1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1987, 1993
5 *	The Regents of the University of California.
6 * Copyright (c) 2005, 2009 Robert N. M. Watson
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#ifndef _SYS_MALLOC_H_
35#define	_SYS_MALLOC_H_
36
37#ifndef _STANDALONE
38#include <sys/param.h>
39#ifdef _KERNEL
40#include <sys/systm.h>
41#endif
42#include <sys/queue.h>
43#include <sys/_lock.h>
44#include <sys/_mutex.h>
45#include <machine/_limits.h>
46
47#define	MINALLOCSIZE	UMA_SMALLEST_UNIT
48
49/*
50 * Flags to memory allocation functions.
51 */
52#define	M_NOWAIT	0x0001		/* do not block */
53#define	M_WAITOK	0x0002		/* ok to block */
54#define	M_NORECLAIM	0x0080		/* do not reclaim after failure */
55#define	M_ZERO		0x0100		/* bzero the allocation */
56#define	M_NOVM		0x0200		/* don't ask VM for pages */
57#define	M_USE_RESERVE	0x0400		/* can alloc out of reserve memory */
58#define	M_NODUMP	0x0800		/* don't dump pages in this allocation */
59#define	M_FIRSTFIT	0x1000		/* only for vmem, fast fit */
60#define	M_BESTFIT	0x2000		/* only for vmem, low fragmentation */
61#define	M_EXEC		0x4000		/* allocate executable space */
62#define	M_NEXTFIT	0x8000		/* only for vmem, follow cursor */
63
64#define	M_VERSION	2020110501
65
66/*
67 * Two malloc type structures are present: malloc_type, which is used by a
68 * type owner to declare the type, and malloc_type_internal, which holds
69 * malloc-owned statistics and other ABI-sensitive fields, such as the set of
70 * malloc statistics indexed by the compile-time MAXCPU constant.
71 * Applications should avoid introducing dependence on the allocator private
72 * data layout and size.
73 *
74 * The malloc_type ks_next field is protected by malloc_mtx.  Other fields in
75 * malloc_type are static after initialization so unsynchronized.
76 *
77 * Statistics in malloc_type_stats are written only when holding a critical
78 * section and running on the CPU associated with the index into the stat
79 * array, but read lock-free resulting in possible (minor) races, which the
80 * monitoring app should take into account.
81 */
82struct malloc_type_stats {
83	uint64_t	mts_memalloced;	/* Bytes allocated on CPU. */
84	uint64_t	mts_memfreed;	/* Bytes freed on CPU. */
85	uint64_t	mts_numallocs;	/* Number of allocates on CPU. */
86	uint64_t	mts_numfrees;	/* number of frees on CPU. */
87	uint64_t	mts_size;	/* Bitmask of sizes allocated on CPU. */
88	uint64_t	_mts_reserved1;	/* Reserved field. */
89	uint64_t	_mts_reserved2;	/* Reserved field. */
90	uint64_t	_mts_reserved3;	/* Reserved field. */
91};
92
93_Static_assert(sizeof(struct malloc_type_stats) == 64,
94    "allocations come from pcpu_zone_64");
95
96/*
97 * Index definitions for the mti_probes[] array.
98 */
99#define DTMALLOC_PROBE_MALLOC		0
100#define DTMALLOC_PROBE_FREE		1
101#define DTMALLOC_PROBE_MAX		2
102
103struct malloc_type_internal {
104	uint32_t	mti_probes[DTMALLOC_PROBE_MAX];
105					/* DTrace probe ID array. */
106	u_char		mti_zone;
107	struct malloc_type_stats	*mti_stats;
108	u_long		mti_spare[8];
109};
110
111/*
112 * Public data structure describing a malloc type.
113 */
114struct malloc_type {
115	struct malloc_type *ks_next;	/* Next in global chain. */
116	u_long		 ks_version;	/* Detect programmer error. */
117	const char	*ks_shortdesc;	/* Printable type name. */
118	struct malloc_type_internal ks_mti;
119};
120
121/*
122 * Statistics structure headers for user space.  The kern.malloc sysctl
123 * exposes a structure stream consisting of a stream header, then a series of
124 * malloc type headers and statistics structures (quantity maxcpus).  For
125 * convenience, the kernel will provide the current value of maxcpus at the
126 * head of the stream.
127 */
128#define	MALLOC_TYPE_STREAM_VERSION	0x00000001
129struct malloc_type_stream_header {
130	uint32_t	mtsh_version;	/* Stream format version. */
131	uint32_t	mtsh_maxcpus;	/* Value of MAXCPU for stream. */
132	uint32_t	mtsh_count;	/* Number of records. */
133	uint32_t	_mtsh_pad;	/* Pad/reserved field. */
134};
135
136#define	MALLOC_MAX_NAME	32
137struct malloc_type_header {
138	char				mth_name[MALLOC_MAX_NAME];
139};
140
141#ifdef _KERNEL
142#define	MALLOC_DEFINE(type, shortdesc, longdesc)			\
143	struct malloc_type type[1] = {					\
144		{							\
145			.ks_next = NULL,				\
146			.ks_version = M_VERSION,			\
147			.ks_shortdesc = shortdesc,			\
148		}							\
149	};								\
150	SYSINIT(type##_init, SI_SUB_KMEM, SI_ORDER_THIRD, malloc_init,	\
151	    type);							\
152	SYSUNINIT(type##_uninit, SI_SUB_KMEM, SI_ORDER_ANY,		\
153	    malloc_uninit, type)
154
155#define	MALLOC_DECLARE(type) \
156	extern struct malloc_type type[1]
157
158MALLOC_DECLARE(M_CACHE);
159MALLOC_DECLARE(M_DEVBUF);
160MALLOC_DECLARE(M_PARGS);
161MALLOC_DECLARE(M_SESSION);
162MALLOC_DECLARE(M_SUBPROC);
163MALLOC_DECLARE(M_TEMP);
164
165/*
166 * XXX this should be declared in <sys/uio.h>, but that tends to fail
167 * because <sys/uio.h> is included in a header before the source file
168 * has a chance to include <sys/malloc.h> to get MALLOC_DECLARE() defined.
169 */
170MALLOC_DECLARE(M_IOV);
171
172struct domainset;
173extern struct mtx malloc_mtx;
174
175/*
176 * Function type used when iterating over the list of malloc types.
177 */
178typedef void malloc_type_list_func_t(struct malloc_type *, void *);
179
180void	contigfree(void *addr, unsigned long size, struct malloc_type *type);
181void	*contigmalloc(unsigned long size, struct malloc_type *type, int flags,
182	    vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
183	    vm_paddr_t boundary) __malloc_like __result_use_check
184	    __alloc_size(1) __alloc_align(6);
185void	*contigmalloc_domainset(unsigned long size, struct malloc_type *type,
186	    struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high,
187	    unsigned long alignment, vm_paddr_t boundary)
188	    __malloc_like __result_use_check __alloc_size(1) __alloc_align(7);
189void	free(void *addr, struct malloc_type *type);
190void	zfree(void *addr, struct malloc_type *type);
191void	*malloc(size_t size, struct malloc_type *type, int flags) __malloc_like
192	    __result_use_check __alloc_size(1);
193/*
194 * Try to optimize malloc(..., ..., M_ZERO) allocations by doing zeroing in
195 * place if the size is known at compilation time.
196 *
197 * Passing the flag down requires malloc to blindly zero the entire object.
198 * In practice a lot of the zeroing can be avoided if most of the object
199 * gets explicitly initialized after the allocation. Letting the compiler
200 * zero in place gives it the opportunity to take advantage of this state.
201 *
202 * Note that the operation is only applicable if both flags and size are
203 * known at compilation time. If M_ZERO is passed but M_WAITOK is not, the
204 * allocation can fail and a NULL check is needed. However, if M_WAITOK is
205 * passed we know the allocation must succeed and the check can be elided.
206 *
207 *	_malloc_item = malloc(_size, type, (flags) &~ M_ZERO);
208 *	if (((flags) & M_WAITOK) != 0 || _malloc_item != NULL)
209 *		bzero(_malloc_item, _size);
210 *
211 * If the flag is set, the compiler knows the left side is always true,
212 * therefore the entire statement is true and the callsite is:
213 *
214 *	_malloc_item = malloc(_size, type, (flags) &~ M_ZERO);
215 *	bzero(_malloc_item, _size);
216 *
217 * If the flag is not set, the compiler knows the left size is always false
218 * and the NULL check is needed, therefore the callsite is:
219 *
220 * 	_malloc_item = malloc(_size, type, (flags) &~ M_ZERO);
221 *	if (_malloc_item != NULL)
222 *		bzero(_malloc_item, _size);
223 *
224 * The implementation is a macro because of what appears to be a clang 6 bug:
225 * an inline function variant ended up being compiled to a mere malloc call
226 * regardless of argument. gcc generates expected code (like the above).
227 */
228#define	malloc(size, type, flags) ({					\
229	void *_malloc_item;						\
230	size_t _size = (size);						\
231	if (__builtin_constant_p(size) && __builtin_constant_p(flags) &&\
232	    ((flags) & M_ZERO) != 0) {					\
233		_malloc_item = malloc(_size, type, (flags) &~ M_ZERO);	\
234		if (((flags) & M_WAITOK) != 0 ||			\
235		    __predict_true(_malloc_item != NULL))		\
236			memset(_malloc_item, 0, _size);			\
237	} else {							\
238		_malloc_item = malloc(_size, type, flags);		\
239	}								\
240	_malloc_item;							\
241})
242
243void	*malloc_domainset(size_t size, struct malloc_type *type,
244	    struct domainset *ds, int flags) __malloc_like __result_use_check
245	    __alloc_size(1);
246void	*mallocarray(size_t nmemb, size_t size, struct malloc_type *type,
247	    int flags) __malloc_like __result_use_check
248	    __alloc_size2(1, 2);
249void	*mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type,
250	    struct domainset *ds, int flags) __malloc_like __result_use_check
251	    __alloc_size2(1, 2);
252void	*malloc_exec(size_t size, struct malloc_type *type, int flags) __malloc_like
253	    __result_use_check __alloc_size(1);
254void	*malloc_domainset_exec(size_t size, struct malloc_type *type,
255	    struct domainset *ds, int flags) __malloc_like __result_use_check
256	    __alloc_size(1);
257void	malloc_init(void *);
258void	malloc_type_allocated(struct malloc_type *type, unsigned long size);
259void	malloc_type_freed(struct malloc_type *type, unsigned long size);
260void	malloc_type_list(malloc_type_list_func_t *, void *);
261void	malloc_uninit(void *);
262size_t	malloc_size(size_t);
263size_t	malloc_usable_size(const void *);
264void	*realloc(void *addr, size_t size, struct malloc_type *type, int flags)
265	    __result_use_check __alloc_size(2);
266void	*reallocf(void *addr, size_t size, struct malloc_type *type, int flags)
267	    __result_use_check __alloc_size(2);
268void	*malloc_aligned(size_t size, size_t align, struct malloc_type *type,
269	    int flags) __malloc_like __result_use_check __alloc_size(1);
270void	*malloc_domainset_aligned(size_t size, size_t align,
271	    struct malloc_type *mtp, struct domainset *ds, int flags)
272	    __malloc_like __result_use_check __alloc_size(1);
273
274struct malloc_type *malloc_desc2type(const char *desc);
275
276/*
277 * This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX
278 * if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW
279 */
280#define MUL_NO_OVERFLOW		(1UL << (sizeof(size_t) * 8 / 2))
281static inline bool
282WOULD_OVERFLOW(size_t nmemb, size_t size)
283{
284
285	return ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
286	    nmemb > 0 && __SIZE_T_MAX / nmemb < size);
287}
288#undef MUL_NO_OVERFLOW
289#endif /* _KERNEL */
290
291#else
292/*
293 * The native stand malloc / free interface we're mapping to
294 */
295extern void Free(void *p, const char *file, int line);
296extern void *Malloc(size_t bytes, const char *file, int line);
297
298/*
299 * Minimal standalone malloc implementation / environment. None of the
300 * flags mean anything and there's no need declare malloc types.
301 * Define the simple alloc / free routines in terms of Malloc and
302 * Free. None of the kernel features that this stuff disables are needed.
303 */
304#define M_WAITOK 1
305#define M_ZERO 0
306#define M_NOWAIT 2
307#define MALLOC_DECLARE(x)
308
309#define kmem_zalloc(size, flags) ({					\
310	void *p = Malloc((size), __FILE__, __LINE__);			\
311	if (p == NULL && (flags &  M_WAITOK) != 0)			\
312		panic("Could not malloc %zd bytes with M_WAITOK from %s line %d", \
313		    (size_t)size, __FILE__, __LINE__);			\
314	p;								\
315})
316
317#define kmem_free(p, size) Free(p, __FILE__, __LINE__)
318
319/*
320 * ZFS mem.h define that's the OpenZFS porting layer way of saying
321 * M_WAITOK. Given the above, it will also be a nop.
322 */
323#define KM_SLEEP M_WAITOK
324#define KM_NOSLEEP M_NOWAIT
325#endif /* _STANDALONE */
326#endif /* !_SYS_MALLOC_H_ */
327