1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29#include "opt_wlan.h"
30
31#ifdef	IEEE80211_SUPPORT_SUPERG
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/mbuf.h>
36#include <sys/kernel.h>
37#include <sys/endian.h>
38
39#include <sys/socket.h>
40
41#include <net/if.h>
42#include <net/if_var.h>
43#include <net/if_llc.h>
44#include <net/if_media.h>
45#include <net/bpf.h>
46#include <net/ethernet.h>
47
48#include <net80211/ieee80211_var.h>
49#include <net80211/ieee80211_input.h>
50#include <net80211/ieee80211_phy.h>
51#include <net80211/ieee80211_superg.h>
52
53/*
54 * Atheros fast-frame encapsulation format.
55 * FF max payload:
56 * 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500:
57 *   8   +   4   +  4   +   14  +   8   + 1500 +  6   +   14  +   8   + 1500
58 * = 3066
59 */
60/* fast frame header is 32-bits */
61#define	ATH_FF_PROTO	0x0000003f	/* protocol */
62#define	ATH_FF_PROTO_S	0
63#define	ATH_FF_FTYPE	0x000000c0	/* frame type */
64#define	ATH_FF_FTYPE_S	6
65#define	ATH_FF_HLEN32	0x00000300	/* optional hdr length */
66#define	ATH_FF_HLEN32_S	8
67#define	ATH_FF_SEQNUM	0x001ffc00	/* sequence number */
68#define	ATH_FF_SEQNUM_S	10
69#define	ATH_FF_OFFSET	0xffe00000	/* offset to 2nd payload */
70#define	ATH_FF_OFFSET_S	21
71
72#define	ATH_FF_MAX_HDR_PAD	4
73#define	ATH_FF_MAX_SEP_PAD	6
74#define	ATH_FF_MAX_HDR		30
75
76#define	ATH_FF_PROTO_L2TUNNEL	0	/* L2 tunnel protocol */
77#define	ATH_FF_ETH_TYPE		0x88bd	/* Ether type for encapsulated frames */
78#define	ATH_FF_SNAP_ORGCODE_0	0x00
79#define	ATH_FF_SNAP_ORGCODE_1	0x03
80#define	ATH_FF_SNAP_ORGCODE_2	0x7f
81
82#define	ATH_FF_TXQMIN	2		/* min txq depth for staging */
83#define	ATH_FF_TXQMAX	50		/* maximum # of queued frames allowed */
84#define	ATH_FF_STAGEMAX	5		/* max waiting period for staged frame*/
85
86#define	ETHER_HEADER_COPY(dst, src) \
87	memcpy(dst, src, sizeof(struct ether_header))
88
89static	int ieee80211_ffppsmin = 2;	/* pps threshold for ff aggregation */
90SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLFLAG_RW,
91	&ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging");
92static	int ieee80211_ffagemax = -1;	/* max time frames held on stage q */
93SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax,
94    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
95    &ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I",
96    "max hold time for fast-frame staging (ms)");
97
98static void
99ff_age_all(void *arg, int npending)
100{
101	struct ieee80211com *ic = arg;
102
103	/* XXX cache timer value somewhere (racy) */
104	ieee80211_ff_age_all(ic, ieee80211_ffagemax + 1);
105}
106
107void
108ieee80211_superg_attach(struct ieee80211com *ic)
109{
110	struct ieee80211_superg *sg;
111
112	IEEE80211_FF_LOCK_INIT(ic, ic->ic_name);
113
114	sg = (struct ieee80211_superg *) IEEE80211_MALLOC(
115	     sizeof(struct ieee80211_superg), M_80211_VAP,
116	     IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
117	if (sg == NULL) {
118		printf("%s: cannot allocate SuperG state block\n",
119		    __func__);
120		return;
121	}
122	TIMEOUT_TASK_INIT(ic->ic_tq, &sg->ff_qtimer, 0, ff_age_all, ic);
123	ic->ic_superg = sg;
124
125	/*
126	 * Default to not being so aggressive for FF/AMSDU
127	 * aging, otherwise we may hold a frame around
128	 * for way too long before we expire it out.
129	 */
130	ieee80211_ffagemax = msecs_to_ticks(2);
131}
132
133void
134ieee80211_superg_detach(struct ieee80211com *ic)
135{
136
137	if (ic->ic_superg != NULL) {
138		struct timeout_task *qtask = &ic->ic_superg->ff_qtimer;
139
140		while (taskqueue_cancel_timeout(ic->ic_tq, qtask, NULL) != 0)
141			taskqueue_drain_timeout(ic->ic_tq, qtask);
142		IEEE80211_FREE(ic->ic_superg, M_80211_VAP);
143		ic->ic_superg = NULL;
144	}
145	IEEE80211_FF_LOCK_DESTROY(ic);
146}
147
148void
149ieee80211_superg_vattach(struct ieee80211vap *vap)
150{
151	struct ieee80211com *ic = vap->iv_ic;
152
153	if (ic->ic_superg == NULL)	/* NB: can't do fast-frames w/o state */
154		vap->iv_caps &= ~IEEE80211_C_FF;
155	if (vap->iv_caps & IEEE80211_C_FF)
156		vap->iv_flags |= IEEE80211_F_FF;
157	/* NB: we only implement sta mode */
158	if (vap->iv_opmode == IEEE80211_M_STA &&
159	    (vap->iv_caps & IEEE80211_C_TURBOP))
160		vap->iv_flags |= IEEE80211_F_TURBOP;
161}
162
163void
164ieee80211_superg_vdetach(struct ieee80211vap *vap)
165{
166}
167
168#define	ATH_OUI_BYTES		0x00, 0x03, 0x7f
169/*
170 * Add a WME information element to a frame.
171 */
172uint8_t *
173ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix)
174{
175	static const struct ieee80211_ath_ie info = {
176		.ath_id		= IEEE80211_ELEMID_VENDOR,
177		.ath_len	= sizeof(struct ieee80211_ath_ie) - 2,
178		.ath_oui	= { ATH_OUI_BYTES },
179		.ath_oui_type	= ATH_OUI_TYPE,
180		.ath_oui_subtype= ATH_OUI_SUBTYPE,
181		.ath_version	= ATH_OUI_VERSION,
182	};
183	struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
184
185	memcpy(frm, &info, sizeof(info));
186	ath->ath_capability = caps;
187	if (defkeyix != IEEE80211_KEYIX_NONE) {
188		ath->ath_defkeyix[0] = (defkeyix & 0xff);
189		ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
190	} else {
191		ath->ath_defkeyix[0] = 0xff;
192		ath->ath_defkeyix[1] = 0x7f;
193	}
194	return frm + sizeof(info);
195}
196#undef ATH_OUI_BYTES
197
198uint8_t *
199ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss)
200{
201	const struct ieee80211vap *vap = bss->ni_vap;
202
203	return ieee80211_add_ath(frm,
204	    vap->iv_flags & IEEE80211_F_ATHEROS,
205	    ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
206	    bss->ni_authmode != IEEE80211_AUTH_8021X) ?
207	    vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
208}
209
210void
211ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie)
212{
213	const struct ieee80211_ath_ie *ath =
214		(const struct ieee80211_ath_ie *) ie;
215
216	ni->ni_ath_flags = ath->ath_capability;
217	ni->ni_ath_defkeyix = le16dec(&ath->ath_defkeyix);
218}
219
220int
221ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm,
222	const struct ieee80211_frame *wh)
223{
224	struct ieee80211vap *vap = ni->ni_vap;
225	const struct ieee80211_ath_ie *ath;
226	u_int len = frm[1];
227	int capschanged;
228	uint16_t defkeyix;
229
230	if (len < sizeof(struct ieee80211_ath_ie)-2) {
231		IEEE80211_DISCARD_IE(vap,
232		    IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG,
233		    wh, "Atheros", "too short, len %u", len);
234		return -1;
235	}
236	ath = (const struct ieee80211_ath_ie *)frm;
237	capschanged = (ni->ni_ath_flags != ath->ath_capability);
238	defkeyix = le16dec(ath->ath_defkeyix);
239	if (capschanged || defkeyix != ni->ni_ath_defkeyix) {
240		ni->ni_ath_flags = ath->ath_capability;
241		ni->ni_ath_defkeyix = defkeyix;
242		IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
243		    "ath ie change: new caps 0x%x defkeyix 0x%x",
244		    ni->ni_ath_flags, ni->ni_ath_defkeyix);
245	}
246	if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) {
247		uint16_t curflags, newflags;
248
249		/*
250		 * Check for turbo mode switch.  Calculate flags
251		 * for the new mode and effect the switch.
252		 */
253		newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags;
254		/* NB: BOOST is not in ic_flags, so get it from the ie */
255		if (ath->ath_capability & ATHEROS_CAP_BOOST)
256			newflags |= IEEE80211_CHAN_TURBO;
257		else
258			newflags &= ~IEEE80211_CHAN_TURBO;
259		if (newflags != curflags)
260			ieee80211_dturbo_switch(vap, newflags);
261	}
262	return capschanged;
263}
264
265/*
266 * Decap the encapsulated frame pair and dispatch the first
267 * for delivery.  The second frame is returned for delivery
268 * via the normal path.
269 */
270struct mbuf *
271ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m)
272{
273#define	FF_LLC_SIZE	(sizeof(struct ether_header) + sizeof(struct llc))
274	struct ieee80211vap *vap = ni->ni_vap;
275	struct llc *llc;
276	uint32_t ath;
277	struct mbuf *n;
278	int framelen;
279
280	/* NB: we assume caller does this check for us */
281	KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF),
282	    ("ff not negotiated"));
283	/*
284	 * Check for fast-frame tunnel encapsulation.
285	 */
286	if (m->m_pkthdr.len < 3*FF_LLC_SIZE)
287		return m;
288	if (m->m_len < FF_LLC_SIZE &&
289	    (m = m_pullup(m, FF_LLC_SIZE)) == NULL) {
290		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
291		    ni->ni_macaddr, "fast-frame",
292		    "%s", "m_pullup(llc) failed");
293		vap->iv_stats.is_rx_tooshort++;
294		return NULL;
295	}
296	llc = (struct llc *)(mtod(m, uint8_t *) +
297	    sizeof(struct ether_header));
298	if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE))
299		return m;
300	m_adj(m, FF_LLC_SIZE);
301	m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath);
302	if (_IEEE80211_MASKSHIFT(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) {
303		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
304		    ni->ni_macaddr, "fast-frame",
305		    "unsupport tunnel protocol, header 0x%x", ath);
306		vap->iv_stats.is_ff_badhdr++;
307		m_freem(m);
308		return NULL;
309	}
310	/* NB: skip header and alignment padding */
311	m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2);
312
313	vap->iv_stats.is_ff_decap++;
314
315	/*
316	 * Decap the first frame, bust it apart from the
317	 * second and deliver; then decap the second frame
318	 * and return it to the caller for normal delivery.
319	 */
320	m = ieee80211_decap1(m, &framelen);
321	if (m == NULL) {
322		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
323		    ni->ni_macaddr, "fast-frame", "%s", "first decap failed");
324		vap->iv_stats.is_ff_tooshort++;
325		return NULL;
326	}
327	n = m_split(m, framelen, IEEE80211_M_NOWAIT);
328	if (n == NULL) {
329		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
330		    ni->ni_macaddr, "fast-frame",
331		    "%s", "unable to split encapsulated frames");
332		vap->iv_stats.is_ff_split++;
333		m_freem(m);			/* NB: must reclaim */
334		return NULL;
335	}
336	/* XXX not right for WDS */
337	vap->iv_deliver_data(vap, ni, m);	/* 1st of pair */
338
339	/*
340	 * Decap second frame.
341	 */
342	m_adj(n, roundup2(framelen, 4) - framelen);	/* padding */
343	n = ieee80211_decap1(n, &framelen);
344	if (n == NULL) {
345		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
346		    ni->ni_macaddr, "fast-frame", "%s", "second decap failed");
347		vap->iv_stats.is_ff_tooshort++;
348	}
349	/* XXX verify framelen against mbuf contents */
350	return n;				/* 2nd delivered by caller */
351#undef FF_LLC_SIZE
352}
353
354/*
355 * Fast frame encapsulation.  There must be two packets
356 * chained with m_nextpkt.  We do header adjustment for
357 * each, add the tunnel encapsulation, and then concatenate
358 * the mbuf chains to form a single frame for transmission.
359 */
360struct mbuf *
361ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace,
362	struct ieee80211_key *key)
363{
364	struct mbuf *m2;
365	struct ether_header eh1, eh2;
366	struct llc *llc;
367	struct mbuf *m;
368	int pad;
369
370	m2 = m1->m_nextpkt;
371	if (m2 == NULL) {
372		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
373		    "%s: only one frame\n", __func__);
374		goto bad;
375	}
376	m1->m_nextpkt = NULL;
377
378	/*
379	 * Adjust to include 802.11 header requirement.
380	 */
381	KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!"));
382	ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t));
383	m1 = ieee80211_mbuf_adjust(vap, hdrspace, key, m1);
384	if (m1 == NULL) {
385		printf("%s: failed initial mbuf_adjust\n", __func__);
386		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
387		m_freem(m2);
388		goto bad;
389	}
390
391	/*
392	 * Copy second frame's Ethernet header out of line
393	 * and adjust for possible padding in case there isn't room
394	 * at the end of first frame.
395	 */
396	KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
397	ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
398	m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2);
399	if (m2 == NULL) {
400		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
401		printf("%s: failed second \n", __func__);
402		goto bad;
403	}
404
405	/*
406	 * Now do tunnel encapsulation.  First, each
407	 * frame gets a standard encapsulation.
408	 */
409	m1 = ieee80211_ff_encap1(vap, m1, &eh1);
410	if (m1 == NULL)
411		goto bad;
412	m2 = ieee80211_ff_encap1(vap, m2, &eh2);
413	if (m2 == NULL)
414		goto bad;
415
416	/*
417	 * Pad leading frame to a 4-byte boundary.  If there
418	 * is space at the end of the first frame, put it
419	 * there; otherwise prepend to the front of the second
420	 * frame.  We know doing the second will always work
421	 * because we reserve space above.  We prefer appending
422	 * as this typically has better DMA alignment properties.
423	 */
424	for (m = m1; m->m_next != NULL; m = m->m_next)
425		;
426	pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
427	if (pad) {
428		if (M_TRAILINGSPACE(m) < pad) {		/* prepend to second */
429			m2->m_data -= pad;
430			m2->m_len += pad;
431			m2->m_pkthdr.len += pad;
432		} else {				/* append to first */
433			m->m_len += pad;
434			m1->m_pkthdr.len += pad;
435		}
436	}
437
438	/*
439	 * A-MSDU's are just appended; the "I'm A-MSDU!" bit is in the
440	 * QoS header.
441	 *
442	 * XXX optimize by prepending together
443	 */
444	m->m_next = m2;			/* NB: last mbuf from above */
445	m1->m_pkthdr.len += m2->m_pkthdr.len;
446	M_PREPEND(m1, sizeof(uint32_t)+2, IEEE80211_M_NOWAIT);
447	if (m1 == NULL) {		/* XXX cannot happen */
448		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
449		    "%s: no space for tunnel header\n", __func__);
450		vap->iv_stats.is_tx_nobuf++;
451		return NULL;
452	}
453	memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
454
455	M_PREPEND(m1, sizeof(struct llc), IEEE80211_M_NOWAIT);
456	if (m1 == NULL) {		/* XXX cannot happen */
457		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
458		    "%s: no space for llc header\n", __func__);
459		vap->iv_stats.is_tx_nobuf++;
460		return NULL;
461	}
462	llc = mtod(m1, struct llc *);
463	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
464	llc->llc_control = LLC_UI;
465	llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
466	llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
467	llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
468	llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
469
470	vap->iv_stats.is_ff_encap++;
471
472	return m1;
473bad:
474	vap->iv_stats.is_ff_encapfail++;
475	if (m1 != NULL)
476		m_freem(m1);
477	if (m2 != NULL)
478		m_freem(m2);
479	return NULL;
480}
481
482/*
483 * A-MSDU encapsulation.
484 *
485 * This assumes just two frames for now, since we're borrowing the
486 * same queuing code and infrastructure as fast-frames.
487 *
488 * There must be two packets chained with m_nextpkt.
489 * We do header adjustment for each, and then concatenate the mbuf chains
490 * to form a single frame for transmission.
491 */
492struct mbuf *
493ieee80211_amsdu_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace,
494	struct ieee80211_key *key)
495{
496	struct mbuf *m2;
497	struct ether_header eh1, eh2;
498	struct mbuf *m;
499	int pad;
500
501	m2 = m1->m_nextpkt;
502	if (m2 == NULL) {
503		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
504		    "%s: only one frame\n", __func__);
505		goto bad;
506	}
507	m1->m_nextpkt = NULL;
508
509	/*
510	 * Include A-MSDU header in adjusting header layout.
511	 */
512	KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!"));
513	ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t));
514	m1 = ieee80211_mbuf_adjust(vap,
515		hdrspace + sizeof(struct llc) + sizeof(uint32_t) +
516		    sizeof(struct ether_header),
517		key, m1);
518	if (m1 == NULL) {
519		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
520		m_freem(m2);
521		goto bad;
522	}
523
524	/*
525	 * Copy second frame's Ethernet header out of line
526	 * and adjust for encapsulation headers.  Note that
527	 * we make room for padding in case there isn't room
528	 * at the end of first frame.
529	 */
530	KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
531	ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
532	m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2);
533	if (m2 == NULL) {
534		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
535		goto bad;
536	}
537
538	/*
539	 * Now do tunnel encapsulation.  First, each
540	 * frame gets a standard encapsulation.
541	 */
542	m1 = ieee80211_ff_encap1(vap, m1, &eh1);
543	if (m1 == NULL)
544		goto bad;
545	m2 = ieee80211_ff_encap1(vap, m2, &eh2);
546	if (m2 == NULL)
547		goto bad;
548
549	/*
550	 * Pad leading frame to a 4-byte boundary.  If there
551	 * is space at the end of the first frame, put it
552	 * there; otherwise prepend to the front of the second
553	 * frame.  We know doing the second will always work
554	 * because we reserve space above.  We prefer appending
555	 * as this typically has better DMA alignment properties.
556	 */
557	for (m = m1; m->m_next != NULL; m = m->m_next)
558		;
559	pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
560	if (pad) {
561		if (M_TRAILINGSPACE(m) < pad) {		/* prepend to second */
562			m2->m_data -= pad;
563			m2->m_len += pad;
564			m2->m_pkthdr.len += pad;
565		} else {				/* append to first */
566			m->m_len += pad;
567			m1->m_pkthdr.len += pad;
568		}
569	}
570
571	/*
572	 * Now, stick 'em together.
573	 */
574	m->m_next = m2;			/* NB: last mbuf from above */
575	m1->m_pkthdr.len += m2->m_pkthdr.len;
576
577	vap->iv_stats.is_amsdu_encap++;
578
579	return m1;
580bad:
581	vap->iv_stats.is_amsdu_encapfail++;
582	if (m1 != NULL)
583		m_freem(m1);
584	if (m2 != NULL)
585		m_freem(m2);
586	return NULL;
587}
588
589static void
590ff_transmit(struct ieee80211_node *ni, struct mbuf *m)
591{
592	struct ieee80211vap *vap = ni->ni_vap;
593	struct ieee80211com *ic = ni->ni_ic;
594
595	IEEE80211_TX_LOCK_ASSERT(ic);
596
597	/* encap and xmit */
598	m = ieee80211_encap(vap, ni, m);
599	if (m != NULL)
600		(void) ieee80211_parent_xmitpkt(ic, m);
601	else
602		ieee80211_free_node(ni);
603}
604
605/*
606 * Flush frames to device; note we re-use the linked list
607 * the frames were stored on and use the sentinel (unchanged)
608 * which may be non-NULL.
609 */
610static void
611ff_flush(struct mbuf *head, struct mbuf *last)
612{
613	struct mbuf *m, *next;
614	struct ieee80211_node *ni;
615	struct ieee80211vap *vap;
616
617	for (m = head; m != last; m = next) {
618		next = m->m_nextpkt;
619		m->m_nextpkt = NULL;
620
621		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
622		vap = ni->ni_vap;
623
624		IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
625		    "%s: flush frame, age %u", __func__, M_AGE_GET(m));
626		vap->iv_stats.is_ff_flush++;
627
628		ff_transmit(ni, m);
629	}
630}
631
632/*
633 * Age frames on the staging queue.
634 */
635void
636ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq,
637    int quanta)
638{
639	struct mbuf *m, *head;
640	struct ieee80211_node *ni;
641
642	IEEE80211_FF_LOCK(ic);
643	if (sq->depth == 0) {
644		IEEE80211_FF_UNLOCK(ic);
645		return;		/* nothing to do */
646	}
647
648	KASSERT(sq->head != NULL, ("stageq empty"));
649
650	head = sq->head;
651	while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) {
652		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
653
654		/* clear staging ref to frame */
655		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
656		KASSERT(ni->ni_tx_superg[tid] == m, ("staging queue empty"));
657		ni->ni_tx_superg[tid] = NULL;
658
659		sq->head = m->m_nextpkt;
660		sq->depth--;
661	}
662	if (m == NULL)
663		sq->tail = NULL;
664	else
665		M_AGE_SUB(m, quanta);
666	IEEE80211_FF_UNLOCK(ic);
667
668	IEEE80211_TX_LOCK(ic);
669	ff_flush(head, m);
670	IEEE80211_TX_UNLOCK(ic);
671}
672
673static void
674stageq_add(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *m)
675{
676	int age = ieee80211_ffagemax;
677
678	IEEE80211_FF_LOCK_ASSERT(ic);
679
680	if (sq->tail != NULL) {
681		sq->tail->m_nextpkt = m;
682		age -= M_AGE_GET(sq->head);
683	} else {
684		sq->head = m;
685
686		struct timeout_task *qtask = &ic->ic_superg->ff_qtimer;
687		taskqueue_enqueue_timeout(ic->ic_tq, qtask, age);
688	}
689	KASSERT(age >= 0, ("age %d", age));
690	M_AGE_SET(m, age);
691	m->m_nextpkt = NULL;
692	sq->tail = m;
693	sq->depth++;
694}
695
696static void
697stageq_remove(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *mstaged)
698{
699	struct mbuf *m, *mprev;
700
701	IEEE80211_FF_LOCK_ASSERT(ic);
702
703	mprev = NULL;
704	for (m = sq->head; m != NULL; m = m->m_nextpkt) {
705		if (m == mstaged) {
706			if (mprev == NULL)
707				sq->head = m->m_nextpkt;
708			else
709				mprev->m_nextpkt = m->m_nextpkt;
710			if (sq->tail == m)
711				sq->tail = mprev;
712			sq->depth--;
713			return;
714		}
715		mprev = m;
716	}
717	printf("%s: packet not found\n", __func__);
718}
719
720static uint32_t
721ff_approx_txtime(struct ieee80211_node *ni,
722	const struct mbuf *m1, const struct mbuf *m2)
723{
724	struct ieee80211com *ic = ni->ni_ic;
725	struct ieee80211vap *vap = ni->ni_vap;
726	uint32_t framelen;
727	uint32_t frame_time;
728
729	/*
730	 * Approximate the frame length to be transmitted. A swag to add
731	 * the following maximal values to the skb payload:
732	 *   - 32: 802.11 encap + CRC
733	 *   - 24: encryption overhead (if wep bit)
734	 *   - 4 + 6: fast-frame header and padding
735	 *   - 16: 2 LLC FF tunnel headers
736	 *   - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd)
737	 */
738	framelen = m1->m_pkthdr.len + 32 +
739	    ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR;
740	if (vap->iv_flags & IEEE80211_F_PRIVACY)
741		framelen += 24;
742	if (m2 != NULL)
743		framelen += m2->m_pkthdr.len;
744
745	/*
746	 * For now, we assume non-shortgi, 20MHz, just because I want to
747	 * at least test 802.11n.
748	 */
749	if (ni->ni_txrate & IEEE80211_RATE_MCS)
750		frame_time = ieee80211_compute_duration_ht(framelen,
751		    ni->ni_txrate,
752		    IEEE80211_HT_RC_2_STREAMS(ni->ni_txrate),
753		    0, /* isht40 */
754		    0); /* isshortgi */
755	else
756		frame_time = ieee80211_compute_duration(ic->ic_rt, framelen,
757			    ni->ni_txrate, 0);
758	return (frame_time);
759}
760
761/*
762 * Check if the supplied frame can be partnered with an existing
763 * or pending frame.  Return a reference to any frame that should be
764 * sent on return; otherwise return NULL.
765 */
766struct mbuf *
767ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m)
768{
769	struct ieee80211vap *vap = ni->ni_vap;
770	struct ieee80211com *ic = ni->ni_ic;
771	struct ieee80211_superg *sg = ic->ic_superg;
772	const int pri = M_WME_GETAC(m);
773	struct ieee80211_stageq *sq;
774	struct ieee80211_tx_ampdu *tap;
775	struct mbuf *mstaged;
776	uint32_t txtime, limit;
777
778	IEEE80211_TX_UNLOCK_ASSERT(ic);
779
780	IEEE80211_LOCK(ic);
781	limit = IEEE80211_TXOP_TO_US(
782	    ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
783	IEEE80211_UNLOCK(ic);
784
785	/*
786	 * Check if the supplied frame can be aggregated.
787	 *
788	 * NB: we allow EAPOL frames to be aggregated with other ucast traffic.
789	 *     Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
790	 *     be aggregated with other types of frames when encryption is on?
791	 */
792	IEEE80211_FF_LOCK(ic);
793	tap = &ni->ni_tx_ampdu[WME_AC_TO_TID(pri)];
794	mstaged = ni->ni_tx_superg[WME_AC_TO_TID(pri)];
795	/* XXX NOTE: reusing packet counter state from A-MPDU */
796	/*
797	 * XXX NOTE: this means we're double-counting; it should just
798	 * be done in ieee80211_output.c once for both superg and A-MPDU.
799	 */
800	ieee80211_txampdu_count_packet(tap);
801
802	/*
803	 * When not in station mode never aggregate a multicast
804	 * frame; this insures, for example, that a combined frame
805	 * does not require multiple encryption keys.
806	 */
807	if (vap->iv_opmode != IEEE80211_M_STA &&
808	    ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) {
809		/* XXX flush staged frame? */
810		IEEE80211_FF_UNLOCK(ic);
811		return m;
812	}
813	/*
814	 * If there is no frame to combine with and the pps is
815	 * too low; then do not attempt to aggregate this frame.
816	 */
817	if (mstaged == NULL &&
818	    ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) {
819		IEEE80211_FF_UNLOCK(ic);
820		return m;
821	}
822	sq = &sg->ff_stageq[pri];
823	/*
824	 * Check the txop limit to insure the aggregate fits.
825	 */
826	if (limit != 0 &&
827	    (txtime = ff_approx_txtime(ni, m, mstaged)) > limit) {
828		/*
829		 * Aggregate too long, return to the caller for direct
830		 * transmission.  In addition, flush any pending frame
831		 * before sending this one.
832		 */
833		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
834		    "%s: txtime %u exceeds txop limit %u\n",
835		    __func__, txtime, limit);
836
837		ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL;
838		if (mstaged != NULL)
839			stageq_remove(ic, sq, mstaged);
840		IEEE80211_FF_UNLOCK(ic);
841
842		if (mstaged != NULL) {
843			IEEE80211_TX_LOCK(ic);
844			IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
845			    "%s: flush staged frame", __func__);
846			/* encap and xmit */
847			ff_transmit(ni, mstaged);
848			IEEE80211_TX_UNLOCK(ic);
849		}
850		return m;		/* NB: original frame */
851	}
852	/*
853	 * An aggregation candidate.  If there's a frame to partner
854	 * with then combine and return for processing.  Otherwise
855	 * save this frame and wait for a partner to show up (or
856	 * the frame to be flushed).  Note that staged frames also
857	 * hold their node reference.
858	 */
859	if (mstaged != NULL) {
860		ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL;
861		stageq_remove(ic, sq, mstaged);
862		IEEE80211_FF_UNLOCK(ic);
863
864		IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
865		    "%s: aggregate fast-frame", __func__);
866		/*
867		 * Release the node reference; we only need
868		 * the one already in mstaged.
869		 */
870		KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni,
871		    ("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni));
872		ieee80211_free_node(ni);
873
874		m->m_nextpkt = NULL;
875		mstaged->m_nextpkt = m;
876		mstaged->m_flags |= M_FF; /* NB: mark for encap work */
877	} else {
878		KASSERT(ni->ni_tx_superg[WME_AC_TO_TID(pri)] == NULL,
879		    ("ni_tx_superg[]: %p",
880		    ni->ni_tx_superg[WME_AC_TO_TID(pri)]));
881		ni->ni_tx_superg[WME_AC_TO_TID(pri)] = m;
882
883		stageq_add(ic, sq, m);
884		IEEE80211_FF_UNLOCK(ic);
885
886		IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
887		    "%s: stage frame, %u queued", __func__, sq->depth);
888		/* NB: mstaged is NULL */
889	}
890	return mstaged;
891}
892
893struct mbuf *
894ieee80211_amsdu_check(struct ieee80211_node *ni, struct mbuf *m)
895{
896	/*
897	 * XXX TODO: actually enforce the node support
898	 * and HTCAP requirements for the maximum A-MSDU
899	 * size.
900	 */
901
902	/* First: software A-MSDU transmit? */
903	if (! ieee80211_amsdu_tx_ok(ni))
904		return (m);
905
906	/* Next - EAPOL? Nope, don't aggregate; we don't QoS encap them */
907	if (m->m_flags & (M_EAPOL | M_MCAST | M_BCAST))
908		return (m);
909
910	/* Next - needs to be a data frame, non-broadcast, etc */
911	if (ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
912		return (m);
913
914	return (ieee80211_ff_check(ni, m));
915}
916
917void
918ieee80211_ff_node_init(struct ieee80211_node *ni)
919{
920	/*
921	 * Clean FF state on re-associate.  This handles the case
922	 * where a station leaves w/o notifying us and then returns
923	 * before node is reaped for inactivity.
924	 */
925	ieee80211_ff_node_cleanup(ni);
926}
927
928void
929ieee80211_ff_node_cleanup(struct ieee80211_node *ni)
930{
931	struct ieee80211com *ic = ni->ni_ic;
932	struct ieee80211_superg *sg = ic->ic_superg;
933	struct mbuf *m, *next_m, *head;
934	int tid;
935
936	IEEE80211_FF_LOCK(ic);
937	head = NULL;
938	for (tid = 0; tid < WME_NUM_TID; tid++) {
939		int ac = TID_TO_WME_AC(tid);
940		/*
941		 * XXX Initialise the packet counter.
942		 *
943		 * This may be double-work for 11n stations;
944		 * but without it we never setup things.
945		 */
946		ieee80211_txampdu_init_pps(&ni->ni_tx_ampdu[tid]);
947		m = ni->ni_tx_superg[tid];
948		if (m != NULL) {
949			ni->ni_tx_superg[tid] = NULL;
950			stageq_remove(ic, &sg->ff_stageq[ac], m);
951			m->m_nextpkt = head;
952			head = m;
953		}
954	}
955	IEEE80211_FF_UNLOCK(ic);
956
957	/*
958	 * Free mbufs, taking care to not dereference the mbuf after
959	 * we free it (hence grabbing m_nextpkt before we free it.)
960	 */
961	m = head;
962	while (m != NULL) {
963		next_m = m->m_nextpkt;
964		m_freem(m);
965		ieee80211_free_node(ni);
966		m = next_m;
967	}
968}
969
970/*
971 * Switch between turbo and non-turbo operating modes.
972 * Use the specified channel flags to locate the new
973 * channel, update 802.11 state, and then call back into
974 * the driver to effect the change.
975 */
976void
977ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags)
978{
979	struct ieee80211com *ic = vap->iv_ic;
980	struct ieee80211_channel *chan;
981
982	chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags);
983	if (chan == NULL) {		/* XXX should not happen */
984		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
985		    "%s: no channel with freq %u flags 0x%x\n",
986		    __func__, ic->ic_bsschan->ic_freq, newflags);
987		return;
988	}
989
990	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
991	    "%s: %s -> %s (freq %u flags 0x%x)\n", __func__,
992	    ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)],
993	    ieee80211_phymode_name[ieee80211_chan2mode(chan)],
994	    chan->ic_freq, chan->ic_flags);
995
996	ic->ic_bsschan = chan;
997	ic->ic_prevchan = ic->ic_curchan;
998	ic->ic_curchan = chan;
999	ic->ic_rt = ieee80211_get_ratetable(chan);
1000	ic->ic_set_channel(ic);
1001	ieee80211_radiotap_chan_change(ic);
1002	/* NB: do not need to reset ERP state 'cuz we're in sta mode */
1003}
1004
1005/*
1006 * Return the current ``state'' of an Atheros capbility.
1007 * If associated in station mode report the negotiated
1008 * setting. Otherwise report the current setting.
1009 */
1010static int
1011getathcap(struct ieee80211vap *vap, int cap)
1012{
1013	if (vap->iv_opmode == IEEE80211_M_STA &&
1014	    vap->iv_state == IEEE80211_S_RUN)
1015		return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0;
1016	else
1017		return (vap->iv_flags & cap) != 0;
1018}
1019
1020static int
1021superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
1022{
1023	switch (ireq->i_type) {
1024	case IEEE80211_IOC_FF:
1025		ireq->i_val = getathcap(vap, IEEE80211_F_FF);
1026		break;
1027	case IEEE80211_IOC_TURBOP:
1028		ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP);
1029		break;
1030	default:
1031		return ENOSYS;
1032	}
1033	return 0;
1034}
1035IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211);
1036
1037static int
1038superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
1039{
1040	switch (ireq->i_type) {
1041	case IEEE80211_IOC_FF:
1042		if (ireq->i_val) {
1043			if ((vap->iv_caps & IEEE80211_C_FF) == 0)
1044				return EOPNOTSUPP;
1045			vap->iv_flags |= IEEE80211_F_FF;
1046		} else
1047			vap->iv_flags &= ~IEEE80211_F_FF;
1048		return ENETRESET;
1049	case IEEE80211_IOC_TURBOP:
1050		if (ireq->i_val) {
1051			if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0)
1052				return EOPNOTSUPP;
1053			vap->iv_flags |= IEEE80211_F_TURBOP;
1054		} else
1055			vap->iv_flags &= ~IEEE80211_F_TURBOP;
1056		return ENETRESET;
1057	default:
1058		return ENOSYS;
1059	}
1060}
1061IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211);
1062
1063#endif	/* IEEE80211_SUPPORT_SUPERG */
1064