1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice unmodified, this list of conditions, and the following
13 *    disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 */
30
31#include <sys/counter.h>
32#include <sys/_bitset.h>
33#include <sys/_domainset.h>
34#include <sys/_task.h>
35
36/*
37 * This file includes definitions, structures, prototypes, and inlines that
38 * should not be used outside of the actual implementation of UMA.
39 */
40
41/*
42 * The brief summary;  Zones describe unique allocation types.  Zones are
43 * organized into per-CPU caches which are filled by buckets.  Buckets are
44 * organized according to memory domains.  Buckets are filled from kegs which
45 * are also organized according to memory domains.  Kegs describe a unique
46 * allocation type, backend memory provider, and layout.  Kegs are associated
47 * with one or more zones and zones reference one or more kegs.  Kegs provide
48 * slabs which are virtually contiguous collections of pages.  Each slab is
49 * broken down int one or more items that will satisfy an individual allocation.
50 *
51 * Allocation is satisfied in the following order:
52 * 1) Per-CPU cache
53 * 2) Per-domain cache of buckets
54 * 3) Slab from any of N kegs
55 * 4) Backend page provider
56 *
57 * More detail on individual objects is contained below:
58 *
59 * Kegs contain lists of slabs which are stored in either the full bin, empty
60 * bin, or partially allocated bin, to reduce fragmentation.  They also contain
61 * the user supplied value for size, which is adjusted for alignment purposes
62 * and rsize is the result of that.  The Keg also stores information for
63 * managing a hash of page addresses that maps pages to uma_slab_t structures
64 * for pages that don't have embedded uma_slab_t's.
65 *
66 * Keg slab lists are organized by memory domain to support NUMA allocation
67 * policies.  By default allocations are spread across domains to reduce the
68 * potential for hotspots.  Special keg creation flags may be specified to
69 * prefer location allocation.  However there is no strict enforcement as frees
70 * may happen on any CPU and these are returned to the CPU-local cache
71 * regardless of the originating domain.
72 *
73 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
74 * be allocated off the page from a special slab zone.  The free list within a
75 * slab is managed with a bitmask.  For item sizes that would yield more than
76 * 10% memory waste we potentially allocate a separate uma_slab_t if this will
77 * improve the number of items per slab that will fit.
78 *
79 * The only really gross cases, with regards to memory waste, are for those
80 * items that are just over half the page size.   You can get nearly 50% waste,
81 * so you fall back to the memory footprint of the power of two allocator. I
82 * have looked at memory allocation sizes on many of the machines available to
83 * me, and there does not seem to be an abundance of allocations at this range
84 * so at this time it may not make sense to optimize for it.  This can, of
85 * course, be solved with dynamic slab sizes.
86 *
87 * Kegs may serve multiple Zones but by far most of the time they only serve
88 * one.  When a Zone is created, a Keg is allocated and setup for it.  While
89 * the backing Keg stores slabs, the Zone caches Buckets of items allocated
90 * from the slabs.  Each Zone is equipped with an init/fini and ctor/dtor
91 * pair, as well as with its own set of small per-CPU caches, layered above
92 * the Zone's general Bucket cache.
93 *
94 * The PCPU caches are protected by critical sections, and may be accessed
95 * safely only from their associated CPU, while the Zones backed by the same
96 * Keg all share a common Keg lock (to coalesce contention on the backing
97 * slabs).  The backing Keg typically only serves one Zone but in the case of
98 * multiple Zones, one of the Zones is considered the Primary Zone and all
99 * Zone-related stats from the Keg are done in the Primary Zone.  For an
100 * example of a Multi-Zone setup, refer to the Mbuf allocation code.
101 */
102
103/*
104 *	This is the representation for normal (Non OFFPAGE slab)
105 *
106 *	i == item
107 *	s == slab pointer
108 *
109 *	<----------------  Page (UMA_SLAB_SIZE) ------------------>
110 *	___________________________________________________________
111 *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   ___________ |
112 *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
113 *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
114 *     |___________________________________________________________|
115 *
116 *
117 *	This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
118 *
119 *	___________________________________________________________
120 *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   |
121 *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i|  |
122 *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_|  |
123 *     |___________________________________________________________|
124 *       ___________    ^
125 *	|slab header|   |
126 *	|___________|---*
127 *
128 */
129
130#ifndef VM_UMA_INT_H
131#define VM_UMA_INT_H
132
133#define UMA_SLAB_SIZE	PAGE_SIZE	/* How big are our slabs? */
134#define UMA_SLAB_MASK	(PAGE_SIZE - 1)	/* Mask to get back to the page */
135#define UMA_SLAB_SHIFT	PAGE_SHIFT	/* Number of bits PAGE_MASK */
136
137/* Max waste percentage before going to off page slab management */
138#define UMA_MAX_WASTE	10
139
140/* Max size of a CACHESPREAD slab. */
141#define	UMA_CACHESPREAD_MAX_SIZE	(128 * 1024)
142
143/*
144 * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
145 */
146#define	UMA_ZFLAG_OFFPAGE	0x00200000	/*
147						 * Force the slab structure
148						 * allocation off of the real
149						 * memory.
150						 */
151#define	UMA_ZFLAG_HASH		0x00400000	/*
152						 * Use a hash table instead of
153						 * caching information in the
154						 * vm_page.
155						 */
156#define	UMA_ZFLAG_VTOSLAB	0x00800000	/*
157						 * Zone uses vtoslab for
158						 * lookup.
159						 */
160#define	UMA_ZFLAG_CTORDTOR	0x01000000	/* Zone has ctor/dtor set. */
161#define	UMA_ZFLAG_LIMIT		0x02000000	/* Zone has limit set. */
162#define	UMA_ZFLAG_CACHE		0x04000000	/* uma_zcache_create()d it */
163#define	UMA_ZFLAG_BUCKET	0x10000000	/* Bucket zone. */
164#define	UMA_ZFLAG_INTERNAL	0x20000000	/* No offpage no PCPU. */
165#define	UMA_ZFLAG_TRASH		0x40000000	/* Add trash ctor/dtor. */
166
167#define	UMA_ZFLAG_INHERIT						\
168    (UMA_ZFLAG_OFFPAGE | UMA_ZFLAG_HASH | UMA_ZFLAG_VTOSLAB |		\
169     UMA_ZFLAG_BUCKET | UMA_ZFLAG_INTERNAL)
170
171#define	PRINT_UMA_ZFLAGS	"\20"	\
172    "\37TRASH"				\
173    "\36INTERNAL"			\
174    "\35BUCKET"				\
175    "\33CACHE"				\
176    "\32LIMIT"				\
177    "\31CTORDTOR"			\
178    "\30VTOSLAB"			\
179    "\27HASH"				\
180    "\26OFFPAGE"			\
181    "\23SMR"				\
182    "\22ROUNDROBIN"			\
183    "\21FIRSTTOUCH"			\
184    "\20PCPU"				\
185    "\17NODUMP"				\
186    "\16CACHESPREAD"			\
187    "\14MAXBUCKET"			\
188    "\13NOBUCKET"			\
189    "\12SECONDARY"			\
190    "\11NOTPAGE"			\
191    "\10VM"				\
192    "\7MTXCLASS"			\
193    "\6NOFREE"				\
194    "\5MALLOC"				\
195    "\4NOTOUCH"				\
196    "\3CONTIG"				\
197    "\2ZINIT"
198
199/*
200 * Hash table for freed address -> slab translation.
201 *
202 * Only zones with memory not touchable by the allocator use the
203 * hash table.  Otherwise slabs are found with vtoslab().
204 */
205#define UMA_HASH_SIZE_INIT	32
206
207#define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
208
209#define UMA_HASH_INSERT(h, s, mem)					\
210	LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h),		\
211	    (mem))], slab_tohashslab(s), uhs_hlink)
212
213#define UMA_HASH_REMOVE(h, s)						\
214	LIST_REMOVE(slab_tohashslab(s), uhs_hlink)
215
216LIST_HEAD(slabhashhead, uma_hash_slab);
217
218struct uma_hash {
219	struct slabhashhead	*uh_slab_hash;	/* Hash table for slabs */
220	u_int		uh_hashsize;	/* Current size of the hash table */
221	u_int		uh_hashmask;	/* Mask used during hashing */
222};
223
224/*
225 * Align field or structure to cache 'sector' in intel terminology.  This
226 * is more efficient with adjacent line prefetch.
227 */
228#if defined(__amd64__) || defined(__powerpc64__)
229#define UMA_SUPER_ALIGN	(CACHE_LINE_SIZE * 2)
230#else
231#define UMA_SUPER_ALIGN	CACHE_LINE_SIZE
232#endif
233
234#define	UMA_ALIGN	__aligned(UMA_SUPER_ALIGN)
235
236/*
237 * The uma_bucket structure is used to queue and manage buckets divorced
238 * from per-cpu caches.  They are loaded into uma_cache_bucket structures
239 * for use.
240 */
241struct uma_bucket {
242	STAILQ_ENTRY(uma_bucket)	ub_link; /* Link into the zone */
243	int16_t		ub_cnt;			/* Count of items in bucket. */
244	int16_t		ub_entries;		/* Max items. */
245	smr_seq_t	ub_seq;			/* SMR sequence number. */
246	void		*ub_bucket[];		/* actual allocation storage */
247};
248
249typedef struct uma_bucket * uma_bucket_t;
250
251/*
252 * The uma_cache_bucket structure is statically allocated on each per-cpu
253 * cache.  Its use reduces branches and cache misses in the fast path.
254 */
255struct uma_cache_bucket {
256	uma_bucket_t	ucb_bucket;
257	int16_t		ucb_cnt;
258	int16_t		ucb_entries;
259	uint32_t	ucb_spare;
260};
261
262typedef struct uma_cache_bucket * uma_cache_bucket_t;
263
264/*
265 * The uma_cache structure is allocated for each cpu for every zone
266 * type.  This optimizes synchronization out of the allocator fast path.
267 */
268struct uma_cache {
269	struct uma_cache_bucket	uc_freebucket;	/* Bucket we're freeing to */
270	struct uma_cache_bucket	uc_allocbucket;	/* Bucket to allocate from */
271	struct uma_cache_bucket	uc_crossbucket;	/* cross domain bucket */
272	uint64_t		uc_allocs;	/* Count of allocations */
273	uint64_t		uc_frees;	/* Count of frees */
274} UMA_ALIGN;
275
276typedef struct uma_cache * uma_cache_t;
277
278LIST_HEAD(slabhead, uma_slab);
279
280/*
281 * The cache structure pads perfectly into 64 bytes so we use spare
282 * bits from the embedded cache buckets to store information from the zone
283 * and keep all fast-path allocations accessing a single per-cpu line.
284 */
285static inline void
286cache_set_uz_flags(uma_cache_t cache, uint32_t flags)
287{
288
289	cache->uc_freebucket.ucb_spare = flags;
290}
291
292static inline void
293cache_set_uz_size(uma_cache_t cache, uint32_t size)
294{
295
296	cache->uc_allocbucket.ucb_spare = size;
297}
298
299static inline uint32_t
300cache_uz_flags(uma_cache_t cache)
301{
302
303	return (cache->uc_freebucket.ucb_spare);
304}
305
306static inline uint32_t
307cache_uz_size(uma_cache_t cache)
308{
309
310	return (cache->uc_allocbucket.ucb_spare);
311}
312
313/*
314 * Per-domain slab lists.  Embedded in the kegs.
315 */
316struct uma_domain {
317	struct mtx_padalign ud_lock;	/* Lock for the domain lists. */
318	struct slabhead	ud_part_slab;	/* partially allocated slabs */
319	struct slabhead	ud_free_slab;	/* completely unallocated slabs */
320	struct slabhead ud_full_slab;	/* fully allocated slabs */
321	uint32_t	ud_pages;	/* Total page count */
322	uint32_t	ud_free_items;	/* Count of items free in all slabs */
323	uint32_t	ud_free_slabs;	/* Count of free slabs */
324} __aligned(CACHE_LINE_SIZE);
325
326typedef struct uma_domain * uma_domain_t;
327
328/*
329 * Keg management structure
330 *
331 * TODO: Optimize for cache line size
332 *
333 */
334struct uma_keg {
335	struct uma_hash	uk_hash;
336	LIST_HEAD(,uma_zone)	uk_zones;	/* Keg's zones */
337
338	struct domainset_ref uk_dr;	/* Domain selection policy. */
339	uint32_t	uk_align;	/* Alignment mask */
340	uint32_t	uk_reserve;	/* Number of reserved items. */
341	uint32_t	uk_size;	/* Requested size of each item */
342	uint32_t	uk_rsize;	/* Real size of each item */
343
344	uma_init	uk_init;	/* Keg's init routine */
345	uma_fini	uk_fini;	/* Keg's fini routine */
346	uma_alloc	uk_allocf;	/* Allocation function */
347	uma_free	uk_freef;	/* Free routine */
348
349	u_long		uk_offset;	/* Next free offset from base KVA */
350	vm_offset_t	uk_kva;		/* Zone base KVA */
351
352	uint32_t	uk_pgoff;	/* Offset to uma_slab struct */
353	uint16_t	uk_ppera;	/* pages per allocation from backend */
354	uint16_t	uk_ipers;	/* Items per slab */
355	uint32_t	uk_flags;	/* Internal flags */
356
357	/* Least used fields go to the last cache line. */
358	const char	*uk_name;		/* Name of creating zone. */
359	LIST_ENTRY(uma_keg)	uk_link;	/* List of all kegs */
360
361	/* Must be last, variable sized. */
362	struct uma_domain	uk_domain[];	/* Keg's slab lists. */
363};
364typedef struct uma_keg	* uma_keg_t;
365
366/*
367 * Free bits per-slab.
368 */
369#define	SLAB_MAX_SETSIZE	(PAGE_SIZE / UMA_SMALLEST_UNIT)
370#define	SLAB_MIN_SETSIZE	_BITSET_BITS
371BITSET_DEFINE(noslabbits, 0);
372
373/*
374 * The slab structure manages a single contiguous allocation from backing
375 * store and subdivides it into individually allocatable items.
376 */
377struct uma_slab {
378	LIST_ENTRY(uma_slab)	us_link;	/* slabs in zone */
379	uint16_t	us_freecount;		/* How many are free? */
380	uint8_t		us_flags;		/* Page flags see uma.h */
381	uint8_t		us_domain;		/* Backing NUMA domain. */
382	struct noslabbits us_free;		/* Free bitmask, flexible. */
383};
384_Static_assert(sizeof(struct uma_slab) == __offsetof(struct uma_slab, us_free),
385    "us_free field must be last");
386_Static_assert(MAXMEMDOM < 255,
387    "us_domain field is not wide enough");
388
389typedef struct uma_slab * uma_slab_t;
390
391/*
392 * Slab structure with a full sized bitset and hash link for both
393 * HASH and OFFPAGE zones.
394 */
395struct uma_hash_slab {
396	LIST_ENTRY(uma_hash_slab) uhs_hlink;	/* Link for hash table */
397	uint8_t			*uhs_data;	/* First item */
398	struct uma_slab		uhs_slab;	/* Must be last. */
399};
400
401typedef struct uma_hash_slab * uma_hash_slab_t;
402
403static inline uma_hash_slab_t
404slab_tohashslab(uma_slab_t slab)
405{
406
407	return (__containerof(slab, struct uma_hash_slab, uhs_slab));
408}
409
410static inline void *
411slab_data(uma_slab_t slab, uma_keg_t keg)
412{
413
414	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) == 0)
415		return ((void *)((uintptr_t)slab - keg->uk_pgoff));
416	else
417		return (slab_tohashslab(slab)->uhs_data);
418}
419
420static inline void *
421slab_item(uma_slab_t slab, uma_keg_t keg, int index)
422{
423	uintptr_t data;
424
425	data = (uintptr_t)slab_data(slab, keg);
426	return ((void *)(data + keg->uk_rsize * index));
427}
428
429static inline int
430slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item)
431{
432	uintptr_t data;
433
434	data = (uintptr_t)slab_data(slab, keg);
435	return (((uintptr_t)item - data) / keg->uk_rsize);
436}
437
438STAILQ_HEAD(uma_bucketlist, uma_bucket);
439
440struct uma_zone_domain {
441	struct uma_bucketlist uzd_buckets; /* full buckets */
442	uma_bucket_t	uzd_cross;	/* Fills from cross buckets. */
443	long		uzd_nitems;	/* total item count */
444	long		uzd_imax;	/* maximum item count this period */
445	long		uzd_imin;	/* minimum item count this period */
446	long		uzd_bimin;	/* Minimum item count this batch. */
447	long		uzd_wss;	/* working set size estimate */
448	long		uzd_limin;	/* Longtime minimum item count. */
449	u_int		uzd_timin;	/* Time since uzd_limin == 0. */
450	smr_seq_t	uzd_seq;	/* Lowest queued seq. */
451	struct mtx	uzd_lock;	/* Lock for the domain */
452} __aligned(CACHE_LINE_SIZE);
453
454typedef struct uma_zone_domain * uma_zone_domain_t;
455
456/*
457 * Zone structure - per memory type.
458 */
459struct uma_zone {
460	/* Offset 0, used in alloc/free fast/medium fast path and const. */
461	uint32_t	uz_flags;	/* Flags inherited from kegs */
462	uint32_t	uz_size;	/* Size inherited from kegs */
463	uma_ctor	uz_ctor;	/* Constructor for each allocation */
464	uma_dtor	uz_dtor;	/* Destructor */
465	smr_t		uz_smr;		/* Safe memory reclaim context. */
466	uint64_t	uz_max_items;	/* Maximum number of items to alloc */
467	uint64_t	uz_bucket_max;	/* Maximum bucket cache size */
468	uint16_t	uz_bucket_size;	/* Number of items in full bucket */
469	uint16_t	uz_bucket_size_max; /* Maximum number of bucket items */
470	uint32_t	uz_sleepers;	/* Threads sleeping on limit */
471	counter_u64_t	uz_xdomain;	/* Total number of cross-domain frees */
472
473	/* Offset 64, used in bucket replenish. */
474	uma_keg_t	uz_keg;		/* This zone's keg if !CACHE */
475	uma_import	uz_import;	/* Import new memory to cache. */
476	uma_release	uz_release;	/* Release memory from cache. */
477	void		*uz_arg;	/* Import/release argument. */
478	uma_init	uz_init;	/* Initializer for each item */
479	uma_fini	uz_fini;	/* Finalizer for each item. */
480	volatile uint64_t uz_items;	/* Total items count & sleepers */
481	uint64_t	uz_sleeps;	/* Total number of alloc sleeps */
482
483	/* Offset 128 Rare stats, misc read-only. */
484	LIST_ENTRY(uma_zone) uz_link;	/* List of all zones in keg */
485	counter_u64_t	uz_allocs;	/* Total number of allocations */
486	counter_u64_t	uz_frees;	/* Total number of frees */
487	counter_u64_t	uz_fails;	/* Total number of alloc failures */
488	const char	*uz_name;	/* Text name of the zone */
489	char		*uz_ctlname;	/* sysctl safe name string. */
490	int		uz_namecnt;	/* duplicate name count. */
491	uint16_t	uz_bucket_size_min; /* Min number of items in bucket */
492	uint16_t	uz_reclaimers;	/* pending reclaim operations. */
493
494	/* Offset 192, rare read-only. */
495	struct sysctl_oid *uz_oid;	/* sysctl oid pointer. */
496	const char	*uz_warning;	/* Warning to print on failure */
497	struct timeval	uz_ratecheck;	/* Warnings rate-limiting */
498	struct task	uz_maxaction;	/* Task to run when at limit */
499
500	/* Offset 256. */
501	struct mtx	uz_cross_lock;	/* Cross domain free lock */
502
503	/*
504	 * This HAS to be the last item because we adjust the zone size
505	 * based on NCPU and then allocate the space for the zones.
506	 */
507	struct uma_cache	uz_cpu[]; /* Per cpu caches */
508
509	/* domains follow here. */
510};
511
512/*
513 * Macros for interpreting the uz_items field.  20 bits of sleeper count
514 * and 44 bit of item count.
515 */
516#define	UZ_ITEMS_SLEEPER_SHIFT	44LL
517#define	UZ_ITEMS_SLEEPERS_MAX	((1 << (64 - UZ_ITEMS_SLEEPER_SHIFT)) - 1)
518#define	UZ_ITEMS_COUNT_MASK	((1LL << UZ_ITEMS_SLEEPER_SHIFT) - 1)
519#define	UZ_ITEMS_COUNT(x)	((x) & UZ_ITEMS_COUNT_MASK)
520#define	UZ_ITEMS_SLEEPERS(x)	((x) >> UZ_ITEMS_SLEEPER_SHIFT)
521#define	UZ_ITEMS_SLEEPER	(1LL << UZ_ITEMS_SLEEPER_SHIFT)
522
523#define	ZONE_ASSERT_COLD(z)						\
524	KASSERT(uma_zone_get_allocs((z)) == 0,				\
525	    ("zone %s initialization after use.", (z)->uz_name))
526
527/* Domains are contiguous after the last CPU */
528#define	ZDOM_GET(z, n)							\
529	(&((uma_zone_domain_t)&(z)->uz_cpu[mp_maxid + 1])[n])
530
531#undef	UMA_ALIGN
532
533#ifdef _KERNEL
534/* Internal prototypes */
535static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
536
537/* Lock Macros */
538
539#define	KEG_LOCKPTR(k, d)	(struct mtx *)&(k)->uk_domain[(d)].ud_lock
540#define	KEG_LOCK_INIT(k, d, lc)						\
541	do {								\
542		if ((lc))						\
543			mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name,	\
544			    (k)->uk_name, MTX_DEF | MTX_DUPOK);		\
545		else							\
546			mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name,	\
547			    "UMA zone", MTX_DEF | MTX_DUPOK);		\
548	} while (0)
549
550#define	KEG_LOCK_FINI(k, d)	mtx_destroy(KEG_LOCKPTR(k, d))
551#define	KEG_LOCK(k, d)							\
552	({ mtx_lock(KEG_LOCKPTR(k, d)); KEG_LOCKPTR(k, d); })
553#define	KEG_UNLOCK(k, d)	mtx_unlock(KEG_LOCKPTR(k, d))
554#define	KEG_LOCK_ASSERT(k, d)	mtx_assert(KEG_LOCKPTR(k, d), MA_OWNED)
555
556#define	KEG_GET(zone, keg) do {					\
557	(keg) = (zone)->uz_keg;					\
558	KASSERT((void *)(keg) != NULL,				\
559	    ("%s: Invalid zone %p type", __func__, (zone)));	\
560	} while (0)
561
562#define	KEG_ASSERT_COLD(k)						\
563	KASSERT(uma_keg_get_allocs((k)) == 0,				\
564	    ("keg %s initialization after use.", (k)->uk_name))
565
566#define	ZDOM_LOCK_INIT(z, zdom, lc)					\
567	do {								\
568		if ((lc))						\
569			mtx_init(&(zdom)->uzd_lock, (z)->uz_name,	\
570			    (z)->uz_name, MTX_DEF | MTX_DUPOK);		\
571		else							\
572			mtx_init(&(zdom)->uzd_lock, (z)->uz_name,	\
573			    "UMA zone", MTX_DEF | MTX_DUPOK);		\
574	} while (0)
575#define	ZDOM_LOCK_FINI(z)	mtx_destroy(&(z)->uzd_lock)
576#define	ZDOM_LOCK_ASSERT(z)	mtx_assert(&(z)->uzd_lock, MA_OWNED)
577
578#define	ZDOM_LOCK(z)	mtx_lock(&(z)->uzd_lock)
579#define	ZDOM_OWNED(z)	(mtx_owner(&(z)->uzd_lock) != NULL)
580#define	ZDOM_UNLOCK(z)	mtx_unlock(&(z)->uzd_lock)
581
582#define	ZONE_LOCK(z)	ZDOM_LOCK(ZDOM_GET((z), 0))
583#define	ZONE_UNLOCK(z)	ZDOM_UNLOCK(ZDOM_GET((z), 0))
584#define	ZONE_LOCKPTR(z)	(&ZDOM_GET((z), 0)->uzd_lock)
585
586#define	ZONE_CROSS_LOCK_INIT(z)					\
587	mtx_init(&(z)->uz_cross_lock, "UMA Cross", NULL, MTX_DEF)
588#define	ZONE_CROSS_LOCK(z)	mtx_lock(&(z)->uz_cross_lock)
589#define	ZONE_CROSS_UNLOCK(z)	mtx_unlock(&(z)->uz_cross_lock)
590#define	ZONE_CROSS_LOCK_FINI(z)	mtx_destroy(&(z)->uz_cross_lock)
591
592/*
593 * Find a slab within a hash table.  This is used for OFFPAGE zones to lookup
594 * the slab structure.
595 *
596 * Arguments:
597 *	hash  The hash table to search.
598 *	data  The base page of the item.
599 *
600 * Returns:
601 *	A pointer to a slab if successful, else NULL.
602 */
603static __inline uma_slab_t
604hash_sfind(struct uma_hash *hash, uint8_t *data)
605{
606        uma_hash_slab_t slab;
607        u_int hval;
608
609        hval = UMA_HASH(hash, data);
610
611        LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) {
612                if ((uint8_t *)slab->uhs_data == data)
613                        return (&slab->uhs_slab);
614        }
615        return (NULL);
616}
617
618static __inline uma_slab_t
619vtoslab(vm_offset_t va)
620{
621	vm_page_t p;
622
623	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
624	return (p->plinks.uma.slab);
625}
626
627static __inline void
628vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab)
629{
630	vm_page_t p;
631
632	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
633	*slab = p->plinks.uma.slab;
634	*zone = p->plinks.uma.zone;
635}
636
637static __inline void
638vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab)
639{
640	vm_page_t p;
641
642	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
643	p->plinks.uma.slab = slab;
644	p->plinks.uma.zone = zone;
645}
646
647extern unsigned long uma_kmem_limit;
648extern unsigned long uma_kmem_total;
649
650/* Adjust bytes under management by UMA. */
651static inline void
652uma_total_dec(unsigned long size)
653{
654
655	atomic_subtract_long(&uma_kmem_total, size);
656}
657
658static inline void
659uma_total_inc(unsigned long size)
660{
661
662	if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit)
663		uma_reclaim_wakeup();
664}
665
666/*
667 * The following two functions may be defined by architecture specific code
668 * if they can provide more efficient allocation functions.  This is useful
669 * for using direct mapped addresses.
670 */
671void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
672    uint8_t *pflag, int wait);
673void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
674
675/* Set a global soft limit on UMA managed memory. */
676void uma_set_limit(unsigned long limit);
677
678#endif /* _KERNEL */
679
680#endif /* VM_UMA_INT_H */
681