1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1993
5 *	The Regents of the University of California.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#ifndef _SYS_MBUF_H_
34#define	_SYS_MBUF_H_
35
36/* XXX: These includes suck. Sorry! */
37#include <sys/queue.h>
38#ifdef _KERNEL
39#include <sys/systm.h>
40#include <sys/refcount.h>
41#include <vm/uma.h>
42
43#include <sys/sdt.h>
44
45#define	MBUF_PROBE1(probe, arg0)					\
46	SDT_PROBE1(sdt, , , probe, arg0)
47#define	MBUF_PROBE2(probe, arg0, arg1)					\
48	SDT_PROBE2(sdt, , , probe, arg0, arg1)
49#define	MBUF_PROBE3(probe, arg0, arg1, arg2)				\
50	SDT_PROBE3(sdt, , , probe, arg0, arg1, arg2)
51#define	MBUF_PROBE4(probe, arg0, arg1, arg2, arg3)			\
52	SDT_PROBE4(sdt, , , probe, arg0, arg1, arg2, arg3)
53#define	MBUF_PROBE5(probe, arg0, arg1, arg2, arg3, arg4)		\
54	SDT_PROBE5(sdt, , , probe, arg0, arg1, arg2, arg3, arg4)
55
56SDT_PROBE_DECLARE(sdt, , , m__init);
57SDT_PROBE_DECLARE(sdt, , , m__gethdr_raw);
58SDT_PROBE_DECLARE(sdt, , , m__gethdr);
59SDT_PROBE_DECLARE(sdt, , , m__get_raw);
60SDT_PROBE_DECLARE(sdt, , , m__get);
61SDT_PROBE_DECLARE(sdt, , , m__getcl);
62SDT_PROBE_DECLARE(sdt, , , m__getjcl);
63SDT_PROBE_DECLARE(sdt, , , m__clget);
64SDT_PROBE_DECLARE(sdt, , , m__cljget);
65SDT_PROBE_DECLARE(sdt, , , m__cljset);
66SDT_PROBE_DECLARE(sdt, , , m__free);
67SDT_PROBE_DECLARE(sdt, , , m__freem);
68SDT_PROBE_DECLARE(sdt, , , m__freemp);
69
70#endif /* _KERNEL */
71
72/*
73 * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead.
74 * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in
75 * sys/param.h), which has no additional overhead and is used instead of the
76 * internal data area; this is done when at least MINCLSIZE of data must be
77 * stored.  Additionally, it is possible to allocate a separate buffer
78 * externally and attach it to the mbuf in a way similar to that of mbuf
79 * clusters.
80 *
81 * NB: These calculation do not take actual compiler-induced alignment and
82 * padding inside the complete struct mbuf into account.  Appropriate
83 * attention is required when changing members of struct mbuf.
84 *
85 * MLEN is data length in a normal mbuf.
86 * MHLEN is data length in an mbuf with pktheader.
87 * MINCLSIZE is a smallest amount of data that should be put into cluster.
88 *
89 * Compile-time assertions in uipc_mbuf.c test these values to ensure that
90 * they are sensible.
91 */
92struct mbuf;
93#define	MHSIZE		offsetof(struct mbuf, m_dat)
94#define	MPKTHSIZE	offsetof(struct mbuf, m_pktdat)
95#define	MLEN		((int)(MSIZE - MHSIZE))
96#define	MHLEN		((int)(MSIZE - MPKTHSIZE))
97#define	MINCLSIZE	(MHLEN + 1)
98#define	M_NODOM		255
99
100#ifdef _KERNEL
101/*-
102 * Macro for type conversion: convert mbuf pointer to data pointer of correct
103 * type:
104 *
105 * mtod(m, t)	-- Convert mbuf pointer to data pointer of correct type.
106 * mtodo(m, o) -- Same as above but with offset 'o' into data.
107 */
108#define	mtod(m, t)	((t)((m)->m_data))
109#define	mtodo(m, o)	((void *)(((m)->m_data) + (o)))
110
111/*
112 * Argument structure passed to UMA routines during mbuf and packet
113 * allocations.
114 */
115struct mb_args {
116	int	flags;	/* Flags for mbuf being allocated */
117	short	type;	/* Type of mbuf being allocated */
118};
119#endif /* _KERNEL */
120
121/*
122 * Packet tag structure (see below for details).
123 */
124struct m_tag {
125	SLIST_ENTRY(m_tag)	m_tag_link;	/* List of packet tags */
126	u_int16_t		m_tag_id;	/* Tag ID */
127	u_int16_t		m_tag_len;	/* Length of data */
128	u_int32_t		m_tag_cookie;	/* ABI/Module ID */
129	void			(*m_tag_free)(struct m_tag *);
130};
131
132/*
133 * Static network interface owned tag.
134 * Allocated through ifp->if_snd_tag_alloc().
135 */
136struct if_snd_tag_sw;
137
138struct m_snd_tag {
139	struct ifnet *ifp;		/* network interface tag belongs to */
140	const struct if_snd_tag_sw *sw;
141	volatile u_int refcount;
142};
143
144/*
145 * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set.
146 * Size ILP32: 56
147 *	 LP64: 64
148 * Compile-time assertions in uipc_mbuf.c test these values to ensure that
149 * they are correct.
150 */
151struct pkthdr {
152	union {
153		struct m_snd_tag *snd_tag;	/* send tag, if any */
154		struct ifnet	*rcvif;		/* rcv interface */
155		struct {
156			uint16_t rcvidx;	/* rcv interface index ... */
157			uint16_t rcvgen;	/* ... and generation count */
158		};
159	};
160	union {
161		struct ifnet	*leaf_rcvif;	/* leaf rcv interface */
162		struct {
163			uint16_t leaf_rcvidx;	/* leaf rcv interface index ... */
164			uint16_t leaf_rcvgen;	/* ... and generation count */
165		};
166	};
167	SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */
168	int32_t		 len;		/* total packet length */
169
170	/* Layer crossing persistent information. */
171	uint32_t	 flowid;	/* packet's 4-tuple system */
172	uint32_t	 csum_flags;	/* checksum and offload features */
173	uint16_t	 fibnum;	/* this packet should use this fib */
174	uint8_t		 numa_domain;	/* NUMA domain of recvd pkt */
175	uint8_t		 rsstype;	/* hash type */
176#if !defined(__LP64__)
177	uint32_t	 pad;		/* pad for 64bit alignment */
178#endif
179	union {
180		uint64_t	rcv_tstmp;	/* timestamp in ns */
181		struct {
182			uint8_t		 l2hlen;	/* layer 2 hdr len */
183			uint8_t		 l3hlen;	/* layer 3 hdr len */
184			uint8_t		 l4hlen;	/* layer 4 hdr len */
185			uint8_t		 l5hlen;	/* layer 5 hdr len */
186			uint8_t		 inner_l2hlen;
187			uint8_t		 inner_l3hlen;
188			uint8_t		 inner_l4hlen;
189			uint8_t		 inner_l5hlen;
190		};
191	};
192	union {
193		uint8_t  eight[8];
194		uint16_t sixteen[4];
195		uint32_t thirtytwo[2];
196		uint64_t sixtyfour[1];
197		uintptr_t unintptr[1];
198		void	*ptr;
199	} PH_per;
200
201	/* Layer specific non-persistent local storage for reassembly, etc. */
202	union {
203		union {
204			uint8_t  eight[8];
205			uint16_t sixteen[4];
206			uint32_t thirtytwo[2];
207			uint64_t sixtyfour[1];
208			uintptr_t unintptr[1];
209			void 	*ptr;
210		} PH_loc;
211		/* Upon allocation: total packet memory consumption. */
212		u_int	memlen;
213	};
214};
215#define	ether_vtag	PH_per.sixteen[0]
216#define tcp_tun_port	PH_per.sixteen[0] /* outbound */
217#define	vt_nrecs	PH_per.sixteen[0]	  /* mld and v6-ND */
218#define	tso_segsz	PH_per.sixteen[1] /* inbound after LRO */
219#define	lro_nsegs	tso_segsz	  /* inbound after LRO */
220#define	csum_data	PH_per.thirtytwo[1] /* inbound from hardware up */
221#define	lro_tcp_d_len	PH_loc.sixteen[0] /* inbound during LRO (no reassembly) */
222#define	lro_tcp_d_csum	PH_loc.sixteen[1] /* inbound during LRO (no reassembly) */
223#define	lro_tcp_h_off	PH_loc.sixteen[2] /* inbound during LRO (no reassembly) */
224#define	lro_etype	PH_loc.sixteen[3] /* inbound during LRO (no reassembly) */
225/* Note PH_loc is used during IP reassembly (all 8 bytes as a ptr) */
226
227/*
228 * TLS records for TLS 1.0-1.2 can have the following header lengths:
229 * - 5 (AES-CBC with implicit IV)
230 * - 21 (AES-CBC with explicit IV)
231 * - 13 (AES-GCM with 8 byte explicit IV)
232 */
233#define	MBUF_PEXT_HDR_LEN	23
234
235/*
236 * TLS records for TLS 1.0-1.2 can have the following maximum trailer
237 * lengths:
238 * - 16 (AES-GCM)
239 * - 36 (AES-CBC with SHA1 and up to 16 bytes of padding)
240 * - 48 (AES-CBC with SHA2-256 and up to 16 bytes of padding)
241 * - 64 (AES-CBC with SHA2-384 and up to 16 bytes of padding)
242 */
243#define	MBUF_PEXT_TRAIL_LEN	64
244
245#if defined(__LP64__)
246#define MBUF_PEXT_MAX_PGS (40 / sizeof(vm_paddr_t))
247#else
248#define MBUF_PEXT_MAX_PGS (64 / sizeof(vm_paddr_t))
249#endif
250
251#define	MBUF_PEXT_MAX_BYTES						\
252    (MBUF_PEXT_MAX_PGS * PAGE_SIZE + MBUF_PEXT_HDR_LEN + MBUF_PEXT_TRAIL_LEN)
253
254struct ktls_session;
255struct socket;
256
257/*
258 * Description of external storage mapped into mbuf; valid only if M_EXT is
259 * set.
260 * Size ILP32: 28
261 *	 LP64: 48
262 * Compile-time assertions in uipc_mbuf.c test these values to ensure that
263 * they are correct.
264 */
265typedef	void m_ext_free_t(struct mbuf *);
266struct m_ext {
267	union {
268		/*
269		 * If EXT_FLAG_EMBREF is set, then we use refcount in the
270		 * mbuf, the 'ext_count' member.  Otherwise, we have a
271		 * shadow copy and we use pointer 'ext_cnt'.  The original
272		 * mbuf is responsible to carry the pointer to free routine
273		 * and its arguments.  They aren't copied into shadows in
274		 * mb_dupcl() to avoid dereferencing next cachelines.
275		 */
276		volatile u_int	 ext_count;
277		volatile u_int	*ext_cnt;
278	};
279	uint32_t	 ext_size;	/* size of buffer, for ext_free */
280	uint32_t	 ext_type:8,	/* type of external storage */
281			 ext_flags:24;	/* external storage mbuf flags */
282	union {
283		struct {
284			/*
285			 * Regular M_EXT mbuf:
286			 * o ext_buf always points to the external buffer.
287			 * o ext_free (below) and two optional arguments
288			 *   ext_arg1 and ext_arg2 store the free context for
289			 *   the external storage.  They are set only in the
290			 *   refcount carrying mbuf, the one with
291			 *   EXT_FLAG_EMBREF flag, with exclusion for
292			 *   EXT_EXTREF type, where the free context is copied
293			 *   into all mbufs that use same external storage.
294			 */
295			char 	*ext_buf;	/* start of buffer */
296#define	m_ext_copylen	offsetof(struct m_ext, ext_arg2)
297			void	*ext_arg2;
298		};
299		struct {
300			/*
301			 * Multi-page M_EXTPG mbuf:
302			 * o extpg_pa - page vector.
303			 * o extpg_trail and extpg_hdr - TLS trailer and
304			 *   header.
305			 * Uses ext_free and may also use ext_arg1.
306			 */
307			vm_paddr_t	extpg_pa[MBUF_PEXT_MAX_PGS];
308			char		extpg_trail[MBUF_PEXT_TRAIL_LEN];
309			char		extpg_hdr[MBUF_PEXT_HDR_LEN];
310			/* Pretend these 3 fields are part of mbuf itself. */
311#define	m_epg_pa	m_ext.extpg_pa
312#define	m_epg_trail	m_ext.extpg_trail
313#define	m_epg_hdr	m_ext.extpg_hdr
314#define	m_epg_ext_copylen	offsetof(struct m_ext, ext_free)
315		};
316	};
317	/*
318	 * Free method and optional argument pointer, both
319	 * used by M_EXT and M_EXTPG.
320	 */
321	m_ext_free_t	*ext_free;
322	void		*ext_arg1;
323};
324
325/*
326 * The core of the mbuf object along with some shortcut defines for practical
327 * purposes.
328 */
329struct mbuf {
330	/*
331	 * Header present at the beginning of every mbuf.
332	 * Size ILP32: 24
333	 *      LP64: 32
334	 * Compile-time assertions in uipc_mbuf.c test these values to ensure
335	 * that they are correct.
336	 */
337	union {	/* next buffer in chain */
338		struct mbuf		*m_next;
339		SLIST_ENTRY(mbuf)	m_slist;
340		STAILQ_ENTRY(mbuf)	m_stailq;
341	};
342	union {	/* next chain in queue/record */
343		struct mbuf		*m_nextpkt;
344		SLIST_ENTRY(mbuf)	m_slistpkt;
345		STAILQ_ENTRY(mbuf)	m_stailqpkt;
346	};
347	caddr_t		 m_data;	/* location of data */
348	int32_t		 m_len;		/* amount of data in this mbuf */
349	uint32_t	 m_type:8,	/* type of data in this mbuf */
350			 m_flags:24;	/* flags; see below */
351#if !defined(__LP64__)
352	uint32_t	 m_pad;		/* pad for 64bit alignment */
353#endif
354
355	/*
356	 * A set of optional headers (packet header, external storage header)
357	 * and internal data storage.  Historically, these arrays were sized
358	 * to MHLEN (space left after a packet header) and MLEN (space left
359	 * after only a regular mbuf header); they are now variable size in
360	 * order to support future work on variable-size mbufs.
361	 */
362	union {
363		struct {
364			union {
365				/* M_PKTHDR set. */
366				struct pkthdr	m_pkthdr;
367
368				/* M_EXTPG set.
369				 * Multi-page M_EXTPG mbuf has its meta data
370				 * split between the below anonymous structure
371				 * and m_ext.  It carries vector of pages,
372				 * optional header and trailer char vectors
373				 * and pointers to socket/TLS data.
374				 */
375#define	m_epg_startcopy		m_epg_npgs
376#define	m_epg_endcopy		m_epg_stailq
377				struct {
378					/* Overall count of pages and count of
379					 * pages with I/O pending. */
380					uint8_t	m_epg_npgs;
381					uint8_t	m_epg_nrdy;
382					/* TLS header and trailer lengths.
383					 * The data itself resides in m_ext. */
384					uint8_t	m_epg_hdrlen;
385					uint8_t	m_epg_trllen;
386					/* Offset into 1st page and length of
387					 * data in the last page. */
388					uint16_t m_epg_1st_off;
389					uint16_t m_epg_last_len;
390					uint8_t	m_epg_flags;
391#define	EPG_FLAG_ANON	0x1	/* Data can be encrypted in place. */
392#define	EPG_FLAG_2FREE	0x2	/* Scheduled for free. */
393					uint8_t	m_epg_record_type;
394					uint8_t	__spare[2];
395					int	m_epg_enc_cnt;
396					struct ktls_session *m_epg_tls;
397					struct socket	*m_epg_so;
398					uint64_t	m_epg_seqno;
399					STAILQ_ENTRY(mbuf) m_epg_stailq;
400				};
401			};
402			union {
403				/* M_EXT or M_EXTPG set. */
404				struct m_ext	m_ext;
405				/* M_PKTHDR set, neither M_EXT nor M_EXTPG. */
406				char		m_pktdat[0];
407			};
408		};
409		char	m_dat[0];			/* !M_PKTHDR, !M_EXT */
410	};
411};
412
413#ifdef _KERNEL
414static inline int
415m_epg_pagelen(const struct mbuf *m, int pidx, int pgoff)
416{
417
418	KASSERT(pgoff == 0 || pidx == 0,
419	    ("page %d with non-zero offset %d in %p", pidx, pgoff, m));
420
421	if (pidx == m->m_epg_npgs - 1) {
422		return (m->m_epg_last_len);
423	} else {
424		return (PAGE_SIZE - pgoff);
425	}
426}
427
428#ifdef INVARIANTS
429#define	MCHECK(ex, msg)	KASSERT((ex),				\
430	    ("Multi page mbuf %p with " #msg " at %s:%d",	\
431	    m, __FILE__, __LINE__))
432/*
433 * NB: This expects a non-empty buffer (npgs > 0 and
434 * last_pg_len > 0).
435 */
436#define	MBUF_EXT_PGS_ASSERT_SANITY(m)	do {				\
437	MCHECK(m->m_epg_npgs > 0, "no valid pages");		\
438	MCHECK(m->m_epg_npgs <= nitems(m->m_epg_pa),		\
439	    "too many pages");						\
440	MCHECK(m->m_epg_nrdy <= m->m_epg_npgs,			\
441	    "too many ready pages");					\
442	MCHECK(m->m_epg_1st_off < PAGE_SIZE,			\
443		"too large page offset");				\
444	MCHECK(m->m_epg_last_len > 0, "zero last page length");	\
445	MCHECK(m->m_epg_last_len <= PAGE_SIZE,			\
446	    "too large last page length");				\
447	if (m->m_epg_npgs == 1)					\
448		MCHECK(m->m_epg_1st_off +			\
449		    m->m_epg_last_len <=	 PAGE_SIZE,		\
450		    "single page too large");				\
451	MCHECK(m->m_epg_hdrlen <= sizeof(m->m_epg_hdr),		\
452	    "too large header length");					\
453	MCHECK(m->m_epg_trllen <= sizeof(m->m_epg_trail),	\
454	    "too large header length");					\
455} while (0)
456#else
457#define	MBUF_EXT_PGS_ASSERT_SANITY(m)	do {} while (0)
458#endif
459#endif
460
461/*
462 * mbuf flags of global significance and layer crossing.
463 * Those of only protocol/layer specific significance are to be mapped
464 * to M_PROTO[1-11] and cleared at layer handoff boundaries.
465 * NB: Limited to the lower 24 bits.
466 */
467#define	M_EXT		0x00000001 /* has associated external storage */
468#define	M_PKTHDR	0x00000002 /* start of record */
469#define	M_EOR		0x00000004 /* end of record */
470#define	M_RDONLY	0x00000008 /* associated data is marked read-only */
471#define	M_BCAST		0x00000010 /* send/received as link-level broadcast */
472#define	M_MCAST		0x00000020 /* send/received as link-level multicast */
473#define	M_PROMISC	0x00000040 /* packet was not for us */
474#define	M_VLANTAG	0x00000080 /* ether_vtag is valid */
475#define	M_EXTPG		0x00000100 /* has array of unmapped pages and TLS */
476#define	M_NOFREE	0x00000200 /* do not free mbuf, embedded in cluster */
477#define	M_TSTMP		0x00000400 /* rcv_tstmp field is valid */
478#define	M_TSTMP_HPREC	0x00000800 /* rcv_tstmp is high-prec, typically
479				      hw-stamped on port (useful for IEEE 1588
480				      and 802.1AS) */
481#define M_TSTMP_LRO	0x00001000 /* Time LRO pushed in pkt is valid in (PH_loc) */
482
483#define	M_PROTO1	0x00002000 /* protocol-specific */
484#define	M_PROTO2	0x00004000 /* protocol-specific */
485#define	M_PROTO3	0x00008000 /* protocol-specific */
486#define	M_PROTO4	0x00010000 /* protocol-specific */
487#define	M_PROTO5	0x00020000 /* protocol-specific */
488#define	M_PROTO6	0x00040000 /* protocol-specific */
489#define	M_PROTO7	0x00080000 /* protocol-specific */
490#define	M_PROTO8	0x00100000 /* protocol-specific */
491#define	M_PROTO9	0x00200000 /* protocol-specific */
492#define	M_PROTO10	0x00400000 /* protocol-specific */
493#define	M_PROTO11	0x00800000 /* protocol-specific */
494
495/*
496 * Flags to purge when crossing layers.
497 */
498#define	M_PROTOFLAGS \
499    (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\
500     M_PROTO9|M_PROTO10|M_PROTO11)
501
502/*
503 * Flags preserved when copying m_pkthdr.
504 */
505#define M_COPYFLAGS \
506    (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_PROMISC|M_VLANTAG|M_TSTMP| \
507     M_TSTMP_HPREC|M_TSTMP_LRO|M_PROTOFLAGS)
508
509/*
510 * Flags preserved during demote.
511 */
512#define	M_DEMOTEFLAGS \
513    (M_EXT | M_RDONLY | M_NOFREE | M_EXTPG)
514
515/*
516 * Mbuf flag description for use with printf(9) %b identifier.
517 */
518#define	M_FLAG_BITS \
519    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \
520    "\7M_PROMISC\10M_VLANTAG\11M_EXTPG\12M_NOFREE\13M_TSTMP\14M_TSTMP_HPREC\15M_TSTMP_LRO"
521#define	M_FLAG_PROTOBITS \
522    "\16M_PROTO1\17M_PROTO2\20M_PROTO3\21M_PROTO4" \
523    "\22M_PROTO5\23M_PROTO6\24M_PROTO7\25M_PROTO8\26M_PROTO9" \
524    "\27M_PROTO10\28M_PROTO11"
525#define	M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS)
526
527/*
528 * Network interface cards are able to hash protocol fields (such as IPv4
529 * addresses and TCP port numbers) classify packets into flows.  These flows
530 * can then be used to maintain ordering while delivering packets to the OS
531 * via parallel input queues, as well as to provide a stateless affinity
532 * model.  NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set
533 * m_flag fields to indicate how the hash should be interpreted by the
534 * network stack.
535 *
536 * Most NICs support RSS, which provides ordering and explicit affinity, and
537 * use the hash m_flag bits to indicate what header fields were covered by
538 * the hash.  M_HASHTYPE_OPAQUE and M_HASHTYPE_OPAQUE_HASH can be set by non-
539 * RSS cards or configurations that provide an opaque flow identifier, allowing
540 * for ordering and distribution without explicit affinity.  Additionally,
541 * M_HASHTYPE_OPAQUE_HASH indicates that the flow identifier has hash
542 * properties.
543 *
544 * The meaning of the IPV6_EX suffix:
545 * "o  Home address from the home address option in the IPv6 destination
546 *     options header.  If the extension header is not present, use the Source
547 *     IPv6 Address.
548 *  o  IPv6 address that is contained in the Routing-Header-Type-2 from the
549 *     associated extension header.  If the extension header is not present,
550 *     use the Destination IPv6 Address."
551 * Quoted from:
552 * https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-types#ndishashipv6ex
553 */
554#define	M_HASHTYPE_HASHPROP		0x80	/* has hash properties */
555#define	M_HASHTYPE_INNER		0x40	/* calculated from inner headers */
556#define	M_HASHTYPE_HASH(t)		(M_HASHTYPE_HASHPROP | (t))
557/* Microsoft RSS standard hash types */
558#define	M_HASHTYPE_NONE			0
559#define	M_HASHTYPE_RSS_IPV4		M_HASHTYPE_HASH(1) /* IPv4 2-tuple */
560#define	M_HASHTYPE_RSS_TCP_IPV4		M_HASHTYPE_HASH(2) /* TCPv4 4-tuple */
561#define	M_HASHTYPE_RSS_IPV6		M_HASHTYPE_HASH(3) /* IPv6 2-tuple */
562#define	M_HASHTYPE_RSS_TCP_IPV6		M_HASHTYPE_HASH(4) /* TCPv6 4-tuple */
563#define	M_HASHTYPE_RSS_IPV6_EX		M_HASHTYPE_HASH(5) /* IPv6 2-tuple +
564							    * ext hdrs */
565#define	M_HASHTYPE_RSS_TCP_IPV6_EX	M_HASHTYPE_HASH(6) /* TCPv6 4-tuple +
566							    * ext hdrs */
567#define	M_HASHTYPE_RSS_UDP_IPV4		M_HASHTYPE_HASH(7) /* IPv4 UDP 4-tuple*/
568#define	M_HASHTYPE_RSS_UDP_IPV6		M_HASHTYPE_HASH(9) /* IPv6 UDP 4-tuple*/
569#define	M_HASHTYPE_RSS_UDP_IPV6_EX	M_HASHTYPE_HASH(10)/* IPv6 UDP 4-tuple +
570							    * ext hdrs */
571
572#define	M_HASHTYPE_OPAQUE		0x3f	/* ordering, not affinity */
573#define	M_HASHTYPE_OPAQUE_HASH		M_HASHTYPE_HASH(M_HASHTYPE_OPAQUE)
574						/* ordering+hash, not affinity*/
575
576#define	M_HASHTYPE_CLEAR(m)	((m)->m_pkthdr.rsstype = 0)
577#define	M_HASHTYPE_GET(m)	((m)->m_pkthdr.rsstype & ~M_HASHTYPE_INNER)
578#define	M_HASHTYPE_SET(m, v)	((m)->m_pkthdr.rsstype = (v))
579#define	M_HASHTYPE_TEST(m, v)	(M_HASHTYPE_GET(m) == (v))
580#define	M_HASHTYPE_ISHASH(m)	\
581    (((m)->m_pkthdr.rsstype & M_HASHTYPE_HASHPROP) != 0)
582#define	M_HASHTYPE_SETINNER(m)	do {			\
583	(m)->m_pkthdr.rsstype |= M_HASHTYPE_INNER;	\
584    } while (0)
585
586/*
587 * External mbuf storage buffer types.
588 */
589#define	EXT_CLUSTER	1	/* mbuf cluster */
590#define	EXT_SFBUF	2	/* sendfile(2)'s sf_buf */
591#define	EXT_JUMBOP	3	/* jumbo cluster page sized */
592#define	EXT_JUMBO9	4	/* jumbo cluster 9216 bytes */
593#define	EXT_JUMBO16	5	/* jumbo cluster 16184 bytes */
594#define	EXT_PACKET	6	/* mbuf+cluster from packet zone */
595#define	EXT_MBUF	7	/* external mbuf reference */
596#define	EXT_RXRING	8	/* data in NIC receive ring */
597#define	EXT_CTL		9	/* buffer from a ctl(4) backend */
598
599#define	EXT_VENDOR1	224	/* for vendor-internal use */
600#define	EXT_VENDOR2	225	/* for vendor-internal use */
601#define	EXT_VENDOR3	226	/* for vendor-internal use */
602#define	EXT_VENDOR4	227	/* for vendor-internal use */
603
604#define	EXT_EXP1	244	/* for experimental use */
605#define	EXT_EXP2	245	/* for experimental use */
606#define	EXT_EXP3	246	/* for experimental use */
607#define	EXT_EXP4	247	/* for experimental use */
608
609#define	EXT_NET_DRV	252	/* custom ext_buf provided by net driver(s) */
610#define	EXT_MOD_TYPE	253	/* custom module's ext_buf type */
611#define	EXT_DISPOSABLE	254	/* can throw this buffer away w/page flipping */
612#define	EXT_EXTREF	255	/* has externally maintained ext_cnt ptr */
613
614/*
615 * Flags for external mbuf buffer types.
616 * NB: limited to the lower 24 bits.
617 */
618#define	EXT_FLAG_EMBREF		0x000001	/* embedded ext_count */
619#define	EXT_FLAG_EXTREF		0x000002	/* external ext_cnt, notyet */
620
621#define	EXT_FLAG_NOFREE		0x000010	/* don't free mbuf to pool, notyet */
622
623#define	EXT_FLAG_VENDOR1	0x010000	/* These flags are vendor */
624#define	EXT_FLAG_VENDOR2	0x020000	/* or submodule specific, */
625#define	EXT_FLAG_VENDOR3	0x040000	/* not used by mbuf code. */
626#define	EXT_FLAG_VENDOR4	0x080000	/* Set/read by submodule. */
627
628#define	EXT_FLAG_EXP1		0x100000	/* for experimental use */
629#define	EXT_FLAG_EXP2		0x200000	/* for experimental use */
630#define	EXT_FLAG_EXP3		0x400000	/* for experimental use */
631#define	EXT_FLAG_EXP4		0x800000	/* for experimental use */
632
633/*
634 * EXT flag description for use with printf(9) %b identifier.
635 */
636#define	EXT_FLAG_BITS \
637    "\20\1EXT_FLAG_EMBREF\2EXT_FLAG_EXTREF\5EXT_FLAG_NOFREE" \
638    "\21EXT_FLAG_VENDOR1\22EXT_FLAG_VENDOR2\23EXT_FLAG_VENDOR3" \
639    "\24EXT_FLAG_VENDOR4\25EXT_FLAG_EXP1\26EXT_FLAG_EXP2\27EXT_FLAG_EXP3" \
640    "\30EXT_FLAG_EXP4"
641
642/*
643 * Flags indicating checksum, segmentation and other offload work to be
644 * done, or already done, by hardware or lower layers.  It is split into
645 * separate inbound and outbound flags.
646 *
647 * Outbound flags that are set by upper protocol layers requesting lower
648 * layers, or ideally the hardware, to perform these offloading tasks.
649 * For outbound packets this field and its flags can be directly tested
650 * against ifnet if_hwassist.  Note that the outbound and the inbound flags do
651 * not collide right now but they could be allowed to (as long as the flags are
652 * scrubbed appropriately when the direction of an mbuf changes).  CSUM_BITS
653 * would also have to split into CSUM_BITS_TX and CSUM_BITS_RX.
654 *
655 * CSUM_INNER_<x> is the same as CSUM_<x> but it applies to the inner frame.
656 * The CSUM_ENCAP_<x> bits identify the outer encapsulation.
657 */
658#define	CSUM_IP			0x00000001	/* IP header checksum offload */
659#define	CSUM_IP_UDP		0x00000002	/* UDP checksum offload */
660#define	CSUM_IP_TCP		0x00000004	/* TCP checksum offload */
661#define	CSUM_IP_SCTP		0x00000008	/* SCTP checksum offload */
662#define	CSUM_IP_TSO		0x00000010	/* TCP segmentation offload */
663#define	CSUM_IP_ISCSI		0x00000020	/* iSCSI checksum offload */
664
665#define	CSUM_INNER_IP6_UDP	0x00000040
666#define	CSUM_INNER_IP6_TCP	0x00000080
667#define	CSUM_INNER_IP6_TSO	0x00000100
668#define	CSUM_IP6_UDP		0x00000200	/* UDP checksum offload */
669#define	CSUM_IP6_TCP		0x00000400	/* TCP checksum offload */
670#define	CSUM_IP6_SCTP		0x00000800	/* SCTP checksum offload */
671#define	CSUM_IP6_TSO		0x00001000	/* TCP segmentation offload */
672#define	CSUM_IP6_ISCSI		0x00002000	/* iSCSI checksum offload */
673
674#define	CSUM_INNER_IP		0x00004000
675#define	CSUM_INNER_IP_UDP	0x00008000
676#define	CSUM_INNER_IP_TCP	0x00010000
677#define	CSUM_INNER_IP_TSO	0x00020000
678
679#define	CSUM_ENCAP_VXLAN	0x00040000	/* VXLAN outer encapsulation */
680#define	CSUM_ENCAP_RSVD1	0x00080000
681
682/* Inbound checksum support where the checksum was verified by hardware. */
683#define	CSUM_INNER_L3_CALC	0x00100000
684#define	CSUM_INNER_L3_VALID	0x00200000
685#define	CSUM_INNER_L4_CALC	0x00400000
686#define	CSUM_INNER_L4_VALID	0x00800000
687#define	CSUM_L3_CALC		0x01000000	/* calculated layer 3 csum */
688#define	CSUM_L3_VALID		0x02000000	/* checksum is correct */
689#define	CSUM_L4_CALC		0x04000000	/* calculated layer 4 csum */
690#define	CSUM_L4_VALID		0x08000000	/* checksum is correct */
691#define	CSUM_L5_CALC		0x10000000	/* calculated layer 5 csum */
692#define	CSUM_L5_VALID		0x20000000	/* checksum is correct */
693#define	CSUM_COALESCED		0x40000000	/* contains merged segments */
694
695#define	CSUM_SND_TAG		0x80000000	/* Packet header has send tag */
696
697#define CSUM_FLAGS_TX (CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \
698    CSUM_IP_TSO | CSUM_IP_ISCSI | CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | \
699    CSUM_INNER_IP6_TSO | CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP | \
700    CSUM_IP6_TSO | CSUM_IP6_ISCSI | CSUM_INNER_IP | CSUM_INNER_IP_UDP | \
701    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN | \
702    CSUM_ENCAP_RSVD1 | CSUM_SND_TAG)
703
704#define CSUM_FLAGS_RX (CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | \
705    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID | CSUM_L3_CALC | CSUM_L3_VALID | \
706    CSUM_L4_CALC | CSUM_L4_VALID | CSUM_L5_CALC | CSUM_L5_VALID | \
707    CSUM_COALESCED)
708
709/*
710 * CSUM flag description for use with printf(9) %b identifier.
711 */
712#define	CSUM_BITS \
713    "\20\1CSUM_IP\2CSUM_IP_UDP\3CSUM_IP_TCP\4CSUM_IP_SCTP\5CSUM_IP_TSO" \
714    "\6CSUM_IP_ISCSI\7CSUM_INNER_IP6_UDP\10CSUM_INNER_IP6_TCP" \
715    "\11CSUM_INNER_IP6_TSO\12CSUM_IP6_UDP\13CSUM_IP6_TCP\14CSUM_IP6_SCTP" \
716    "\15CSUM_IP6_TSO\16CSUM_IP6_ISCSI\17CSUM_INNER_IP\20CSUM_INNER_IP_UDP" \
717    "\21CSUM_INNER_IP_TCP\22CSUM_INNER_IP_TSO\23CSUM_ENCAP_VXLAN" \
718    "\24CSUM_ENCAP_RSVD1\25CSUM_INNER_L3_CALC\26CSUM_INNER_L3_VALID" \
719    "\27CSUM_INNER_L4_CALC\30CSUM_INNER_L4_VALID\31CSUM_L3_CALC" \
720    "\32CSUM_L3_VALID\33CSUM_L4_CALC\34CSUM_L4_VALID\35CSUM_L5_CALC" \
721    "\36CSUM_L5_VALID\37CSUM_COALESCED\40CSUM_SND_TAG"
722
723/* CSUM flags compatibility mappings. */
724#define	CSUM_IP_CHECKED		CSUM_L3_CALC
725#define	CSUM_IP_VALID		CSUM_L3_VALID
726#define	CSUM_DATA_VALID		CSUM_L4_VALID
727#define	CSUM_PSEUDO_HDR		CSUM_L4_CALC
728#define	CSUM_SCTP_VALID		CSUM_L4_VALID
729#define	CSUM_DELAY_DATA		(CSUM_TCP|CSUM_UDP)
730#define	CSUM_DELAY_IP		CSUM_IP		/* Only v4, no v6 IP hdr csum */
731#define	CSUM_DELAY_DATA_IPV6	(CSUM_TCP_IPV6|CSUM_UDP_IPV6)
732#define	CSUM_DATA_VALID_IPV6	CSUM_DATA_VALID
733#define	CSUM_TCP		CSUM_IP_TCP
734#define	CSUM_UDP		CSUM_IP_UDP
735#define	CSUM_SCTP		CSUM_IP_SCTP
736#define	CSUM_TSO		(CSUM_IP_TSO|CSUM_IP6_TSO)
737#define	CSUM_INNER_TSO		(CSUM_INNER_IP_TSO|CSUM_INNER_IP6_TSO)
738#define	CSUM_UDP_IPV6		CSUM_IP6_UDP
739#define	CSUM_TCP_IPV6		CSUM_IP6_TCP
740#define	CSUM_SCTP_IPV6		CSUM_IP6_SCTP
741#define	CSUM_TLS_MASK		(CSUM_L5_CALC|CSUM_L5_VALID)
742#define	CSUM_TLS_DECRYPTED	CSUM_L5_CALC
743
744/*
745 * mbuf types describing the content of the mbuf (including external storage).
746 */
747#define	MT_NOTMBUF	0	/* USED INTERNALLY ONLY! Object is not mbuf */
748#define	MT_DATA		1	/* dynamic (data) allocation */
749#define	MT_HEADER	MT_DATA	/* packet header, use M_PKTHDR instead */
750
751#define	MT_VENDOR1	4	/* for vendor-internal use */
752#define	MT_VENDOR2	5	/* for vendor-internal use */
753#define	MT_VENDOR3	6	/* for vendor-internal use */
754#define	MT_VENDOR4	7	/* for vendor-internal use */
755
756#define	MT_SONAME	8	/* socket name */
757
758#define	MT_EXP1		9	/* for experimental use */
759#define	MT_EXP2		10	/* for experimental use */
760#define	MT_EXP3		11	/* for experimental use */
761#define	MT_EXP4		12	/* for experimental use */
762
763#define	MT_CONTROL	14	/* extra-data protocol message */
764#define	MT_EXTCONTROL	15	/* control message with externalized contents */
765#define	MT_OOBDATA	16	/* expedited data  */
766
767#define	MT_NOINIT	255	/* Not a type but a flag to allocate
768				   a non-initialized mbuf */
769
770/*
771 * String names of mbuf-related UMA(9) and malloc(9) types.  Exposed to
772 * !_KERNEL so that monitoring tools can look up the zones with
773 * libmemstat(3).
774 */
775#define	MBUF_MEM_NAME		"mbuf"
776#define	MBUF_CLUSTER_MEM_NAME	"mbuf_cluster"
777#define	MBUF_PACKET_MEM_NAME	"mbuf_packet"
778#define	MBUF_JUMBOP_MEM_NAME	"mbuf_jumbo_page"
779#define	MBUF_JUMBO9_MEM_NAME	"mbuf_jumbo_9k"
780#define	MBUF_JUMBO16_MEM_NAME	"mbuf_jumbo_16k"
781#define	MBUF_TAG_MEM_NAME	"mbuf_tag"
782#define	MBUF_EXTREFCNT_MEM_NAME	"mbuf_ext_refcnt"
783#define	MBUF_EXTPGS_MEM_NAME	"mbuf_extpgs"
784
785#ifdef _KERNEL
786union if_snd_tag_alloc_params;
787
788#define	MBUF_CHECKSLEEP(how) do {					\
789	if (how == M_WAITOK)						\
790		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,		\
791		    "Sleeping in \"%s\"", __func__);			\
792} while (0)
793
794/*
795 * Network buffer allocation API
796 *
797 * The rest of it is defined in kern/kern_mbuf.c
798 */
799extern uma_zone_t	zone_mbuf;
800extern uma_zone_t	zone_clust;
801extern uma_zone_t	zone_pack;
802extern uma_zone_t	zone_jumbop;
803extern uma_zone_t	zone_jumbo9;
804extern uma_zone_t	zone_jumbo16;
805extern uma_zone_t	zone_extpgs;
806
807void		 mb_dupcl(struct mbuf *, struct mbuf *);
808void		 mb_free_ext(struct mbuf *);
809void		 mb_free_extpg(struct mbuf *);
810void		 mb_free_mext_pgs(struct mbuf *);
811struct mbuf	*mb_alloc_ext_pgs(int, m_ext_free_t);
812struct mbuf	*mb_alloc_ext_plus_pages(int, int);
813struct mbuf	*mb_mapped_to_unmapped(struct mbuf *, int, int, int,
814		    struct mbuf **);
815int		 mb_unmapped_compress(struct mbuf *m);
816struct mbuf 	*mb_unmapped_to_ext(struct mbuf *m);
817void		 mb_free_notready(struct mbuf *m, int count);
818void		 m_adj(struct mbuf *, int);
819void		 m_adj_decap(struct mbuf *, int);
820int		 m_apply(struct mbuf *, int, int,
821		    int (*)(void *, void *, u_int), void *);
822int		 m_append(struct mbuf *, int, c_caddr_t);
823void		 m_cat(struct mbuf *, struct mbuf *);
824void		 m_catpkt(struct mbuf *, struct mbuf *);
825int		 m_clget(struct mbuf *m, int how);
826void 		*m_cljget(struct mbuf *m, int how, int size);
827struct mbuf	*m_collapse(struct mbuf *, int, int);
828void		 m_copyback(struct mbuf *, int, int, c_caddr_t);
829void		 m_copydata(const struct mbuf *, int, int, caddr_t);
830struct mbuf	*m_copym(struct mbuf *, int, int, int);
831struct mbuf	*m_copypacket(struct mbuf *, int);
832void		 m_copy_pkthdr(struct mbuf *, struct mbuf *);
833struct mbuf	*m_copyup(struct mbuf *, int, int);
834struct mbuf	*m_defrag(struct mbuf *, int);
835void		 m_demote_pkthdr(struct mbuf *);
836void		 m_demote(struct mbuf *, int, int);
837struct mbuf	*m_devget(char *, int, int, struct ifnet *,
838		    void (*)(char *, caddr_t, u_int));
839void		 m_dispose_extcontrolm(struct mbuf *m);
840struct mbuf	*m_dup(const struct mbuf *, int);
841int		 m_dup_pkthdr(struct mbuf *, const struct mbuf *, int);
842void		 m_extadd(struct mbuf *, char *, u_int, m_ext_free_t,
843		    void *, void *, int, int);
844u_int		 m_fixhdr(struct mbuf *);
845struct mbuf	*m_fragment(struct mbuf *, int, int);
846void		 m_freem(struct mbuf *);
847void		 m_freemp(struct mbuf *);
848void		 m_free_raw(struct mbuf *);
849struct mbuf	*m_get2(int, int, short, int);
850struct mbuf	*m_get3(int, int, short, int);
851struct mbuf	*m_getjcl(int, short, int, int);
852struct mbuf	*m_getm2(struct mbuf *, int, int, short, int);
853struct mbuf	*m_getptr(struct mbuf *, int, int *);
854u_int		 m_length(struct mbuf *, struct mbuf **);
855int		 m_mbuftouio(struct uio *, const struct mbuf *, int);
856void		 m_move_pkthdr(struct mbuf *, struct mbuf *);
857int		 m_pkthdr_init(struct mbuf *, int);
858struct mbuf	*m_prepend(struct mbuf *, int, int);
859void		 m_print(const struct mbuf *, int);
860struct mbuf	*m_pulldown(struct mbuf *, int, int, int *);
861struct mbuf	*m_pullup(struct mbuf *, int);
862int		 m_sanity(struct mbuf *, int);
863struct mbuf	*m_split(struct mbuf *, int, int);
864struct mbuf	*m_uiotombuf(struct uio *, int, int, int, int);
865int		 m_unmapped_uiomove(const struct mbuf *, int, struct uio *,
866		    int);
867struct mbuf	*m_unshare(struct mbuf *, int);
868int		 m_snd_tag_alloc(struct ifnet *,
869		    union if_snd_tag_alloc_params *, struct m_snd_tag **);
870void		 m_snd_tag_init(struct m_snd_tag *, struct ifnet *,
871		    const struct if_snd_tag_sw *);
872void		 m_snd_tag_destroy(struct m_snd_tag *);
873void		 m_rcvif_serialize(struct mbuf *);
874struct ifnet	*m_rcvif_restore(struct mbuf *);
875
876static __inline int
877m_gettype(int size)
878{
879	int type;
880
881	switch (size) {
882	case MSIZE:
883		type = EXT_MBUF;
884		break;
885	case MCLBYTES:
886		type = EXT_CLUSTER;
887		break;
888	case MJUMPAGESIZE:
889		type = EXT_JUMBOP;
890		break;
891	case MJUM9BYTES:
892		type = EXT_JUMBO9;
893		break;
894	case MJUM16BYTES:
895		type = EXT_JUMBO16;
896		break;
897	default:
898		panic("%s: invalid cluster size %d", __func__, size);
899	}
900
901	return (type);
902}
903
904/*
905 * Associated an external reference counted buffer with an mbuf.
906 */
907static __inline void
908m_extaddref(struct mbuf *m, char *buf, u_int size, u_int *ref_cnt,
909    m_ext_free_t freef, void *arg1, void *arg2)
910{
911
912	KASSERT(ref_cnt != NULL, ("%s: ref_cnt not provided", __func__));
913
914	atomic_add_int(ref_cnt, 1);
915	m->m_flags |= M_EXT;
916	m->m_ext.ext_buf = buf;
917	m->m_ext.ext_cnt = ref_cnt;
918	m->m_data = m->m_ext.ext_buf;
919	m->m_ext.ext_size = size;
920	m->m_ext.ext_free = freef;
921	m->m_ext.ext_arg1 = arg1;
922	m->m_ext.ext_arg2 = arg2;
923	m->m_ext.ext_type = EXT_EXTREF;
924	m->m_ext.ext_flags = 0;
925}
926
927static __inline uma_zone_t
928m_getzone(int size)
929{
930	uma_zone_t zone;
931
932	switch (size) {
933	case MCLBYTES:
934		zone = zone_clust;
935		break;
936	case MJUMPAGESIZE:
937		zone = zone_jumbop;
938		break;
939	case MJUM9BYTES:
940		zone = zone_jumbo9;
941		break;
942	case MJUM16BYTES:
943		zone = zone_jumbo16;
944		break;
945	default:
946		panic("%s: invalid cluster size %d", __func__, size);
947	}
948
949	return (zone);
950}
951
952/*
953 * Initialize an mbuf with linear storage.
954 *
955 * Inline because the consumer text overhead will be roughly the same to
956 * initialize or call a function with this many parameters and M_PKTHDR
957 * should go away with constant propagation for !MGETHDR.
958 */
959static __inline int
960m_init(struct mbuf *m, int how, short type, int flags)
961{
962	int error;
963
964	m->m_next = NULL;
965	m->m_nextpkt = NULL;
966	m->m_data = m->m_dat;
967	m->m_len = 0;
968	m->m_flags = flags;
969	m->m_type = type;
970	if (flags & M_PKTHDR)
971		error = m_pkthdr_init(m, how);
972	else
973		error = 0;
974
975	MBUF_PROBE5(m__init, m, how, type, flags, error);
976	return (error);
977}
978
979static __inline struct mbuf *
980m_get_raw(int how, short type)
981{
982	struct mbuf *m;
983	struct mb_args args;
984
985	args.flags = 0;
986	args.type = type | MT_NOINIT;
987	m = uma_zalloc_arg(zone_mbuf, &args, how);
988	MBUF_PROBE3(m__get_raw, how, type, m);
989	return (m);
990}
991
992static __inline struct mbuf *
993m_get(int how, short type)
994{
995	struct mbuf *m;
996	struct mb_args args;
997
998	args.flags = 0;
999	args.type = type;
1000	m = uma_zalloc_arg(zone_mbuf, &args, how);
1001	MBUF_PROBE3(m__get, how, type, m);
1002	return (m);
1003}
1004
1005static __inline struct mbuf *
1006m_gethdr_raw(int how, short type)
1007{
1008	struct mbuf *m;
1009	struct mb_args args;
1010
1011	args.flags = M_PKTHDR;
1012	args.type = type | MT_NOINIT;
1013	m = uma_zalloc_arg(zone_mbuf, &args, how);
1014	MBUF_PROBE3(m__gethdr_raw, how, type, m);
1015	return (m);
1016}
1017
1018static __inline struct mbuf *
1019m_gethdr(int how, short type)
1020{
1021	struct mbuf *m;
1022	struct mb_args args;
1023
1024	args.flags = M_PKTHDR;
1025	args.type = type;
1026	m = uma_zalloc_arg(zone_mbuf, &args, how);
1027	MBUF_PROBE3(m__gethdr, how, type, m);
1028	return (m);
1029}
1030
1031static __inline struct mbuf *
1032m_getcl(int how, short type, int flags)
1033{
1034	struct mbuf *m;
1035	struct mb_args args;
1036
1037	args.flags = flags;
1038	args.type = type;
1039	m = uma_zalloc_arg(zone_pack, &args, how);
1040	MBUF_PROBE4(m__getcl, how, type, flags, m);
1041	return (m);
1042}
1043
1044/*
1045 * XXX: m_cljset() is a dangerous API.  One must attach only a new,
1046 * unreferenced cluster to an mbuf(9).  It is not possible to assert
1047 * that, so care can be taken only by users of the API.
1048 */
1049static __inline void
1050m_cljset(struct mbuf *m, void *cl, int type)
1051{
1052	int size;
1053
1054	switch (type) {
1055	case EXT_CLUSTER:
1056		size = MCLBYTES;
1057		break;
1058	case EXT_JUMBOP:
1059		size = MJUMPAGESIZE;
1060		break;
1061	case EXT_JUMBO9:
1062		size = MJUM9BYTES;
1063		break;
1064	case EXT_JUMBO16:
1065		size = MJUM16BYTES;
1066		break;
1067	default:
1068		panic("%s: unknown cluster type %d", __func__, type);
1069		break;
1070	}
1071
1072	m->m_data = m->m_ext.ext_buf = cl;
1073	m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL;
1074	m->m_ext.ext_size = size;
1075	m->m_ext.ext_type = type;
1076	m->m_ext.ext_flags = EXT_FLAG_EMBREF;
1077	m->m_ext.ext_count = 1;
1078	m->m_flags |= M_EXT;
1079	MBUF_PROBE3(m__cljset, m, cl, type);
1080}
1081
1082static __inline void
1083m_chtype(struct mbuf *m, short new_type)
1084{
1085
1086	m->m_type = new_type;
1087}
1088
1089static __inline void
1090m_clrprotoflags(struct mbuf *m)
1091{
1092
1093	while (m) {
1094		m->m_flags &= ~M_PROTOFLAGS;
1095		m = m->m_next;
1096	}
1097}
1098
1099static __inline struct mbuf *
1100m_last(struct mbuf *m)
1101{
1102
1103	while (m->m_next)
1104		m = m->m_next;
1105	return (m);
1106}
1107
1108static inline u_int
1109m_extrefcnt(struct mbuf *m)
1110{
1111
1112	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT missing", __func__));
1113
1114	return ((m->m_ext.ext_flags & EXT_FLAG_EMBREF) ? m->m_ext.ext_count :
1115	    *m->m_ext.ext_cnt);
1116}
1117
1118/*
1119 * mbuf, cluster, and external object allocation macros (for compatibility
1120 * purposes).
1121 */
1122#define	M_MOVE_PKTHDR(to, from)	m_move_pkthdr((to), (from))
1123#define	MGET(m, how, type)	((m) = m_get((how), (type)))
1124#define	MGETHDR(m, how, type)	((m) = m_gethdr((how), (type)))
1125#define	MCLGET(m, how)		m_clget((m), (how))
1126#define	MEXTADD(m, buf, size, free, arg1, arg2, flags, type)		\
1127    m_extadd((m), (char *)(buf), (size), (free), (arg1), (arg2),	\
1128    (flags), (type))
1129#define	m_getm(m, len, how, type)					\
1130    m_getm2((m), (len), (how), (type), M_PKTHDR)
1131
1132/*
1133 * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can
1134 * be both the local data payload, or an external buffer area, depending on
1135 * whether M_EXT is set).
1136 */
1137#define	M_WRITABLE(m)	(((m)->m_flags & (M_RDONLY | M_EXTPG)) == 0 &&	\
1138			 (!(((m)->m_flags & M_EXT)) ||			\
1139			 (m_extrefcnt(m) == 1)))
1140
1141/* Check if the supplied mbuf has a packet header, or else panic. */
1142#define	M_ASSERTPKTHDR(m)						\
1143	KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR,			\
1144	    ("%s: no mbuf packet header!", __func__))
1145
1146/* Check if the supplied mbuf has no send tag, or else panic. */
1147#define	M_ASSERT_NO_SND_TAG(m)						\
1148	KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR &&		\
1149	       ((m)->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0,		\
1150	    ("%s: receive mbuf has send tag!", __func__))
1151
1152/* Check if mbuf is multipage. */
1153#define M_ASSERTEXTPG(m)						\
1154	KASSERT(((m)->m_flags & (M_EXTPG|M_PKTHDR)) == M_EXTPG,		\
1155	    ("%s: m %p is not multipage!", __func__, m))
1156
1157/*
1158 * Ensure that the supplied mbuf is a valid, non-free mbuf.
1159 *
1160 * XXX: Broken at the moment.  Need some UMA magic to make it work again.
1161 */
1162#define	M_ASSERTVALID(m)						\
1163	KASSERT((((struct mbuf *)m)->m_flags & 0) == 0,			\
1164	    ("%s: attempted use of a free mbuf!", __func__))
1165
1166/* Check whether any mbuf in the chain is unmapped. */
1167#ifdef INVARIANTS
1168#define	M_ASSERTMAPPED(m) do {						\
1169	for (struct mbuf *__m = (m); __m != NULL; __m = __m->m_next)	\
1170		KASSERT((__m->m_flags & M_EXTPG) == 0,			\
1171		    ("%s: chain %p contains an unmapped mbuf", __func__, (m)));\
1172} while (0)
1173#else
1174#define	M_ASSERTMAPPED(m) do {} while (0)
1175#endif
1176
1177/*
1178 * Return the address of the start of the buffer associated with an mbuf,
1179 * handling external storage, packet-header mbufs, and regular data mbufs.
1180 */
1181#define	M_START(m)							\
1182	(((m)->m_flags & M_EXTPG) ? NULL :				\
1183	 ((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf :			\
1184	 ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] :		\
1185	 &(m)->m_dat[0])
1186
1187/*
1188 * Return the size of the buffer associated with an mbuf, handling external
1189 * storage, packet-header mbufs, and regular data mbufs.
1190 */
1191#define	M_SIZE(m)							\
1192	(((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size :			\
1193	 ((m)->m_flags & M_PKTHDR) ? MHLEN :				\
1194	 MLEN)
1195
1196/*
1197 * Set the m_data pointer of a newly allocated mbuf to place an object of the
1198 * specified size at the end of the mbuf, longword aligned.
1199 *
1200 * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as
1201 * separate macros, each asserting that it was called at the proper moment.
1202 * This required callers to themselves test the storage type and call the
1203 * right one.  Rather than require callers to be aware of those layout
1204 * decisions, we centralize here.
1205 */
1206static __inline void
1207m_align(struct mbuf *m, int len)
1208{
1209#ifdef INVARIANTS
1210	const char *msg = "%s: not a virgin mbuf";
1211#endif
1212	int adjust;
1213
1214	KASSERT(m->m_data == M_START(m), (msg, __func__));
1215
1216	adjust = M_SIZE(m) - len;
1217	m->m_data += adjust &~ (sizeof(long)-1);
1218}
1219
1220#define	M_ALIGN(m, len)		m_align(m, len)
1221#define	MH_ALIGN(m, len)	m_align(m, len)
1222#define	MEXT_ALIGN(m, len)	m_align(m, len)
1223
1224/*
1225 * Compute the amount of space available before the current start of data in
1226 * an mbuf.
1227 *
1228 * The M_WRITABLE() is a temporary, conservative safety measure: the burden
1229 * of checking writability of the mbuf data area rests solely with the caller.
1230 *
1231 * NB: In previous versions, M_LEADINGSPACE() would only check M_WRITABLE()
1232 * for mbufs with external storage.  We now allow mbuf-embedded data to be
1233 * read-only as well.
1234 */
1235#define	M_LEADINGSPACE(m)						\
1236	(M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0)
1237
1238/*
1239 * So M_TRAILINGROOM() is for when you want to know how much space
1240 * would be there if it was writable. This can be used to
1241 * detect changes in mbufs by knowing the value at one point
1242 * and then being able to compare it later to the current M_TRAILINGROOM().
1243 * The TRAILINGSPACE() macro is not suitable for this since an mbuf
1244 * at one point might not be writable and then later it becomes writable
1245 * even though the space at the back of it has not changed.
1246 */
1247#define M_TRAILINGROOM(m) ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len))
1248/*
1249 * Compute the amount of space available after the end of data in an mbuf.
1250 *
1251 * The M_WRITABLE() is a temporary, conservative safety measure: the burden
1252 * of checking writability of the mbuf data area rests solely with the caller.
1253 *
1254 * NB: In previous versions, M_TRAILINGSPACE() would only check M_WRITABLE()
1255 * for mbufs with external storage.  We now allow mbuf-embedded data to be
1256 * read-only as well.
1257 */
1258#define	M_TRAILINGSPACE(m) (M_WRITABLE(m) ? M_TRAILINGROOM(m) : 0)
1259
1260/*
1261 * Arrange to prepend space of size plen to mbuf m.  If a new mbuf must be
1262 * allocated, how specifies whether to wait.  If the allocation fails, the
1263 * original mbuf chain is freed and m is set to NULL.
1264 */
1265#define	M_PREPEND(m, plen, how) do {					\
1266	struct mbuf **_mmp = &(m);					\
1267	struct mbuf *_mm = *_mmp;					\
1268	int _mplen = (plen);						\
1269	int __mhow = (how);						\
1270									\
1271	MBUF_CHECKSLEEP(how);						\
1272	if (M_LEADINGSPACE(_mm) >= _mplen) {				\
1273		_mm->m_data -= _mplen;					\
1274		_mm->m_len += _mplen;					\
1275	} else								\
1276		_mm = m_prepend(_mm, _mplen, __mhow);			\
1277	if (_mm != NULL && _mm->m_flags & M_PKTHDR)			\
1278		_mm->m_pkthdr.len += _mplen;				\
1279	*_mmp = _mm;							\
1280} while (0)
1281
1282/*
1283 * Change mbuf to new type.  This is a relatively expensive operation and
1284 * should be avoided.
1285 */
1286#define	MCHTYPE(m, t)	m_chtype((m), (t))
1287
1288/* Return the rcvif of a packet header. */
1289static __inline struct ifnet *
1290m_rcvif(struct mbuf *m)
1291{
1292
1293	M_ASSERTPKTHDR(m);
1294	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
1295		return (NULL);
1296	return (m->m_pkthdr.rcvif);
1297}
1298
1299/* Length to m_copy to copy all. */
1300#define	M_COPYALL	1000000000
1301
1302extern u_int		max_linkhdr;	/* Largest link-level header */
1303extern u_int		max_hdr;	/* Largest link + protocol header */
1304extern u_int		max_protohdr;	/* Largest protocol header */
1305void max_linkhdr_grow(u_int);
1306void max_protohdr_grow(u_int);
1307
1308extern int		nmbclusters;	/* Maximum number of clusters */
1309extern bool		mb_use_ext_pgs;	/* Use ext_pgs for sendfile */
1310
1311/*-
1312 * Network packets may have annotations attached by affixing a list of
1313 * "packet tags" to the pkthdr structure.  Packet tags are dynamically
1314 * allocated semi-opaque data structures that have a fixed header
1315 * (struct m_tag) that specifies the size of the memory block and a
1316 * <cookie,type> pair that identifies it.  The cookie is a 32-bit unique
1317 * unsigned value used to identify a module or ABI.  By convention this value
1318 * is chosen as the date+time that the module is created, expressed as the
1319 * number of seconds since the epoch (e.g., using date -u +'%s').  The type
1320 * value is an ABI/module-specific value that identifies a particular
1321 * annotation and is private to the module.  For compatibility with systems
1322 * like OpenBSD that define packet tags w/o an ABI/module cookie, the value
1323 * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find
1324 * compatibility shim functions and several tag types are defined below.
1325 * Users that do not require compatibility should use a private cookie value
1326 * so that packet tag-related definitions can be maintained privately.
1327 *
1328 * Note that the packet tag returned by m_tag_alloc has the default memory
1329 * alignment implemented by malloc.  To reference private data one can use a
1330 * construct like:
1331 *
1332 *	struct m_tag *mtag = m_tag_alloc(...);
1333 *	struct foo *p = (struct foo *)(mtag+1);
1334 *
1335 * if the alignment of struct m_tag is sufficient for referencing members of
1336 * struct foo.  Otherwise it is necessary to embed struct m_tag within the
1337 * private data structure to insure proper alignment; e.g.,
1338 *
1339 *	struct foo {
1340 *		struct m_tag	tag;
1341 *		...
1342 *	};
1343 *	struct foo *p = (struct foo *) m_tag_alloc(...);
1344 *	struct m_tag *mtag = &p->tag;
1345 */
1346
1347/*
1348 * Persistent tags stay with an mbuf until the mbuf is reclaimed.  Otherwise
1349 * tags are expected to ``vanish'' when they pass through a network
1350 * interface.  For most interfaces this happens normally as the tags are
1351 * reclaimed when the mbuf is free'd.  However in some special cases
1352 * reclaiming must be done manually.  An example is packets that pass through
1353 * the loopback interface.  Also, one must be careful to do this when
1354 * ``turning around'' packets (e.g., icmp_reflect).
1355 *
1356 * To mark a tag persistent bit-or this flag in when defining the tag id.
1357 * The tag will then be treated as described above.
1358 */
1359#define	MTAG_PERSISTENT				0x800
1360
1361#define	PACKET_TAG_NONE				0  /* Nadda */
1362
1363/* Packet tags for use with PACKET_ABI_COMPAT. */
1364#define	PACKET_TAG_IPSEC_IN_DONE		1  /* IPsec applied, in */
1365#define	PACKET_TAG_IPSEC_OUT_DONE		2  /* IPsec applied, out */
1366#define	PACKET_TAG_IPSEC_IN_CRYPTO_DONE		3  /* NIC IPsec crypto done */
1367#define	PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED	4  /* NIC IPsec crypto req'ed */
1368#define	PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO	5  /* NIC notifies IPsec */
1369#define	PACKET_TAG_IPSEC_PENDING_TDB		6  /* Reminder to do IPsec */
1370#define	PACKET_TAG_BRIDGE			7  /* Bridge processing done */
1371#define	PACKET_TAG_GIF				8  /* GIF processing done */
1372#define	PACKET_TAG_GRE				9  /* GRE processing done */
1373#define	PACKET_TAG_IN_PACKET_CHECKSUM		10 /* NIC checksumming done */
1374#define	PACKET_TAG_ENCAP			11 /* Encap.  processing */
1375#define	PACKET_TAG_IPSEC_SOCKET			12 /* IPSEC socket ref */
1376#define	PACKET_TAG_IPSEC_HISTORY		13 /* IPSEC history */
1377#define	PACKET_TAG_IPV6_INPUT			14 /* IPV6 input processing */
1378#define	PACKET_TAG_DUMMYNET			15 /* dummynet info */
1379#define	PACKET_TAG_DIVERT			17 /* divert info */
1380#define	PACKET_TAG_IPFORWARD			18 /* ipforward info */
1381#define	PACKET_TAG_MACLABEL	(19 | MTAG_PERSISTENT) /* MAC label */
1382#define	PACKET_TAG_PF				21 /* PF/ALTQ information */
1383/* was	PACKET_TAG_RTSOCKFAM			25    rtsock sa family */
1384#define	PACKET_TAG_IPOPTIONS			27 /* Saved IP options */
1385#define	PACKET_TAG_CARP				28 /* CARP info */
1386#define	PACKET_TAG_IPSEC_NAT_T_PORTS		29 /* two uint16_t */
1387#define	PACKET_TAG_ND_OUTGOING			30 /* ND outgoing */
1388#define	PACKET_TAG_PF_REASSEMBLED		31
1389
1390/* Specific cookies and tags. */
1391
1392/* Packet tag routines. */
1393struct m_tag	*m_tag_alloc(uint32_t, uint16_t, int, int);
1394void		 m_tag_delete(struct mbuf *, struct m_tag *);
1395void		 m_tag_delete_chain(struct mbuf *, struct m_tag *);
1396void		 m_tag_free_default(struct m_tag *);
1397struct m_tag	*m_tag_locate(struct mbuf *, uint32_t, uint16_t,
1398    struct m_tag *);
1399struct m_tag	*m_tag_copy(struct m_tag *, int);
1400int		 m_tag_copy_chain(struct mbuf *, const struct mbuf *, int);
1401void		 m_tag_delete_nonpersistent(struct mbuf *);
1402
1403/*
1404 * Initialize the list of tags associated with an mbuf.
1405 */
1406static __inline void
1407m_tag_init(struct mbuf *m)
1408{
1409
1410	SLIST_INIT(&m->m_pkthdr.tags);
1411}
1412
1413/*
1414 * Set up the contents of a tag.  Note that this does not fill in the free
1415 * method; the caller is expected to do that.
1416 *
1417 * XXX probably should be called m_tag_init, but that was already taken.
1418 */
1419static __inline void
1420m_tag_setup(struct m_tag *t, uint32_t cookie, uint16_t type, int len)
1421{
1422
1423	t->m_tag_id = type;
1424	t->m_tag_len = len;
1425	t->m_tag_cookie = cookie;
1426}
1427
1428/*
1429 * Reclaim resources associated with a tag.
1430 */
1431static __inline void
1432m_tag_free(struct m_tag *t)
1433{
1434
1435	(*t->m_tag_free)(t);
1436}
1437
1438/*
1439 * Return the first tag associated with an mbuf.
1440 */
1441static __inline struct m_tag *
1442m_tag_first(struct mbuf *m)
1443{
1444
1445	return (SLIST_FIRST(&m->m_pkthdr.tags));
1446}
1447
1448/*
1449 * Return the next tag in the list of tags associated with an mbuf.
1450 */
1451static __inline struct m_tag *
1452m_tag_next(struct mbuf *m __unused, struct m_tag *t)
1453{
1454
1455	return (SLIST_NEXT(t, m_tag_link));
1456}
1457
1458/*
1459 * Prepend a tag to the list of tags associated with an mbuf.
1460 */
1461static __inline void
1462m_tag_prepend(struct mbuf *m, struct m_tag *t)
1463{
1464
1465	SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link);
1466}
1467
1468/*
1469 * Unlink a tag from the list of tags associated with an mbuf.
1470 */
1471static __inline void
1472m_tag_unlink(struct mbuf *m, struct m_tag *t)
1473{
1474
1475	SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link);
1476}
1477
1478/* These are for OpenBSD compatibility. */
1479#define	MTAG_ABI_COMPAT		0		/* compatibility ABI */
1480
1481static __inline struct m_tag *
1482m_tag_get(uint16_t type, int length, int wait)
1483{
1484	return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait));
1485}
1486
1487static __inline struct m_tag *
1488m_tag_find(struct mbuf *m, uint16_t type, struct m_tag *start)
1489{
1490	return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL :
1491	    m_tag_locate(m, MTAG_ABI_COMPAT, type, start));
1492}
1493
1494static inline struct m_snd_tag *
1495m_snd_tag_ref(struct m_snd_tag *mst)
1496{
1497
1498	refcount_acquire(&mst->refcount);
1499	return (mst);
1500}
1501
1502static inline void
1503m_snd_tag_rele(struct m_snd_tag *mst)
1504{
1505
1506	if (refcount_release(&mst->refcount))
1507		m_snd_tag_destroy(mst);
1508}
1509
1510static __inline struct mbuf *
1511m_free(struct mbuf *m)
1512{
1513	struct mbuf *n = m->m_next;
1514
1515	MBUF_PROBE1(m__free, m);
1516	if ((m->m_flags & (M_PKTHDR|M_NOFREE)) == (M_PKTHDR|M_NOFREE))
1517		m_tag_delete_chain(m, NULL);
1518	if (m->m_flags & M_PKTHDR && m->m_pkthdr.csum_flags & CSUM_SND_TAG)
1519		m_snd_tag_rele(m->m_pkthdr.snd_tag);
1520	if (m->m_flags & M_EXTPG)
1521		mb_free_extpg(m);
1522	else if (m->m_flags & M_EXT)
1523		mb_free_ext(m);
1524	else if ((m->m_flags & M_NOFREE) == 0)
1525		uma_zfree(zone_mbuf, m);
1526	return (n);
1527}
1528
1529static __inline int
1530rt_m_getfib(struct mbuf *m)
1531{
1532	KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf."));
1533	return (m->m_pkthdr.fibnum);
1534}
1535
1536#define M_GETFIB(_m)   rt_m_getfib(_m)
1537
1538#define M_SETFIB(_m, _fib) do {						\
1539        KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf."));	\
1540	((_m)->m_pkthdr.fibnum) = (_fib);				\
1541} while (0)
1542
1543/* flags passed as first argument for "m_xxx_tcpip_hash()" */
1544#define	MBUF_HASHFLAG_L2	(1 << 2)
1545#define	MBUF_HASHFLAG_L3	(1 << 3)
1546#define	MBUF_HASHFLAG_L4	(1 << 4)
1547
1548/* mbuf hashing helper routines */
1549uint32_t	m_ether_tcpip_hash_init(void);
1550uint32_t	m_ether_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t);
1551uint32_t	m_infiniband_tcpip_hash_init(void);
1552uint32_t	m_infiniband_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t);
1553
1554#ifdef MBUF_PROFILING
1555 void m_profile(struct mbuf *m);
1556 #define M_PROFILE(m) m_profile(m)
1557#else
1558 #define M_PROFILE(m)
1559#endif
1560
1561/*
1562 * Structure describing a packet queue: mbufs linked by m_stailqpkt.
1563 * Does accounting of number of packets and has a cap.
1564 */
1565struct mbufq {
1566	STAILQ_HEAD(, mbuf)	mq_head;
1567	int			mq_len;
1568	int			mq_maxlen;
1569};
1570
1571static inline void
1572mbufq_init(struct mbufq *mq, int maxlen)
1573{
1574
1575	STAILQ_INIT(&mq->mq_head);
1576	mq->mq_maxlen = maxlen;
1577	mq->mq_len = 0;
1578}
1579
1580static inline struct mbuf *
1581mbufq_flush(struct mbufq *mq)
1582{
1583	struct mbuf *m;
1584
1585	m = STAILQ_FIRST(&mq->mq_head);
1586	STAILQ_INIT(&mq->mq_head);
1587	mq->mq_len = 0;
1588	return (m);
1589}
1590
1591static inline void
1592mbufq_drain(struct mbufq *mq)
1593{
1594	struct mbuf *m, *n;
1595
1596	n = mbufq_flush(mq);
1597	while ((m = n) != NULL) {
1598		n = STAILQ_NEXT(m, m_stailqpkt);
1599		m_freem(m);
1600	}
1601}
1602
1603static inline struct mbuf *
1604mbufq_first(const struct mbufq *mq)
1605{
1606
1607	return (STAILQ_FIRST(&mq->mq_head));
1608}
1609
1610static inline struct mbuf *
1611mbufq_last(const struct mbufq *mq)
1612{
1613
1614	return (STAILQ_LAST(&mq->mq_head, mbuf, m_stailqpkt));
1615}
1616
1617static inline bool
1618mbufq_empty(const struct mbufq *mq)
1619{
1620	return (mq->mq_len == 0);
1621}
1622
1623static inline int
1624mbufq_full(const struct mbufq *mq)
1625{
1626
1627	return (mq->mq_maxlen > 0 && mq->mq_len >= mq->mq_maxlen);
1628}
1629
1630static inline int
1631mbufq_len(const struct mbufq *mq)
1632{
1633
1634	return (mq->mq_len);
1635}
1636
1637static inline int
1638mbufq_enqueue(struct mbufq *mq, struct mbuf *m)
1639{
1640
1641	if (mbufq_full(mq))
1642		return (ENOBUFS);
1643	STAILQ_INSERT_TAIL(&mq->mq_head, m, m_stailqpkt);
1644	mq->mq_len++;
1645	return (0);
1646}
1647
1648static inline struct mbuf *
1649mbufq_dequeue(struct mbufq *mq)
1650{
1651	struct mbuf *m;
1652
1653	m = STAILQ_FIRST(&mq->mq_head);
1654	if (m) {
1655		STAILQ_REMOVE_HEAD(&mq->mq_head, m_stailqpkt);
1656		m->m_nextpkt = NULL;
1657		mq->mq_len--;
1658	}
1659	return (m);
1660}
1661
1662static inline void
1663mbufq_prepend(struct mbufq *mq, struct mbuf *m)
1664{
1665
1666	STAILQ_INSERT_HEAD(&mq->mq_head, m, m_stailqpkt);
1667	mq->mq_len++;
1668}
1669
1670/*
1671 * Note: this doesn't enforce the maximum list size for dst.
1672 */
1673static inline void
1674mbufq_concat(struct mbufq *mq_dst, struct mbufq *mq_src)
1675{
1676
1677	mq_dst->mq_len += mq_src->mq_len;
1678	STAILQ_CONCAT(&mq_dst->mq_head, &mq_src->mq_head);
1679	mq_src->mq_len = 0;
1680}
1681
1682/*
1683 * Structure describing a chain of mbufs linked by m_stailq, also tracking
1684 * the pointer to the last.  Also does accounting of data length and memory
1685 * usage.
1686 * To be used as an argument to mbuf chain allocation and manipulation KPIs,
1687 * and can be allocated on the stack of a caller.  Kernel facilities may use
1688 * it internally as a most simple implementation of a stream data buffer.
1689 */
1690struct mchain {
1691	STAILQ_HEAD(, mbuf) mc_q;
1692	u_int mc_len;
1693	u_int mc_mlen;
1694};
1695
1696#define	MCHAIN_INITIALIZER(mc)	\
1697	(struct mchain){ .mc_q = STAILQ_HEAD_INITIALIZER((mc)->mc_q) }
1698
1699static inline struct mbuf *
1700mc_first(struct mchain *mc)
1701{
1702	return (STAILQ_FIRST(&mc->mc_q));
1703}
1704
1705static inline struct mbuf *
1706mc_last(struct mchain *mc)
1707{
1708	return (STAILQ_LAST(&mc->mc_q, mbuf, m_stailq));
1709}
1710
1711static inline bool
1712mc_empty(struct mchain *mc)
1713{
1714	return (STAILQ_EMPTY(&mc->mc_q));
1715}
1716
1717/* Account addition of m to mc. */
1718static inline void
1719mc_inc(struct mchain *mc, struct mbuf *m)
1720{
1721	mc->mc_len += m->m_len;
1722	mc->mc_mlen += MSIZE;
1723	if (m->m_flags & M_EXT)
1724		mc->mc_mlen += m->m_ext.ext_size;
1725}
1726
1727/* Account removal of m from mc. */
1728static inline void
1729mc_dec(struct mchain *mc, struct mbuf *m)
1730{
1731	MPASS(mc->mc_len >= m->m_len);
1732	mc->mc_len -= m->m_len;
1733	MPASS(mc->mc_mlen >= MSIZE);
1734	mc->mc_mlen -= MSIZE;
1735	if (m->m_flags & M_EXT) {
1736		MPASS(mc->mc_mlen >= m->m_ext.ext_size);
1737		mc->mc_mlen -= m->m_ext.ext_size;
1738	}
1739}
1740
1741/*
1742 * Get mchain from a classic mbuf chain linked by m_next.  Two hacks here:
1743 * we use the fact that m_next is alias to m_stailq, we use internal queue(3)
1744 * fields.
1745 */
1746static inline void
1747mc_init_m(struct mchain *mc, struct mbuf *m)
1748{
1749	struct mbuf *last;
1750
1751	STAILQ_FIRST(&mc->mc_q) = m;
1752	mc->mc_len = mc->mc_mlen = 0;
1753	STAILQ_FOREACH(m, &mc->mc_q, m_stailq) {
1754		mc_inc(mc, m);
1755		last = m;
1756	}
1757	mc->mc_q.stqh_last = &STAILQ_NEXT(last, m_stailq);
1758}
1759
1760static inline void
1761mc_freem(struct mchain *mc)
1762{
1763	if (!mc_empty(mc))
1764		m_freem(mc_first(mc));
1765}
1766
1767static inline void
1768mc_prepend(struct mchain *mc, struct mbuf *m)
1769{
1770	STAILQ_INSERT_HEAD(&mc->mc_q, m, m_stailq);
1771	mc_inc(mc, m);
1772}
1773
1774static inline void
1775mc_append(struct mchain *mc, struct mbuf *m)
1776{
1777	STAILQ_INSERT_TAIL(&mc->mc_q, m, m_stailq);
1778	mc_inc(mc, m);
1779}
1780
1781static inline void
1782mc_concat(struct mchain *head, struct mchain *tail)
1783{
1784	STAILQ_CONCAT(&head->mc_q, &tail->mc_q);
1785	head->mc_len += tail->mc_len;
1786	head->mc_mlen += tail->mc_mlen;
1787	tail->mc_len = tail->mc_mlen = 0;
1788}
1789
1790/*
1791 * Note: STAILQ_REMOVE() is expensive. mc_remove_after() needs to be provided
1792 * as long as there consumers that would benefit from it.
1793 */
1794static inline void
1795mc_remove(struct mchain *mc, struct mbuf *m)
1796{
1797	STAILQ_REMOVE(&mc->mc_q, m, mbuf, m_stailq);
1798	mc_dec(mc, m);
1799}
1800
1801int mc_get(struct mchain *, u_int, int, short, int);
1802int mc_split(struct mchain *, struct mchain *, u_int, int);
1803int mc_uiotomc(struct mchain *, struct uio *, u_int, u_int, int, int);
1804
1805#ifdef _SYS_TIMESPEC_H_
1806static inline void
1807mbuf_tstmp2timespec(struct mbuf *m, struct timespec *ts)
1808{
1809
1810	KASSERT((m->m_flags & M_PKTHDR) != 0, ("mbuf %p no M_PKTHDR", m));
1811	KASSERT((m->m_flags & (M_TSTMP|M_TSTMP_LRO)) != 0,
1812	    ("mbuf %p no M_TSTMP or M_TSTMP_LRO", m));
1813	ts->tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000;
1814	ts->tv_nsec = m->m_pkthdr.rcv_tstmp % 1000000000;
1815}
1816#endif
1817
1818static inline void
1819mbuf_tstmp2timeval(struct mbuf *m, struct timeval *tv)
1820{
1821
1822	KASSERT((m->m_flags & M_PKTHDR) != 0, ("mbuf %p no M_PKTHDR", m));
1823	KASSERT((m->m_flags & (M_TSTMP|M_TSTMP_LRO)) != 0,
1824	    ("mbuf %p no M_TSTMP or M_TSTMP_LRO", m));
1825	tv->tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000;
1826	tv->tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000) / 1000;
1827}
1828
1829#ifdef DEBUGNET
1830/* Invoked from the debugnet client code. */
1831void	debugnet_mbuf_drain(void);
1832void	debugnet_mbuf_start(void);
1833void	debugnet_mbuf_finish(void);
1834void	debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize);
1835#endif
1836
1837static inline bool
1838mbuf_has_tls_session(struct mbuf *m)
1839{
1840
1841	if (m->m_flags & M_EXTPG) {
1842		if (m->m_epg_tls != NULL) {
1843			return (true);
1844		}
1845	}
1846	return (false);
1847}
1848
1849#endif /* _KERNEL */
1850#endif /* !_SYS_MBUF_H_ */
1851