1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 * Copyright 2012 ADARA Networks, Inc.
4 * Copyright 2017 Dell EMC Isilon
5 *
6 * Portions of this software were developed by Robert N. M. Watson under
7 * contract to ADARA Networks, Inc.
8 *
9 * Permission to use, copy, modify, and distribute this software and
10 * its documentation for any purpose and without fee is hereby
11 * granted, provided that both the above copyright notice and this
12 * permission notice appear in all copies, that both the above
13 * copyright notice and this permission notice appear in all
14 * supporting documentation, and that the name of M.I.T. not be used
15 * in advertising or publicity pertaining to distribution of the
16 * software without specific, written prior permission.  M.I.T. makes
17 * no representations about the suitability of this software for any
18 * purpose.  It is provided "as is" without express or implied
19 * warranty.
20 *
21 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
22 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35/*
36 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37 * This is sort of sneaky in the implementation, since
38 * we need to pretend to be enough of an Ethernet implementation
39 * to make arp work.  The way we do this is by telling everyone
40 * that we are an Ethernet, and then catch the packets that
41 * ether_output() sends to us via if_transmit(), rewrite them for
42 * use by the real outgoing interface, and ask it to send them.
43 */
44
45#include <sys/cdefs.h>
46#include "opt_inet.h"
47#include "opt_inet6.h"
48#include "opt_kern_tls.h"
49#include "opt_vlan.h"
50#include "opt_ratelimit.h"
51
52#include <sys/param.h>
53#include <sys/eventhandler.h>
54#include <sys/kernel.h>
55#include <sys/lock.h>
56#include <sys/malloc.h>
57#include <sys/mbuf.h>
58#include <sys/module.h>
59#include <sys/rmlock.h>
60#include <sys/priv.h>
61#include <sys/queue.h>
62#include <sys/socket.h>
63#include <sys/sockio.h>
64#include <sys/sysctl.h>
65#include <sys/systm.h>
66#include <sys/sx.h>
67#include <sys/taskqueue.h>
68
69#include <net/bpf.h>
70#include <net/ethernet.h>
71#include <net/if.h>
72#include <net/if_var.h>
73#include <net/if_private.h>
74#include <net/if_clone.h>
75#include <net/if_dl.h>
76#include <net/if_types.h>
77#include <net/if_vlan_var.h>
78#include <net/route.h>
79#include <net/vnet.h>
80
81#ifdef INET
82#include <netinet/in.h>
83#include <netinet/if_ether.h>
84#endif
85
86#include <netlink/netlink.h>
87#include <netlink/netlink_ctl.h>
88#include <netlink/netlink_route.h>
89#include <netlink/route/route_var.h>
90
91#define	VLAN_DEF_HWIDTH	4
92#define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
93
94#define	UP_AND_RUNNING(ifp) \
95    ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
96
97CK_SLIST_HEAD(ifvlanhead, ifvlan);
98
99struct ifvlantrunk {
100	struct	ifnet   *parent;	/* parent interface of this trunk */
101	struct	mtx	lock;
102#ifdef VLAN_ARRAY
103#define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
104	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
105#else
106	struct	ifvlanhead *hash;	/* dynamic hash-list table */
107	uint16_t	hmask;
108	uint16_t	hwidth;
109#endif
110	int		refcnt;
111};
112
113#if defined(KERN_TLS) || defined(RATELIMIT)
114struct vlan_snd_tag {
115	struct m_snd_tag com;
116	struct m_snd_tag *tag;
117};
118
119static inline struct vlan_snd_tag *
120mst_to_vst(struct m_snd_tag *mst)
121{
122
123	return (__containerof(mst, struct vlan_snd_tag, com));
124}
125#endif
126
127/*
128 * This macro provides a facility to iterate over every vlan on a trunk with
129 * the assumption that none will be added/removed during iteration.
130 */
131#ifdef VLAN_ARRAY
132#define VLAN_FOREACH(_ifv, _trunk) \
133	size_t _i; \
134	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
135		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
136#else /* VLAN_ARRAY */
137#define VLAN_FOREACH(_ifv, _trunk) \
138	struct ifvlan *_next; \
139	size_t _i; \
140	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
141		CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
142#endif /* VLAN_ARRAY */
143
144/*
145 * This macro provides a facility to iterate over every vlan on a trunk while
146 * also modifying the number of vlans on the trunk. The iteration continues
147 * until some condition is met or there are no more vlans on the trunk.
148 */
149#ifdef VLAN_ARRAY
150/* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
151#define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
152	size_t _i; \
153	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
154		if (((_ifv) = (_trunk)->vlans[_i]))
155#else /* VLAN_ARRAY */
156/*
157 * The hash table case is more complicated. We allow for the hash table to be
158 * modified (i.e. vlans removed) while we are iterating over it. To allow for
159 * this we must restart the iteration every time we "touch" something during
160 * the iteration, since removal will resize the hash table and invalidate our
161 * current position. If acting on the touched element causes the trunk to be
162 * emptied, then iteration also stops.
163 */
164#define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
165	size_t _i; \
166	bool _touch = false; \
167	for (_i = 0; \
168	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
169	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
170		if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
171		    (_touch = true))
172#endif /* VLAN_ARRAY */
173
174struct vlan_mc_entry {
175	struct sockaddr_dl		mc_addr;
176	CK_SLIST_ENTRY(vlan_mc_entry)	mc_entries;
177	struct epoch_context		mc_epoch_ctx;
178};
179
180struct ifvlan {
181	struct	ifvlantrunk *ifv_trunk;
182	struct	ifnet *ifv_ifp;
183#define	TRUNK(ifv)	((ifv)->ifv_trunk)
184#define	PARENT(ifv)	(TRUNK(ifv)->parent)
185	void	*ifv_cookie;
186	int	ifv_pflags;	/* special flags we have set on parent */
187	int	ifv_capenable;
188	int	ifv_encaplen;	/* encapsulation length */
189	int	ifv_mtufudge;	/* MTU fudged by this much */
190	int	ifv_mintu;	/* min transmission unit */
191	struct  ether_8021q_tag ifv_qtag;
192#define ifv_proto	ifv_qtag.proto
193#define ifv_vid		ifv_qtag.vid
194#define ifv_pcp		ifv_qtag.pcp
195	struct task lladdr_task;
196	CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
197#ifndef VLAN_ARRAY
198	CK_SLIST_ENTRY(ifvlan) ifv_list;
199#endif
200};
201
202/* Special flags we should propagate to parent. */
203static struct {
204	int flag;
205	int (*func)(struct ifnet *, int);
206} vlan_pflags[] = {
207	{IFF_PROMISC, ifpromisc},
208	{IFF_ALLMULTI, if_allmulti},
209	{0, NULL}
210};
211
212VNET_DECLARE(int, vlan_mtag_pcp);
213#define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
214
215static const char vlanname[] = "vlan";
216static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
217
218static eventhandler_tag ifdetach_tag;
219static eventhandler_tag iflladdr_tag;
220static eventhandler_tag ifevent_tag;
221
222/*
223 * if_vlan uses two module-level synchronizations primitives to allow concurrent
224 * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
225 * while they are being used for tx/rx. To accomplish this in a way that has
226 * acceptable performance and cooperation with other parts of the network stack
227 * there is a non-sleepable epoch(9) and an sx(9).
228 *
229 * The performance-sensitive paths that warrant using the epoch(9) are
230 * vlan_transmit and vlan_input. Both have to check for the vlan interface's
231 * existence using if_vlantrunk, and being in the network tx/rx paths the use
232 * of an epoch(9) gives a measureable improvement in performance.
233 *
234 * The reason for having an sx(9) is mostly because there are still areas that
235 * must be sleepable and also have safe concurrent access to a vlan interface.
236 * Since the sx(9) exists, it is used by default in most paths unless sleeping
237 * is not permitted, or if it is not clear whether sleeping is permitted.
238 *
239 */
240#define _VLAN_SX_ID ifv_sx
241
242static struct sx _VLAN_SX_ID;
243
244#define VLAN_LOCKING_INIT() \
245	sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE)
246
247#define VLAN_LOCKING_DESTROY() \
248	sx_destroy(&_VLAN_SX_ID)
249
250#define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
251#define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
252#define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
253#define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
254#define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
255#define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
256#define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
257
258/*
259 * We also have a per-trunk mutex that should be acquired when changing
260 * its state.
261 */
262#define	TRUNK_LOCK_INIT(trunk)		mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
263#define	TRUNK_LOCK_DESTROY(trunk)	mtx_destroy(&(trunk)->lock)
264#define	TRUNK_WLOCK(trunk)		mtx_lock(&(trunk)->lock)
265#define	TRUNK_WUNLOCK(trunk)		mtx_unlock(&(trunk)->lock)
266#define	TRUNK_WLOCK_ASSERT(trunk)	mtx_assert(&(trunk)->lock, MA_OWNED);
267
268/*
269 * The VLAN_ARRAY substitutes the dynamic hash with a static array
270 * with 4096 entries. In theory this can give a boost in processing,
271 * however in practice it does not. Probably this is because the array
272 * is too big to fit into CPU cache.
273 */
274#ifndef VLAN_ARRAY
275static	void vlan_inithash(struct ifvlantrunk *trunk);
276static	void vlan_freehash(struct ifvlantrunk *trunk);
277static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
278static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
279static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
280static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
281	uint16_t vid);
282#endif
283static	void trunk_destroy(struct ifvlantrunk *trunk);
284
285static	void vlan_init(void *foo);
286static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
287static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
288#if defined(KERN_TLS) || defined(RATELIMIT)
289static	int vlan_snd_tag_alloc(struct ifnet *,
290    union if_snd_tag_alloc_params *, struct m_snd_tag **);
291static	int vlan_snd_tag_modify(struct m_snd_tag *,
292    union if_snd_tag_modify_params *);
293static	int vlan_snd_tag_query(struct m_snd_tag *,
294    union if_snd_tag_query_params *);
295static	void vlan_snd_tag_free(struct m_snd_tag *);
296static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *);
297static void vlan_ratelimit_query(struct ifnet *,
298    struct if_ratelimit_query_results *);
299#endif
300static	void vlan_qflush(struct ifnet *ifp);
301static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
302    int (*func)(struct ifnet *, int));
303static	int vlan_setflags(struct ifnet *ifp, int status);
304static	int vlan_setmulti(struct ifnet *ifp);
305static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
306#ifdef ALTQ
307static void vlan_altq_start(struct ifnet *ifp);
308static	int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m);
309#endif
310static	int vlan_output(struct ifnet *ifp, struct mbuf *m,
311    const struct sockaddr *dst, struct route *ro);
312static	void vlan_unconfig(struct ifnet *ifp);
313static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
314static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag,
315	uint16_t proto);
316static	void vlan_link_state(struct ifnet *ifp);
317static	void vlan_capabilities(struct ifvlan *ifv);
318static	void vlan_trunk_capabilities(struct ifnet *ifp);
319
320static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
321static	int vlan_clone_match(struct if_clone *, const char *);
322static	int vlan_clone_create(struct if_clone *, char *, size_t,
323    struct ifc_data *, struct ifnet **);
324static	int vlan_clone_destroy(struct if_clone *, struct ifnet *, uint32_t);
325
326static int vlan_clone_create_nl(struct if_clone *ifc, char *name, size_t len,
327    struct ifc_data_nl *ifd);
328static int vlan_clone_modify_nl(struct ifnet *ifp, struct ifc_data_nl *ifd);
329static void vlan_clone_dump_nl(struct ifnet *ifp, struct nl_writer *nw);
330
331static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
332static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
333static  void vlan_ifevent(void *arg, struct ifnet *ifp, int event);
334
335static  void vlan_lladdr_fn(void *arg, int pending);
336
337static struct if_clone *vlan_cloner;
338
339#ifdef VIMAGE
340VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
341#define	V_vlan_cloner	VNET(vlan_cloner)
342#endif
343
344#ifdef RATELIMIT
345static const struct if_snd_tag_sw vlan_snd_tag_ul_sw = {
346	.snd_tag_modify = vlan_snd_tag_modify,
347	.snd_tag_query = vlan_snd_tag_query,
348	.snd_tag_free = vlan_snd_tag_free,
349	.next_snd_tag = vlan_next_snd_tag,
350	.type = IF_SND_TAG_TYPE_UNLIMITED
351};
352
353static const struct if_snd_tag_sw vlan_snd_tag_rl_sw = {
354	.snd_tag_modify = vlan_snd_tag_modify,
355	.snd_tag_query = vlan_snd_tag_query,
356	.snd_tag_free = vlan_snd_tag_free,
357	.next_snd_tag = vlan_next_snd_tag,
358	.type = IF_SND_TAG_TYPE_RATE_LIMIT
359};
360#endif
361
362#ifdef KERN_TLS
363static const struct if_snd_tag_sw vlan_snd_tag_tls_sw = {
364	.snd_tag_modify = vlan_snd_tag_modify,
365	.snd_tag_query = vlan_snd_tag_query,
366	.snd_tag_free = vlan_snd_tag_free,
367	.next_snd_tag = vlan_next_snd_tag,
368	.type = IF_SND_TAG_TYPE_TLS
369};
370
371#ifdef RATELIMIT
372static const struct if_snd_tag_sw vlan_snd_tag_tls_rl_sw = {
373	.snd_tag_modify = vlan_snd_tag_modify,
374	.snd_tag_query = vlan_snd_tag_query,
375	.snd_tag_free = vlan_snd_tag_free,
376	.next_snd_tag = vlan_next_snd_tag,
377	.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT
378};
379#endif
380#endif
381
382static void
383vlan_mc_free(struct epoch_context *ctx)
384{
385	struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
386	free(mc, M_VLAN);
387}
388
389#ifndef VLAN_ARRAY
390#define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
391
392static void
393vlan_inithash(struct ifvlantrunk *trunk)
394{
395	int i, n;
396
397	/*
398	 * The trunk must not be locked here since we call malloc(M_WAITOK).
399	 * It is OK in case this function is called before the trunk struct
400	 * gets hooked up and becomes visible from other threads.
401	 */
402
403	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
404	    ("%s: hash already initialized", __func__));
405
406	trunk->hwidth = VLAN_DEF_HWIDTH;
407	n = 1 << trunk->hwidth;
408	trunk->hmask = n - 1;
409	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
410	for (i = 0; i < n; i++)
411		CK_SLIST_INIT(&trunk->hash[i]);
412}
413
414static void
415vlan_freehash(struct ifvlantrunk *trunk)
416{
417#ifdef INVARIANTS
418	int i;
419
420	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
421	for (i = 0; i < (1 << trunk->hwidth); i++)
422		KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
423		    ("%s: hash table not empty", __func__));
424#endif
425	free(trunk->hash, M_VLAN);
426	trunk->hash = NULL;
427	trunk->hwidth = trunk->hmask = 0;
428}
429
430static int
431vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
432{
433	int i, b;
434	struct ifvlan *ifv2;
435
436	VLAN_XLOCK_ASSERT();
437	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
438
439	b = 1 << trunk->hwidth;
440	i = HASH(ifv->ifv_vid, trunk->hmask);
441	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
442		if (ifv->ifv_vid == ifv2->ifv_vid)
443			return (EEXIST);
444
445	/*
446	 * Grow the hash when the number of vlans exceeds half of the number of
447	 * hash buckets squared. This will make the average linked-list length
448	 * buckets/2.
449	 */
450	if (trunk->refcnt > (b * b) / 2) {
451		vlan_growhash(trunk, 1);
452		i = HASH(ifv->ifv_vid, trunk->hmask);
453	}
454	CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
455	trunk->refcnt++;
456
457	return (0);
458}
459
460static int
461vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
462{
463	int i, b;
464	struct ifvlan *ifv2;
465
466	VLAN_XLOCK_ASSERT();
467	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
468
469	b = 1 << (trunk->hwidth - 1);
470	i = HASH(ifv->ifv_vid, trunk->hmask);
471	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
472		if (ifv2 == ifv) {
473			trunk->refcnt--;
474			CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
475			if (trunk->refcnt < (b * b) / 2)
476				vlan_growhash(trunk, -1);
477			return (0);
478		}
479
480	panic("%s: vlan not found\n", __func__);
481	return (ENOENT); /*NOTREACHED*/
482}
483
484/*
485 * Grow the hash larger or smaller if memory permits.
486 */
487static void
488vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
489{
490	struct ifvlan *ifv;
491	struct ifvlanhead *hash2;
492	int hwidth2, i, j, n, n2;
493
494	VLAN_XLOCK_ASSERT();
495	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
496
497	if (howmuch == 0) {
498		/* Harmless yet obvious coding error */
499		printf("%s: howmuch is 0\n", __func__);
500		return;
501	}
502
503	hwidth2 = trunk->hwidth + howmuch;
504	n = 1 << trunk->hwidth;
505	n2 = 1 << hwidth2;
506	/* Do not shrink the table below the default */
507	if (hwidth2 < VLAN_DEF_HWIDTH)
508		return;
509
510	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
511	if (hash2 == NULL) {
512		printf("%s: out of memory -- hash size not changed\n",
513		    __func__);
514		return;		/* We can live with the old hash table */
515	}
516	for (j = 0; j < n2; j++)
517		CK_SLIST_INIT(&hash2[j]);
518	for (i = 0; i < n; i++)
519		while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
520			CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
521			j = HASH(ifv->ifv_vid, n2 - 1);
522			CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
523		}
524	NET_EPOCH_WAIT();
525	free(trunk->hash, M_VLAN);
526	trunk->hash = hash2;
527	trunk->hwidth = hwidth2;
528	trunk->hmask = n2 - 1;
529
530	if (bootverbose)
531		if_printf(trunk->parent,
532		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
533}
534
535static __inline struct ifvlan *
536vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
537{
538	struct ifvlan *ifv;
539
540	NET_EPOCH_ASSERT();
541
542	CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
543		if (ifv->ifv_vid == vid)
544			return (ifv);
545	return (NULL);
546}
547
548#if 0
549/* Debugging code to view the hashtables. */
550static void
551vlan_dumphash(struct ifvlantrunk *trunk)
552{
553	int i;
554	struct ifvlan *ifv;
555
556	for (i = 0; i < (1 << trunk->hwidth); i++) {
557		printf("%d: ", i);
558		CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
559			printf("%s ", ifv->ifv_ifp->if_xname);
560		printf("\n");
561	}
562}
563#endif /* 0 */
564#else
565
566static __inline struct ifvlan *
567vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
568{
569
570	return trunk->vlans[vid];
571}
572
573static __inline int
574vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
575{
576
577	if (trunk->vlans[ifv->ifv_vid] != NULL)
578		return EEXIST;
579	trunk->vlans[ifv->ifv_vid] = ifv;
580	trunk->refcnt++;
581
582	return (0);
583}
584
585static __inline int
586vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
587{
588
589	trunk->vlans[ifv->ifv_vid] = NULL;
590	trunk->refcnt--;
591
592	return (0);
593}
594
595static __inline void
596vlan_freehash(struct ifvlantrunk *trunk)
597{
598}
599
600static __inline void
601vlan_inithash(struct ifvlantrunk *trunk)
602{
603}
604
605#endif /* !VLAN_ARRAY */
606
607static void
608trunk_destroy(struct ifvlantrunk *trunk)
609{
610	VLAN_XLOCK_ASSERT();
611
612	vlan_freehash(trunk);
613	trunk->parent->if_vlantrunk = NULL;
614	TRUNK_LOCK_DESTROY(trunk);
615	if_rele(trunk->parent);
616	free(trunk, M_VLAN);
617}
618
619/*
620 * Program our multicast filter. What we're actually doing is
621 * programming the multicast filter of the parent. This has the
622 * side effect of causing the parent interface to receive multicast
623 * traffic that it doesn't really want, which ends up being discarded
624 * later by the upper protocol layers. Unfortunately, there's no way
625 * to avoid this: there really is only one physical interface.
626 */
627static int
628vlan_setmulti(struct ifnet *ifp)
629{
630	struct ifnet		*ifp_p;
631	struct ifmultiaddr	*ifma;
632	struct ifvlan		*sc;
633	struct vlan_mc_entry	*mc;
634	int			error;
635
636	VLAN_XLOCK_ASSERT();
637
638	/* Find the parent. */
639	sc = ifp->if_softc;
640	ifp_p = PARENT(sc);
641
642	CURVNET_SET_QUIET(ifp_p->if_vnet);
643
644	/* First, remove any existing filter entries. */
645	while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
646		CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
647		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
648		NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
649	}
650
651	/* Now program new ones. */
652	IF_ADDR_WLOCK(ifp);
653	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
654		if (ifma->ifma_addr->sa_family != AF_LINK)
655			continue;
656		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
657		if (mc == NULL) {
658			IF_ADDR_WUNLOCK(ifp);
659			CURVNET_RESTORE();
660			return (ENOMEM);
661		}
662		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
663		mc->mc_addr.sdl_index = ifp_p->if_index;
664		CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
665	}
666	IF_ADDR_WUNLOCK(ifp);
667	CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
668		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
669		    NULL);
670		if (error) {
671			CURVNET_RESTORE();
672			return (error);
673		}
674	}
675
676	CURVNET_RESTORE();
677	return (0);
678}
679
680/*
681 * A handler for interface ifnet events.
682 */
683static void
684vlan_ifevent(void *arg __unused, struct ifnet *ifp, int event)
685{
686	struct epoch_tracker et;
687	struct ifvlan *ifv;
688	struct ifvlantrunk *trunk;
689
690	if (event != IFNET_EVENT_UPDATE_BAUDRATE)
691		return;
692
693	NET_EPOCH_ENTER(et);
694	trunk = ifp->if_vlantrunk;
695	if (trunk == NULL) {
696		NET_EPOCH_EXIT(et);
697		return;
698	}
699
700	TRUNK_WLOCK(trunk);
701	VLAN_FOREACH(ifv, trunk) {
702		ifv->ifv_ifp->if_baudrate = ifp->if_baudrate;
703	}
704	TRUNK_WUNLOCK(trunk);
705	NET_EPOCH_EXIT(et);
706}
707
708/*
709 * A handler for parent interface link layer address changes.
710 * If the parent interface link layer address is changed we
711 * should also change it on all children vlans.
712 */
713static void
714vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
715{
716	struct epoch_tracker et;
717	struct ifvlan *ifv;
718	struct ifnet *ifv_ifp;
719	struct ifvlantrunk *trunk;
720	struct sockaddr_dl *sdl;
721
722	/* Need the epoch since this is run on taskqueue_swi. */
723	NET_EPOCH_ENTER(et);
724	trunk = ifp->if_vlantrunk;
725	if (trunk == NULL) {
726		NET_EPOCH_EXIT(et);
727		return;
728	}
729
730	/*
731	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
732	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
733	 * ioctl calls on the parent garbling the lladdr of the child vlan.
734	 */
735	TRUNK_WLOCK(trunk);
736	VLAN_FOREACH(ifv, trunk) {
737		/*
738		 * Copy new new lladdr into the ifv_ifp, enqueue a task
739		 * to actually call if_setlladdr. if_setlladdr needs to
740		 * be deferred to a taskqueue because it will call into
741		 * the if_vlan ioctl path and try to acquire the global
742		 * lock.
743		 */
744		ifv_ifp = ifv->ifv_ifp;
745		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
746		    ifp->if_addrlen);
747		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
748		sdl->sdl_alen = ifp->if_addrlen;
749		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
750	}
751	TRUNK_WUNLOCK(trunk);
752	NET_EPOCH_EXIT(et);
753}
754
755/*
756 * A handler for network interface departure events.
757 * Track departure of trunks here so that we don't access invalid
758 * pointers or whatever if a trunk is ripped from under us, e.g.,
759 * by ejecting its hot-plug card.  However, if an ifnet is simply
760 * being renamed, then there's no need to tear down the state.
761 */
762static void
763vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
764{
765	struct ifvlan *ifv;
766	struct ifvlantrunk *trunk;
767
768	/* If the ifnet is just being renamed, don't do anything. */
769	if (ifp->if_flags & IFF_RENAMING)
770		return;
771	VLAN_XLOCK();
772	trunk = ifp->if_vlantrunk;
773	if (trunk == NULL) {
774		VLAN_XUNLOCK();
775		return;
776	}
777
778	/*
779	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
780	 * Check trunk pointer after each vlan_unconfig() as it will
781	 * free it and set to NULL after the last vlan was detached.
782	 */
783	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
784	    ifp->if_vlantrunk == NULL)
785		vlan_unconfig_locked(ifv->ifv_ifp, 1);
786
787	/* Trunk should have been destroyed in vlan_unconfig(). */
788	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
789	VLAN_XUNLOCK();
790}
791
792/*
793 * Return the trunk device for a virtual interface.
794 */
795static struct ifnet  *
796vlan_trunkdev(struct ifnet *ifp)
797{
798	struct ifvlan *ifv;
799
800	NET_EPOCH_ASSERT();
801
802	if (ifp->if_type != IFT_L2VLAN)
803		return (NULL);
804
805	ifv = ifp->if_softc;
806	ifp = NULL;
807	if (ifv->ifv_trunk)
808		ifp = PARENT(ifv);
809	return (ifp);
810}
811
812/*
813 * Return the 12-bit VLAN VID for this interface, for use by external
814 * components such as Infiniband.
815 *
816 * XXXRW: Note that the function name here is historical; it should be named
817 * vlan_vid().
818 */
819static int
820vlan_tag(struct ifnet *ifp, uint16_t *vidp)
821{
822	struct ifvlan *ifv;
823
824	if (ifp->if_type != IFT_L2VLAN)
825		return (EINVAL);
826	ifv = ifp->if_softc;
827	*vidp = ifv->ifv_vid;
828	return (0);
829}
830
831static int
832vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
833{
834	struct ifvlan *ifv;
835
836	if (ifp->if_type != IFT_L2VLAN)
837		return (EINVAL);
838	ifv = ifp->if_softc;
839	*pcpp = ifv->ifv_pcp;
840	return (0);
841}
842
843/*
844 * Return a driver specific cookie for this interface.  Synchronization
845 * with setcookie must be provided by the driver.
846 */
847static void *
848vlan_cookie(struct ifnet *ifp)
849{
850	struct ifvlan *ifv;
851
852	if (ifp->if_type != IFT_L2VLAN)
853		return (NULL);
854	ifv = ifp->if_softc;
855	return (ifv->ifv_cookie);
856}
857
858/*
859 * Store a cookie in our softc that drivers can use to store driver
860 * private per-instance data in.
861 */
862static int
863vlan_setcookie(struct ifnet *ifp, void *cookie)
864{
865	struct ifvlan *ifv;
866
867	if (ifp->if_type != IFT_L2VLAN)
868		return (EINVAL);
869	ifv = ifp->if_softc;
870	ifv->ifv_cookie = cookie;
871	return (0);
872}
873
874/*
875 * Return the vlan device present at the specific VID.
876 */
877static struct ifnet *
878vlan_devat(struct ifnet *ifp, uint16_t vid)
879{
880	struct ifvlantrunk *trunk;
881	struct ifvlan *ifv;
882
883	NET_EPOCH_ASSERT();
884
885	trunk = ifp->if_vlantrunk;
886	if (trunk == NULL)
887		return (NULL);
888	ifp = NULL;
889	ifv = vlan_gethash(trunk, vid);
890	if (ifv)
891		ifp = ifv->ifv_ifp;
892	return (ifp);
893}
894
895/*
896 * VLAN support can be loaded as a module.  The only place in the
897 * system that's intimately aware of this is ether_input.  We hook
898 * into this code through vlan_input_p which is defined there and
899 * set here.  No one else in the system should be aware of this so
900 * we use an explicit reference here.
901 */
902extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
903
904/* For if_link_state_change() eyes only... */
905extern	void (*vlan_link_state_p)(struct ifnet *);
906
907static struct if_clone_addreq_v2 vlan_addreq = {
908	.version = 2,
909	.match_f = vlan_clone_match,
910	.create_f = vlan_clone_create,
911	.destroy_f = vlan_clone_destroy,
912	.create_nl_f = vlan_clone_create_nl,
913	.modify_nl_f = vlan_clone_modify_nl,
914	.dump_nl_f = vlan_clone_dump_nl,
915};
916
917static int
918vlan_modevent(module_t mod, int type, void *data)
919{
920
921	switch (type) {
922	case MOD_LOAD:
923		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
924		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
925		if (ifdetach_tag == NULL)
926			return (ENOMEM);
927		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
928		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
929		if (iflladdr_tag == NULL)
930			return (ENOMEM);
931		ifevent_tag = EVENTHANDLER_REGISTER(ifnet_event,
932		    vlan_ifevent, NULL, EVENTHANDLER_PRI_ANY);
933		if (ifevent_tag == NULL)
934			return (ENOMEM);
935		VLAN_LOCKING_INIT();
936		vlan_input_p = vlan_input;
937		vlan_link_state_p = vlan_link_state;
938		vlan_trunk_cap_p = vlan_trunk_capabilities;
939		vlan_trunkdev_p = vlan_trunkdev;
940		vlan_cookie_p = vlan_cookie;
941		vlan_setcookie_p = vlan_setcookie;
942		vlan_tag_p = vlan_tag;
943		vlan_pcp_p = vlan_pcp;
944		vlan_devat_p = vlan_devat;
945#ifndef VIMAGE
946		vlan_cloner = ifc_attach_cloner(vlanname, (struct if_clone_addreq *)&vlan_addreq);
947#endif
948		if (bootverbose)
949			printf("vlan: initialized, using "
950#ifdef VLAN_ARRAY
951			       "full-size arrays"
952#else
953			       "hash tables with chaining"
954#endif
955
956			       "\n");
957		break;
958	case MOD_UNLOAD:
959#ifndef VIMAGE
960		ifc_detach_cloner(vlan_cloner);
961#endif
962		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
963		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
964		EVENTHANDLER_DEREGISTER(ifnet_event, ifevent_tag);
965		vlan_input_p = NULL;
966		vlan_link_state_p = NULL;
967		vlan_trunk_cap_p = NULL;
968		vlan_trunkdev_p = NULL;
969		vlan_tag_p = NULL;
970		vlan_cookie_p = NULL;
971		vlan_setcookie_p = NULL;
972		vlan_devat_p = NULL;
973		VLAN_LOCKING_DESTROY();
974		if (bootverbose)
975			printf("vlan: unloaded\n");
976		break;
977	default:
978		return (EOPNOTSUPP);
979	}
980	return (0);
981}
982
983static moduledata_t vlan_mod = {
984	"if_vlan",
985	vlan_modevent,
986	0
987};
988
989DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
990MODULE_VERSION(if_vlan, 3);
991
992#ifdef VIMAGE
993static void
994vnet_vlan_init(const void *unused __unused)
995{
996	vlan_cloner = ifc_attach_cloner(vlanname, (struct if_clone_addreq *)&vlan_addreq);
997	V_vlan_cloner = vlan_cloner;
998}
999VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
1000    vnet_vlan_init, NULL);
1001
1002static void
1003vnet_vlan_uninit(const void *unused __unused)
1004{
1005
1006	ifc_detach_cloner(V_vlan_cloner);
1007}
1008VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
1009    vnet_vlan_uninit, NULL);
1010#endif
1011
1012/*
1013 * Check for <etherif>.<vlan>[.<vlan> ...] style interface names.
1014 */
1015static struct ifnet *
1016vlan_clone_match_ethervid(const char *name, int *vidp)
1017{
1018	char ifname[IFNAMSIZ];
1019	char *cp;
1020	struct ifnet *ifp;
1021	int vid;
1022
1023	strlcpy(ifname, name, IFNAMSIZ);
1024	if ((cp = strrchr(ifname, '.')) == NULL)
1025		return (NULL);
1026	*cp = '\0';
1027	if ((ifp = ifunit_ref(ifname)) == NULL)
1028		return (NULL);
1029	/* Parse VID. */
1030	if (*++cp == '\0') {
1031		if_rele(ifp);
1032		return (NULL);
1033	}
1034	vid = 0;
1035	for(; *cp >= '0' && *cp <= '9'; cp++)
1036		vid = (vid * 10) + (*cp - '0');
1037	if (*cp != '\0') {
1038		if_rele(ifp);
1039		return (NULL);
1040	}
1041	if (vidp != NULL)
1042		*vidp = vid;
1043
1044	return (ifp);
1045}
1046
1047static int
1048vlan_clone_match(struct if_clone *ifc, const char *name)
1049{
1050	struct ifnet *ifp;
1051	const char *cp;
1052
1053	ifp = vlan_clone_match_ethervid(name, NULL);
1054	if (ifp != NULL) {
1055		if_rele(ifp);
1056		return (1);
1057	}
1058
1059	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
1060		return (0);
1061	for (cp = name + 4; *cp != '\0'; cp++) {
1062		if (*cp < '0' || *cp > '9')
1063			return (0);
1064	}
1065
1066	return (1);
1067}
1068
1069static int
1070vlan_clone_create(struct if_clone *ifc, char *name, size_t len,
1071    struct ifc_data *ifd, struct ifnet **ifpp)
1072{
1073	char *dp;
1074	bool wildcard = false;
1075	bool subinterface = false;
1076	int unit;
1077	int error;
1078	int vid = 0;
1079	uint16_t proto = ETHERTYPE_VLAN;
1080	struct ifvlan *ifv;
1081	struct ifnet *ifp;
1082	struct ifnet *p = NULL;
1083	struct ifaddr *ifa;
1084	struct sockaddr_dl *sdl;
1085	struct vlanreq vlr;
1086	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
1087
1088
1089	/*
1090	 * There are three ways to specify the cloned device:
1091	 * o pass a parameter block with the clone request.
1092	 * o specify parameters in the text of the clone device name
1093	 * o specify no parameters and get an unattached device that
1094	 *   must be configured separately.
1095	 * The first technique is preferred; the latter two are supported
1096	 * for backwards compatibility.
1097	 *
1098	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
1099	 * called for.
1100	 */
1101
1102	if (ifd->params != NULL) {
1103		error = ifc_copyin(ifd, &vlr, sizeof(vlr));
1104		if (error)
1105			return error;
1106		vid = vlr.vlr_tag;
1107		proto = vlr.vlr_proto;
1108		if (proto == 0)
1109			proto = ETHERTYPE_VLAN;
1110		p = ifunit_ref(vlr.vlr_parent);
1111		if (p == NULL)
1112			return (ENXIO);
1113	}
1114
1115	if ((error = ifc_name2unit(name, &unit)) == 0) {
1116
1117		/*
1118		 * vlanX interface. Set wildcard to true if the unit number
1119		 * is not fixed (-1)
1120		 */
1121		wildcard = (unit < 0);
1122	} else {
1123		struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid);
1124		if (p_tmp != NULL) {
1125			error = 0;
1126			subinterface = true;
1127			unit = IF_DUNIT_NONE;
1128			wildcard = false;
1129			if (p != NULL) {
1130				if_rele(p_tmp);
1131				if (p != p_tmp)
1132					error = EINVAL;
1133			} else
1134				p = p_tmp;
1135		} else
1136			error = ENXIO;
1137	}
1138
1139	if (error != 0) {
1140		if (p != NULL)
1141			if_rele(p);
1142		return (error);
1143	}
1144
1145	if (!subinterface) {
1146		/* vlanX interface, mark X as busy or allocate new unit # */
1147		error = ifc_alloc_unit(ifc, &unit);
1148		if (error != 0) {
1149			if (p != NULL)
1150				if_rele(p);
1151			return (error);
1152		}
1153	}
1154
1155	/* In the wildcard case, we need to update the name. */
1156	if (wildcard) {
1157		for (dp = name; *dp != '\0'; dp++);
1158		if (snprintf(dp, len - (dp-name), "%d", unit) >
1159		    len - (dp-name) - 1) {
1160			panic("%s: interface name too long", __func__);
1161		}
1162	}
1163
1164	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1165	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1166	if (ifp == NULL) {
1167		if (!subinterface)
1168			ifc_free_unit(ifc, unit);
1169		free(ifv, M_VLAN);
1170		if (p != NULL)
1171			if_rele(p);
1172		return (ENOSPC);
1173	}
1174	CK_SLIST_INIT(&ifv->vlan_mc_listhead);
1175	ifp->if_softc = ifv;
1176	/*
1177	 * Set the name manually rather than using if_initname because
1178	 * we don't conform to the default naming convention for interfaces.
1179	 */
1180	strlcpy(ifp->if_xname, name, IFNAMSIZ);
1181	ifp->if_dname = vlanname;
1182	ifp->if_dunit = unit;
1183
1184	ifp->if_init = vlan_init;
1185#ifdef ALTQ
1186	ifp->if_start = vlan_altq_start;
1187	ifp->if_transmit = vlan_altq_transmit;
1188	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
1189	ifp->if_snd.ifq_drv_maxlen = 0;
1190	IFQ_SET_READY(&ifp->if_snd);
1191#else
1192	ifp->if_transmit = vlan_transmit;
1193#endif
1194	ifp->if_qflush = vlan_qflush;
1195	ifp->if_ioctl = vlan_ioctl;
1196#if defined(KERN_TLS) || defined(RATELIMIT)
1197	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1198	ifp->if_ratelimit_query = vlan_ratelimit_query;
1199#endif
1200	ifp->if_flags = VLAN_IFFLAGS;
1201	ether_ifattach(ifp, eaddr);
1202	/* Now undo some of the damage... */
1203	ifp->if_baudrate = 0;
1204	ifp->if_type = IFT_L2VLAN;
1205	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1206	ifa = ifp->if_addr;
1207	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1208	sdl->sdl_type = IFT_L2VLAN;
1209
1210	if (p != NULL) {
1211		error = vlan_config(ifv, p, vid, proto);
1212		if_rele(p);
1213		if (error != 0) {
1214			/*
1215			 * Since we've partially failed, we need to back
1216			 * out all the way, otherwise userland could get
1217			 * confused.  Thus, we destroy the interface.
1218			 */
1219			ether_ifdetach(ifp);
1220			vlan_unconfig(ifp);
1221			if_free(ifp);
1222			if (!subinterface)
1223				ifc_free_unit(ifc, unit);
1224			free(ifv, M_VLAN);
1225
1226			return (error);
1227		}
1228	}
1229	*ifpp = ifp;
1230
1231	return (0);
1232}
1233
1234/*
1235 *
1236 * Parsers of IFLA_INFO_DATA inside IFLA_LINKINFO of RTM_NEWLINK
1237 *    {{nla_len=8, nla_type=IFLA_LINK}, 2},
1238 *    {{nla_len=12, nla_type=IFLA_IFNAME}, "xvlan22"},
1239 *    {{nla_len=24, nla_type=IFLA_LINKINFO},
1240 *     [
1241 *      {{nla_len=8, nla_type=IFLA_INFO_KIND}, "vlan"...},
1242 *      {{nla_len=12, nla_type=IFLA_INFO_DATA}, "\x06\x00\x01\x00\x16\x00\x00\x00"}]}
1243 */
1244
1245struct nl_parsed_vlan {
1246	uint16_t vlan_id;
1247	uint16_t vlan_proto;
1248	struct ifla_vlan_flags vlan_flags;
1249};
1250
1251#define	_OUT(_field)	offsetof(struct nl_parsed_vlan, _field)
1252static const struct nlattr_parser nla_p_vlan[] = {
1253	{ .type = IFLA_VLAN_ID, .off = _OUT(vlan_id), .cb = nlattr_get_uint16 },
1254	{ .type = IFLA_VLAN_FLAGS, .off = _OUT(vlan_flags), .cb = nlattr_get_nla },
1255	{ .type = IFLA_VLAN_PROTOCOL, .off = _OUT(vlan_proto), .cb = nlattr_get_uint16 },
1256};
1257#undef _OUT
1258NL_DECLARE_ATTR_PARSER(vlan_parser, nla_p_vlan);
1259
1260static int
1261vlan_clone_create_nl(struct if_clone *ifc, char *name, size_t len,
1262    struct ifc_data_nl *ifd)
1263{
1264	struct epoch_tracker et;
1265        struct ifnet *ifp_parent;
1266	struct nl_pstate *npt = ifd->npt;
1267	struct nl_parsed_link *lattrs = ifd->lattrs;
1268	int error;
1269
1270	/*
1271	 * lattrs.ifla_ifname is the new interface name
1272	 * lattrs.ifi_index contains parent interface index
1273	 * lattrs.ifla_idata contains un-parsed vlan data
1274	 */
1275	struct nl_parsed_vlan attrs = {
1276		.vlan_id = 0xFEFE,
1277		.vlan_proto = ETHERTYPE_VLAN
1278	};
1279
1280	if (lattrs->ifla_idata == NULL) {
1281		nlmsg_report_err_msg(npt, "vlan id is required, guessing not supported");
1282		return (ENOTSUP);
1283	}
1284
1285	error = nl_parse_nested(lattrs->ifla_idata, &vlan_parser, npt, &attrs);
1286	if (error != 0)
1287		return (error);
1288	if (attrs.vlan_id > 4095) {
1289		nlmsg_report_err_msg(npt, "Invalid VID: %d", attrs.vlan_id);
1290		return (EINVAL);
1291	}
1292	if (attrs.vlan_proto != ETHERTYPE_VLAN && attrs.vlan_proto != ETHERTYPE_QINQ) {
1293		nlmsg_report_err_msg(npt, "Unsupported ethertype: 0x%04X", attrs.vlan_proto);
1294		return (ENOTSUP);
1295	}
1296
1297	struct vlanreq params = {
1298		.vlr_tag = attrs.vlan_id,
1299		.vlr_proto = attrs.vlan_proto,
1300	};
1301	struct ifc_data ifd_new = { .flags = IFC_F_SYSSPACE, .unit = ifd->unit, .params = &params };
1302
1303	NET_EPOCH_ENTER(et);
1304	ifp_parent = ifnet_byindex(lattrs->ifi_index);
1305	if (ifp_parent != NULL)
1306		strlcpy(params.vlr_parent, if_name(ifp_parent), sizeof(params.vlr_parent));
1307	NET_EPOCH_EXIT(et);
1308
1309	if (ifp_parent == NULL) {
1310		nlmsg_report_err_msg(npt, "unable to find parent interface %u", lattrs->ifi_index);
1311		return (ENOENT);
1312	}
1313
1314	error = vlan_clone_create(ifc, name, len, &ifd_new, &ifd->ifp);
1315
1316	return (error);
1317}
1318
1319static int
1320vlan_clone_modify_nl(struct ifnet *ifp, struct ifc_data_nl *ifd)
1321{
1322	struct nl_parsed_link *lattrs = ifd->lattrs;
1323
1324	if ((lattrs->ifla_idata != NULL) && ((ifd->flags & IFC_F_CREATE) == 0)) {
1325		struct epoch_tracker et;
1326		struct nl_parsed_vlan attrs = {
1327			.vlan_proto = ETHERTYPE_VLAN,
1328		};
1329		int error;
1330
1331		error = nl_parse_nested(lattrs->ifla_idata, &vlan_parser, ifd->npt, &attrs);
1332		if (error != 0)
1333			return (error);
1334
1335		NET_EPOCH_ENTER(et);
1336		struct ifnet *ifp_parent = ifnet_byindex_ref(lattrs->ifla_link);
1337		NET_EPOCH_EXIT(et);
1338
1339		if (ifp_parent == NULL) {
1340			nlmsg_report_err_msg(ifd->npt, "unable to find parent interface %u",
1341			    lattrs->ifla_link);
1342			return (ENOENT);
1343		}
1344
1345		struct ifvlan *ifv = ifp->if_softc;
1346		error = vlan_config(ifv, ifp_parent, attrs.vlan_id, attrs.vlan_proto);
1347
1348		if_rele(ifp_parent);
1349		if (error != 0)
1350			return (error);
1351	}
1352
1353	return (nl_modify_ifp_generic(ifp, ifd->lattrs, ifd->bm, ifd->npt));
1354}
1355
1356/*
1357 *    {{nla_len=24, nla_type=IFLA_LINKINFO},
1358 *     [
1359 *      {{nla_len=8, nla_type=IFLA_INFO_KIND}, "vlan"...},
1360 *      {{nla_len=12, nla_type=IFLA_INFO_DATA}, "\x06\x00\x01\x00\x16\x00\x00\x00"}]}
1361 */
1362static void
1363vlan_clone_dump_nl(struct ifnet *ifp, struct nl_writer *nw)
1364{
1365	uint32_t parent_index = 0;
1366	uint16_t vlan_id = 0;
1367	uint16_t vlan_proto = 0;
1368
1369	VLAN_SLOCK();
1370	struct ifvlan *ifv = ifp->if_softc;
1371	if (TRUNK(ifv) != NULL)
1372		parent_index = PARENT(ifv)->if_index;
1373	vlan_id = ifv->ifv_vid;
1374	vlan_proto = ifv->ifv_proto;
1375	VLAN_SUNLOCK();
1376
1377	if (parent_index != 0)
1378		nlattr_add_u32(nw, IFLA_LINK, parent_index);
1379
1380	int off = nlattr_add_nested(nw, IFLA_LINKINFO);
1381	if (off != 0) {
1382		nlattr_add_string(nw, IFLA_INFO_KIND, "vlan");
1383		int off2 = nlattr_add_nested(nw, IFLA_INFO_DATA);
1384		if (off2 != 0) {
1385			nlattr_add_u16(nw, IFLA_VLAN_ID, vlan_id);
1386			nlattr_add_u16(nw, IFLA_VLAN_PROTOCOL, vlan_proto);
1387			nlattr_set_len(nw, off2);
1388		}
1389		nlattr_set_len(nw, off);
1390	}
1391}
1392
1393static int
1394vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
1395{
1396	struct ifvlan *ifv = ifp->if_softc;
1397	int unit = ifp->if_dunit;
1398
1399	if (ifp->if_vlantrunk)
1400		return (EBUSY);
1401
1402#ifdef ALTQ
1403	IFQ_PURGE(&ifp->if_snd);
1404#endif
1405	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1406	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1407	/*
1408	 * We should have the only reference to the ifv now, so we can now
1409	 * drain any remaining lladdr task before freeing the ifnet and the
1410	 * ifvlan.
1411	 */
1412	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1413	NET_EPOCH_WAIT();
1414	if_free(ifp);
1415	free(ifv, M_VLAN);
1416	if (unit != IF_DUNIT_NONE)
1417		ifc_free_unit(ifc, unit);
1418
1419	return (0);
1420}
1421
1422/*
1423 * The ifp->if_init entry point for vlan(4) is a no-op.
1424 */
1425static void
1426vlan_init(void *foo __unused)
1427{
1428}
1429
1430/*
1431 * The if_transmit method for vlan(4) interface.
1432 */
1433static int
1434vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1435{
1436	struct ifvlan *ifv;
1437	struct ifnet *p;
1438	int error, len, mcast;
1439
1440	NET_EPOCH_ASSERT();
1441
1442	ifv = ifp->if_softc;
1443	if (TRUNK(ifv) == NULL) {
1444		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1445		m_freem(m);
1446		return (ENETDOWN);
1447	}
1448	p = PARENT(ifv);
1449	len = m->m_pkthdr.len;
1450	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1451
1452	BPF_MTAP(ifp, m);
1453
1454#if defined(KERN_TLS) || defined(RATELIMIT)
1455	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1456		struct vlan_snd_tag *vst;
1457		struct m_snd_tag *mst;
1458
1459		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
1460		mst = m->m_pkthdr.snd_tag;
1461		vst = mst_to_vst(mst);
1462		if (vst->tag->ifp != p) {
1463			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1464			m_freem(m);
1465			return (EAGAIN);
1466		}
1467
1468		m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
1469		m_snd_tag_rele(mst);
1470	}
1471#endif
1472
1473	/*
1474	 * Do not run parent's if_transmit() if the parent is not up,
1475	 * or parent's driver will cause a system crash.
1476	 */
1477	if (!UP_AND_RUNNING(p)) {
1478		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1479		m_freem(m);
1480		return (ENETDOWN);
1481	}
1482
1483	if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) {
1484		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1485		return (0);
1486	}
1487
1488	/*
1489	 * Send it, precisely as ether_output() would have.
1490	 */
1491	error = (p->if_transmit)(p, m);
1492	if (error == 0) {
1493		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1494		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1495		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1496	} else
1497		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1498	return (error);
1499}
1500
1501static int
1502vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
1503    struct route *ro)
1504{
1505	struct ifvlan *ifv;
1506	struct ifnet *p;
1507
1508	NET_EPOCH_ASSERT();
1509
1510	/*
1511	 * Find the first non-VLAN parent interface.
1512	 */
1513	ifv = ifp->if_softc;
1514	do {
1515		if (TRUNK(ifv) == NULL) {
1516			m_freem(m);
1517			return (ENETDOWN);
1518		}
1519		p = PARENT(ifv);
1520		ifv = p->if_softc;
1521	} while (p->if_type == IFT_L2VLAN);
1522
1523	return p->if_output(ifp, m, dst, ro);
1524}
1525
1526#ifdef ALTQ
1527static void
1528vlan_altq_start(if_t ifp)
1529{
1530	struct ifaltq *ifq = &ifp->if_snd;
1531	struct mbuf *m;
1532
1533	IFQ_LOCK(ifq);
1534	IFQ_DEQUEUE_NOLOCK(ifq, m);
1535	while (m != NULL) {
1536		vlan_transmit(ifp, m);
1537		IFQ_DEQUEUE_NOLOCK(ifq, m);
1538	}
1539	IFQ_UNLOCK(ifq);
1540}
1541
1542static int
1543vlan_altq_transmit(if_t ifp, struct mbuf *m)
1544{
1545	int err;
1546
1547	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
1548		IFQ_ENQUEUE(&ifp->if_snd, m, err);
1549		if (err == 0)
1550			vlan_altq_start(ifp);
1551	} else
1552		err = vlan_transmit(ifp, m);
1553
1554	return (err);
1555}
1556#endif	/* ALTQ */
1557
1558/*
1559 * The ifp->if_qflush entry point for vlan(4) is a no-op.
1560 */
1561static void
1562vlan_qflush(struct ifnet *ifp __unused)
1563{
1564}
1565
1566static void
1567vlan_input(struct ifnet *ifp, struct mbuf *m)
1568{
1569	struct ifvlantrunk *trunk;
1570	struct ifvlan *ifv;
1571	struct m_tag *mtag;
1572	uint16_t vid, tag;
1573
1574	NET_EPOCH_ASSERT();
1575
1576	trunk = ifp->if_vlantrunk;
1577	if (trunk == NULL) {
1578		m_freem(m);
1579		return;
1580	}
1581
1582	if (m->m_flags & M_VLANTAG) {
1583		/*
1584		 * Packet is tagged, but m contains a normal
1585		 * Ethernet frame; the tag is stored out-of-band.
1586		 */
1587		tag = m->m_pkthdr.ether_vtag;
1588		m->m_flags &= ~M_VLANTAG;
1589	} else {
1590		struct ether_vlan_header *evl;
1591
1592		/*
1593		 * Packet is tagged in-band as specified by 802.1q.
1594		 */
1595		switch (ifp->if_type) {
1596		case IFT_ETHER:
1597			if (m->m_len < sizeof(*evl) &&
1598			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1599				if_printf(ifp, "cannot pullup VLAN header\n");
1600				return;
1601			}
1602			evl = mtod(m, struct ether_vlan_header *);
1603			tag = ntohs(evl->evl_tag);
1604
1605			/*
1606			 * Remove the 802.1q header by copying the Ethernet
1607			 * addresses over it and adjusting the beginning of
1608			 * the data in the mbuf.  The encapsulated Ethernet
1609			 * type field is already in place.
1610			 */
1611			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1612			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1613			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1614			break;
1615
1616		default:
1617#ifdef INVARIANTS
1618			panic("%s: %s has unsupported if_type %u",
1619			      __func__, ifp->if_xname, ifp->if_type);
1620#endif
1621			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1622			m_freem(m);
1623			return;
1624		}
1625	}
1626
1627	vid = EVL_VLANOFTAG(tag);
1628
1629	ifv = vlan_gethash(trunk, vid);
1630	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1631		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1632		m_freem(m);
1633		return;
1634	}
1635
1636	if (V_vlan_mtag_pcp) {
1637		/*
1638		 * While uncommon, it is possible that we will find a 802.1q
1639		 * packet encapsulated inside another packet that also had an
1640		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1641		 * arriving over ethernet.  In that case, we replace the
1642		 * existing 802.1q PCP m_tag value.
1643		 */
1644		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1645		if (mtag == NULL) {
1646			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1647			    sizeof(uint8_t), M_NOWAIT);
1648			if (mtag == NULL) {
1649				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1650				m_freem(m);
1651				return;
1652			}
1653			m_tag_prepend(m, mtag);
1654		}
1655		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1656	}
1657
1658	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1659	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1660
1661	/* Pass it back through the parent's input routine. */
1662	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1663}
1664
1665static void
1666vlan_lladdr_fn(void *arg, int pending __unused)
1667{
1668	struct ifvlan *ifv;
1669	struct ifnet *ifp;
1670
1671	ifv = (struct ifvlan *)arg;
1672	ifp = ifv->ifv_ifp;
1673
1674	CURVNET_SET(ifp->if_vnet);
1675
1676	/* The ifv_ifp already has the lladdr copied in. */
1677	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1678
1679	CURVNET_RESTORE();
1680}
1681
1682static int
1683vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid,
1684	uint16_t proto)
1685{
1686	struct epoch_tracker et;
1687	struct ifvlantrunk *trunk;
1688	struct ifnet *ifp;
1689	int error = 0;
1690
1691	/*
1692	 * We can handle non-ethernet hardware types as long as
1693	 * they handle the tagging and headers themselves.
1694	 */
1695	if (p->if_type != IFT_ETHER &&
1696	    p->if_type != IFT_L2VLAN &&
1697	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1698		return (EPROTONOSUPPORT);
1699	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1700		return (EPROTONOSUPPORT);
1701	/*
1702	 * Don't let the caller set up a VLAN VID with
1703	 * anything except VLID bits.
1704	 * VID numbers 0x0 and 0xFFF are reserved.
1705	 */
1706	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1707		return (EINVAL);
1708	if (ifv->ifv_trunk) {
1709		trunk = ifv->ifv_trunk;
1710		if (trunk->parent != p)
1711			return (EBUSY);
1712
1713		VLAN_XLOCK();
1714
1715		ifv->ifv_proto = proto;
1716
1717		if (ifv->ifv_vid != vid) {
1718			int oldvid = ifv->ifv_vid;
1719
1720			/* Re-hash */
1721			vlan_remhash(trunk, ifv);
1722			ifv->ifv_vid = vid;
1723			error = vlan_inshash(trunk, ifv);
1724			if (error) {
1725				int ret __diagused;
1726
1727				ifv->ifv_vid = oldvid;
1728				/* Re-insert back where we found it. */
1729				ret = vlan_inshash(trunk, ifv);
1730				MPASS(ret == 0);
1731			}
1732		}
1733		/* Will unlock */
1734		goto done;
1735	}
1736
1737	VLAN_XLOCK();
1738	if (p->if_vlantrunk == NULL) {
1739		trunk = malloc(sizeof(struct ifvlantrunk),
1740		    M_VLAN, M_WAITOK | M_ZERO);
1741		vlan_inithash(trunk);
1742		TRUNK_LOCK_INIT(trunk);
1743		TRUNK_WLOCK(trunk);
1744		p->if_vlantrunk = trunk;
1745		trunk->parent = p;
1746		if_ref(trunk->parent);
1747		TRUNK_WUNLOCK(trunk);
1748	} else {
1749		trunk = p->if_vlantrunk;
1750	}
1751
1752	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1753	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1754	error = vlan_inshash(trunk, ifv);
1755	if (error)
1756		goto done;
1757	ifv->ifv_proto = proto;
1758	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1759	ifv->ifv_mintu = ETHERMIN;
1760	ifv->ifv_pflags = 0;
1761	ifv->ifv_capenable = -1;
1762
1763	/*
1764	 * If the parent supports the VLAN_MTU capability,
1765	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1766	 * use it.
1767	 */
1768	if (p->if_capenable & IFCAP_VLAN_MTU) {
1769		/*
1770		 * No need to fudge the MTU since the parent can
1771		 * handle extended frames.
1772		 */
1773		ifv->ifv_mtufudge = 0;
1774	} else {
1775		/*
1776		 * Fudge the MTU by the encapsulation size.  This
1777		 * makes us incompatible with strictly compliant
1778		 * 802.1Q implementations, but allows us to use
1779		 * the feature with other NetBSD implementations,
1780		 * which might still be useful.
1781		 */
1782		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1783	}
1784
1785	ifv->ifv_trunk = trunk;
1786	ifp = ifv->ifv_ifp;
1787	/*
1788	 * Initialize fields from our parent.  This duplicates some
1789	 * work with ether_ifattach() but allows for non-ethernet
1790	 * interfaces to also work.
1791	 */
1792	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1793	ifp->if_baudrate = p->if_baudrate;
1794	ifp->if_input = p->if_input;
1795	ifp->if_resolvemulti = p->if_resolvemulti;
1796	ifp->if_addrlen = p->if_addrlen;
1797	ifp->if_broadcastaddr = p->if_broadcastaddr;
1798	ifp->if_pcp = ifv->ifv_pcp;
1799
1800	/*
1801	 * We wrap the parent's if_output using vlan_output to ensure that it
1802	 * can't become stale.
1803	 */
1804	ifp->if_output = vlan_output;
1805
1806	/*
1807	 * Copy only a selected subset of flags from the parent.
1808	 * Other flags are none of our business.
1809	 */
1810#define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1811	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1812	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1813#undef VLAN_COPY_FLAGS
1814
1815	ifp->if_link_state = p->if_link_state;
1816
1817	NET_EPOCH_ENTER(et);
1818	vlan_capabilities(ifv);
1819	NET_EPOCH_EXIT(et);
1820
1821	/*
1822	 * Set up our interface address to reflect the underlying
1823	 * physical interface's.
1824	 */
1825	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1826	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1827	    p->if_addrlen;
1828
1829	/*
1830	 * Do not schedule link address update if it was the same
1831	 * as previous parent's. This helps avoid updating for each
1832	 * associated llentry.
1833	 */
1834	if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) {
1835		bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1836		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
1837	}
1838
1839	/* We are ready for operation now. */
1840	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1841
1842	/* Update flags on the parent, if necessary. */
1843	vlan_setflags(ifp, 1);
1844
1845	/*
1846	 * Configure multicast addresses that may already be
1847	 * joined on the vlan device.
1848	 */
1849	(void)vlan_setmulti(ifp);
1850
1851done:
1852	if (error == 0)
1853		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1854	VLAN_XUNLOCK();
1855
1856	return (error);
1857}
1858
1859static void
1860vlan_unconfig(struct ifnet *ifp)
1861{
1862
1863	VLAN_XLOCK();
1864	vlan_unconfig_locked(ifp, 0);
1865	VLAN_XUNLOCK();
1866}
1867
1868static void
1869vlan_unconfig_locked(struct ifnet *ifp, int departing)
1870{
1871	struct ifvlantrunk *trunk;
1872	struct vlan_mc_entry *mc;
1873	struct ifvlan *ifv;
1874	struct ifnet  *parent;
1875	int error;
1876
1877	VLAN_XLOCK_ASSERT();
1878
1879	ifv = ifp->if_softc;
1880	trunk = ifv->ifv_trunk;
1881	parent = NULL;
1882
1883	if (trunk != NULL) {
1884		parent = trunk->parent;
1885
1886		/*
1887		 * Since the interface is being unconfigured, we need to
1888		 * empty the list of multicast groups that we may have joined
1889		 * while we were alive from the parent's list.
1890		 */
1891		while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1892			/*
1893			 * If the parent interface is being detached,
1894			 * all its multicast addresses have already
1895			 * been removed.  Warn about errors if
1896			 * if_delmulti() does fail, but don't abort as
1897			 * all callers expect vlan destruction to
1898			 * succeed.
1899			 */
1900			if (!departing) {
1901				error = if_delmulti(parent,
1902				    (struct sockaddr *)&mc->mc_addr);
1903				if (error)
1904					if_printf(ifp,
1905		    "Failed to delete multicast address from parent: %d\n",
1906					    error);
1907			}
1908			CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1909			NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
1910		}
1911
1912		vlan_setflags(ifp, 0); /* clear special flags on parent */
1913
1914		vlan_remhash(trunk, ifv);
1915		ifv->ifv_trunk = NULL;
1916
1917		/*
1918		 * Check if we were the last.
1919		 */
1920		if (trunk->refcnt == 0) {
1921			parent->if_vlantrunk = NULL;
1922			NET_EPOCH_WAIT();
1923			trunk_destroy(trunk);
1924		}
1925	}
1926
1927	/* Disconnect from parent. */
1928	if (ifv->ifv_pflags)
1929		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1930	ifp->if_mtu = ETHERMTU;
1931	ifp->if_link_state = LINK_STATE_UNKNOWN;
1932	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1933
1934	/*
1935	 * Only dispatch an event if vlan was
1936	 * attached, otherwise there is nothing
1937	 * to cleanup anyway.
1938	 */
1939	if (parent != NULL)
1940		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1941}
1942
1943/* Handle a reference counted flag that should be set on the parent as well */
1944static int
1945vlan_setflag(struct ifnet *ifp, int flag, int status,
1946	     int (*func)(struct ifnet *, int))
1947{
1948	struct ifvlan *ifv;
1949	int error;
1950
1951	VLAN_SXLOCK_ASSERT();
1952
1953	ifv = ifp->if_softc;
1954	status = status ? (ifp->if_flags & flag) : 0;
1955	/* Now "status" contains the flag value or 0 */
1956
1957	/*
1958	 * See if recorded parent's status is different from what
1959	 * we want it to be.  If it is, flip it.  We record parent's
1960	 * status in ifv_pflags so that we won't clear parent's flag
1961	 * we haven't set.  In fact, we don't clear or set parent's
1962	 * flags directly, but get or release references to them.
1963	 * That's why we can be sure that recorded flags still are
1964	 * in accord with actual parent's flags.
1965	 */
1966	if (status != (ifv->ifv_pflags & flag)) {
1967		error = (*func)(PARENT(ifv), status);
1968		if (error)
1969			return (error);
1970		ifv->ifv_pflags &= ~flag;
1971		ifv->ifv_pflags |= status;
1972	}
1973	return (0);
1974}
1975
1976/*
1977 * Handle IFF_* flags that require certain changes on the parent:
1978 * if "status" is true, update parent's flags respective to our if_flags;
1979 * if "status" is false, forcedly clear the flags set on parent.
1980 */
1981static int
1982vlan_setflags(struct ifnet *ifp, int status)
1983{
1984	int error, i;
1985
1986	for (i = 0; vlan_pflags[i].flag; i++) {
1987		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1988				     status, vlan_pflags[i].func);
1989		if (error)
1990			return (error);
1991	}
1992	return (0);
1993}
1994
1995/* Inform all vlans that their parent has changed link state */
1996static void
1997vlan_link_state(struct ifnet *ifp)
1998{
1999	struct epoch_tracker et;
2000	struct ifvlantrunk *trunk;
2001	struct ifvlan *ifv;
2002
2003	NET_EPOCH_ENTER(et);
2004	trunk = ifp->if_vlantrunk;
2005	if (trunk == NULL) {
2006		NET_EPOCH_EXIT(et);
2007		return;
2008	}
2009
2010	TRUNK_WLOCK(trunk);
2011	VLAN_FOREACH(ifv, trunk) {
2012		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
2013		if_link_state_change(ifv->ifv_ifp,
2014		    trunk->parent->if_link_state);
2015	}
2016	TRUNK_WUNLOCK(trunk);
2017	NET_EPOCH_EXIT(et);
2018}
2019
2020static void
2021vlan_capabilities(struct ifvlan *ifv)
2022{
2023	struct ifnet *p;
2024	struct ifnet *ifp;
2025	struct ifnet_hw_tsomax hw_tsomax;
2026	int cap = 0, ena = 0, mena;
2027	u_long hwa = 0;
2028
2029	NET_EPOCH_ASSERT();
2030	VLAN_SXLOCK_ASSERT();
2031
2032	p = PARENT(ifv);
2033	ifp = ifv->ifv_ifp;
2034
2035	/* Mask parent interface enabled capabilities disabled by user. */
2036	mena = p->if_capenable & ifv->ifv_capenable;
2037
2038	/*
2039	 * If the parent interface can do checksum offloading
2040	 * on VLANs, then propagate its hardware-assisted
2041	 * checksumming flags. Also assert that checksum
2042	 * offloading requires hardware VLAN tagging.
2043	 */
2044	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
2045		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
2046	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
2047	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
2048		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
2049		if (ena & IFCAP_TXCSUM)
2050			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
2051			    CSUM_UDP | CSUM_SCTP);
2052		if (ena & IFCAP_TXCSUM_IPV6)
2053			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
2054			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
2055	}
2056
2057	/*
2058	 * If the parent interface can do TSO on VLANs then
2059	 * propagate the hardware-assisted flag. TSO on VLANs
2060	 * does not necessarily require hardware VLAN tagging.
2061	 */
2062	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
2063	if_hw_tsomax_common(p, &hw_tsomax);
2064	if_hw_tsomax_update(ifp, &hw_tsomax);
2065	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
2066		cap |= p->if_capabilities & IFCAP_TSO;
2067	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
2068		ena |= mena & IFCAP_TSO;
2069		if (ena & IFCAP_TSO)
2070			hwa |= p->if_hwassist & CSUM_TSO;
2071	}
2072
2073	/*
2074	 * If the parent interface can do LRO and checksum offloading on
2075	 * VLANs, then guess it may do LRO on VLANs.  False positive here
2076	 * cost nothing, while false negative may lead to some confusions.
2077	 */
2078	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
2079		cap |= p->if_capabilities & IFCAP_LRO;
2080	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
2081		ena |= mena & IFCAP_LRO;
2082
2083	/*
2084	 * If the parent interface can offload TCP connections over VLANs then
2085	 * propagate its TOE capability to the VLAN interface.
2086	 *
2087	 * All TOE drivers in the tree today can deal with VLANs.  If this
2088	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
2089	 * with its own bit.
2090	 */
2091#define	IFCAP_VLAN_TOE IFCAP_TOE
2092	if (p->if_capabilities & IFCAP_VLAN_TOE)
2093		cap |= p->if_capabilities & IFCAP_TOE;
2094	if (p->if_capenable & IFCAP_VLAN_TOE) {
2095		SETTOEDEV(ifp, TOEDEV(p));
2096		ena |= mena & IFCAP_TOE;
2097	}
2098
2099	/*
2100	 * If the parent interface supports dynamic link state, so does the
2101	 * VLAN interface.
2102	 */
2103	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
2104	ena |= (mena & IFCAP_LINKSTATE);
2105
2106#ifdef RATELIMIT
2107	/*
2108	 * If the parent interface supports ratelimiting, so does the
2109	 * VLAN interface.
2110	 */
2111	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
2112	ena |= (mena & IFCAP_TXRTLMT);
2113#endif
2114
2115	/*
2116	 * If the parent interface supports unmapped mbufs, so does
2117	 * the VLAN interface.  Note that this should be fine even for
2118	 * interfaces that don't support hardware tagging as headers
2119	 * are prepended in normal mbufs to unmapped mbufs holding
2120	 * payload data.
2121	 */
2122	cap |= (p->if_capabilities & IFCAP_MEXTPG);
2123	ena |= (mena & IFCAP_MEXTPG);
2124
2125	/*
2126	 * If the parent interface can offload encryption and segmentation
2127	 * of TLS records over TCP, propagate it's capability to the VLAN
2128	 * interface.
2129	 *
2130	 * All TLS drivers in the tree today can deal with VLANs.  If
2131	 * this ever changes, then a new IFCAP_VLAN_TXTLS can be
2132	 * defined.
2133	 */
2134	if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
2135		cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
2136	if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
2137		ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
2138
2139	ifp->if_capabilities = cap;
2140	ifp->if_capenable = ena;
2141	ifp->if_hwassist = hwa;
2142}
2143
2144static void
2145vlan_trunk_capabilities(struct ifnet *ifp)
2146{
2147	struct epoch_tracker et;
2148	struct ifvlantrunk *trunk;
2149	struct ifvlan *ifv;
2150
2151	VLAN_SLOCK();
2152	trunk = ifp->if_vlantrunk;
2153	if (trunk == NULL) {
2154		VLAN_SUNLOCK();
2155		return;
2156	}
2157	NET_EPOCH_ENTER(et);
2158	VLAN_FOREACH(ifv, trunk)
2159		vlan_capabilities(ifv);
2160	NET_EPOCH_EXIT(et);
2161	VLAN_SUNLOCK();
2162}
2163
2164static int
2165vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2166{
2167	struct ifnet *p;
2168	struct ifreq *ifr;
2169#ifdef INET
2170	struct ifaddr *ifa;
2171#endif
2172	struct ifvlan *ifv;
2173	struct ifvlantrunk *trunk;
2174	struct vlanreq vlr;
2175	int error = 0, oldmtu;
2176
2177	ifr = (struct ifreq *)data;
2178#ifdef INET
2179	ifa = (struct ifaddr *) data;
2180#endif
2181	ifv = ifp->if_softc;
2182
2183	switch (cmd) {
2184	case SIOCSIFADDR:
2185		ifp->if_flags |= IFF_UP;
2186#ifdef INET
2187		if (ifa->ifa_addr->sa_family == AF_INET)
2188			arp_ifinit(ifp, ifa);
2189#endif
2190		break;
2191	case SIOCGIFADDR:
2192		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
2193		    ifp->if_addrlen);
2194		break;
2195	case SIOCGIFMEDIA:
2196		VLAN_SLOCK();
2197		if (TRUNK(ifv) != NULL) {
2198			p = PARENT(ifv);
2199			if_ref(p);
2200			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
2201			if_rele(p);
2202			/* Limit the result to the parent's current config. */
2203			if (error == 0) {
2204				struct ifmediareq *ifmr;
2205
2206				ifmr = (struct ifmediareq *)data;
2207				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
2208					ifmr->ifm_count = 1;
2209					error = copyout(&ifmr->ifm_current,
2210						ifmr->ifm_ulist,
2211						sizeof(int));
2212				}
2213			}
2214		} else {
2215			error = EINVAL;
2216		}
2217		VLAN_SUNLOCK();
2218		break;
2219
2220	case SIOCSIFMEDIA:
2221		error = EINVAL;
2222		break;
2223
2224	case SIOCSIFMTU:
2225		/*
2226		 * Set the interface MTU.
2227		 */
2228		VLAN_SLOCK();
2229		trunk = TRUNK(ifv);
2230		if (trunk != NULL) {
2231			TRUNK_WLOCK(trunk);
2232			if (ifr->ifr_mtu >
2233			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
2234			    ifr->ifr_mtu <
2235			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
2236				error = EINVAL;
2237			else
2238				ifp->if_mtu = ifr->ifr_mtu;
2239			TRUNK_WUNLOCK(trunk);
2240		} else
2241			error = EINVAL;
2242		VLAN_SUNLOCK();
2243		break;
2244
2245	case SIOCSETVLAN:
2246#ifdef VIMAGE
2247		/*
2248		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
2249		 * interface to be delegated to a jail without allowing the
2250		 * jail to change what underlying interface/VID it is
2251		 * associated with.  We are not entirely convinced that this
2252		 * is the right way to accomplish that policy goal.
2253		 */
2254		if (ifp->if_vnet != ifp->if_home_vnet) {
2255			error = EPERM;
2256			break;
2257		}
2258#endif
2259		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
2260		if (error)
2261			break;
2262		if (vlr.vlr_parent[0] == '\0') {
2263			vlan_unconfig(ifp);
2264			break;
2265		}
2266		p = ifunit_ref(vlr.vlr_parent);
2267		if (p == NULL) {
2268			error = ENOENT;
2269			break;
2270		}
2271		if (vlr.vlr_proto == 0)
2272			vlr.vlr_proto = ETHERTYPE_VLAN;
2273		oldmtu = ifp->if_mtu;
2274		error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto);
2275		if_rele(p);
2276
2277		/*
2278		 * VLAN MTU may change during addition of the vlandev.
2279		 * If it did, do network layer specific procedure.
2280		 */
2281		if (ifp->if_mtu != oldmtu)
2282			if_notifymtu(ifp);
2283		break;
2284
2285	case SIOCGETVLAN:
2286#ifdef VIMAGE
2287		if (ifp->if_vnet != ifp->if_home_vnet) {
2288			error = EPERM;
2289			break;
2290		}
2291#endif
2292		bzero(&vlr, sizeof(vlr));
2293		VLAN_SLOCK();
2294		if (TRUNK(ifv) != NULL) {
2295			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
2296			    sizeof(vlr.vlr_parent));
2297			vlr.vlr_tag = ifv->ifv_vid;
2298			vlr.vlr_proto = ifv->ifv_proto;
2299		}
2300		VLAN_SUNLOCK();
2301		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
2302		break;
2303
2304	case SIOCSIFFLAGS:
2305		/*
2306		 * We should propagate selected flags to the parent,
2307		 * e.g., promiscuous mode.
2308		 */
2309		VLAN_SLOCK();
2310		if (TRUNK(ifv) != NULL)
2311			error = vlan_setflags(ifp, 1);
2312		VLAN_SUNLOCK();
2313		break;
2314
2315	case SIOCADDMULTI:
2316	case SIOCDELMULTI:
2317		/*
2318		 * If we don't have a parent, just remember the membership for
2319		 * when we do.
2320		 *
2321		 * XXX We need the rmlock here to avoid sleeping while
2322		 * holding in6_multi_mtx.
2323		 */
2324		VLAN_XLOCK();
2325		trunk = TRUNK(ifv);
2326		if (trunk != NULL)
2327			error = vlan_setmulti(ifp);
2328		VLAN_XUNLOCK();
2329
2330		break;
2331	case SIOCGVLANPCP:
2332#ifdef VIMAGE
2333		if (ifp->if_vnet != ifp->if_home_vnet) {
2334			error = EPERM;
2335			break;
2336		}
2337#endif
2338		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
2339		break;
2340
2341	case SIOCSVLANPCP:
2342#ifdef VIMAGE
2343		if (ifp->if_vnet != ifp->if_home_vnet) {
2344			error = EPERM;
2345			break;
2346		}
2347#endif
2348		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
2349		if (error)
2350			break;
2351		if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) {
2352			error = EINVAL;
2353			break;
2354		}
2355		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
2356		ifp->if_pcp = ifv->ifv_pcp;
2357		/* broadcast event about PCP change */
2358		EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
2359		break;
2360
2361	case SIOCSIFCAP:
2362		VLAN_SLOCK();
2363		ifv->ifv_capenable = ifr->ifr_reqcap;
2364		trunk = TRUNK(ifv);
2365		if (trunk != NULL) {
2366			struct epoch_tracker et;
2367
2368			NET_EPOCH_ENTER(et);
2369			vlan_capabilities(ifv);
2370			NET_EPOCH_EXIT(et);
2371		}
2372		VLAN_SUNLOCK();
2373		break;
2374
2375	default:
2376		error = EINVAL;
2377		break;
2378	}
2379
2380	return (error);
2381}
2382
2383#if defined(KERN_TLS) || defined(RATELIMIT)
2384static int
2385vlan_snd_tag_alloc(struct ifnet *ifp,
2386    union if_snd_tag_alloc_params *params,
2387    struct m_snd_tag **ppmt)
2388{
2389	struct epoch_tracker et;
2390	const struct if_snd_tag_sw *sw;
2391	struct vlan_snd_tag *vst;
2392	struct ifvlan *ifv;
2393	struct ifnet *parent;
2394	struct m_snd_tag *mst;
2395	int error;
2396
2397	NET_EPOCH_ENTER(et);
2398	ifv = ifp->if_softc;
2399
2400	switch (params->hdr.type) {
2401#ifdef RATELIMIT
2402	case IF_SND_TAG_TYPE_UNLIMITED:
2403		sw = &vlan_snd_tag_ul_sw;
2404		break;
2405	case IF_SND_TAG_TYPE_RATE_LIMIT:
2406		sw = &vlan_snd_tag_rl_sw;
2407		break;
2408#endif
2409#ifdef KERN_TLS
2410	case IF_SND_TAG_TYPE_TLS:
2411		sw = &vlan_snd_tag_tls_sw;
2412		break;
2413	case IF_SND_TAG_TYPE_TLS_RX:
2414		sw = NULL;
2415		if (params->tls_rx.vlan_id != 0)
2416			goto failure;
2417		params->tls_rx.vlan_id = ifv->ifv_vid;
2418		break;
2419#ifdef RATELIMIT
2420	case IF_SND_TAG_TYPE_TLS_RATE_LIMIT:
2421		sw = &vlan_snd_tag_tls_rl_sw;
2422		break;
2423#endif
2424#endif
2425	default:
2426		goto failure;
2427	}
2428
2429	if (ifv->ifv_trunk != NULL)
2430		parent = PARENT(ifv);
2431	else
2432		parent = NULL;
2433	if (parent == NULL)
2434		goto failure;
2435	if_ref(parent);
2436	NET_EPOCH_EXIT(et);
2437
2438	if (sw != NULL) {
2439		vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
2440		if (vst == NULL) {
2441			if_rele(parent);
2442			return (ENOMEM);
2443		}
2444	} else
2445		vst = NULL;
2446
2447	error = m_snd_tag_alloc(parent, params, &mst);
2448	if_rele(parent);
2449	if (error) {
2450		free(vst, M_VLAN);
2451		return (error);
2452	}
2453
2454	if (sw != NULL) {
2455		m_snd_tag_init(&vst->com, ifp, sw);
2456		vst->tag = mst;
2457
2458		*ppmt = &vst->com;
2459	} else
2460		*ppmt = mst;
2461
2462	return (0);
2463failure:
2464	NET_EPOCH_EXIT(et);
2465	return (EOPNOTSUPP);
2466}
2467
2468static struct m_snd_tag *
2469vlan_next_snd_tag(struct m_snd_tag *mst)
2470{
2471	struct vlan_snd_tag *vst;
2472
2473	vst = mst_to_vst(mst);
2474	return (vst->tag);
2475}
2476
2477static int
2478vlan_snd_tag_modify(struct m_snd_tag *mst,
2479    union if_snd_tag_modify_params *params)
2480{
2481	struct vlan_snd_tag *vst;
2482
2483	vst = mst_to_vst(mst);
2484	return (vst->tag->sw->snd_tag_modify(vst->tag, params));
2485}
2486
2487static int
2488vlan_snd_tag_query(struct m_snd_tag *mst,
2489    union if_snd_tag_query_params *params)
2490{
2491	struct vlan_snd_tag *vst;
2492
2493	vst = mst_to_vst(mst);
2494	return (vst->tag->sw->snd_tag_query(vst->tag, params));
2495}
2496
2497static void
2498vlan_snd_tag_free(struct m_snd_tag *mst)
2499{
2500	struct vlan_snd_tag *vst;
2501
2502	vst = mst_to_vst(mst);
2503	m_snd_tag_rele(vst->tag);
2504	free(vst, M_VLAN);
2505}
2506
2507static void
2508vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q)
2509{
2510	/*
2511	 * For vlan, we have an indirect
2512	 * interface. The caller needs to
2513	 * get a ratelimit tag on the actual
2514	 * interface the flow will go on.
2515	 */
2516	q->rate_table = NULL;
2517	q->flags = RT_IS_INDIRECT;
2518	q->max_flows = 0;
2519	q->number_of_rates = 0;
2520}
2521
2522#endif
2523