1/*	$NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $	*/
2/*	$OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $	*/
3
4/*-
5 * SPDX-License-Identifier: BSD-2-Clause
6 *
7 * Copyright 2002 Niels Provos <provos@citi.umich.edu>
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#ifndef	_SYS_TREE_H_
32#define	_SYS_TREE_H_
33
34#include <sys/cdefs.h>
35
36/*
37 * This file defines data structures for different types of trees:
38 * splay trees and rank-balanced trees.
39 *
40 * A splay tree is a self-organizing data structure.  Every operation
41 * on the tree causes a splay to happen.  The splay moves the requested
42 * node to the root of the tree and partly rebalances it.
43 *
44 * This has the benefit that request locality causes faster lookups as
45 * the requested nodes move to the top of the tree.  On the other hand,
46 * every lookup causes memory writes.
47 *
48 * The Balance Theorem bounds the total access time for m operations
49 * and n inserts on an initially empty tree as O((m + n)lg n).  The
50 * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
51 *
52 * A rank-balanced tree is a binary search tree with an integer
53 * rank-difference as an attribute of each pointer from parent to child.
54 * The sum of the rank-differences on any path from a node down to null is
55 * the same, and defines the rank of that node. The rank of the null node
56 * is -1.
57 *
58 * Different additional conditions define different sorts of balanced trees,
59 * including "red-black" and "AVL" trees.  The set of conditions applied here
60 * are the "weak-AVL" conditions of Haeupler, Sen and Tarjan presented in in
61 * "Rank Balanced Trees", ACM Transactions on Algorithms Volume 11 Issue 4 June
62 * 2015 Article No.: 30pp 1���26 https://doi.org/10.1145/2689412 (the HST paper):
63 *	- every rank-difference is 1 or 2.
64 *	- the rank of any leaf is 1.
65 *
66 * For historical reasons, rank differences that are even are associated
67 * with the color red (Rank-Even-Difference), and the child that a red edge
68 * points to is called a red child.
69 *
70 * Every operation on a rank-balanced tree is bounded as O(lg n).
71 * The maximum height of a rank-balanced tree is 2lg (n+1).
72 */
73
74#define SPLAY_HEAD(name, type)						\
75struct name {								\
76	struct type *sph_root; /* root of the tree */			\
77}
78
79#define SPLAY_INITIALIZER(root)						\
80	{ NULL }
81
82#define SPLAY_INIT(root) do {						\
83	(root)->sph_root = NULL;					\
84} while (/*CONSTCOND*/ 0)
85
86#define SPLAY_ENTRY(type)						\
87struct {								\
88	struct type *spe_left; /* left element */			\
89	struct type *spe_right; /* right element */			\
90}
91
92#define SPLAY_LEFT(elm, field)		(elm)->field.spe_left
93#define SPLAY_RIGHT(elm, field)		(elm)->field.spe_right
94#define SPLAY_ROOT(head)		(head)->sph_root
95#define SPLAY_EMPTY(head)		(SPLAY_ROOT(head) == NULL)
96
97/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
98#define SPLAY_ROTATE_RIGHT(head, tmp, field) do {			\
99	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field);	\
100	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
101	(head)->sph_root = tmp;						\
102} while (/*CONSTCOND*/ 0)
103
104#define SPLAY_ROTATE_LEFT(head, tmp, field) do {			\
105	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field);	\
106	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
107	(head)->sph_root = tmp;						\
108} while (/*CONSTCOND*/ 0)
109
110#define SPLAY_LINKLEFT(head, tmp, field) do {				\
111	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
112	tmp = (head)->sph_root;						\
113	(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);		\
114} while (/*CONSTCOND*/ 0)
115
116#define SPLAY_LINKRIGHT(head, tmp, field) do {				\
117	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
118	tmp = (head)->sph_root;						\
119	(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);	\
120} while (/*CONSTCOND*/ 0)
121
122#define SPLAY_ASSEMBLE(head, node, left, right, field) do {		\
123	SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field);	\
124	SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
125	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field);	\
126	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field);	\
127} while (/*CONSTCOND*/ 0)
128
129/* Generates prototypes and inline functions */
130
131#define SPLAY_PROTOTYPE(name, type, field, cmp)				\
132void name##_SPLAY(struct name *, struct type *);			\
133void name##_SPLAY_MINMAX(struct name *, int);				\
134struct type *name##_SPLAY_INSERT(struct name *, struct type *);		\
135struct type *name##_SPLAY_REMOVE(struct name *, struct type *);		\
136									\
137/* Finds the node with the same key as elm */				\
138static __unused __inline struct type *					\
139name##_SPLAY_FIND(struct name *head, struct type *elm)			\
140{									\
141	if (SPLAY_EMPTY(head))						\
142		return(NULL);						\
143	name##_SPLAY(head, elm);					\
144	if ((cmp)(elm, (head)->sph_root) == 0)				\
145		return (head->sph_root);				\
146	return (NULL);							\
147}									\
148									\
149static __unused __inline struct type *					\
150name##_SPLAY_NEXT(struct name *head, struct type *elm)			\
151{									\
152	name##_SPLAY(head, elm);					\
153	if (SPLAY_RIGHT(elm, field) != NULL) {				\
154		elm = SPLAY_RIGHT(elm, field);				\
155		while (SPLAY_LEFT(elm, field) != NULL) {		\
156			elm = SPLAY_LEFT(elm, field);			\
157		}							\
158	} else								\
159		elm = NULL;						\
160	return (elm);							\
161}									\
162									\
163static __unused __inline struct type *					\
164name##_SPLAY_MIN_MAX(struct name *head, int val)			\
165{									\
166	name##_SPLAY_MINMAX(head, val);					\
167	return (SPLAY_ROOT(head));					\
168}
169
170/* Main splay operation.
171 * Moves node close to the key of elm to top
172 */
173#define SPLAY_GENERATE(name, type, field, cmp)				\
174struct type *								\
175name##_SPLAY_INSERT(struct name *head, struct type *elm)		\
176{									\
177    if (SPLAY_EMPTY(head)) {						\
178	    SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL;	\
179    } else {								\
180	    __typeof(cmp(NULL, NULL)) __comp;				\
181	    name##_SPLAY(head, elm);					\
182	    __comp = (cmp)(elm, (head)->sph_root);			\
183	    if (__comp < 0) {						\
184		    SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
185		    SPLAY_RIGHT(elm, field) = (head)->sph_root;		\
186		    SPLAY_LEFT((head)->sph_root, field) = NULL;		\
187	    } else if (__comp > 0) {					\
188		    SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
189		    SPLAY_LEFT(elm, field) = (head)->sph_root;		\
190		    SPLAY_RIGHT((head)->sph_root, field) = NULL;	\
191	    } else							\
192		    return ((head)->sph_root);				\
193    }									\
194    (head)->sph_root = (elm);						\
195    return (NULL);							\
196}									\
197									\
198struct type *								\
199name##_SPLAY_REMOVE(struct name *head, struct type *elm)		\
200{									\
201	struct type *__tmp;						\
202	if (SPLAY_EMPTY(head))						\
203		return (NULL);						\
204	name##_SPLAY(head, elm);					\
205	if ((cmp)(elm, (head)->sph_root) == 0) {			\
206		if (SPLAY_LEFT((head)->sph_root, field) == NULL) {	\
207			(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
208		} else {						\
209			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
210			(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
211			name##_SPLAY(head, elm);			\
212			SPLAY_RIGHT((head)->sph_root, field) = __tmp;	\
213		}							\
214		return (elm);						\
215	}								\
216	return (NULL);							\
217}									\
218									\
219void									\
220name##_SPLAY(struct name *head, struct type *elm)			\
221{									\
222	struct type __node, *__left, *__right, *__tmp;			\
223	__typeof(cmp(NULL, NULL)) __comp;				\
224\
225	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
226	__left = __right = &__node;					\
227\
228	while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) {		\
229		if (__comp < 0) {					\
230			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
231			if (__tmp == NULL)				\
232				break;					\
233			if ((cmp)(elm, __tmp) < 0){			\
234				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
235				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
236					break;				\
237			}						\
238			SPLAY_LINKLEFT(head, __right, field);		\
239		} else if (__comp > 0) {				\
240			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
241			if (__tmp == NULL)				\
242				break;					\
243			if ((cmp)(elm, __tmp) > 0){			\
244				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
245				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
246					break;				\
247			}						\
248			SPLAY_LINKRIGHT(head, __left, field);		\
249		}							\
250	}								\
251	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
252}									\
253									\
254/* Splay with either the minimum or the maximum element			\
255 * Used to find minimum or maximum element in tree.			\
256 */									\
257void name##_SPLAY_MINMAX(struct name *head, int __comp) \
258{									\
259	struct type __node, *__left, *__right, *__tmp;			\
260\
261	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
262	__left = __right = &__node;					\
263\
264	while (1) {							\
265		if (__comp < 0) {					\
266			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
267			if (__tmp == NULL)				\
268				break;					\
269			if (__comp < 0){				\
270				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
271				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
272					break;				\
273			}						\
274			SPLAY_LINKLEFT(head, __right, field);		\
275		} else if (__comp > 0) {				\
276			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
277			if (__tmp == NULL)				\
278				break;					\
279			if (__comp > 0) {				\
280				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
281				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
282					break;				\
283			}						\
284			SPLAY_LINKRIGHT(head, __left, field);		\
285		}							\
286	}								\
287	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
288}
289
290#define SPLAY_NEGINF	-1
291#define SPLAY_INF	1
292
293#define SPLAY_INSERT(name, x, y)	name##_SPLAY_INSERT(x, y)
294#define SPLAY_REMOVE(name, x, y)	name##_SPLAY_REMOVE(x, y)
295#define SPLAY_FIND(name, x, y)		name##_SPLAY_FIND(x, y)
296#define SPLAY_NEXT(name, x, y)		name##_SPLAY_NEXT(x, y)
297#define SPLAY_MIN(name, x)		(SPLAY_EMPTY(x) ? NULL	\
298					: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
299#define SPLAY_MAX(name, x)		(SPLAY_EMPTY(x) ? NULL	\
300					: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
301
302#define SPLAY_FOREACH(x, name, head)					\
303	for ((x) = SPLAY_MIN(name, head);				\
304	     (x) != NULL;						\
305	     (x) = SPLAY_NEXT(name, head, x))
306
307/* Macros that define a rank-balanced tree */
308#define RB_HEAD(name, type)						\
309struct name {								\
310	struct type *rbh_root; /* root of the tree */			\
311}
312
313#define RB_INITIALIZER(root)						\
314	{ NULL }
315
316#define RB_INIT(root) do {						\
317	(root)->rbh_root = NULL;					\
318} while (/*CONSTCOND*/ 0)
319
320#define RB_ENTRY(type)							\
321struct {								\
322	struct type *rbe_link[3];					\
323}
324
325/*
326 * With the expectation that any object of struct type has an
327 * address that is a multiple of 4, and that therefore the
328 * 2 least significant bits of a pointer to struct type are
329 * always zero, this implementation sets those bits to indicate
330 * that the left or right child of the tree node is "red".
331 */
332#define _RB_LINK(elm, dir, field)	(elm)->field.rbe_link[dir]
333#define _RB_UP(elm, field)		_RB_LINK(elm, 0, field)
334#define _RB_L				((__uintptr_t)1)
335#define _RB_R				((__uintptr_t)2)
336#define _RB_LR				((__uintptr_t)3)
337#define _RB_BITS(elm)			(*(__uintptr_t *)&elm)
338#define _RB_BITSUP(elm, field)		_RB_BITS(_RB_UP(elm, field))
339#define _RB_PTR(elm)			(__typeof(elm))			\
340					((__uintptr_t)elm & ~_RB_LR)
341
342#define RB_PARENT(elm, field)		_RB_PTR(_RB_UP(elm, field))
343#define RB_LEFT(elm, field)		_RB_LINK(elm, _RB_L, field)
344#define RB_RIGHT(elm, field)		_RB_LINK(elm, _RB_R, field)
345#define RB_ROOT(head)			(head)->rbh_root
346#define RB_EMPTY(head)			(RB_ROOT(head) == NULL)
347
348#define RB_SET_PARENT(dst, src, field) do {				\
349	_RB_BITSUP(dst, field) = (__uintptr_t)src |			\
350	    (_RB_BITSUP(dst, field) & _RB_LR);				\
351} while (/*CONSTCOND*/ 0)
352
353#define RB_SET(elm, parent, field) do {					\
354	_RB_UP(elm, field) = parent;					\
355	RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL;		\
356} while (/*CONSTCOND*/ 0)
357
358/*
359 * Either RB_AUGMENT or RB_AUGMENT_CHECK is invoked in a loop at the root of
360 * every modified subtree, from the bottom up to the root, to update augmented
361 * node data.  RB_AUGMENT_CHECK returns true only when the update changes the
362 * node data, so that updating can be stopped short of the root when it returns
363 * false.
364 */
365#ifndef RB_AUGMENT_CHECK
366#ifndef RB_AUGMENT
367#define RB_AUGMENT_CHECK(x) 0
368#else
369#define RB_AUGMENT_CHECK(x) (RB_AUGMENT(x), 1)
370#endif
371#endif
372
373#define RB_UPDATE_AUGMENT(elm, field) do {				\
374	__typeof(elm) rb_update_tmp = (elm);				\
375	while (RB_AUGMENT_CHECK(rb_update_tmp) &&			\
376	    (rb_update_tmp = RB_PARENT(rb_update_tmp, field)) != NULL)	\
377		;							\
378} while (0)
379
380#define RB_SWAP_CHILD(head, par, out, in, field) do {			\
381	if (par == NULL)						\
382		RB_ROOT(head) = (in);					\
383	else if ((out) == RB_LEFT(par, field))				\
384		RB_LEFT(par, field) = (in);				\
385	else								\
386		RB_RIGHT(par, field) = (in);				\
387} while (/*CONSTCOND*/ 0)
388
389/*
390 * RB_ROTATE macro partially restructures the tree to improve balance. In the
391 * case when dir is _RB_L, tmp is a right child of elm.  After rotation, elm
392 * is a left child of tmp, and the subtree that represented the items between
393 * them, which formerly hung to the left of tmp now hangs to the right of elm.
394 * The parent-child relationship between elm and its former parent is not
395 * changed; where this macro once updated those fields, that is now left to the
396 * caller of RB_ROTATE to clean up, so that a pair of rotations does not twice
397 * update the same pair of pointer fields with distinct values.
398 */
399#define RB_ROTATE(elm, tmp, dir, field) do {				\
400	if ((_RB_LINK(elm, dir ^ _RB_LR, field) =			\
401	    _RB_LINK(tmp, dir, field)) != NULL)				\
402		RB_SET_PARENT(_RB_LINK(tmp, dir, field), elm, field);	\
403	_RB_LINK(tmp, dir, field) = (elm);				\
404	RB_SET_PARENT(elm, tmp, field);					\
405} while (/*CONSTCOND*/ 0)
406
407/* Generates prototypes and inline functions */
408#define	RB_PROTOTYPE(name, type, field, cmp)				\
409	RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
410#define	RB_PROTOTYPE_STATIC(name, type, field, cmp)			\
411	RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __unused static)
412#define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr)		\
413	RB_PROTOTYPE_RANK(name, type, attr)				\
414	RB_PROTOTYPE_INSERT_COLOR(name, type, attr);			\
415	RB_PROTOTYPE_REMOVE_COLOR(name, type, attr);			\
416	RB_PROTOTYPE_INSERT_FINISH(name, type, attr);			\
417	RB_PROTOTYPE_INSERT(name, type, attr);				\
418	RB_PROTOTYPE_REMOVE(name, type, attr);				\
419	RB_PROTOTYPE_FIND(name, type, attr);				\
420	RB_PROTOTYPE_NFIND(name, type, attr);				\
421	RB_PROTOTYPE_NEXT(name, type, attr);				\
422	RB_PROTOTYPE_INSERT_NEXT(name, type, attr);			\
423	RB_PROTOTYPE_PREV(name, type, attr);				\
424	RB_PROTOTYPE_INSERT_PREV(name, type, attr);			\
425	RB_PROTOTYPE_MINMAX(name, type, attr);				\
426	RB_PROTOTYPE_REINSERT(name, type, attr);
427#ifdef _RB_DIAGNOSTIC
428#define RB_PROTOTYPE_RANK(name, type, attr)				\
429	attr int name##_RB_RANK(struct type *);
430#else
431#define RB_PROTOTYPE_RANK(name, type, attr)
432#endif
433#define RB_PROTOTYPE_INSERT_COLOR(name, type, attr)			\
434	attr struct type *name##_RB_INSERT_COLOR(struct name *,		\
435	    struct type *, struct type *)
436#define RB_PROTOTYPE_REMOVE_COLOR(name, type, attr)			\
437	attr struct type *name##_RB_REMOVE_COLOR(struct name *,		\
438	    struct type *, struct type *)
439#define RB_PROTOTYPE_REMOVE(name, type, attr)				\
440	attr struct type *name##_RB_REMOVE(struct name *, struct type *)
441#define RB_PROTOTYPE_INSERT_FINISH(name, type, attr)			\
442	attr struct type *name##_RB_INSERT_FINISH(struct name *,	\
443	    struct type *, struct type **, struct type *)
444#define RB_PROTOTYPE_INSERT(name, type, attr)				\
445	attr struct type *name##_RB_INSERT(struct name *, struct type *)
446#define RB_PROTOTYPE_FIND(name, type, attr)				\
447	attr struct type *name##_RB_FIND(struct name *, struct type *)
448#define RB_PROTOTYPE_NFIND(name, type, attr)				\
449	attr struct type *name##_RB_NFIND(struct name *, struct type *)
450#define RB_PROTOTYPE_NEXT(name, type, attr)				\
451	attr struct type *name##_RB_NEXT(struct type *)
452#define RB_PROTOTYPE_INSERT_NEXT(name, type, attr)			\
453	attr struct type *name##_RB_INSERT_NEXT(struct name *,		\
454	    struct type *, struct type *)
455#define RB_PROTOTYPE_PREV(name, type, attr)				\
456	attr struct type *name##_RB_PREV(struct type *)
457#define RB_PROTOTYPE_INSERT_PREV(name, type, attr)			\
458	attr struct type *name##_RB_INSERT_PREV(struct name *,		\
459	    struct type *, struct type *)
460#define RB_PROTOTYPE_MINMAX(name, type, attr)				\
461	attr struct type *name##_RB_MINMAX(struct name *, int)
462#define RB_PROTOTYPE_REINSERT(name, type, attr)			\
463	attr struct type *name##_RB_REINSERT(struct name *, struct type *)
464
465/* Main rb operation.
466 * Moves node close to the key of elm to top
467 */
468#define	RB_GENERATE(name, type, field, cmp)				\
469	RB_GENERATE_INTERNAL(name, type, field, cmp,)
470#define	RB_GENERATE_STATIC(name, type, field, cmp)			\
471	RB_GENERATE_INTERNAL(name, type, field, cmp, __unused static)
472#define RB_GENERATE_INTERNAL(name, type, field, cmp, attr)		\
473	RB_GENERATE_RANK(name, type, field, attr)			\
474	RB_GENERATE_INSERT_COLOR(name, type, field, attr)		\
475	RB_GENERATE_REMOVE_COLOR(name, type, field, attr)		\
476	RB_GENERATE_INSERT_FINISH(name, type, field, attr)		\
477	RB_GENERATE_INSERT(name, type, field, cmp, attr)		\
478	RB_GENERATE_REMOVE(name, type, field, attr)			\
479	RB_GENERATE_FIND(name, type, field, cmp, attr)			\
480	RB_GENERATE_NFIND(name, type, field, cmp, attr)			\
481	RB_GENERATE_NEXT(name, type, field, attr)			\
482	RB_GENERATE_INSERT_NEXT(name, type, field, cmp, attr)		\
483	RB_GENERATE_PREV(name, type, field, attr)			\
484	RB_GENERATE_INSERT_PREV(name, type, field, cmp, attr)		\
485	RB_GENERATE_MINMAX(name, type, field, attr)			\
486	RB_GENERATE_REINSERT(name, type, field, cmp, attr)
487
488#ifdef _RB_DIAGNOSTIC
489#ifndef RB_AUGMENT
490#define _RB_AUGMENT_VERIFY(x) RB_AUGMENT_CHECK(x)
491#else
492#define _RB_AUGMENT_VERIFY(x) 0
493#endif
494#define RB_GENERATE_RANK(name, type, field, attr)			\
495/*									\
496 * Return the rank of the subtree rooted at elm, or -1 if the subtree	\
497 * is not rank-balanced, or has inconsistent augmentation data.
498 */									\
499attr int								\
500name##_RB_RANK(struct type *elm)					\
501{									\
502	struct type *left, *right, *up;					\
503	int left_rank, right_rank;					\
504									\
505	if (elm == NULL)						\
506		return (0);						\
507	up = _RB_UP(elm, field);					\
508	left = RB_LEFT(elm, field);					\
509	left_rank = ((_RB_BITS(up) & _RB_L) ? 2 : 1) +			\
510	    name##_RB_RANK(left);					\
511	right = RB_RIGHT(elm, field);					\
512	right_rank = ((_RB_BITS(up) & _RB_R) ? 2 : 1) +			\
513	    name##_RB_RANK(right);					\
514	if (left_rank != right_rank ||					\
515	    (left_rank == 2 && left == NULL && right == NULL) ||	\
516	    _RB_AUGMENT_VERIFY(elm))					\
517		return (-1);						\
518	return (left_rank);						\
519}
520#else
521#define RB_GENERATE_RANK(name, type, field, attr)
522#endif
523
524#define RB_GENERATE_INSERT_COLOR(name, type, field, attr)		\
525attr struct type *							\
526name##_RB_INSERT_COLOR(struct name *head,				\
527    struct type *parent, struct type *elm)				\
528{									\
529	/*								\
530	 * Initially, elm is a leaf.  Either its parent was previously	\
531	 * a leaf, with two black null children, or an interior node	\
532	 * with a black non-null child and a red null child. The        \
533	 * balance criterion "the rank of any leaf is 1" precludes the  \
534	 * possibility of two red null children for the initial parent. \
535	 * So the first loop iteration cannot lead to accessing an      \
536	 * uninitialized 'child', and a later iteration can only happen \
537	 * when a value has been assigned to 'child' in the previous    \
538	 * one.								\
539	 */								\
540	struct type *child, *child_up, *gpar;				\
541	__uintptr_t elmdir, sibdir;					\
542									\
543	do {								\
544		/* the rank of the tree rooted at elm grew */		\
545		gpar = _RB_UP(parent, field);				\
546		elmdir = RB_RIGHT(parent, field) == elm ? _RB_R : _RB_L; \
547		if (_RB_BITS(gpar) & elmdir) {				\
548			/* shorten the parent-elm edge to rebalance */	\
549			_RB_BITSUP(parent, field) ^= elmdir;		\
550			return (NULL);					\
551		}							\
552		sibdir = elmdir ^ _RB_LR;				\
553		/* the other edge must change length */			\
554		_RB_BITSUP(parent, field) ^= sibdir;			\
555		if ((_RB_BITS(gpar) & _RB_LR) == 0) {			\
556			/* both edges now short, retry from parent */	\
557			child = elm;					\
558			elm = parent;					\
559			continue;					\
560		}							\
561		_RB_UP(parent, field) = gpar = _RB_PTR(gpar);		\
562		if (_RB_BITSUP(elm, field) & elmdir) {			\
563			/*						\
564			 * Exactly one of the edges descending from elm \
565			 * is long. The long one is in the same		\
566			 * direction as the edge from parent to elm,	\
567			 * so change that by rotation.  The edge from	\
568			 * parent to z was shortened above.  Shorten	\
569			 * the long edge down from elm, and adjust	\
570			 * other edge lengths based on the downward	\
571			 * edges from 'child'.				\
572			 *						\
573			 *	     par		 par		\
574			 *	    /	\		/   \		\
575			 *	  elm	 z	       /     z		\
576			 *	 /  \		     child		\
577			 *	/  child	     /	 \		\
578			 *     /   /  \		   elm	  \		\
579			 *    w	  /    \	  /   \    y		\
580			 *	 x      y	 w     \		\
581			 *				x		\
582			 */						\
583			RB_ROTATE(elm, child, elmdir, field);		\
584			child_up = _RB_UP(child, field);		\
585			if (_RB_BITS(child_up) & sibdir)		\
586				_RB_BITSUP(parent, field) ^= elmdir;	\
587			if (_RB_BITS(child_up) & elmdir)		\
588				_RB_BITSUP(elm, field) ^= _RB_LR;	\
589			else						\
590				_RB_BITSUP(elm, field) ^= elmdir;	\
591			/* if child is a leaf, don't augment elm,	\
592			 * since it is restored to be a leaf again. */	\
593			if ((_RB_BITS(child_up) & _RB_LR) == 0)		\
594				elm = child;				\
595		} else							\
596			child = elm;					\
597									\
598		/*							\
599		 * The long edge descending from 'child' points back	\
600		 * in the direction of 'parent'. Rotate to make		\
601		 * 'parent' a child of 'child', then make both edges	\
602		 * of 'child' short to rebalance.			\
603		 *							\
604		 *	     par		 child			\
605		 *	    /	\		/     \			\
606		 *	   /	 z	       x       par		\
607		 *	child			      /	  \		\
608		 *	 /  \			     /	   z		\
609		 *	x    \			    y			\
610		 *	      y						\
611		 */							\
612		RB_ROTATE(parent, child, sibdir, field);		\
613		_RB_UP(child, field) = gpar;				\
614		RB_SWAP_CHILD(head, gpar, parent, child, field);	\
615		/*							\
616		 * Elements rotated down have new, smaller subtrees,	\
617		 * so update augmentation for them.			\
618		 */							\
619		if (elm != child)					\
620			(void)RB_AUGMENT_CHECK(elm);			\
621		(void)RB_AUGMENT_CHECK(parent);				\
622		return (child);						\
623	} while ((parent = gpar) != NULL);				\
624	return (NULL);							\
625}
626
627#ifndef RB_STRICT_HST
628/*
629 * In REMOVE_COLOR, the HST paper, in figure 3, in the single-rotate case, has
630 * 'parent' with one higher rank, and then reduces its rank if 'parent' has
631 * become a leaf.  This implementation always has the parent in its new position
632 * with lower rank, to avoid the leaf check.  Define RB_STRICT_HST to 1 to get
633 * the behavior that HST describes.
634 */
635#define RB_STRICT_HST 0
636#endif
637
638#define RB_GENERATE_REMOVE_COLOR(name, type, field, attr)		\
639attr struct type *							\
640name##_RB_REMOVE_COLOR(struct name *head,				\
641    struct type *parent, struct type *elm)				\
642{									\
643	struct type *gpar, *sib, *up;					\
644	__uintptr_t elmdir, sibdir;					\
645									\
646	if (RB_RIGHT(parent, field) == elm &&				\
647	    RB_LEFT(parent, field) == elm) {				\
648		/* Deleting a leaf that is an only-child creates a	\
649		 * rank-2 leaf. Demote that leaf. */			\
650		_RB_UP(parent, field) = _RB_PTR(_RB_UP(parent, field));	\
651		elm = parent;						\
652		if ((parent = _RB_UP(elm, field)) == NULL)		\
653			return (NULL);					\
654	}								\
655	do {								\
656		/* the rank of the tree rooted at elm shrank */		\
657		gpar = _RB_UP(parent, field);				\
658		elmdir = RB_RIGHT(parent, field) == elm ? _RB_R : _RB_L; \
659		_RB_BITS(gpar) ^= elmdir;				\
660		if (_RB_BITS(gpar) & elmdir) {				\
661			/* lengthen the parent-elm edge to rebalance */	\
662			_RB_UP(parent, field) = gpar;			\
663			return (NULL);					\
664		}							\
665		if (_RB_BITS(gpar) & _RB_LR) {				\
666			/* shorten other edge, retry from parent */	\
667			_RB_BITS(gpar) ^= _RB_LR;			\
668			_RB_UP(parent, field) = gpar;			\
669			gpar = _RB_PTR(gpar);				\
670			continue;					\
671		}							\
672		sibdir = elmdir ^ _RB_LR;				\
673		sib = _RB_LINK(parent, sibdir, field);			\
674		up = _RB_UP(sib, field);				\
675		_RB_BITS(up) ^= _RB_LR;					\
676		if ((_RB_BITS(up) & _RB_LR) == 0) {			\
677			/* shorten edges descending from sib, retry */	\
678			_RB_UP(sib, field) = up;			\
679			continue;					\
680		}							\
681		if ((_RB_BITS(up) & sibdir) == 0) {			\
682			/*						\
683			 * The edge descending from 'sib' away from	\
684			 * 'parent' is long.  The short edge descending	\
685			 * from 'sib' toward 'parent' points to 'elm*'	\
686			 * Rotate to make 'sib' a child of 'elm*'	\
687			 * then adjust the lengths of the edges		\
688			 * descending from 'sib' and 'elm*'.		\
689			 *						\
690			 *	     par		 par		\
691			 *	    /	\		/   \		\
692			 *	   /	sib	      elm    \		\
693			 *	  /	/ \	            elm*	\
694			 *	elm   elm* \	            /  \	\
695			 *	      /	\   \		   /    \	\
696			 *	     /   \   z		  /      \	\
697			 *	    x	  y		 x      sib	\
698			 *				        /  \	\
699			 *				       /    z	\
700			 *				      y		\
701			 */						\
702			elm = _RB_LINK(sib, elmdir, field);		\
703			/* elm is a 1-child.  First rotate at elm. */	\
704			RB_ROTATE(sib, elm, sibdir, field);		\
705			up = _RB_UP(elm, field);			\
706			_RB_BITSUP(parent, field) ^=			\
707			    (_RB_BITS(up) & elmdir) ? _RB_LR : elmdir;	\
708			_RB_BITSUP(sib, field) ^=			\
709			    (_RB_BITS(up) & sibdir) ? _RB_LR : sibdir;	\
710			_RB_BITSUP(elm, field) |= _RB_LR;		\
711		} else {						\
712			if ((_RB_BITS(up) & elmdir) == 0 &&		\
713			    RB_STRICT_HST && elm != NULL) {		\
714				/* if parent does not become a leaf,	\
715				   do not demote parent yet. */		\
716				_RB_BITSUP(parent, field) ^= sibdir;	\
717				_RB_BITSUP(sib, field) ^= _RB_LR;	\
718			} else if ((_RB_BITS(up) & elmdir) == 0) {	\
719				/* demote parent. */			\
720				_RB_BITSUP(parent, field) ^= elmdir;	\
721				_RB_BITSUP(sib, field) ^= sibdir;	\
722			} else						\
723				_RB_BITSUP(sib, field) ^= sibdir;	\
724			elm = sib;					\
725		}							\
726									\
727		/*							\
728		 * The edge descending from 'elm' away from 'parent'	\
729		 * is short.  Rotate to make 'parent' a child of 'elm', \
730		 * then lengthen the short edges descending from	\
731		 * 'parent' and 'elm' to rebalance.			\
732		 *							\
733		 *	     par		 elm			\
734		 *	    /	\		/   \			\
735		 *	   e	 \	       /     \			\
736		 *		 elm	      /	      \			\
737		 *		/  \	    par	       s		\
738		 *	       /    \	   /   \			\
739		 *	      /	     \	  e	\			\
740		 *	     x	      s		 x			\
741		 */							\
742		RB_ROTATE(parent, elm, elmdir, field);			\
743		RB_SET_PARENT(elm, gpar, field);			\
744		RB_SWAP_CHILD(head, gpar, parent, elm, field);		\
745		/*							\
746		 * An element rotated down, but not into the search	\
747		 * path has a new, smaller subtree, so update		\
748		 * augmentation for it.					\
749		 */							\
750		if (sib != elm)						\
751			(void)RB_AUGMENT_CHECK(sib);			\
752		return (parent);					\
753	} while (elm = parent, (parent = gpar) != NULL);		\
754	return (NULL);							\
755}
756
757#define _RB_AUGMENT_WALK(elm, match, field)				\
758do {									\
759	if (match == elm)						\
760		match = NULL;						\
761} while (RB_AUGMENT_CHECK(elm) &&					\
762    (elm = RB_PARENT(elm, field)) != NULL)
763
764#define RB_GENERATE_REMOVE(name, type, field, attr)			\
765attr struct type *							\
766name##_RB_REMOVE(struct name *head, struct type *out)			\
767{									\
768	struct type *child, *in, *opar, *parent;			\
769									\
770	child = RB_LEFT(out, field);					\
771	in = RB_RIGHT(out, field);					\
772	opar = _RB_UP(out, field);					\
773	if (in == NULL || child == NULL) {				\
774		in = child = (in == NULL ? child : in);			\
775		parent = opar = _RB_PTR(opar);				\
776	} else {							\
777		parent = in;						\
778		while (RB_LEFT(in, field))				\
779			in = RB_LEFT(in, field);			\
780		RB_SET_PARENT(child, in, field);			\
781		RB_LEFT(in, field) = child;				\
782		child = RB_RIGHT(in, field);				\
783		if (parent != in) {					\
784			RB_SET_PARENT(parent, in, field);		\
785			RB_RIGHT(in, field) = parent;			\
786			parent = RB_PARENT(in, field);			\
787			RB_LEFT(parent, field) = child;			\
788		}							\
789		_RB_UP(in, field) = opar;				\
790		opar = _RB_PTR(opar);					\
791	}								\
792	RB_SWAP_CHILD(head, opar, out, in, field);			\
793	if (child != NULL)						\
794		_RB_UP(child, field) = parent;				\
795	if (parent != NULL) {						\
796		opar = name##_RB_REMOVE_COLOR(head, parent, child);	\
797		/* if rotation has made 'parent' the root of the same	\
798		 * subtree as before, don't re-augment it. */		\
799		if (parent == in && RB_LEFT(parent, field) == NULL) {	\
800			opar = NULL;					\
801			parent = RB_PARENT(parent, field);		\
802		}							\
803		_RB_AUGMENT_WALK(parent, opar, field);			\
804		if (opar != NULL) {					\
805			/*						\
806			 * Elements rotated into the search path have	\
807			 * changed subtrees, so update augmentation for	\
808			 * them if AUGMENT_WALK didn't.			\
809			 */						\
810			(void)RB_AUGMENT_CHECK(opar);			\
811			(void)RB_AUGMENT_CHECK(RB_PARENT(opar, field));	\
812		}							\
813	}								\
814	return (out);							\
815}
816
817#define RB_GENERATE_INSERT_FINISH(name, type, field, attr)		\
818/* Inserts a node into the RB tree */					\
819attr struct type *							\
820name##_RB_INSERT_FINISH(struct name *head, struct type *parent,		\
821    struct type **pptr, struct type *elm)				\
822{									\
823	struct type *tmp = NULL;					\
824									\
825	RB_SET(elm, parent, field);					\
826	*pptr = elm;							\
827	if (parent != NULL)						\
828		tmp = name##_RB_INSERT_COLOR(head, parent, elm);	\
829	_RB_AUGMENT_WALK(elm, tmp, field);				\
830	if (tmp != NULL)						\
831		/*							\
832		 * An element rotated into the search path has a	\
833		 * changed subtree, so update augmentation for it if	\
834		 * AUGMENT_WALK didn't.					\
835		 */							\
836		(void)RB_AUGMENT_CHECK(tmp);				\
837	return (NULL);							\
838}
839
840#define RB_GENERATE_INSERT(name, type, field, cmp, attr)		\
841/* Inserts a node into the RB tree */					\
842attr struct type *							\
843name##_RB_INSERT(struct name *head, struct type *elm)			\
844{									\
845	struct type *tmp;						\
846	struct type **tmpp = &RB_ROOT(head);				\
847	struct type *parent = NULL;					\
848									\
849	while ((tmp = *tmpp) != NULL) {					\
850		parent = tmp;						\
851		__typeof(cmp(NULL, NULL)) comp = (cmp)(elm, parent);	\
852		if (comp < 0)						\
853			tmpp = &RB_LEFT(parent, field);			\
854		else if (comp > 0)					\
855			tmpp = &RB_RIGHT(parent, field);		\
856		else							\
857			return (parent);				\
858	}								\
859	return (name##_RB_INSERT_FINISH(head, parent, tmpp, elm));	\
860}
861
862#define RB_GENERATE_FIND(name, type, field, cmp, attr)			\
863/* Finds the node with the same key as elm */				\
864attr struct type *							\
865name##_RB_FIND(struct name *head, struct type *elm)			\
866{									\
867	struct type *tmp = RB_ROOT(head);				\
868	__typeof(cmp(NULL, NULL)) comp;					\
869	while (tmp) {							\
870		comp = cmp(elm, tmp);					\
871		if (comp < 0)						\
872			tmp = RB_LEFT(tmp, field);			\
873		else if (comp > 0)					\
874			tmp = RB_RIGHT(tmp, field);			\
875		else							\
876			return (tmp);					\
877	}								\
878	return (NULL);							\
879}
880
881#define RB_GENERATE_NFIND(name, type, field, cmp, attr)			\
882/* Finds the first node greater than or equal to the search key */	\
883attr struct type *							\
884name##_RB_NFIND(struct name *head, struct type *elm)			\
885{									\
886	struct type *tmp = RB_ROOT(head);				\
887	struct type *res = NULL;					\
888	__typeof(cmp(NULL, NULL)) comp;					\
889	while (tmp) {							\
890		comp = cmp(elm, tmp);					\
891		if (comp < 0) {						\
892			res = tmp;					\
893			tmp = RB_LEFT(tmp, field);			\
894		}							\
895		else if (comp > 0)					\
896			tmp = RB_RIGHT(tmp, field);			\
897		else							\
898			return (tmp);					\
899	}								\
900	return (res);							\
901}
902
903#define RB_GENERATE_NEXT(name, type, field, attr)			\
904/* ARGSUSED */								\
905attr struct type *							\
906name##_RB_NEXT(struct type *elm)					\
907{									\
908	if (RB_RIGHT(elm, field)) {					\
909		elm = RB_RIGHT(elm, field);				\
910		while (RB_LEFT(elm, field))				\
911			elm = RB_LEFT(elm, field);			\
912	} else {							\
913		while (RB_PARENT(elm, field) &&				\
914		    (elm == RB_RIGHT(RB_PARENT(elm, field), field)))	\
915			elm = RB_PARENT(elm, field);			\
916		elm = RB_PARENT(elm, field);				\
917	}								\
918	return (elm);							\
919}
920
921#if defined(_KERNEL) && defined(DIAGNOSTIC)
922#define _RB_ORDER_CHECK(cmp, lo, hi) do {				\
923	KASSERT((cmp)(lo, hi) < 0, ("out of order insertion"));		\
924} while (0)
925#else
926#define _RB_ORDER_CHECK(cmp, lo, hi) do {} while (0)
927#endif
928
929#define RB_GENERATE_INSERT_NEXT(name, type, field, cmp, attr)		\
930/* Inserts a node into the next position in the RB tree */		\
931attr struct type *							\
932name##_RB_INSERT_NEXT(struct name *head,				\
933    struct type *elm, struct type *next)				\
934{									\
935	struct type *tmp;						\
936	struct type **tmpp = &RB_RIGHT(elm, field);			\
937									\
938	_RB_ORDER_CHECK(cmp, elm, next);				\
939	if (name##_RB_NEXT(elm) != NULL)				\
940		_RB_ORDER_CHECK(cmp, next, name##_RB_NEXT(elm));	\
941	while ((tmp = *tmpp) != NULL) {					\
942		elm = tmp;						\
943		tmpp = &RB_LEFT(elm, field);				\
944	}								\
945	return (name##_RB_INSERT_FINISH(head, elm, tmpp, next));	\
946}
947
948#define RB_GENERATE_PREV(name, type, field, attr)			\
949/* ARGSUSED */								\
950attr struct type *							\
951name##_RB_PREV(struct type *elm)					\
952{									\
953	if (RB_LEFT(elm, field)) {					\
954		elm = RB_LEFT(elm, field);				\
955		while (RB_RIGHT(elm, field))				\
956			elm = RB_RIGHT(elm, field);			\
957	} else {							\
958		while (RB_PARENT(elm, field) &&				\
959		    (elm == RB_LEFT(RB_PARENT(elm, field), field)))	\
960			elm = RB_PARENT(elm, field);			\
961		elm = RB_PARENT(elm, field);				\
962	}								\
963	return (elm);							\
964}
965
966#define RB_GENERATE_INSERT_PREV(name, type, field, cmp, attr)		\
967/* Inserts a node into the prev position in the RB tree */		\
968attr struct type *							\
969name##_RB_INSERT_PREV(struct name *head,				\
970    struct type *elm, struct type *prev)				\
971{									\
972	struct type *tmp;						\
973	struct type **tmpp = &RB_LEFT(elm, field);			\
974									\
975	_RB_ORDER_CHECK(cmp, prev, elm);				\
976	if (name##_RB_PREV(elm) != NULL)				\
977		_RB_ORDER_CHECK(cmp, name##_RB_PREV(elm), prev);	\
978	while ((tmp = *tmpp) != NULL) {					\
979		elm = tmp;						\
980		tmpp = &RB_RIGHT(elm, field);				\
981	}								\
982	return (name##_RB_INSERT_FINISH(head, elm, tmpp, prev));	\
983}
984
985#define RB_GENERATE_MINMAX(name, type, field, attr)			\
986attr struct type *							\
987name##_RB_MINMAX(struct name *head, int val)				\
988{									\
989	struct type *tmp = RB_ROOT(head);				\
990	struct type *parent = NULL;					\
991	while (tmp) {							\
992		parent = tmp;						\
993		if (val < 0)						\
994			tmp = RB_LEFT(tmp, field);			\
995		else							\
996			tmp = RB_RIGHT(tmp, field);			\
997	}								\
998	return (parent);						\
999}
1000
1001#define	RB_GENERATE_REINSERT(name, type, field, cmp, attr)		\
1002attr struct type *							\
1003name##_RB_REINSERT(struct name *head, struct type *elm)			\
1004{									\
1005	struct type *cmpelm;						\
1006	if (((cmpelm = RB_PREV(name, head, elm)) != NULL &&		\
1007	    cmp(cmpelm, elm) >= 0) ||					\
1008	    ((cmpelm = RB_NEXT(name, head, elm)) != NULL &&		\
1009	    cmp(elm, cmpelm) >= 0)) {					\
1010		/* XXXLAS: Remove/insert is heavy handed. */		\
1011		RB_REMOVE(name, head, elm);				\
1012		return (RB_INSERT(name, head, elm));			\
1013	}								\
1014	return (NULL);							\
1015}									\
1016
1017#define RB_NEGINF	-1
1018#define RB_INF	1
1019
1020#define RB_INSERT(name, x, y)	name##_RB_INSERT(x, y)
1021#define RB_INSERT_NEXT(name, x, y, z)	name##_RB_INSERT_NEXT(x, y, z)
1022#define RB_INSERT_PREV(name, x, y, z)	name##_RB_INSERT_PREV(x, y, z)
1023#define RB_REMOVE(name, x, y)	name##_RB_REMOVE(x, y)
1024#define RB_FIND(name, x, y)	name##_RB_FIND(x, y)
1025#define RB_NFIND(name, x, y)	name##_RB_NFIND(x, y)
1026#define RB_NEXT(name, x, y)	name##_RB_NEXT(y)
1027#define RB_PREV(name, x, y)	name##_RB_PREV(y)
1028#define RB_MIN(name, x)		name##_RB_MINMAX(x, RB_NEGINF)
1029#define RB_MAX(name, x)		name##_RB_MINMAX(x, RB_INF)
1030#define RB_REINSERT(name, x, y)	name##_RB_REINSERT(x, y)
1031
1032#define RB_FOREACH(x, name, head)					\
1033	for ((x) = RB_MIN(name, head);					\
1034	     (x) != NULL;						\
1035	     (x) = name##_RB_NEXT(x))
1036
1037#define RB_FOREACH_FROM(x, name, y)					\
1038	for ((x) = (y);							\
1039	    ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL);	\
1040	     (x) = (y))
1041
1042#define RB_FOREACH_SAFE(x, name, head, y)				\
1043	for ((x) = RB_MIN(name, head);					\
1044	    ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL);	\
1045	     (x) = (y))
1046
1047#define RB_FOREACH_REVERSE(x, name, head)				\
1048	for ((x) = RB_MAX(name, head);					\
1049	     (x) != NULL;						\
1050	     (x) = name##_RB_PREV(x))
1051
1052#define RB_FOREACH_REVERSE_FROM(x, name, y)				\
1053	for ((x) = (y);							\
1054	    ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL);	\
1055	     (x) = (y))
1056
1057#define RB_FOREACH_REVERSE_SAFE(x, name, head, y)			\
1058	for ((x) = RB_MAX(name, head);					\
1059	    ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL);	\
1060	     (x) = (y))
1061
1062#endif	/* _SYS_TREE_H_ */
1063