make a first pass to check for protection violations.
2818	 */
2819	check_prot = 0;
2820	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2821		check_prot |= new_prot;
2822	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2823		check_prot |= new_maxprot;
2824	for (entry = first_entry; entry->start < end;
2825	    entry = vm_map_entry_succ(entry)) {
2826		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2827			vm_map_unlock(map);
2828			return (KERN_INVALID_ARGUMENT);
2829		}
2830		if ((entry->eflags & (MAP_ENTRY_GUARD |
2831		    MAP_ENTRY_STACK_GAP_DN | MAP_ENTRY_STACK_GAP_UP)) ==
2832		    MAP_ENTRY_GUARD)
2833			continue;
2834		max_prot = (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
2835		    MAP_ENTRY_STACK_GAP_UP)) != 0 ?
2836		    PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2837		if (!CONTAINS_BITS(max_prot, check_prot)) {
2838			vm_map_unlock(map);
2839			return (KERN_PROTECTION_FAILURE);
2840		}
2841		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2842			in_tran = entry;
2843	}
2844
2845	/*
2846	 * Postpone the operation until all in-transition map entries have
2847	 * stabilized.  An in-transition entry might already have its pages
2848	 * wired and wired_count incremented, but not yet have its
2849	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2850	 * vm_fault_copy_entry() in the final loop below.
2851	 */
2852	if (in_tran != NULL) {
2853		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2854		vm_map_unlock_and_wait(map, 0);
2855		goto again;
2856	}
2857
2858	/*
2859	 * Before changing the protections, try to reserve swap space for any
2860	 * private (i.e., copy-on-write) mappings that are transitioning from
2861	 * read-only to read/write access.  If a reservation fails, break out
2862	 * of this loop early and let the next loop simplify the entries, since
2863	 * some may now be mergeable.
2864	 */
2865	rv = vm_map_clip_start(map, first_entry, start);
2866	if (rv != KERN_SUCCESS) {
2867		vm_map_unlock(map);
2868		return (rv);
2869	}
2870	for (entry = first_entry; entry->start < end;
2871	    entry = vm_map_entry_succ(entry)) {
2872		rv = vm_map_clip_end(map, entry, end);
2873		if (rv != KERN_SUCCESS) {
2874			vm_map_unlock(map);
2875			return (rv);
2876		}
2877
2878		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2879		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2880		    ENTRY_CHARGED(entry) ||
2881		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2882			continue;
2883
2884		cred = curthread->td_ucred;
2885		obj = entry->object.vm_object;
2886
2887		if (obj == NULL ||
2888		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2889			if (!swap_reserve(entry->end - entry->start)) {
2890				rv = KERN_RESOURCE_SHORTAGE;
2891				end = entry->end;
2892				break;
2893			}
2894			crhold(cred);
2895			entry->cred = cred;
2896			continue;
2897		}
2898
2899		VM_OBJECT_WLOCK(obj);
2900		if ((obj->flags & OBJ_SWAP) == 0) {
2901			VM_OBJECT_WUNLOCK(obj);
2902			continue;
2903		}
2904
2905		/*
2906		 * Charge for the whole object allocation now, since
2907		 * we cannot distinguish between non-charged and
2908		 * charged clipped mapping of the same object later.
2909		 */
2910		KASSERT(obj->charge == 0,
2911		    ("vm_map_protect: object %p overcharged (entry %p)",
2912		    obj, entry));
2913		if (!swap_reserve(ptoa(obj->size))) {
2914			VM_OBJECT_WUNLOCK(obj);
2915			rv = KERN_RESOURCE_SHORTAGE;
2916			end = entry->end;
2917			break;
2918		}
2919
2920		crhold(cred);
2921		obj->cred = cred;
2922		obj->charge = ptoa(obj->size);
2923		VM_OBJECT_WUNLOCK(obj);
2924	}
2925
2926	/*
2927	 * If enough swap space was available, go back and fix up protections.
2928	 * Otherwise, just simplify entries, since some may have been modified.
2929	 * [Note that clipping is not necessary the second time.]
2930	 */
2931	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2932	    entry->start < end;
2933	    vm_map_try_merge_entries(map, prev_entry, entry),
2934	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2935		if (rv != KERN_SUCCESS)
2936			continue;
2937
2938		if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2939			vm_map_protect_guard(entry, new_prot, new_maxprot,
2940			    flags);
2941			continue;
2942		}
2943
2944		old_prot = entry->protection;
2945
2946		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2947			entry->max_protection = new_maxprot;
2948			entry->protection = new_maxprot & old_prot;
2949		}
2950		if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2951			entry->protection = new_prot;
2952
2953		/*
2954		 * For user wired map entries, the normal lazy evaluation of
2955		 * write access upgrades through soft page faults is
2956		 * undesirable.  Instead, immediately copy any pages that are
2957		 * copy-on-write and enable write access in the physical map.
2958		 */
2959		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2960		    (entry->protection & VM_PROT_WRITE) != 0 &&
2961		    (old_prot & VM_PROT_WRITE) == 0)
2962			vm_fault_copy_entry(map, map, entry, entry, NULL);
2963
2964		/*
2965		 * When restricting access, update the physical map.  Worry
2966		 * about copy-on-write here.
2967		 */
2968		if ((old_prot & ~entry->protection) != 0) {
2969#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2970							VM_PROT_ALL)
2971			pmap_protect(map->pmap, entry->start,
2972			    entry->end,
2973			    entry->protection & MASK(entry));
2974#undef	MASK
2975		}
2976	}
2977	vm_map_try_merge_entries(map, prev_entry, entry);
2978	vm_map_unlock(map);
2979	return (rv);
2980}
2981
2982/*
2983 *	vm_map_madvise:
2984 *
2985 *	This routine traverses a processes map handling the madvise
2986 *	system call.  Advisories are classified as either those effecting
2987 *	the vm_map_entry structure, or those effecting the underlying
2988 *	objects.
2989 */
2990int
2991vm_map_madvise(
2992	vm_map_t map,
2993	vm_offset_t start,
2994	vm_offset_t end,
2995	int behav)
2996{
2997	vm_map_entry_t entry, prev_entry;
2998	int rv;
2999	bool modify_map;
3000
3001	/*
3002	 * Some madvise calls directly modify the vm_map_entry, in which case
3003	 * we need to use an exclusive lock on the map and we need to perform
3004	 * various clipping operations.  Otherwise we only need a read-lock
3005	 * on the map.
3006	 */
3007	switch(behav) {
3008	case MADV_NORMAL:
3009	case MADV_SEQUENTIAL:
3010	case MADV_RANDOM:
3011	case MADV_NOSYNC:
3012	case MADV_AUTOSYNC:
3013	case MADV_NOCORE:
3014	case MADV_CORE:
3015		if (start == end)
3016			return (0);
3017		modify_map = true;
3018		vm_map_lock(map);
3019		break;
3020	case MADV_WILLNEED:
3021	case MADV_DONTNEED:
3022	case MADV_FREE:
3023		if (start == end)
3024			return (0);
3025		modify_map = false;
3026		vm_map_lock_read(map);
3027		break;
3028	default:
3029		return (EINVAL);
3030	}
3031
3032	/*
3033	 * Locate starting entry and clip if necessary.
3034	 */
3035	VM_MAP_RANGE_CHECK(map, start, end);
3036
3037	if (modify_map) {
3038		/*
3039		 * madvise behaviors that are implemented in the vm_map_entry.
3040		 *
3041		 * We clip the vm_map_entry so that behavioral changes are
3042		 * limited to the specified address range.
3043		 */
3044		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3045		if (rv != KERN_SUCCESS) {
3046			vm_map_unlock(map);
3047			return (vm_mmap_to_errno(rv));
3048		}
3049
3050		for (; entry->start < end; prev_entry = entry,
3051		    entry = vm_map_entry_succ(entry)) {
3052			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3053				continue;
3054
3055			rv = vm_map_clip_end(map, entry, end);
3056			if (rv != KERN_SUCCESS) {
3057				vm_map_unlock(map);
3058				return (vm_mmap_to_errno(rv));
3059			}
3060
3061			switch (behav) {
3062			case MADV_NORMAL:
3063				vm_map_entry_set_behavior(entry,
3064				    MAP_ENTRY_BEHAV_NORMAL);
3065				break;
3066			case MADV_SEQUENTIAL:
3067				vm_map_entry_set_behavior(entry,
3068				    MAP_ENTRY_BEHAV_SEQUENTIAL);
3069				break;
3070			case MADV_RANDOM:
3071				vm_map_entry_set_behavior(entry,
3072				    MAP_ENTRY_BEHAV_RANDOM);
3073				break;
3074			case MADV_NOSYNC:
3075				entry->eflags |= MAP_ENTRY_NOSYNC;
3076				break;
3077			case MADV_AUTOSYNC:
3078				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3079				break;
3080			case MADV_NOCORE:
3081				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3082				break;
3083			case MADV_CORE:
3084				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3085				break;
3086			default:
3087				break;
3088			}
3089			vm_map_try_merge_entries(map, prev_entry, entry);
3090		}
3091		vm_map_try_merge_entries(map, prev_entry, entry);
3092		vm_map_unlock(map);
3093	} else {
3094		vm_pindex_t pstart, pend;
3095
3096		/*
3097		 * madvise behaviors that are implemented in the underlying
3098		 * vm_object.
3099		 *
3100		 * Since we don't clip the vm_map_entry, we have to clip
3101		 * the vm_object pindex and count.
3102		 */
3103		if (!vm_map_lookup_entry(map, start, &entry))
3104			entry = vm_map_entry_succ(entry);
3105		for (; entry->start < end;
3106		    entry = vm_map_entry_succ(entry)) {
3107			vm_offset_t useEnd, useStart;
3108
3109			if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3110			    MAP_ENTRY_GUARD)) != 0)
3111				continue;
3112
3113			/*
3114			 * MADV_FREE would otherwise rewind time to
3115			 * the creation of the shadow object.  Because
3116			 * we hold the VM map read-locked, neither the
3117			 * entry's object nor the presence of a
3118			 * backing object can change.
3119			 */
3120			if (behav == MADV_FREE &&
3121			    entry->object.vm_object != NULL &&
3122			    entry->object.vm_object->backing_object != NULL)
3123				continue;
3124
3125			pstart = OFF_TO_IDX(entry->offset);
3126			pend = pstart + atop(entry->end - entry->start);
3127			useStart = entry->start;
3128			useEnd = entry->end;
3129
3130			if (entry->start < start) {
3131				pstart += atop(start - entry->start);
3132				useStart = start;
3133			}
3134			if (entry->end > end) {
3135				pend -= atop(entry->end - end);
3136				useEnd = end;
3137			}
3138
3139			if (pstart >= pend)
3140				continue;
3141
3142			/*
3143			 * Perform the pmap_advise() before clearing
3144			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3145			 * concurrent pmap operation, such as pmap_remove(),
3146			 * could clear a reference in the pmap and set
3147			 * PGA_REFERENCED on the page before the pmap_advise()
3148			 * had completed.  Consequently, the page would appear
3149			 * referenced based upon an old reference that
3150			 * occurred before this pmap_advise() ran.
3151			 */
3152			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3153				pmap_advise(map->pmap, useStart, useEnd,
3154				    behav);
3155
3156			vm_object_madvise(entry->object.vm_object, pstart,
3157			    pend, behav);
3158
3159			/*
3160			 * Pre-populate paging structures in the
3161			 * WILLNEED case.  For wired entries, the
3162			 * paging structures are already populated.
3163			 */
3164			if (behav == MADV_WILLNEED &&
3165			    entry->wired_count == 0) {
3166				vm_map_pmap_enter(map,
3167				    useStart,
3168				    entry->protection,
3169				    entry->object.vm_object,
3170				    pstart,
3171				    ptoa(pend - pstart),
3172				    MAP_PREFAULT_MADVISE
3173				);
3174			}
3175		}
3176		vm_map_unlock_read(map);
3177	}
3178	return (0);
3179}
3180
3181/*
3182 *	vm_map_inherit:
3183 *
3184 *	Sets the inheritance of the specified address
3185 *	range in the target map.  Inheritance
3186 *	affects how the map will be shared with
3187 *	child maps at the time of vmspace_fork.
3188 */
3189int
3190vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3191	       vm_inherit_t new_inheritance)
3192{
3193	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3194	int rv;
3195
3196	switch (new_inheritance) {
3197	case VM_INHERIT_NONE:
3198	case VM_INHERIT_COPY:
3199	case VM_INHERIT_SHARE:
3200	case VM_INHERIT_ZERO:
3201		break;
3202	default:
3203		return (KERN_INVALID_ARGUMENT);
3204	}
3205	if (start == end)
3206		return (KERN_SUCCESS);
3207	vm_map_lock(map);
3208	VM_MAP_RANGE_CHECK(map, start, end);
3209	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3210	if (rv != KERN_SUCCESS)
3211		goto unlock;
3212	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3213		rv = vm_map_clip_end(map, lentry, end);
3214		if (rv != KERN_SUCCESS)
3215			goto unlock;
3216	}
3217	if (new_inheritance == VM_INHERIT_COPY) {
3218		for (entry = start_entry; entry->start < end;
3219		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3220			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3221			    != 0) {
3222				rv = KERN_INVALID_ARGUMENT;
3223				goto unlock;
3224			}
3225		}
3226	}
3227	for (entry = start_entry; entry->start < end; prev_entry = entry,
3228	    entry = vm_map_entry_succ(entry)) {
3229		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3230		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3231		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3232		    new_inheritance != VM_INHERIT_ZERO)
3233			entry->inheritance = new_inheritance;
3234		vm_map_try_merge_entries(map, prev_entry, entry);
3235	}
3236	vm_map_try_merge_entries(map, prev_entry, entry);
3237unlock:
3238	vm_map_unlock(map);
3239	return (rv);
3240}
3241
3242/*
3243 *	vm_map_entry_in_transition:
3244 *
3245 *	Release the map lock, and sleep until the entry is no longer in
3246 *	transition.  Awake and acquire the map lock.  If the map changed while
3247 *	another held the lock, lookup a possibly-changed entry at or after the
3248 *	'start' position of the old entry.
3249 */
3250static vm_map_entry_t
3251vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3252    vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3253{
3254	vm_map_entry_t entry;
3255	vm_offset_t start;
3256	u_int last_timestamp;
3257
3258	VM_MAP_ASSERT_LOCKED(map);
3259	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3260	    ("not in-tranition map entry %p", in_entry));
3261	/*
3262	 * We have not yet clipped the entry.
3263	 */
3264	start = MAX(in_start, in_entry->start);
3265	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3266	last_timestamp = map->timestamp;
3267	if (vm_map_unlock_and_wait(map, 0)) {
3268		/*
3269		 * Allow interruption of user wiring/unwiring?
3270		 */
3271	}
3272	vm_map_lock(map);
3273	if (last_timestamp + 1 == map->timestamp)
3274		return (in_entry);
3275
3276	/*
3277	 * Look again for the entry because the map was modified while it was
3278	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3279	 * deleted.
3280	 */
3281	if (!vm_map_lookup_entry(map, start, &entry)) {
3282		if (!holes_ok) {
3283			*io_end = start;
3284			return (NULL);
3285		}
3286		entry = vm_map_entry_succ(entry);
3287	}
3288	return (entry);
3289}
3290
3291/*
3292 *	vm_map_unwire:
3293 *
3294 *	Implements both kernel and user unwiring.
3295 */
3296int
3297vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3298    int flags)
3299{
3300	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3301	int rv;
3302	bool holes_ok, need_wakeup, user_unwire;
3303
3304	if (start == end)
3305		return (KERN_SUCCESS);
3306	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3307	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3308	vm_map_lock(map);
3309	VM_MAP_RANGE_CHECK(map, start, end);
3310	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3311		if (holes_ok)
3312			first_entry = vm_map_entry_succ(first_entry);
3313		else {
3314			vm_map_unlock(map);
3315			return (KERN_INVALID_ADDRESS);
3316		}
3317	}
3318	rv = KERN_SUCCESS;
3319	for (entry = first_entry; entry->start < end; entry = next_entry) {
3320		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3321			/*
3322			 * We have not yet clipped the entry.
3323			 */
3324			next_entry = vm_map_entry_in_transition(map, start,
3325			    &end, holes_ok, entry);
3326			if (next_entry == NULL) {
3327				if (entry == first_entry) {
3328					vm_map_unlock(map);
3329					return (KERN_INVALID_ADDRESS);
3330				}
3331				rv = KERN_INVALID_ADDRESS;
3332				break;
3333			}
3334			first_entry = (entry == first_entry) ?
3335			    next_entry : NULL;
3336			continue;
3337		}
3338		rv = vm_map_clip_start(map, entry, start);
3339		if (rv != KERN_SUCCESS)
3340			break;
3341		rv = vm_map_clip_end(map, entry, end);
3342		if (rv != KERN_SUCCESS)
3343			break;
3344
3345		/*
3346		 * Mark the entry in case the map lock is released.  (See
3347		 * above.)
3348		 */
3349		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3350		    entry->wiring_thread == NULL,
3351		    ("owned map entry %p", entry));
3352		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3353		entry->wiring_thread = curthread;
3354		next_entry = vm_map_entry_succ(entry);
3355		/*
3356		 * Check the map for holes in the specified region.
3357		 * If holes_ok, skip this check.
3358		 */
3359		if (!holes_ok &&
3360		    entry->end < end && next_entry->start > entry->end) {
3361			end = entry->end;
3362			rv = KERN_INVALID_ADDRESS;
3363			break;
3364		}
3365		/*
3366		 * If system unwiring, require that the entry is system wired.
3367		 */
3368		if (!user_unwire &&
3369		    vm_map_entry_system_wired_count(entry) == 0) {
3370			end = entry->end;
3371			rv = KERN_INVALID_ARGUMENT;
3372			break;
3373		}
3374	}
3375	need_wakeup = false;
3376	if (first_entry == NULL &&
3377	    !vm_map_lookup_entry(map, start, &first_entry)) {
3378		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3379		prev_entry = first_entry;
3380		entry = vm_map_entry_succ(first_entry);
3381	} else {
3382		prev_entry = vm_map_entry_pred(first_entry);
3383		entry = first_entry;
3384	}
3385	for (; entry->start < end;
3386	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3387		/*
3388		 * If holes_ok was specified, an empty
3389		 * space in the unwired region could have been mapped
3390		 * while the map lock was dropped for draining
3391		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3392		 * could be simultaneously wiring this new mapping
3393		 * entry.  Detect these cases and skip any entries
3394		 * marked as in transition by us.
3395		 */
3396		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3397		    entry->wiring_thread != curthread) {
3398			KASSERT(holes_ok,
3399			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3400			continue;
3401		}
3402
3403		if (rv == KERN_SUCCESS && (!user_unwire ||
3404		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3405			if (entry->wired_count == 1)
3406				vm_map_entry_unwire(map, entry);
3407			else
3408				entry->wired_count--;
3409			if (user_unwire)
3410				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3411		}
3412		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3413		    ("vm_map_unwire: in-transition flag missing %p", entry));
3414		KASSERT(entry->wiring_thread == curthread,
3415		    ("vm_map_unwire: alien wire %p", entry));
3416		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3417		entry->wiring_thread = NULL;
3418		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3419			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3420			need_wakeup = true;
3421		}
3422		vm_map_try_merge_entries(map, prev_entry, entry);
3423	}
3424	vm_map_try_merge_entries(map, prev_entry, entry);
3425	vm_map_unlock(map);
3426	if (need_wakeup)
3427		vm_map_wakeup(map);
3428	return (rv);
3429}
3430
3431static void
3432vm_map_wire_user_count_sub(u_long npages)
3433{
3434
3435	atomic_subtract_long(&vm_user_wire_count, npages);
3436}
3437
3438static bool
3439vm_map_wire_user_count_add(u_long npages)
3440{
3441	u_long wired;
3442
3443	wired = vm_user_wire_count;
3444	do {
3445		if (npages + wired > vm_page_max_user_wired)
3446			return (false);
3447	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3448	    npages + wired));
3449
3450	return (true);
3451}
3452
3453/*
3454 *	vm_map_wire_entry_failure:
3455 *
3456 *	Handle a wiring failure on the given entry.
3457 *
3458 *	The map should be locked.
3459 */
3460static void
3461vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3462    vm_offset_t failed_addr)
3463{
3464
3465	VM_MAP_ASSERT_LOCKED(map);
3466	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3467	    entry->wired_count == 1,
3468	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3469	KASSERT(failed_addr < entry->end,
3470	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3471
3472	/*
3473	 * If any pages at the start of this entry were successfully wired,
3474	 * then unwire them.
3475	 */
3476	if (failed_addr > entry->start) {
3477		pmap_unwire(map->pmap, entry->start, failed_addr);
3478		vm_object_unwire(entry->object.vm_object, entry->offset,
3479		    failed_addr - entry->start, PQ_ACTIVE);
3480	}
3481
3482	/*
3483	 * Assign an out-of-range value to represent the failure to wire this
3484	 * entry.
3485	 */
3486	entry->wired_count = -1;
3487}
3488
3489int
3490vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3491{
3492	int rv;
3493
3494	vm_map_lock(map);
3495	rv = vm_map_wire_locked(map, start, end, flags);
3496	vm_map_unlock(map);
3497	return (rv);
3498}
3499
3500/*
3501 *	vm_map_wire_locked:
3502 *
3503 *	Implements both kernel and user wiring.  Returns with the map locked,
3504 *	the map lock may be dropped.
3505 */
3506int
3507vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3508{
3509	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3510	vm_offset_t faddr, saved_end, saved_start;
3511	u_long incr, npages;
3512	u_int bidx, last_timestamp;
3513	int rv;
3514	bool holes_ok, need_wakeup, user_wire;
3515	vm_prot_t prot;
3516
3517	VM_MAP_ASSERT_LOCKED(map);
3518
3519	if (start == end)
3520		return (KERN_SUCCESS);
3521	prot = 0;
3522	if (flags & VM_MAP_WIRE_WRITE)
3523		prot |= VM_PROT_WRITE;
3524	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3525	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3526	VM_MAP_RANGE_CHECK(map, start, end);
3527	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3528		if (holes_ok)
3529			first_entry = vm_map_entry_succ(first_entry);
3530		else
3531			return (KERN_INVALID_ADDRESS);
3532	}
3533	for (entry = first_entry; entry->start < end; entry = next_entry) {
3534		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3535			/*
3536			 * We have not yet clipped the entry.
3537			 */
3538			next_entry = vm_map_entry_in_transition(map, start,
3539			    &end, holes_ok, entry);
3540			if (next_entry == NULL) {
3541				if (entry == first_entry)
3542					return (KERN_INVALID_ADDRESS);
3543				rv = KERN_INVALID_ADDRESS;
3544				goto done;
3545			}
3546			first_entry = (entry == first_entry) ?
3547			    next_entry : NULL;
3548			continue;
3549		}
3550		rv = vm_map_clip_start(map, entry, start);
3551		if (rv != KERN_SUCCESS)
3552			goto done;
3553		rv = vm_map_clip_end(map, entry, end);
3554		if (rv != KERN_SUCCESS)
3555			goto done;
3556
3557		/*
3558		 * Mark the entry in case the map lock is released.  (See
3559		 * above.)
3560		 */
3561		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3562		    entry->wiring_thread == NULL,
3563		    ("owned map entry %p", entry));
3564		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3565		entry->wiring_thread = curthread;
3566		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3567		    || (entry->protection & prot) != prot) {
3568			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3569			if (!holes_ok) {
3570				end = entry->end;
3571				rv = KERN_INVALID_ADDRESS;
3572				goto done;
3573			}
3574		} else if (entry->wired_count == 0) {
3575			entry->wired_count++;
3576
3577			npages = atop(entry->end - entry->start);
3578			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3579				vm_map_wire_entry_failure(map, entry,
3580				    entry->start);
3581				end = entry->end;
3582				rv = KERN_RESOURCE_SHORTAGE;
3583				goto done;
3584			}
3585
3586			/*
3587			 * Release the map lock, relying on the in-transition
3588			 * mark.  Mark the map busy for fork.
3589			 */
3590			saved_start = entry->start;
3591			saved_end = entry->end;
3592			last_timestamp = map->timestamp;
3593			bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3594			incr =  pagesizes[bidx];
3595			vm_map_busy(map);
3596			vm_map_unlock(map);
3597
3598			for (faddr = saved_start; faddr < saved_end;
3599			    faddr += incr) {
3600				/*
3601				 * Simulate a fault to get the page and enter
3602				 * it into the physical map.
3603				 */
3604				rv = vm_fault(map, faddr, VM_PROT_NONE,
3605				    VM_FAULT_WIRE, NULL);
3606				if (rv != KERN_SUCCESS)
3607					break;
3608			}
3609			vm_map_lock(map);
3610			vm_map_unbusy(map);
3611			if (last_timestamp + 1 != map->timestamp) {
3612				/*
3613				 * Look again for the entry because the map was
3614				 * modified while it was unlocked.  The entry
3615				 * may have been clipped, but NOT merged or
3616				 * deleted.
3617				 */
3618				if (!vm_map_lookup_entry(map, saved_start,
3619				    &next_entry))
3620					KASSERT(false,
3621					    ("vm_map_wire: lookup failed"));
3622				first_entry = (entry == first_entry) ?
3623				    next_entry : NULL;
3624				for (entry = next_entry; entry->end < saved_end;
3625				    entry = vm_map_entry_succ(entry)) {
3626					/*
3627					 * In case of failure, handle entries
3628					 * that were not fully wired here;
3629					 * fully wired entries are handled
3630					 * later.
3631					 */
3632					if (rv != KERN_SUCCESS &&
3633					    faddr < entry->end)
3634						vm_map_wire_entry_failure(map,
3635						    entry, faddr);
3636				}
3637			}
3638			if (rv != KERN_SUCCESS) {
3639				vm_map_wire_entry_failure(map, entry, faddr);
3640				if (user_wire)
3641					vm_map_wire_user_count_sub(npages);
3642				end = entry->end;
3643				goto done;
3644			}
3645		} else if (!user_wire ||
3646			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3647			entry->wired_count++;
3648		}
3649		/*
3650		 * Check the map for holes in the specified region.
3651		 * If holes_ok was specified, skip this check.
3652		 */
3653		next_entry = vm_map_entry_succ(entry);
3654		if (!holes_ok &&
3655		    entry->end < end && next_entry->start > entry->end) {
3656			end = entry->end;
3657			rv = KERN_INVALID_ADDRESS;
3658			goto done;
3659		}
3660	}
3661	rv = KERN_SUCCESS;
3662done:
3663	need_wakeup = false;
3664	if (first_entry == NULL &&
3665	    !vm_map_lookup_entry(map, start, &first_entry)) {
3666		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3667		prev_entry = first_entry;
3668		entry = vm_map_entry_succ(first_entry);
3669	} else {
3670		prev_entry = vm_map_entry_pred(first_entry);
3671		entry = first_entry;
3672	}
3673	for (; entry->start < end;
3674	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3675		/*
3676		 * If holes_ok was specified, an empty
3677		 * space in the unwired region could have been mapped
3678		 * while the map lock was dropped for faulting in the
3679		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3680		 * Moreover, another thread could be simultaneously
3681		 * wiring this new mapping entry.  Detect these cases
3682		 * and skip any entries marked as in transition not by us.
3683		 *
3684		 * Another way to get an entry not marked with
3685		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3686		 * which set rv to KERN_INVALID_ARGUMENT.
3687		 */
3688		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3689		    entry->wiring_thread != curthread) {
3690			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3691			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3692			continue;
3693		}
3694
3695		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3696			/* do nothing */
3697		} else if (rv == KERN_SUCCESS) {
3698			if (user_wire)
3699				entry->eflags |= MAP_ENTRY_USER_WIRED;
3700		} else if (entry->wired_count == -1) {
3701			/*
3702			 * Wiring failed on this entry.  Thus, unwiring is
3703			 * unnecessary.
3704			 */
3705			entry->wired_count = 0;
3706		} else if (!user_wire ||
3707		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3708			/*
3709			 * Undo the wiring.  Wiring succeeded on this entry
3710			 * but failed on a later entry.
3711			 */
3712			if (entry->wired_count == 1) {
3713				vm_map_entry_unwire(map, entry);
3714				if (user_wire)
3715					vm_map_wire_user_count_sub(
3716					    atop(entry->end - entry->start));
3717			} else
3718				entry->wired_count--;
3719		}
3720		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3721		    ("vm_map_wire: in-transition flag missing %p", entry));
3722		KASSERT(entry->wiring_thread == curthread,
3723		    ("vm_map_wire: alien wire %p", entry));
3724		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3725		    MAP_ENTRY_WIRE_SKIPPED);
3726		entry->wiring_thread = NULL;
3727		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3728			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3729			need_wakeup = true;
3730		}
3731		vm_map_try_merge_entries(map, prev_entry, entry);
3732	}
3733	vm_map_try_merge_entries(map, prev_entry, entry);
3734	if (need_wakeup)
3735		vm_map_wakeup(map);
3736	return (rv);
3737}
3738
3739/*
3740 * vm_map_sync
3741 *
3742 * Push any dirty cached pages in the address range to their pager.
3743 * If syncio is TRUE, dirty pages are written synchronously.
3744 * If invalidate is TRUE, any cached pages are freed as well.
3745 *
3746 * If the size of the region from start to end is zero, we are
3747 * supposed to flush all modified pages within the region containing
3748 * start.  Unfortunately, a region can be split or coalesced with
3749 * neighboring regions, making it difficult to determine what the
3750 * original region was.  Therefore, we approximate this requirement by
3751 * flushing the current region containing start.
3752 *
3753 * Returns an error if any part of the specified range is not mapped.
3754 */
3755int
3756vm_map_sync(
3757	vm_map_t map,
3758	vm_offset_t start,
3759	vm_offset_t end,
3760	boolean_t syncio,
3761	boolean_t invalidate)
3762{
3763	vm_map_entry_t entry, first_entry, next_entry;
3764	vm_size_t size;
3765	vm_object_t object;
3766	vm_ooffset_t offset;
3767	unsigned int last_timestamp;
3768	int bdry_idx;
3769	boolean_t failed;
3770
3771	vm_map_lock_read(map);
3772	VM_MAP_RANGE_CHECK(map, start, end);
3773	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3774		vm_map_unlock_read(map);
3775		return (KERN_INVALID_ADDRESS);
3776	} else if (start == end) {
3777		start = first_entry->start;
3778		end = first_entry->end;
3779	}
3780
3781	/*
3782	 * Make a first pass to check for user-wired memory, holes,
3783	 * and partial invalidation of largepage mappings.
3784	 */
3785	for (entry = first_entry; entry->start < end; entry = next_entry) {
3786		if (invalidate) {
3787			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3788				vm_map_unlock_read(map);
3789				return (KERN_INVALID_ARGUMENT);
3790			}
3791			bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3792			if (bdry_idx != 0 &&
3793			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3794			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3795				vm_map_unlock_read(map);
3796				return (KERN_INVALID_ARGUMENT);
3797			}
3798		}
3799		next_entry = vm_map_entry_succ(entry);
3800		if (end > entry->end &&
3801		    entry->end != next_entry->start) {
3802			vm_map_unlock_read(map);
3803			return (KERN_INVALID_ADDRESS);
3804		}
3805	}
3806
3807	if (invalidate)
3808		pmap_remove(map->pmap, start, end);
3809	failed = FALSE;
3810
3811	/*
3812	 * Make a second pass, cleaning/uncaching pages from the indicated
3813	 * objects as we go.
3814	 */
3815	for (entry = first_entry; entry->start < end;) {
3816		offset = entry->offset + (start - entry->start);
3817		size = (end <= entry->end ? end : entry->end) - start;
3818		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3819			vm_map_t smap;
3820			vm_map_entry_t tentry;
3821			vm_size_t tsize;
3822
3823			smap = entry->object.sub_map;
3824			vm_map_lock_read(smap);
3825			(void) vm_map_lookup_entry(smap, offset, &tentry);
3826			tsize = tentry->end - offset;
3827			if (tsize < size)
3828				size = tsize;
3829			object = tentry->object.vm_object;
3830			offset = tentry->offset + (offset - tentry->start);
3831			vm_map_unlock_read(smap);
3832		} else {
3833			object = entry->object.vm_object;
3834		}
3835		vm_object_reference(object);
3836		last_timestamp = map->timestamp;
3837		vm_map_unlock_read(map);
3838		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3839			failed = TRUE;
3840		start += size;
3841		vm_object_deallocate(object);
3842		vm_map_lock_read(map);
3843		if (last_timestamp == map->timestamp ||
3844		    !vm_map_lookup_entry(map, start, &entry))
3845			entry = vm_map_entry_succ(entry);
3846	}
3847
3848	vm_map_unlock_read(map);
3849	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3850}
3851
3852/*
3853 *	vm_map_entry_unwire:	[ internal use only ]
3854 *
3855 *	Make the region specified by this entry pageable.
3856 *
3857 *	The map in question should be locked.
3858 *	[This is the reason for this routine's existence.]
3859 */
3860static void
3861vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3862{
3863	vm_size_t size;
3864
3865	VM_MAP_ASSERT_LOCKED(map);
3866	KASSERT(entry->wired_count > 0,
3867	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3868
3869	size = entry->end - entry->start;
3870	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3871		vm_map_wire_user_count_sub(atop(size));
3872	pmap_unwire(map->pmap, entry->start, entry->end);
3873	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3874	    PQ_ACTIVE);
3875	entry->wired_count = 0;
3876}
3877
3878static void
3879vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3880{
3881
3882	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3883		vm_object_deallocate(entry->object.vm_object);
3884	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3885}
3886
3887/*
3888 *	vm_map_entry_delete:	[ internal use only ]
3889 *
3890 *	Deallocate the given entry from the target map.
3891 */
3892static void
3893vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3894{
3895	vm_object_t object;
3896	vm_pindex_t offidxstart, offidxend, size1;
3897	vm_size_t size;
3898
3899	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3900	object = entry->object.vm_object;
3901
3902	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3903		MPASS(entry->cred == NULL);
3904		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3905		MPASS(object == NULL);
3906		vm_map_entry_deallocate(entry, map->system_map);
3907		return;
3908	}
3909
3910	size = entry->end - entry->start;
3911	map->size -= size;
3912
3913	if (entry->cred != NULL) {
3914		swap_release_by_cred(size, entry->cred);
3915		crfree(entry->cred);
3916	}
3917
3918	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3919		entry->object.vm_object = NULL;
3920	} else if ((object->flags & OBJ_ANON) != 0 ||
3921	    object == kernel_object) {
3922		KASSERT(entry->cred == NULL || object->cred == NULL ||
3923		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3924		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3925		offidxstart = OFF_TO_IDX(entry->offset);
3926		offidxend = offidxstart + atop(size);
3927		VM_OBJECT_WLOCK(object);
3928		if (object->ref_count != 1 &&
3929		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3930		    object == kernel_object)) {
3931			vm_object_collapse(object);
3932
3933			/*
3934			 * The option OBJPR_NOTMAPPED can be passed here
3935			 * because vm_map_delete() already performed
3936			 * pmap_remove() on the only mapping to this range
3937			 * of pages.
3938			 */
3939			vm_object_page_remove(object, offidxstart, offidxend,
3940			    OBJPR_NOTMAPPED);
3941			if (offidxend >= object->size &&
3942			    offidxstart < object->size) {
3943				size1 = object->size;
3944				object->size = offidxstart;
3945				if (object->cred != NULL) {
3946					size1 -= object->size;
3947					KASSERT(object->charge >= ptoa(size1),
3948					    ("object %p charge < 0", object));
3949					swap_release_by_cred(ptoa(size1),
3950					    object->cred);
3951					object->charge -= ptoa(size1);
3952				}
3953			}
3954		}
3955		VM_OBJECT_WUNLOCK(object);
3956	}
3957	if (map->system_map)
3958		vm_map_entry_deallocate(entry, TRUE);
3959	else {
3960		entry->defer_next = curthread->td_map_def_user;
3961		curthread->td_map_def_user = entry;
3962	}
3963}
3964
3965/*
3966 *	vm_map_delete:	[ internal use only ]
3967 *
3968 *	Deallocates the given address range from the target
3969 *	map.
3970 */
3971int
3972vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3973{
3974	vm_map_entry_t entry, next_entry, scratch_entry;
3975	int rv;
3976
3977	VM_MAP_ASSERT_LOCKED(map);
3978
3979	if (start == end)
3980		return (KERN_SUCCESS);
3981
3982	/*
3983	 * Find the start of the region, and clip it.
3984	 * Step through all entries in this region.
3985	 */
3986	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3987	if (rv != KERN_SUCCESS)
3988		return (rv);
3989	for (; entry->start < end; entry = next_entry) {
3990		/*
3991		 * Wait for wiring or unwiring of an entry to complete.
3992		 * Also wait for any system wirings to disappear on
3993		 * user maps.
3994		 */
3995		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3996		    (vm_map_pmap(map) != kernel_pmap &&
3997		    vm_map_entry_system_wired_count(entry) != 0)) {
3998			unsigned int last_timestamp;
3999			vm_offset_t saved_start;
4000
4001			saved_start = entry->start;
4002			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4003			last_timestamp = map->timestamp;
4004			(void) vm_map_unlock_and_wait(map, 0);
4005			vm_map_lock(map);
4006			if (last_timestamp + 1 != map->timestamp) {
4007				/*
4008				 * Look again for the entry because the map was
4009				 * modified while it was unlocked.
4010				 * Specifically, the entry may have been
4011				 * clipped, merged, or deleted.
4012				 */
4013				rv = vm_map_lookup_clip_start(map, saved_start,
4014				    &next_entry, &scratch_entry);
4015				if (rv != KERN_SUCCESS)
4016					break;
4017			} else
4018				next_entry = entry;
4019			continue;
4020		}
4021
4022		/* XXXKIB or delete to the upper superpage boundary ? */
4023		rv = vm_map_clip_end(map, entry, end);
4024		if (rv != KERN_SUCCESS)
4025			break;
4026		next_entry = vm_map_entry_succ(entry);
4027
4028		/*
4029		 * Unwire before removing addresses from the pmap; otherwise,
4030		 * unwiring will put the entries back in the pmap.
4031		 */
4032		if (entry->wired_count != 0)
4033			vm_map_entry_unwire(map, entry);
4034
4035		/*
4036		 * Remove mappings for the pages, but only if the
4037		 * mappings could exist.  For instance, it does not
4038		 * make sense to call pmap_remove() for guard entries.
4039		 */
4040		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4041		    entry->object.vm_object != NULL)
4042			pmap_map_delete(map->pmap, entry->start, entry->end);
4043
4044		if (entry->end == map->anon_loc)
4045			map->anon_loc = entry->start;
4046
4047		/*
4048		 * Delete the entry only after removing all pmap
4049		 * entries pointing to its pages.  (Otherwise, its
4050		 * page frames may be reallocated, and any modify bits
4051		 * will be set in the wrong object!)
4052		 */
4053		vm_map_entry_delete(map, entry);
4054	}
4055	return (rv);
4056}
4057
4058/*
4059 *	vm_map_remove:
4060 *
4061 *	Remove the given address range from the target map.
4062 *	This is the exported form of vm_map_delete.
4063 */
4064int
4065vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4066{
4067	int result;
4068
4069	vm_map_lock(map);
4070	VM_MAP_RANGE_CHECK(map, start, end);
4071	result = vm_map_delete(map, start, end);
4072	vm_map_unlock(map);
4073	return (result);
4074}
4075
4076/*
4077 *	vm_map_check_protection:
4078 *
4079 *	Assert that the target map allows the specified privilege on the
4080 *	entire address region given.  The entire region must be allocated.
4081 *
4082 *	WARNING!  This code does not and should not check whether the
4083 *	contents of the region is accessible.  For example a smaller file
4084 *	might be mapped into a larger address space.
4085 *
4086 *	NOTE!  This code is also called by munmap().
4087 *
4088 *	The map must be locked.  A read lock is sufficient.
4089 */
4090boolean_t
4091vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4092			vm_prot_t protection)
4093{
4094	vm_map_entry_t entry;
4095	vm_map_entry_t tmp_entry;
4096
4097	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4098		return (FALSE);
4099	entry = tmp_entry;
4100
4101	while (start < end) {
4102		/*
4103		 * No holes allowed!
4104		 */
4105		if (start < entry->start)
4106			return (FALSE);
4107		/*
4108		 * Check protection associated with entry.
4109		 */
4110		if ((entry->protection & protection) != protection)
4111			return (FALSE);
4112		/* go to next entry */
4113		start = entry->end;
4114		entry = vm_map_entry_succ(entry);
4115	}
4116	return (TRUE);
4117}
4118
4119/*
4120 *
4121 *	vm_map_copy_swap_object:
4122 *
4123 *	Copies a swap-backed object from an existing map entry to a
4124 *	new one.  Carries forward the swap charge.  May change the
4125 *	src object on return.
4126 */
4127static void
4128vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4129    vm_offset_t size, vm_ooffset_t *fork_charge)
4130{
4131	vm_object_t src_object;
4132	struct ucred *cred;
4133	int charged;
4134
4135	src_object = src_entry->object.vm_object;
4136	charged = ENTRY_CHARGED(src_entry);
4137	if ((src_object->flags & OBJ_ANON) != 0) {
4138		VM_OBJECT_WLOCK(src_object);
4139		vm_object_collapse(src_object);
4140		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4141			vm_object_split(src_entry);
4142			src_object = src_entry->object.vm_object;
4143		}
4144		vm_object_reference_locked(src_object);
4145		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4146		VM_OBJECT_WUNLOCK(src_object);
4147	} else
4148		vm_object_reference(src_object);
4149	if (src_entry->cred != NULL &&
4150	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4151		KASSERT(src_object->cred == NULL,
4152		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4153		     src_object));
4154		src_object->cred = src_entry->cred;
4155		src_object->charge = size;
4156	}
4157	dst_entry->object.vm_object = src_object;
4158	if (charged) {
4159		cred = curthread->td_ucred;
4160		crhold(cred);
4161		dst_entry->cred = cred;
4162		*fork_charge += size;
4163		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4164			crhold(cred);
4165			src_entry->cred = cred;
4166			*fork_charge += size;
4167		}
4168	}
4169}
4170
4171/*
4172 *	vm_map_copy_entry:
4173 *
4174 *	Copies the contents of the source entry to the destination
4175 *	entry.  The entries *must* be aligned properly.
4176 */
4177static void
4178vm_map_copy_entry(
4179	vm_map_t src_map,
4180	vm_map_t dst_map,
4181	vm_map_entry_t src_entry,
4182	vm_map_entry_t dst_entry,
4183	vm_ooffset_t *fork_charge)
4184{
4185	vm_object_t src_object;
4186	vm_map_entry_t fake_entry;
4187	vm_offset_t size;
4188
4189	VM_MAP_ASSERT_LOCKED(dst_map);
4190
4191	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4192		return;
4193
4194	if (src_entry->wired_count == 0 ||
4195	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4196		/*
4197		 * If the source entry is marked needs_copy, it is already
4198		 * write-protected.
4199		 */
4200		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4201		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4202			pmap_protect(src_map->pmap,
4203			    src_entry->start,
4204			    src_entry->end,
4205			    src_entry->protection & ~VM_PROT_WRITE);
4206		}
4207
4208		/*
4209		 * Make a copy of the object.
4210		 */
4211		size = src_entry->end - src_entry->start;
4212		if ((src_object = src_entry->object.vm_object) != NULL) {
4213			if ((src_object->flags & OBJ_SWAP) != 0) {
4214				vm_map_copy_swap_object(src_entry, dst_entry,
4215				    size, fork_charge);
4216				/* May have split/collapsed, reload obj. */
4217				src_object = src_entry->object.vm_object;
4218			} else {
4219				vm_object_reference(src_object);
4220				dst_entry->object.vm_object = src_object;
4221			}
4222			src_entry->eflags |= MAP_ENTRY_COW |
4223			    MAP_ENTRY_NEEDS_COPY;
4224			dst_entry->eflags |= MAP_ENTRY_COW |
4225			    MAP_ENTRY_NEEDS_COPY;
4226			dst_entry->offset = src_entry->offset;
4227			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4228				/*
4229				 * MAP_ENTRY_WRITECNT cannot
4230				 * indicate write reference from
4231				 * src_entry, since the entry is
4232				 * marked as needs copy.  Allocate a
4233				 * fake entry that is used to
4234				 * decrement object->un_pager writecount
4235				 * at the appropriate time.  Attach
4236				 * fake_entry to the deferred list.
4237				 */
4238				fake_entry = vm_map_entry_create(dst_map);
4239				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4240				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4241				vm_object_reference(src_object);
4242				fake_entry->object.vm_object = src_object;
4243				fake_entry->start = src_entry->start;
4244				fake_entry->end = src_entry->end;
4245				fake_entry->defer_next =
4246				    curthread->td_map_def_user;
4247				curthread->td_map_def_user = fake_entry;
4248			}
4249
4250			pmap_copy(dst_map->pmap, src_map->pmap,
4251			    dst_entry->start, dst_entry->end - dst_entry->start,
4252			    src_entry->start);
4253		} else {
4254			dst_entry->object.vm_object = NULL;
4255			if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4256				dst_entry->offset = 0;
4257			if (src_entry->cred != NULL) {
4258				dst_entry->cred = curthread->td_ucred;
4259				crhold(dst_entry->cred);
4260				*fork_charge += size;
4261			}
4262		}
4263	} else {
4264		/*
4265		 * We don't want to make writeable wired pages copy-on-write.
4266		 * Immediately copy these pages into the new map by simulating
4267		 * page faults.  The new pages are pageable.
4268		 */
4269		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4270		    fork_charge);
4271	}
4272}
4273
4274/*
4275 * vmspace_map_entry_forked:
4276 * Update the newly-forked vmspace each time a map entry is inherited
4277 * or copied.  The values for vm_dsize and vm_tsize are approximate
4278 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4279 */
4280static void
4281vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4282    vm_map_entry_t entry)
4283{
4284	vm_size_t entrysize;
4285	vm_offset_t newend;
4286
4287	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4288		return;
4289	entrysize = entry->end - entry->start;
4290	vm2->vm_map.size += entrysize;
4291	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4292		vm2->vm_ssize += btoc(entrysize);
4293	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4294	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4295		newend = MIN(entry->end,
4296		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4297		vm2->vm_dsize += btoc(newend - entry->start);
4298	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4299	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4300		newend = MIN(entry->end,
4301		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4302		vm2->vm_tsize += btoc(newend - entry->start);
4303	}
4304}
4305
4306/*
4307 * vmspace_fork:
4308 * Create a new process vmspace structure and vm_map
4309 * based on those of an existing process.  The new map
4310 * is based on the old map, according to the inheritance
4311 * values on the regions in that map.
4312 *
4313 * XXX It might be worth coalescing the entries added to the new vmspace.
4314 *
4315 * The source map must not be locked.
4316 */
4317struct vmspace *
4318vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4319{
4320	struct vmspace *vm2;
4321	vm_map_t new_map, old_map;
4322	vm_map_entry_t new_entry, old_entry;
4323	vm_object_t object;
4324	int error, locked __diagused;
4325	vm_inherit_t inh;
4326
4327	old_map = &vm1->vm_map;
4328	/* Copy immutable fields of vm1 to vm2. */
4329	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4330	    pmap_pinit);
4331	if (vm2 == NULL)
4332		return (NULL);
4333
4334	vm2->vm_taddr = vm1->vm_taddr;
4335	vm2->vm_daddr = vm1->vm_daddr;
4336	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4337	vm2->vm_stacktop = vm1->vm_stacktop;
4338	vm2->vm_shp_base = vm1->vm_shp_base;
4339	vm_map_lock(old_map);
4340	if (old_map->busy)
4341		vm_map_wait_busy(old_map);
4342	new_map = &vm2->vm_map;
4343	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4344	KASSERT(locked, ("vmspace_fork: lock failed"));
4345
4346	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4347	if (error != 0) {
4348		sx_xunlock(&old_map->lock);
4349		sx_xunlock(&new_map->lock);
4350		vm_map_process_deferred();
4351		vmspace_free(vm2);
4352		return (NULL);
4353	}
4354
4355	new_map->anon_loc = old_map->anon_loc;
4356	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4357	    MAP_ASLR_STACK | MAP_WXORX);
4358
4359	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4360		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4361			panic("vm_map_fork: encountered a submap");
4362
4363		inh = old_entry->inheritance;
4364		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4365		    inh != VM_INHERIT_NONE)
4366			inh = VM_INHERIT_COPY;
4367
4368		switch (inh) {
4369		case VM_INHERIT_NONE:
4370			break;
4371
4372		case VM_INHERIT_SHARE:
4373			/*
4374			 * Clone the entry, creating the shared object if
4375			 * necessary.
4376			 */
4377			object = old_entry->object.vm_object;
4378			if (object == NULL) {
4379				vm_map_entry_back(old_entry);
4380				object = old_entry->object.vm_object;
4381			}
4382
4383			/*
4384			 * Add the reference before calling vm_object_shadow
4385			 * to insure that a shadow object is created.
4386			 */
4387			vm_object_reference(object);
4388			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4389				vm_object_shadow(&old_entry->object.vm_object,
4390				    &old_entry->offset,
4391				    old_entry->end - old_entry->start,
4392				    old_entry->cred,
4393				    /* Transfer the second reference too. */
4394				    true);
4395				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4396				old_entry->cred = NULL;
4397
4398				/*
4399				 * As in vm_map_merged_neighbor_dispose(),
4400				 * the vnode lock will not be acquired in
4401				 * this call to vm_object_deallocate().
4402				 */
4403				vm_object_deallocate(object);
4404				object = old_entry->object.vm_object;
4405			} else {
4406				VM_OBJECT_WLOCK(object);
4407				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4408				if (old_entry->cred != NULL) {
4409					KASSERT(object->cred == NULL,
4410					    ("vmspace_fork both cred"));
4411					object->cred = old_entry->cred;
4412					object->charge = old_entry->end -
4413					    old_entry->start;
4414					old_entry->cred = NULL;
4415				}
4416
4417				/*
4418				 * Assert the correct state of the vnode
4419				 * v_writecount while the object is locked, to
4420				 * not relock it later for the assertion
4421				 * correctness.
4422				 */
4423				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4424				    object->type == OBJT_VNODE) {
4425					KASSERT(((struct vnode *)object->
4426					    handle)->v_writecount > 0,
4427					    ("vmspace_fork: v_writecount %p",
4428					    object));
4429					KASSERT(object->un_pager.vnp.
4430					    writemappings > 0,
4431					    ("vmspace_fork: vnp.writecount %p",
4432					    object));
4433				}
4434				VM_OBJECT_WUNLOCK(object);
4435			}
4436
4437			/*
4438			 * Clone the entry, referencing the shared object.
4439			 */
4440			new_entry = vm_map_entry_create(new_map);
4441			*new_entry = *old_entry;
4442			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4443			    MAP_ENTRY_IN_TRANSITION);
4444			new_entry->wiring_thread = NULL;
4445			new_entry->wired_count = 0;
4446			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4447				vm_pager_update_writecount(object,
4448				    new_entry->start, new_entry->end);
4449			}
4450			vm_map_entry_set_vnode_text(new_entry, true);
4451
4452			/*
4453			 * Insert the entry into the new map -- we know we're
4454			 * inserting at the end of the new map.
4455			 */
4456			vm_map_entry_link(new_map, new_entry);
4457			vmspace_map_entry_forked(vm1, vm2, new_entry);
4458
4459			/*
4460			 * Update the physical map
4461			 */
4462			pmap_copy(new_map->pmap, old_map->pmap,
4463			    new_entry->start,
4464			    (old_entry->end - old_entry->start),
4465			    old_entry->start);
4466			break;
4467
4468		case VM_INHERIT_COPY:
4469			/*
4470			 * Clone the entry and link into the map.
4471			 */
4472			new_entry = vm_map_entry_create(new_map);
4473			*new_entry = *old_entry;
4474			/*
4475			 * Copied entry is COW over the old object.
4476			 */
4477			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4478			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4479			new_entry->wiring_thread = NULL;
4480			new_entry->wired_count = 0;
4481			new_entry->object.vm_object = NULL;
4482			new_entry->cred = NULL;
4483			vm_map_entry_link(new_map, new_entry);
4484			vmspace_map_entry_forked(vm1, vm2, new_entry);
4485			vm_map_copy_entry(old_map, new_map, old_entry,
4486			    new_entry, fork_charge);
4487			vm_map_entry_set_vnode_text(new_entry, true);
4488			break;
4489
4490		case VM_INHERIT_ZERO:
4491			/*
4492			 * Create a new anonymous mapping entry modelled from
4493			 * the old one.
4494			 */
4495			new_entry = vm_map_entry_create(new_map);
4496			memset(new_entry, 0, sizeof(*new_entry));
4497
4498			new_entry->start = old_entry->start;
4499			new_entry->end = old_entry->end;
4500			new_entry->eflags = old_entry->eflags &
4501			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4502			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4503			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4504			new_entry->protection = old_entry->protection;
4505			new_entry->max_protection = old_entry->max_protection;
4506			new_entry->inheritance = VM_INHERIT_ZERO;
4507
4508			vm_map_entry_link(new_map, new_entry);
4509			vmspace_map_entry_forked(vm1, vm2, new_entry);
4510
4511			new_entry->cred = curthread->td_ucred;
4512			crhold(new_entry->cred);
4513			*fork_charge += (new_entry->end - new_entry->start);
4514
4515			break;
4516		}
4517	}
4518	/*
4519	 * Use inlined vm_map_unlock() to postpone handling the deferred
4520	 * map entries, which cannot be done until both old_map and
4521	 * new_map locks are released.
4522	 */
4523	sx_xunlock(&old_map->lock);
4524	sx_xunlock(&new_map->lock);
4525	vm_map_process_deferred();
4526
4527	return (vm2);
4528}
4529
4530/*
4531 * Create a process's stack for exec_new_vmspace().  This function is never
4532 * asked to wire the newly created stack.
4533 */
4534int
4535vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4536    vm_prot_t prot, vm_prot_t max, int cow)
4537{
4538	vm_size_t growsize, init_ssize;
4539	rlim_t vmemlim;
4540	int rv;
4541
4542	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4543	growsize = sgrowsiz;
4544	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4545	vm_map_lock(map);
4546	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4547	/* If we would blow our VMEM resource limit, no go */
4548	if (map->size + init_ssize > vmemlim) {
4549		rv = KERN_NO_SPACE;
4550		goto out;
4551	}
4552	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4553	    max, cow);
4554out:
4555	vm_map_unlock(map);
4556	return (rv);
4557}
4558
4559static int stack_guard_page = 1;
4560SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4561    &stack_guard_page, 0,
4562    "Specifies the number of guard pages for a stack that grows");
4563
4564static int
4565vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4566    vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4567{
4568	vm_map_entry_t gap_entry, new_entry, prev_entry;
4569	vm_offset_t bot, gap_bot, gap_top, top;
4570	vm_size_t init_ssize, sgp;
4571	int orient, rv;
4572
4573	/*
4574	 * The stack orientation is piggybacked with the cow argument.
4575	 * Extract it into orient and mask the cow argument so that we
4576	 * don't pass it around further.
4577	 */
4578	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4579	KASSERT(orient != 0, ("No stack grow direction"));
4580	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4581	    ("bi-dir stack"));
4582
4583	if (max_ssize == 0 ||
4584	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4585		return (KERN_INVALID_ADDRESS);
4586	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4587	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4588	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4589	if (sgp >= max_ssize)
4590		return (KERN_INVALID_ARGUMENT);
4591
4592	init_ssize = growsize;
4593	if (max_ssize < init_ssize + sgp)
4594		init_ssize = max_ssize - sgp;
4595
4596	/* If addr is already mapped, no go */
4597	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4598		return (KERN_NO_SPACE);
4599
4600	/*
4601	 * If we can't accommodate max_ssize in the current mapping, no go.
4602	 */
4603	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4604		return (KERN_NO_SPACE);
4605
4606	/*
4607	 * We initially map a stack of only init_ssize.  We will grow as
4608	 * needed later.  Depending on the orientation of the stack (i.e.
4609	 * the grow direction) we either map at the top of the range, the
4610	 * bottom of the range or in the middle.
4611	 *
4612	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4613	 * and cow to be 0.  Possibly we should eliminate these as input
4614	 * parameters, and just pass these values here in the insert call.
4615	 */
4616	if (orient == MAP_STACK_GROWS_DOWN) {
4617		bot = addrbos + max_ssize - init_ssize;
4618		top = bot + init_ssize;
4619		gap_bot = addrbos;
4620		gap_top = bot;
4621	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4622		bot = addrbos;
4623		top = bot + init_ssize;
4624		gap_bot = top;
4625		gap_top = addrbos + max_ssize;
4626	}
4627	rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4628	    &new_entry);
4629	if (rv != KERN_SUCCESS)
4630		return (rv);
4631	KASSERT(new_entry->end == top || new_entry->start == bot,
4632	    ("Bad entry start/end for new stack entry"));
4633	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4634	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4635	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4636	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4637	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4638	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4639	if (gap_bot == gap_top)
4640		return (KERN_SUCCESS);
4641	rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4642	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4643	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP), &gap_entry);
4644	if (rv == KERN_SUCCESS) {
4645		KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4646		    ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4647		KASSERT((gap_entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4648		    MAP_ENTRY_STACK_GAP_UP)) != 0,
4649		    ("entry %p not stack gap %#x", gap_entry,
4650		    gap_entry->eflags));
4651
4652		/*
4653		 * Gap can never successfully handle a fault, so
4654		 * read-ahead logic is never used for it.  Re-use
4655		 * next_read of the gap entry to store
4656		 * stack_guard_page for vm_map_growstack().
4657		 * Similarly, since a gap cannot have a backing object,
4658		 * store the original stack protections in the
4659		 * object offset.
4660		 */
4661		gap_entry->next_read = sgp;
4662		gap_entry->offset = prot | PROT_MAX(max);
4663	} else {
4664		(void)vm_map_delete(map, bot, top);
4665	}
4666	return (rv);
4667}
4668
4669/*
4670 * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4671 * successfully grow the stack.
4672 */
4673static int
4674vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4675{
4676	vm_map_entry_t stack_entry;
4677	struct proc *p;
4678	struct vmspace *vm;
4679	struct ucred *cred;
4680	vm_offset_t gap_end, gap_start, grow_start;
4681	vm_size_t grow_amount, guard, max_grow, sgp;
4682	vm_prot_t prot, max;
4683	rlim_t lmemlim, stacklim, vmemlim;
4684	int rv, rv1 __diagused;
4685	bool gap_deleted, grow_down, is_procstack;
4686#ifdef notyet
4687	uint64_t limit;
4688#endif
4689#ifdef RACCT
4690	int error __diagused;
4691#endif
4692
4693	p = curproc;
4694	vm = p->p_vmspace;
4695
4696	/*
4697	 * Disallow stack growth when the access is performed by a
4698	 * debugger or AIO daemon.  The reason is that the wrong
4699	 * resource limits are applied.
4700	 */
4701	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4702	    p->p_textvp == NULL))
4703		return (KERN_FAILURE);
4704
4705	MPASS(!map->system_map);
4706
4707	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4708	stacklim = lim_cur(curthread, RLIMIT_STACK);
4709	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4710retry:
4711	/* If addr is not in a hole for a stack grow area, no need to grow. */
4712	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4713		return (KERN_FAILURE);
4714	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4715		return (KERN_SUCCESS);
4716	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4717		stack_entry = vm_map_entry_succ(gap_entry);
4718		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4719		    stack_entry->start != gap_entry->end)
4720			return (KERN_FAILURE);
4721		grow_amount = round_page(stack_entry->start - addr);
4722		grow_down = true;
4723	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4724		stack_entry = vm_map_entry_pred(gap_entry);
4725		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4726		    stack_entry->end != gap_entry->start)
4727			return (KERN_FAILURE);
4728		grow_amount = round_page(addr + 1 - stack_entry->end);
4729		grow_down = false;
4730	} else {
4731		return (KERN_FAILURE);
4732	}
4733	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4734	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4735	    gap_entry->next_read;
4736	max_grow = gap_entry->end - gap_entry->start;
4737	if (guard > max_grow)
4738		return (KERN_NO_SPACE);
4739	max_grow -= guard;
4740	if (grow_amount > max_grow)
4741		return (KERN_NO_SPACE);
4742
4743	/*
4744	 * If this is the main process stack, see if we're over the stack
4745	 * limit.
4746	 */
4747	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4748	    addr < (vm_offset_t)vm->vm_stacktop;
4749	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4750		return (KERN_NO_SPACE);
4751
4752#ifdef RACCT
4753	if (racct_enable) {
4754		PROC_LOCK(p);
4755		if (is_procstack && racct_set(p, RACCT_STACK,
4756		    ctob(vm->vm_ssize) + grow_amount)) {
4757			PROC_UNLOCK(p);
4758			return (KERN_NO_SPACE);
4759		}
4760		PROC_UNLOCK(p);
4761	}
4762#endif
4763
4764	grow_amount = roundup(grow_amount, sgrowsiz);
4765	if (grow_amount > max_grow)
4766		grow_amount = max_grow;
4767	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4768		grow_amount = trunc_page((vm_size_t)stacklim) -
4769		    ctob(vm->vm_ssize);
4770	}
4771
4772#ifdef notyet
4773	PROC_LOCK(p);
4774	limit = racct_get_available(p, RACCT_STACK);
4775	PROC_UNLOCK(p);
4776	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4777		grow_amount = limit - ctob(vm->vm_ssize);
4778#endif
4779
4780	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4781		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4782			rv = KERN_NO_SPACE;
4783			goto out;
4784		}
4785#ifdef RACCT
4786		if (racct_enable) {
4787			PROC_LOCK(p);
4788			if (racct_set(p, RACCT_MEMLOCK,
4789			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4790				PROC_UNLOCK(p);
4791				rv = KERN_NO_SPACE;
4792				goto out;
4793			}
4794			PROC_UNLOCK(p);
4795		}
4796#endif
4797	}
4798
4799	/* If we would blow our VMEM resource limit, no go */
4800	if (map->size + grow_amount > vmemlim) {
4801		rv = KERN_NO_SPACE;
4802		goto out;
4803	}
4804#ifdef RACCT
4805	if (racct_enable) {
4806		PROC_LOCK(p);
4807		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4808			PROC_UNLOCK(p);
4809			rv = KERN_NO_SPACE;
4810			goto out;
4811		}
4812		PROC_UNLOCK(p);
4813	}
4814#endif
4815
4816	if (vm_map_lock_upgrade(map)) {
4817		gap_entry = NULL;
4818		vm_map_lock_read(map);
4819		goto retry;
4820	}
4821
4822	if (grow_down) {
4823		/*
4824		 * The gap_entry "offset" field is overloaded.  See
4825		 * vm_map_stack_locked().
4826		 */
4827		prot = PROT_EXTRACT(gap_entry->offset);
4828		max = PROT_MAX_EXTRACT(gap_entry->offset);
4829		sgp = gap_entry->next_read;
4830
4831		grow_start = gap_entry->end - grow_amount;
4832		if (gap_entry->start + grow_amount == gap_entry->end) {
4833			gap_start = gap_entry->start;
4834			gap_end = gap_entry->end;
4835			vm_map_entry_delete(map, gap_entry);
4836			gap_deleted = true;
4837		} else {
4838			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4839			vm_map_entry_resize(map, gap_entry, -grow_amount);
4840			gap_deleted = false;
4841		}
4842		rv = vm_map_insert(map, NULL, 0, grow_start,
4843		    grow_start + grow_amount, prot, max, MAP_STACK_GROWS_DOWN);
4844		if (rv != KERN_SUCCESS) {
4845			if (gap_deleted) {
4846				rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4847				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4848				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN,
4849				    &gap_entry);
4850				MPASS(rv1 == KERN_SUCCESS);
4851				gap_entry->next_read = sgp;
4852				gap_entry->offset = prot | PROT_MAX(max);
4853			} else
4854				vm_map_entry_resize(map, gap_entry,
4855				    grow_amount);
4856		}
4857	} else {
4858		grow_start = stack_entry->end;
4859		cred = stack_entry->cred;
4860		if (cred == NULL && stack_entry->object.vm_object != NULL)
4861			cred = stack_entry->object.vm_object->cred;
4862		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4863			rv = KERN_NO_SPACE;
4864		/* Grow the underlying object if applicable. */
4865		else if (stack_entry->object.vm_object == NULL ||
4866		    vm_object_coalesce(stack_entry->object.vm_object,
4867		    stack_entry->offset,
4868		    (vm_size_t)(stack_entry->end - stack_entry->start),
4869		    grow_amount, cred != NULL)) {
4870			if (gap_entry->start + grow_amount == gap_entry->end) {
4871				vm_map_entry_delete(map, gap_entry);
4872				vm_map_entry_resize(map, stack_entry,
4873				    grow_amount);
4874			} else {
4875				gap_entry->start += grow_amount;
4876				stack_entry->end += grow_amount;
4877			}
4878			map->size += grow_amount;
4879			rv = KERN_SUCCESS;
4880		} else
4881			rv = KERN_FAILURE;
4882	}
4883	if (rv == KERN_SUCCESS && is_procstack)
4884		vm->vm_ssize += btoc(grow_amount);
4885
4886	/*
4887	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4888	 */
4889	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4890		rv = vm_map_wire_locked(map, grow_start,
4891		    grow_start + grow_amount,
4892		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4893	}
4894	vm_map_lock_downgrade(map);
4895
4896out:
4897#ifdef RACCT
4898	if (racct_enable && rv != KERN_SUCCESS) {
4899		PROC_LOCK(p);
4900		error = racct_set(p, RACCT_VMEM, map->size);
4901		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4902		if (!old_mlock) {
4903			error = racct_set(p, RACCT_MEMLOCK,
4904			    ptoa(pmap_wired_count(map->pmap)));
4905			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4906		}
4907	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4908		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4909		PROC_UNLOCK(p);
4910	}
4911#endif
4912
4913	return (rv);
4914}
4915
4916/*
4917 * Unshare the specified VM space for exec.  If other processes are
4918 * mapped to it, then create a new one.  The new vmspace is null.
4919 */
4920int
4921vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4922{
4923	struct vmspace *oldvmspace = p->p_vmspace;
4924	struct vmspace *newvmspace;
4925
4926	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4927	    ("vmspace_exec recursed"));
4928	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4929	if (newvmspace == NULL)
4930		return (ENOMEM);
4931	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4932	/*
4933	 * This code is written like this for prototype purposes.  The
4934	 * goal is to avoid running down the vmspace here, but let the
4935	 * other process's that are still using the vmspace to finally
4936	 * run it down.  Even though there is little or no chance of blocking
4937	 * here, it is a good idea to keep this form for future mods.
4938	 */
4939	PROC_VMSPACE_LOCK(p);
4940	p->p_vmspace = newvmspace;
4941	PROC_VMSPACE_UNLOCK(p);
4942	if (p == curthread->td_proc)
4943		pmap_activate(curthread);
4944	curthread->td_pflags |= TDP_EXECVMSPC;
4945	return (0);
4946}
4947
4948/*
4949 * Unshare the specified VM space for forcing COW.  This
4950 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4951 */
4952int
4953vmspace_unshare(struct proc *p)
4954{
4955	struct vmspace *oldvmspace = p->p_vmspace;
4956	struct vmspace *newvmspace;
4957	vm_ooffset_t fork_charge;
4958
4959	/*
4960	 * The caller is responsible for ensuring that the reference count
4961	 * cannot concurrently transition 1 -> 2.
4962	 */
4963	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4964		return (0);
4965	fork_charge = 0;
4966	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4967	if (newvmspace == NULL)
4968		return (ENOMEM);
4969	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4970		vmspace_free(newvmspace);
4971		return (ENOMEM);
4972	}
4973	PROC_VMSPACE_LOCK(p);
4974	p->p_vmspace = newvmspace;
4975	PROC_VMSPACE_UNLOCK(p);
4976	if (p == curthread->td_proc)
4977		pmap_activate(curthread);
4978	vmspace_free(oldvmspace);
4979	return (0);
4980}
4981
4982/*
4983 *	vm_map_lookup:
4984 *
4985 *	Finds the VM object, offset, and
4986 *	protection for a given virtual address in the
4987 *	specified map, assuming a page fault of the
4988 *	type specified.
4989 *
4990 *	Leaves the map in question locked for read; return
4991 *	values are guaranteed until a vm_map_lookup_done
4992 *	call is performed.  Note that the map argument
4993 *	is in/out; the returned map must be used in
4994 *	the call to vm_map_lookup_done.
4995 *
4996 *	A handle (out_entry) is returned for use in
4997 *	vm_map_lookup_done, to make that fast.
4998 *
4999 *	If a lookup is requested with "write protection"
5000 *	specified, the map may be changed to perform virtual
5001 *	copying operations, although the data referenced will
5002 *	remain the same.
5003 */
5004int
5005vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
5006	      vm_offset_t vaddr,
5007	      vm_prot_t fault_typea,
5008	      vm_map_entry_t *out_entry,	/* OUT */
5009	      vm_object_t *object,		/* OUT */
5010	      vm_pindex_t *pindex,		/* OUT */
5011	      vm_prot_t *out_prot,		/* OUT */
5012	      boolean_t *wired)			/* OUT */
5013{
5014	vm_map_entry_t entry;
5015	vm_map_t map = *var_map;
5016	vm_prot_t prot;
5017	vm_prot_t fault_type;
5018	vm_object_t eobject;
5019	vm_size_t size;
5020	struct ucred *cred;
5021
5022RetryLookup:
5023
5024	vm_map_lock_read(map);
5025
5026RetryLookupLocked:
5027	/*
5028	 * Lookup the faulting address.
5029	 */
5030	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5031		vm_map_unlock_read(map);
5032		return (KERN_INVALID_ADDRESS);
5033	}
5034
5035	entry = *out_entry;
5036
5037	/*
5038	 * Handle submaps.
5039	 */
5040	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5041		vm_map_t old_map = map;
5042
5043		*var_map = map = entry->object.sub_map;
5044		vm_map_unlock_read(old_map);
5045		goto RetryLookup;
5046	}
5047
5048	/*
5049	 * Check whether this task is allowed to have this page.
5050	 */
5051	prot = entry->protection;
5052	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5053		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5054		if (prot == VM_PROT_NONE && map != kernel_map &&
5055		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5056		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
5057		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
5058		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5059			goto RetryLookupLocked;
5060	}
5061	fault_type = fault_typea & VM_PROT_ALL;
5062	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5063		vm_map_unlock_read(map);
5064		return (KERN_PROTECTION_FAILURE);
5065	}
5066	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5067	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5068	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5069	    ("entry %p flags %x", entry, entry->eflags));
5070	if ((fault_typea & VM_PROT_COPY) != 0 &&
5071	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
5072	    (entry->eflags & MAP_ENTRY_COW) == 0) {
5073		vm_map_unlock_read(map);
5074		return (KERN_PROTECTION_FAILURE);
5075	}
5076
5077	/*
5078	 * If this page is not pageable, we have to get it for all possible
5079	 * accesses.
5080	 */
5081	*wired = (entry->wired_count != 0);
5082	if (*wired)
5083		fault_type = entry->protection;
5084	size = entry->end - entry->start;
5085
5086	/*
5087	 * If the entry was copy-on-write, we either ...
5088	 */
5089	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5090		/*
5091		 * If we want to write the page, we may as well handle that
5092		 * now since we've got the map locked.
5093		 *
5094		 * If we don't need to write the page, we just demote the
5095		 * permissions allowed.
5096		 */
5097		if ((fault_type & VM_PROT_WRITE) != 0 ||
5098		    (fault_typea & VM_PROT_COPY) != 0) {
5099			/*
5100			 * Make a new object, and place it in the object
5101			 * chain.  Note that no new references have appeared
5102			 * -- one just moved from the map to the new
5103			 * object.
5104			 */
5105			if (vm_map_lock_upgrade(map))
5106				goto RetryLookup;
5107
5108			if (entry->cred == NULL) {
5109				/*
5110				 * The debugger owner is charged for
5111				 * the memory.
5112				 */
5113				cred = curthread->td_ucred;
5114				crhold(cred);
5115				if (!swap_reserve_by_cred(size, cred)) {
5116					crfree(cred);
5117					vm_map_unlock(map);
5118					return (KERN_RESOURCE_SHORTAGE);
5119				}
5120				entry->cred = cred;
5121			}
5122			eobject = entry->object.vm_object;
5123			vm_object_shadow(&entry->object.vm_object,
5124			    &entry->offset, size, entry->cred, false);
5125			if (eobject == entry->object.vm_object) {
5126				/*
5127				 * The object was not shadowed.
5128				 */
5129				swap_release_by_cred(size, entry->cred);
5130				crfree(entry->cred);
5131			}
5132			entry->cred = NULL;
5133			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5134
5135			vm_map_lock_downgrade(map);
5136		} else {
5137			/*
5138			 * We're attempting to read a copy-on-write page --
5139			 * don't allow writes.
5140			 */
5141			prot &= ~VM_PROT_WRITE;
5142		}
5143	}
5144
5145	/*
5146	 * Create an object if necessary.
5147	 */
5148	if (entry->object.vm_object == NULL && !map->system_map) {
5149		if (vm_map_lock_upgrade(map))
5150			goto RetryLookup;
5151		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5152		    NULL, entry->cred, size);
5153		entry->offset = 0;
5154		entry->cred = NULL;
5155		vm_map_lock_downgrade(map);
5156	}
5157
5158	/*
5159	 * Return the object/offset from this entry.  If the entry was
5160	 * copy-on-write or empty, it has been fixed up.
5161	 */
5162	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5163	*object = entry->object.vm_object;
5164
5165	*out_prot = prot;
5166	return (KERN_SUCCESS);
5167}
5168
5169/*
5170 *	vm_map_lookup_locked:
5171 *
5172 *	Lookup the faulting address.  A version of vm_map_lookup that returns
5173 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5174 */
5175int
5176vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5177		     vm_offset_t vaddr,
5178		     vm_prot_t fault_typea,
5179		     vm_map_entry_t *out_entry,	/* OUT */
5180		     vm_object_t *object,	/* OUT */
5181		     vm_pindex_t *pindex,	/* OUT */
5182		     vm_prot_t *out_prot,	/* OUT */
5183		     boolean_t *wired)		/* OUT */
5184{
5185	vm_map_entry_t entry;
5186	vm_map_t map = *var_map;
5187	vm_prot_t prot;
5188	vm_prot_t fault_type = fault_typea;
5189
5190	/*
5191	 * Lookup the faulting address.
5192	 */
5193	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5194		return (KERN_INVALID_ADDRESS);
5195
5196	entry = *out_entry;
5197
5198	/*
5199	 * Fail if the entry refers to a submap.
5200	 */
5201	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5202		return (KERN_FAILURE);
5203
5204	/*
5205	 * Check whether this task is allowed to have this page.
5206	 */
5207	prot = entry->protection;
5208	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5209	if ((fault_type & prot) != fault_type)
5210		return (KERN_PROTECTION_FAILURE);
5211
5212	/*
5213	 * If this page is not pageable, we have to get it for all possible
5214	 * accesses.
5215	 */
5216	*wired = (entry->wired_count != 0);
5217	if (*wired)
5218		fault_type = entry->protection;
5219
5220	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5221		/*
5222		 * Fail if the entry was copy-on-write for a write fault.
5223		 */
5224		if (fault_type & VM_PROT_WRITE)
5225			return (KERN_FAILURE);
5226		/*
5227		 * We're attempting to read a copy-on-write page --
5228		 * don't allow writes.
5229		 */
5230		prot &= ~VM_PROT_WRITE;
5231	}
5232
5233	/*
5234	 * Fail if an object should be created.
5235	 */
5236	if (entry->object.vm_object == NULL && !map->system_map)
5237		return (KERN_FAILURE);
5238
5239	/*
5240	 * Return the object/offset from this entry.  If the entry was
5241	 * copy-on-write or empty, it has been fixed up.
5242	 */
5243	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5244	*object = entry->object.vm_object;
5245
5246	*out_prot = prot;
5247	return (KERN_SUCCESS);
5248}
5249
5250/*
5251 *	vm_map_lookup_done:
5252 *
5253 *	Releases locks acquired by a vm_map_lookup
5254 *	(according to the handle returned by that lookup).
5255 */
5256void
5257vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5258{
5259	/*
5260	 * Unlock the main-level map
5261	 */
5262	vm_map_unlock_read(map);
5263}
5264
5265vm_offset_t
5266vm_map_max_KBI(const struct vm_map *map)
5267{
5268
5269	return (vm_map_max(map));
5270}
5271
5272vm_offset_t
5273vm_map_min_KBI(const struct vm_map *map)
5274{
5275
5276	return (vm_map_min(map));
5277}
5278
5279pmap_t
5280vm_map_pmap_KBI(vm_map_t map)
5281{
5282
5283	return (map->pmap);
5284}
5285
5286bool
5287vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5288{
5289
5290	return (vm_map_range_valid(map, start, end));
5291}
5292
5293#ifdef INVARIANTS
5294static void
5295_vm_map_assert_consistent(vm_map_t map, int check)
5296{
5297	vm_map_entry_t entry, prev;
5298	vm_map_entry_t cur, header, lbound, ubound;
5299	vm_size_t max_left, max_right;
5300
5301#ifdef DIAGNOSTIC
5302	++map->nupdates;
5303#endif
5304	if (enable_vmmap_check != check)
5305		return;
5306
5307	header = prev = &map->header;
5308	VM_MAP_ENTRY_FOREACH(entry, map) {
5309		KASSERT(prev->end <= entry->start,
5310		    ("map %p prev->end = %jx, start = %jx", map,
5311		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5312		KASSERT(entry->start < entry->end,
5313		    ("map %p start = %jx, end = %jx", map,
5314		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5315		KASSERT(entry->left == header ||
5316		    entry->left->start < entry->start,
5317		    ("map %p left->start = %jx, start = %jx", map,
5318		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5319		KASSERT(entry->right == header ||
5320		    entry->start < entry->right->start,
5321		    ("map %p start = %jx, right->start = %jx", map,
5322		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5323		cur = map->root;
5324		lbound = ubound = header;
5325		for (;;) {
5326			if (entry->start < cur->start) {
5327				ubound = cur;
5328				cur = cur->left;
5329				KASSERT(cur != lbound,
5330				    ("map %p cannot find %jx",
5331				    map, (uintmax_t)entry->start));
5332			} else if (cur->end <= entry->start) {
5333				lbound = cur;
5334				cur = cur->right;
5335				KASSERT(cur != ubound,
5336				    ("map %p cannot find %jx",
5337				    map, (uintmax_t)entry->start));
5338			} else {
5339				KASSERT(cur == entry,
5340				    ("map %p cannot find %jx",
5341				    map, (uintmax_t)entry->start));
5342				break;
5343			}
5344		}
5345		max_left = vm_map_entry_max_free_left(entry, lbound);
5346		max_right = vm_map_entry_max_free_right(entry, ubound);
5347		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5348		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5349		    (uintmax_t)entry->max_free,
5350		    (uintmax_t)max_left, (uintmax_t)max_right));
5351		prev = entry;
5352	}
5353	KASSERT(prev->end <= entry->start,
5354	    ("map %p prev->end = %jx, start = %jx", map,
5355	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5356}
5357#endif
5358
5359#include "opt_ddb.h"
5360#ifdef DDB
5361#include <sys/kernel.h>
5362
5363#include <ddb/ddb.h>
5364
5365static void
5366vm_map_print(vm_map_t map)
5367{
5368	vm_map_entry_t entry, prev;
5369
5370	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5371	    (void *)map,
5372	    (void *)map->pmap, map->nentries, map->timestamp);
5373
5374	db_indent += 2;
5375	prev = &map->header;
5376	VM_MAP_ENTRY_FOREACH(entry, map) {
5377		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5378		    (void *)entry, (void *)entry->start, (void *)entry->end,
5379		    entry->eflags);
5380		{
5381			static const char * const inheritance_name[4] =
5382			{"share", "copy", "none", "donate_copy"};
5383
5384			db_iprintf(" prot=%x/%x/%s",
5385			    entry->protection,
5386			    entry->max_protection,
5387			    inheritance_name[(int)(unsigned char)
5388			    entry->inheritance]);
5389			if (entry->wired_count != 0)
5390				db_printf(", wired");
5391		}
5392		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5393			db_printf(", share=%p, offset=0x%jx\n",
5394			    (void *)entry->object.sub_map,
5395			    (uintmax_t)entry->offset);
5396			if (prev == &map->header ||
5397			    prev->object.sub_map !=
5398				entry->object.sub_map) {
5399				db_indent += 2;
5400				vm_map_print((vm_map_t)entry->object.sub_map);
5401				db_indent -= 2;
5402			}
5403		} else {
5404			if (entry->cred != NULL)
5405				db_printf(", ruid %d", entry->cred->cr_ruid);
5406			db_printf(", object=%p, offset=0x%jx",
5407			    (void *)entry->object.vm_object,
5408			    (uintmax_t)entry->offset);
5409			if (entry->object.vm_object && entry->object.vm_object->cred)
5410				db_printf(", obj ruid %d charge %jx",
5411				    entry->object.vm_object->cred->cr_ruid,
5412				    (uintmax_t)entry->object.vm_object->charge);
5413			if (entry->eflags & MAP_ENTRY_COW)
5414				db_printf(", copy (%s)",
5415				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5416			db_printf("\n");
5417
5418			if (prev == &map->header ||
5419			    prev->object.vm_object !=
5420				entry->object.vm_object) {
5421				db_indent += 2;
5422				vm_object_print((db_expr_t)(intptr_t)
5423						entry->object.vm_object,
5424						0, 0, (char *)0);
5425				db_indent -= 2;
5426			}
5427		}
5428		prev = entry;
5429	}
5430	db_indent -= 2;
5431}
5432
5433DB_SHOW_COMMAND(map, map)
5434{
5435
5436	if (!have_addr) {
5437		db_printf("usage: show map <addr>\n");
5438		return;
5439	}
5440	vm_map_print((vm_map_t)addr);
5441}
5442
5443DB_SHOW_COMMAND(procvm, procvm)
5444{
5445	struct proc *p;
5446
5447	if (have_addr) {
5448		p = db_lookup_proc(addr);
5449	} else {
5450		p = curproc;
5451	}
5452
5453	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5454	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5455	    (void *)vmspace_pmap(p->p_vmspace));
5456
5457	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5458}
5459
5460#endif /* DDB */
5461