1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1990, 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org>
7 *
8 * This code is derived from the Stanford/CMU enet packet filter,
9 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
10 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
11 * Berkeley Laboratory.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#include <sys/cdefs.h>
39#include "opt_bpf.h"
40#include "opt_ddb.h"
41#include "opt_netgraph.h"
42
43#include <sys/param.h>
44#include <sys/conf.h>
45#include <sys/eventhandler.h>
46#include <sys/fcntl.h>
47#include <sys/jail.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#include <sys/mutex.h>
53#include <sys/time.h>
54#include <sys/priv.h>
55#include <sys/proc.h>
56#include <sys/signalvar.h>
57#include <sys/filio.h>
58#include <sys/sockio.h>
59#include <sys/ttycom.h>
60#include <sys/uio.h>
61#include <sys/sysent.h>
62#include <sys/systm.h>
63
64#include <sys/event.h>
65#include <sys/file.h>
66#include <sys/poll.h>
67#include <sys/proc.h>
68
69#include <sys/socket.h>
70
71#ifdef DDB
72#include <ddb/ddb.h>
73#endif
74
75#include <net/if.h>
76#include <net/if_var.h>
77#include <net/if_private.h>
78#include <net/if_vlan_var.h>
79#include <net/if_dl.h>
80#include <net/bpf.h>
81#include <net/bpf_buffer.h>
82#ifdef BPF_JITTER
83#include <net/bpf_jitter.h>
84#endif
85#include <net/bpf_zerocopy.h>
86#include <net/bpfdesc.h>
87#include <net/route.h>
88#include <net/vnet.h>
89
90#include <netinet/in.h>
91#include <netinet/if_ether.h>
92#include <sys/kernel.h>
93#include <sys/sysctl.h>
94
95#include <net80211/ieee80211_freebsd.h>
96
97#include <security/mac/mac_framework.h>
98
99MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
100
101static const struct bpf_if_ext dead_bpf_if = {
102	.bif_dlist = CK_LIST_HEAD_INITIALIZER()
103};
104
105struct bpf_if {
106#define	bif_next	bif_ext.bif_next
107#define	bif_dlist	bif_ext.bif_dlist
108	struct bpf_if_ext bif_ext;	/* public members */
109	u_int		bif_dlt;	/* link layer type */
110	u_int		bif_hdrlen;	/* length of link header */
111	struct bpfd_list bif_wlist;	/* writer-only list */
112	struct ifnet	*bif_ifp;	/* corresponding interface */
113	struct bpf_if	**bif_bpf;	/* Pointer to pointer to us */
114	volatile u_int	bif_refcnt;
115	struct epoch_context epoch_ctx;
116};
117
118CTASSERT(offsetof(struct bpf_if, bif_ext) == 0);
119
120struct bpf_program_buffer {
121	struct epoch_context	epoch_ctx;
122#ifdef BPF_JITTER
123	bpf_jit_filter		*func;
124#endif
125	void			*buffer[0];
126};
127
128#if defined(DEV_BPF) || defined(NETGRAPH_BPF)
129
130#define PRINET  26			/* interruptible */
131#define BPF_PRIO_MAX	7
132
133#define	SIZEOF_BPF_HDR(type)	\
134    (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
135
136#ifdef COMPAT_FREEBSD32
137#include <sys/mount.h>
138#include <compat/freebsd32/freebsd32.h>
139#define BPF_ALIGNMENT32 sizeof(int32_t)
140#define	BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
141
142#ifndef BURN_BRIDGES
143/*
144 * 32-bit version of structure prepended to each packet.  We use this header
145 * instead of the standard one for 32-bit streams.  We mark the a stream as
146 * 32-bit the first time we see a 32-bit compat ioctl request.
147 */
148struct bpf_hdr32 {
149	struct timeval32 bh_tstamp;	/* time stamp */
150	uint32_t	bh_caplen;	/* length of captured portion */
151	uint32_t	bh_datalen;	/* original length of packet */
152	uint16_t	bh_hdrlen;	/* length of bpf header (this struct
153					   plus alignment padding) */
154};
155#endif
156
157struct bpf_program32 {
158	u_int bf_len;
159	uint32_t bf_insns;
160};
161
162struct bpf_dltlist32 {
163	u_int	bfl_len;
164	u_int	bfl_list;
165};
166
167#define	BIOCSETF32	_IOW('B', 103, struct bpf_program32)
168#define	BIOCSRTIMEOUT32	_IOW('B', 109, struct timeval32)
169#define	BIOCGRTIMEOUT32	_IOR('B', 110, struct timeval32)
170#define	BIOCGDLTLIST32	_IOWR('B', 121, struct bpf_dltlist32)
171#define	BIOCSETWF32	_IOW('B', 123, struct bpf_program32)
172#define	BIOCSETFNR32	_IOW('B', 130, struct bpf_program32)
173#endif
174
175#define BPF_LOCK()	   sx_xlock(&bpf_sx)
176#define BPF_UNLOCK()		sx_xunlock(&bpf_sx)
177#define BPF_LOCK_ASSERT()	sx_assert(&bpf_sx, SA_XLOCKED)
178/*
179 * bpf_iflist is a list of BPF interface structures, each corresponding to a
180 * specific DLT. The same network interface might have several BPF interface
181 * structures registered by different layers in the stack (i.e., 802.11
182 * frames, ethernet frames, etc).
183 */
184CK_LIST_HEAD(bpf_iflist, bpf_if);
185static struct bpf_iflist bpf_iflist;
186static struct sx	bpf_sx;		/* bpf global lock */
187static int		bpf_bpfd_cnt;
188
189static void	bpfif_ref(struct bpf_if *);
190static void	bpfif_rele(struct bpf_if *);
191
192static void	bpfd_ref(struct bpf_d *);
193static void	bpfd_rele(struct bpf_d *);
194static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
195static void	bpf_detachd(struct bpf_d *);
196static void	bpf_detachd_locked(struct bpf_d *, bool);
197static void	bpfd_free(epoch_context_t);
198static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
199		    struct sockaddr *, int *, struct bpf_d *);
200static int	bpf_setif(struct bpf_d *, struct ifreq *);
201static void	bpf_timed_out(void *);
202static __inline void
203		bpf_wakeup(struct bpf_d *);
204static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
205		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
206		    struct bintime *);
207static void	reset_d(struct bpf_d *);
208static int	bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
209static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
210static int	bpf_setdlt(struct bpf_d *, u_int);
211static void	filt_bpfdetach(struct knote *);
212static int	filt_bpfread(struct knote *, long);
213static int	filt_bpfwrite(struct knote *, long);
214static void	bpf_drvinit(void *);
215static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
216
217SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
218    "bpf sysctl");
219int bpf_maxinsns = BPF_MAXINSNS;
220SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
221    &bpf_maxinsns, 0, "Maximum bpf program instructions");
222static int bpf_zerocopy_enable = 0;
223SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
224    &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
225static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
226    bpf_stats_sysctl, "bpf statistics portal");
227
228VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
229#define	V_bpf_optimize_writers VNET(bpf_optimize_writers)
230SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RWTUN,
231    &VNET_NAME(bpf_optimize_writers), 0,
232    "Do not send packets until BPF program is set");
233
234static	d_open_t	bpfopen;
235static	d_read_t	bpfread;
236static	d_write_t	bpfwrite;
237static	d_ioctl_t	bpfioctl;
238static	d_poll_t	bpfpoll;
239static	d_kqfilter_t	bpfkqfilter;
240
241static struct cdevsw bpf_cdevsw = {
242	.d_version =	D_VERSION,
243	.d_open =	bpfopen,
244	.d_read =	bpfread,
245	.d_write =	bpfwrite,
246	.d_ioctl =	bpfioctl,
247	.d_poll =	bpfpoll,
248	.d_name =	"bpf",
249	.d_kqfilter =	bpfkqfilter,
250};
251
252static struct filterops bpfread_filtops = {
253	.f_isfd = 1,
254	.f_detach = filt_bpfdetach,
255	.f_event = filt_bpfread,
256};
257
258static struct filterops bpfwrite_filtops = {
259	.f_isfd = 1,
260	.f_detach = filt_bpfdetach,
261	.f_event = filt_bpfwrite,
262};
263
264/*
265 * LOCKING MODEL USED BY BPF
266 *
267 * Locks:
268 * 1) global lock (BPF_LOCK). Sx, used to protect some global counters,
269 * every bpf_iflist changes, serializes ioctl access to bpf descriptors.
270 * 2) Descriptor lock. Mutex, used to protect BPF buffers and various
271 * structure fields used by bpf_*tap* code.
272 *
273 * Lock order: global lock, then descriptor lock.
274 *
275 * There are several possible consumers:
276 *
277 * 1. The kernel registers interface pointer with bpfattach().
278 * Each call allocates new bpf_if structure, references ifnet pointer
279 * and links bpf_if into bpf_iflist chain. This is protected with global
280 * lock.
281 *
282 * 2. An userland application uses ioctl() call to bpf_d descriptor.
283 * All such call are serialized with global lock. BPF filters can be
284 * changed, but pointer to old filter will be freed using NET_EPOCH_CALL().
285 * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to
286 * filter pointers, even if change will happen during bpf_tap execution.
287 * Destroying of bpf_d descriptor also is doing using NET_EPOCH_CALL().
288 *
289 * 3. An userland application can write packets into bpf_d descriptor.
290 * There we need to be sure, that ifnet won't disappear during bpfwrite().
291 *
292 * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to
293 * bif_dlist is protected with net_epoch_preempt section. So, it should
294 * be safe to make access to bpf_d descriptor inside the section.
295 *
296 * 5. The kernel invokes bpfdetach() on interface destroying. All lists
297 * are modified with global lock held and actual free() is done using
298 * NET_EPOCH_CALL().
299 */
300
301static void
302bpfif_free(epoch_context_t ctx)
303{
304	struct bpf_if *bp;
305
306	bp = __containerof(ctx, struct bpf_if, epoch_ctx);
307	if_rele(bp->bif_ifp);
308	free(bp, M_BPF);
309}
310
311static void
312bpfif_ref(struct bpf_if *bp)
313{
314
315	refcount_acquire(&bp->bif_refcnt);
316}
317
318static void
319bpfif_rele(struct bpf_if *bp)
320{
321
322	if (!refcount_release(&bp->bif_refcnt))
323		return;
324	NET_EPOCH_CALL(bpfif_free, &bp->epoch_ctx);
325}
326
327static void
328bpfd_ref(struct bpf_d *d)
329{
330
331	refcount_acquire(&d->bd_refcnt);
332}
333
334static void
335bpfd_rele(struct bpf_d *d)
336{
337
338	if (!refcount_release(&d->bd_refcnt))
339		return;
340	NET_EPOCH_CALL(bpfd_free, &d->epoch_ctx);
341}
342
343static struct bpf_program_buffer*
344bpf_program_buffer_alloc(size_t size, int flags)
345{
346
347	return (malloc(sizeof(struct bpf_program_buffer) + size,
348	    M_BPF, flags));
349}
350
351static void
352bpf_program_buffer_free(epoch_context_t ctx)
353{
354	struct bpf_program_buffer *ptr;
355
356	ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx);
357#ifdef BPF_JITTER
358	if (ptr->func != NULL)
359		bpf_destroy_jit_filter(ptr->func);
360#endif
361	free(ptr, M_BPF);
362}
363
364/*
365 * Wrapper functions for various buffering methods.  If the set of buffer
366 * modes expands, we will probably want to introduce a switch data structure
367 * similar to protosw, et.
368 */
369static void
370bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
371    u_int len)
372{
373
374	BPFD_LOCK_ASSERT(d);
375
376	switch (d->bd_bufmode) {
377	case BPF_BUFMODE_BUFFER:
378		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
379
380	case BPF_BUFMODE_ZBUF:
381		counter_u64_add(d->bd_zcopy, 1);
382		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
383
384	default:
385		panic("bpf_buf_append_bytes");
386	}
387}
388
389static void
390bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
391    u_int len)
392{
393
394	BPFD_LOCK_ASSERT(d);
395
396	switch (d->bd_bufmode) {
397	case BPF_BUFMODE_BUFFER:
398		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
399
400	case BPF_BUFMODE_ZBUF:
401		counter_u64_add(d->bd_zcopy, 1);
402		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
403
404	default:
405		panic("bpf_buf_append_mbuf");
406	}
407}
408
409/*
410 * This function gets called when the free buffer is re-assigned.
411 */
412static void
413bpf_buf_reclaimed(struct bpf_d *d)
414{
415
416	BPFD_LOCK_ASSERT(d);
417
418	switch (d->bd_bufmode) {
419	case BPF_BUFMODE_BUFFER:
420		return;
421
422	case BPF_BUFMODE_ZBUF:
423		bpf_zerocopy_buf_reclaimed(d);
424		return;
425
426	default:
427		panic("bpf_buf_reclaimed");
428	}
429}
430
431/*
432 * If the buffer mechanism has a way to decide that a held buffer can be made
433 * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
434 * returned if the buffer can be discarded, (0) is returned if it cannot.
435 */
436static int
437bpf_canfreebuf(struct bpf_d *d)
438{
439
440	BPFD_LOCK_ASSERT(d);
441
442	switch (d->bd_bufmode) {
443	case BPF_BUFMODE_ZBUF:
444		return (bpf_zerocopy_canfreebuf(d));
445	}
446	return (0);
447}
448
449/*
450 * Allow the buffer model to indicate that the current store buffer is
451 * immutable, regardless of the appearance of space.  Return (1) if the
452 * buffer is writable, and (0) if not.
453 */
454static int
455bpf_canwritebuf(struct bpf_d *d)
456{
457	BPFD_LOCK_ASSERT(d);
458
459	switch (d->bd_bufmode) {
460	case BPF_BUFMODE_ZBUF:
461		return (bpf_zerocopy_canwritebuf(d));
462	}
463	return (1);
464}
465
466/*
467 * Notify buffer model that an attempt to write to the store buffer has
468 * resulted in a dropped packet, in which case the buffer may be considered
469 * full.
470 */
471static void
472bpf_buffull(struct bpf_d *d)
473{
474
475	BPFD_LOCK_ASSERT(d);
476
477	switch (d->bd_bufmode) {
478	case BPF_BUFMODE_ZBUF:
479		bpf_zerocopy_buffull(d);
480		break;
481	}
482}
483
484/*
485 * Notify the buffer model that a buffer has moved into the hold position.
486 */
487void
488bpf_bufheld(struct bpf_d *d)
489{
490
491	BPFD_LOCK_ASSERT(d);
492
493	switch (d->bd_bufmode) {
494	case BPF_BUFMODE_ZBUF:
495		bpf_zerocopy_bufheld(d);
496		break;
497	}
498}
499
500static void
501bpf_free(struct bpf_d *d)
502{
503
504	switch (d->bd_bufmode) {
505	case BPF_BUFMODE_BUFFER:
506		return (bpf_buffer_free(d));
507
508	case BPF_BUFMODE_ZBUF:
509		return (bpf_zerocopy_free(d));
510
511	default:
512		panic("bpf_buf_free");
513	}
514}
515
516static int
517bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
518{
519
520	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
521		return (EOPNOTSUPP);
522	return (bpf_buffer_uiomove(d, buf, len, uio));
523}
524
525static int
526bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
527{
528
529	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
530		return (EOPNOTSUPP);
531	return (bpf_buffer_ioctl_sblen(d, i));
532}
533
534static int
535bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
536{
537
538	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
539		return (EOPNOTSUPP);
540	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
541}
542
543static int
544bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
545{
546
547	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
548		return (EOPNOTSUPP);
549	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
550}
551
552static int
553bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
554{
555
556	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
557		return (EOPNOTSUPP);
558	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
559}
560
561/*
562 * General BPF functions.
563 */
564static int
565bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
566    struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
567{
568	const struct ieee80211_bpf_params *p;
569	struct ether_header *eh;
570	struct mbuf *m;
571	int error;
572	int len;
573	int hlen;
574	int slen;
575
576	/*
577	 * Build a sockaddr based on the data link layer type.
578	 * We do this at this level because the ethernet header
579	 * is copied directly into the data field of the sockaddr.
580	 * In the case of SLIP, there is no header and the packet
581	 * is forwarded as is.
582	 * Also, we are careful to leave room at the front of the mbuf
583	 * for the link level header.
584	 */
585	switch (linktype) {
586	case DLT_SLIP:
587		sockp->sa_family = AF_INET;
588		hlen = 0;
589		break;
590
591	case DLT_EN10MB:
592		sockp->sa_family = AF_UNSPEC;
593		/* XXX Would MAXLINKHDR be better? */
594		hlen = ETHER_HDR_LEN;
595		break;
596
597	case DLT_FDDI:
598		sockp->sa_family = AF_IMPLINK;
599		hlen = 0;
600		break;
601
602	case DLT_RAW:
603		sockp->sa_family = AF_UNSPEC;
604		hlen = 0;
605		break;
606
607	case DLT_NULL:
608		/*
609		 * null interface types require a 4 byte pseudo header which
610		 * corresponds to the address family of the packet.
611		 */
612		sockp->sa_family = AF_UNSPEC;
613		hlen = 4;
614		break;
615
616	case DLT_ATM_RFC1483:
617		/*
618		 * en atm driver requires 4-byte atm pseudo header.
619		 * though it isn't standard, vpi:vci needs to be
620		 * specified anyway.
621		 */
622		sockp->sa_family = AF_UNSPEC;
623		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
624		break;
625
626	case DLT_PPP:
627		sockp->sa_family = AF_UNSPEC;
628		hlen = 4;	/* This should match PPP_HDRLEN */
629		break;
630
631	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
632		sockp->sa_family = AF_IEEE80211;
633		hlen = 0;
634		break;
635
636	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
637		sockp->sa_family = AF_IEEE80211;
638		sockp->sa_len = 12;	/* XXX != 0 */
639		hlen = sizeof(struct ieee80211_bpf_params);
640		break;
641
642	default:
643		return (EIO);
644	}
645
646	len = uio->uio_resid;
647	if (len < hlen || len - hlen > ifp->if_mtu)
648		return (EMSGSIZE);
649
650	/* Allocate a mbuf for our write, since m_get2 fails if len >= to MJUMPAGESIZE, use m_getjcl for bigger buffers */
651	m = m_get3(len, M_WAITOK, MT_DATA, M_PKTHDR);
652	if (m == NULL)
653		return (EIO);
654	m->m_pkthdr.len = m->m_len = len;
655	*mp = m;
656
657	error = uiomove(mtod(m, u_char *), len, uio);
658	if (error)
659		goto bad;
660
661	slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
662	if (slen == 0) {
663		error = EPERM;
664		goto bad;
665	}
666
667	/* Check for multicast destination */
668	switch (linktype) {
669	case DLT_EN10MB:
670		eh = mtod(m, struct ether_header *);
671		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
672			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
673			    ETHER_ADDR_LEN) == 0)
674				m->m_flags |= M_BCAST;
675			else
676				m->m_flags |= M_MCAST;
677		}
678		if (d->bd_hdrcmplt == 0) {
679			memcpy(eh->ether_shost, IF_LLADDR(ifp),
680			    sizeof(eh->ether_shost));
681		}
682		break;
683	}
684
685	/*
686	 * Make room for link header, and copy it to sockaddr
687	 */
688	if (hlen != 0) {
689		if (sockp->sa_family == AF_IEEE80211) {
690			/*
691			 * Collect true length from the parameter header
692			 * NB: sockp is known to be zero'd so if we do a
693			 *     short copy unspecified parameters will be
694			 *     zero.
695			 * NB: packet may not be aligned after stripping
696			 *     bpf params
697			 * XXX check ibp_vers
698			 */
699			p = mtod(m, const struct ieee80211_bpf_params *);
700			hlen = p->ibp_len;
701			if (hlen > sizeof(sockp->sa_data)) {
702				error = EINVAL;
703				goto bad;
704			}
705		}
706		bcopy(mtod(m, const void *), sockp->sa_data, hlen);
707	}
708	*hdrlen = hlen;
709
710	return (0);
711bad:
712	m_freem(m);
713	return (error);
714}
715
716/*
717 * Attach descriptor to the bpf interface, i.e. make d listen on bp,
718 * then reset its buffers and counters with reset_d().
719 */
720static void
721bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
722{
723	int op_w;
724
725	BPF_LOCK_ASSERT();
726
727	/*
728	 * Save sysctl value to protect from sysctl change
729	 * between reads
730	 */
731	op_w = V_bpf_optimize_writers || d->bd_writer;
732
733	if (d->bd_bif != NULL)
734		bpf_detachd_locked(d, false);
735	/*
736	 * Point d at bp, and add d to the interface's list.
737	 * Since there are many applications using BPF for
738	 * sending raw packets only (dhcpd, cdpd are good examples)
739	 * we can delay adding d to the list of active listeners until
740	 * some filter is configured.
741	 */
742
743	BPFD_LOCK(d);
744	/*
745	 * Hold reference to bpif while descriptor uses this interface.
746	 */
747	bpfif_ref(bp);
748	d->bd_bif = bp;
749	if (op_w != 0) {
750		/* Add to writers-only list */
751		CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
752		/*
753		 * We decrement bd_writer on every filter set operation.
754		 * First BIOCSETF is done by pcap_open_live() to set up
755		 * snap length. After that appliation usually sets its own
756		 * filter.
757		 */
758		d->bd_writer = 2;
759	} else
760		CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
761
762	reset_d(d);
763
764	/* Trigger EVFILT_WRITE events. */
765	bpf_wakeup(d);
766
767	BPFD_UNLOCK(d);
768	bpf_bpfd_cnt++;
769
770	CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
771	    __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
772
773	if (op_w == 0)
774		EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
775}
776
777/*
778 * Check if we need to upgrade our descriptor @d from write-only mode.
779 */
780static int
781bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode,
782    int flen)
783{
784	int is_snap, need_upgrade;
785
786	/*
787	 * Check if we've already upgraded or new filter is empty.
788	 */
789	if (d->bd_writer == 0 || fcode == NULL)
790		return (0);
791
792	need_upgrade = 0;
793
794	/*
795	 * Check if cmd looks like snaplen setting from
796	 * pcap_bpf.c:pcap_open_live().
797	 * Note we're not checking .k value here:
798	 * while pcap_open_live() definitely sets to non-zero value,
799	 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
800	 * do not consider upgrading immediately
801	 */
802	if (cmd == BIOCSETF && flen == 1 &&
803	    fcode[0].code == (BPF_RET | BPF_K))
804		is_snap = 1;
805	else
806		is_snap = 0;
807
808	if (is_snap == 0) {
809		/*
810		 * We're setting first filter and it doesn't look like
811		 * setting snaplen.  We're probably using bpf directly.
812		 * Upgrade immediately.
813		 */
814		need_upgrade = 1;
815	} else {
816		/*
817		 * Do not require upgrade by first BIOCSETF
818		 * (used to set snaplen) by pcap_open_live().
819		 */
820
821		if (--d->bd_writer == 0) {
822			/*
823			 * First snaplen filter has already
824			 * been set. This is probably catch-all
825			 * filter
826			 */
827			need_upgrade = 1;
828		}
829	}
830
831	CTR5(KTR_NET,
832	    "%s: filter function set by pid %d, "
833	    "bd_writer counter %d, snap %d upgrade %d",
834	    __func__, d->bd_pid, d->bd_writer,
835	    is_snap, need_upgrade);
836
837	return (need_upgrade);
838}
839
840/*
841 * Detach a file from its interface.
842 */
843static void
844bpf_detachd(struct bpf_d *d)
845{
846	BPF_LOCK();
847	bpf_detachd_locked(d, false);
848	BPF_UNLOCK();
849}
850
851static void
852bpf_detachd_locked(struct bpf_d *d, bool detached_ifp)
853{
854	struct bpf_if *bp;
855	struct ifnet *ifp;
856	int error;
857
858	BPF_LOCK_ASSERT();
859	CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
860
861	/* Check if descriptor is attached */
862	if ((bp = d->bd_bif) == NULL)
863		return;
864
865	BPFD_LOCK(d);
866	/* Remove d from the interface's descriptor list. */
867	CK_LIST_REMOVE(d, bd_next);
868	/* Save bd_writer value */
869	error = d->bd_writer;
870	ifp = bp->bif_ifp;
871	d->bd_bif = NULL;
872	if (detached_ifp) {
873		/*
874		 * Notify descriptor as it's detached, so that any
875		 * sleepers wake up and get ENXIO.
876		 */
877		bpf_wakeup(d);
878	}
879	BPFD_UNLOCK(d);
880	bpf_bpfd_cnt--;
881
882	/* Call event handler iff d is attached */
883	if (error == 0)
884		EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
885
886	/*
887	 * Check if this descriptor had requested promiscuous mode.
888	 * If so and ifnet is not detached, turn it off.
889	 */
890	if (d->bd_promisc && !detached_ifp) {
891		d->bd_promisc = 0;
892		CURVNET_SET(ifp->if_vnet);
893		error = ifpromisc(ifp, 0);
894		CURVNET_RESTORE();
895		if (error != 0 && error != ENXIO) {
896			/*
897			 * ENXIO can happen if a pccard is unplugged
898			 * Something is really wrong if we were able to put
899			 * the driver into promiscuous mode, but can't
900			 * take it out.
901			 */
902			if_printf(bp->bif_ifp,
903				"bpf_detach: ifpromisc failed (%d)\n", error);
904		}
905	}
906	bpfif_rele(bp);
907}
908
909/*
910 * Close the descriptor by detaching it from its interface,
911 * deallocating its buffers, and marking it free.
912 */
913static void
914bpf_dtor(void *data)
915{
916	struct bpf_d *d = data;
917
918	BPFD_LOCK(d);
919	if (d->bd_state == BPF_WAITING)
920		callout_stop(&d->bd_callout);
921	d->bd_state = BPF_IDLE;
922	BPFD_UNLOCK(d);
923	funsetown(&d->bd_sigio);
924	bpf_detachd(d);
925#ifdef MAC
926	mac_bpfdesc_destroy(d);
927#endif /* MAC */
928	seldrain(&d->bd_sel);
929	knlist_destroy(&d->bd_sel.si_note);
930	callout_drain(&d->bd_callout);
931	bpfd_rele(d);
932}
933
934/*
935 * Open ethernet device.  Returns ENXIO for illegal minor device number,
936 * EBUSY if file is open by another process.
937 */
938/* ARGSUSED */
939static	int
940bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
941{
942	struct bpf_d *d;
943	int error;
944
945	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
946	error = devfs_set_cdevpriv(d, bpf_dtor);
947	if (error != 0) {
948		free(d, M_BPF);
949		return (error);
950	}
951
952	/* Setup counters */
953	d->bd_rcount = counter_u64_alloc(M_WAITOK);
954	d->bd_dcount = counter_u64_alloc(M_WAITOK);
955	d->bd_fcount = counter_u64_alloc(M_WAITOK);
956	d->bd_wcount = counter_u64_alloc(M_WAITOK);
957	d->bd_wfcount = counter_u64_alloc(M_WAITOK);
958	d->bd_wdcount = counter_u64_alloc(M_WAITOK);
959	d->bd_zcopy = counter_u64_alloc(M_WAITOK);
960
961	/*
962	 * For historical reasons, perform a one-time initialization call to
963	 * the buffer routines, even though we're not yet committed to a
964	 * particular buffer method.
965	 */
966	bpf_buffer_init(d);
967	if ((flags & FREAD) == 0)
968		d->bd_writer = 2;
969	d->bd_hbuf_in_use = 0;
970	d->bd_bufmode = BPF_BUFMODE_BUFFER;
971	d->bd_sig = SIGIO;
972	d->bd_direction = BPF_D_INOUT;
973	refcount_init(&d->bd_refcnt, 1);
974	BPF_PID_REFRESH(d, td);
975#ifdef MAC
976	mac_bpfdesc_init(d);
977	mac_bpfdesc_create(td->td_ucred, d);
978#endif
979	mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
980	callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
981	knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
982
983	/* Disable VLAN pcp tagging. */
984	d->bd_pcp = 0;
985
986	return (0);
987}
988
989/*
990 *  bpfread - read next chunk of packets from buffers
991 */
992static	int
993bpfread(struct cdev *dev, struct uio *uio, int ioflag)
994{
995	struct bpf_d *d;
996	int error;
997	int non_block;
998	int timed_out;
999
1000	error = devfs_get_cdevpriv((void **)&d);
1001	if (error != 0)
1002		return (error);
1003
1004	/*
1005	 * Restrict application to use a buffer the same size as
1006	 * as kernel buffers.
1007	 */
1008	if (uio->uio_resid != d->bd_bufsize)
1009		return (EINVAL);
1010
1011	non_block = ((ioflag & O_NONBLOCK) != 0);
1012
1013	BPFD_LOCK(d);
1014	BPF_PID_REFRESH_CUR(d);
1015	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
1016		BPFD_UNLOCK(d);
1017		return (EOPNOTSUPP);
1018	}
1019	if (d->bd_state == BPF_WAITING)
1020		callout_stop(&d->bd_callout);
1021	timed_out = (d->bd_state == BPF_TIMED_OUT);
1022	d->bd_state = BPF_IDLE;
1023	while (d->bd_hbuf_in_use) {
1024		error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1025		    PRINET|PCATCH, "bd_hbuf", 0);
1026		if (error != 0) {
1027			BPFD_UNLOCK(d);
1028			return (error);
1029		}
1030	}
1031	/*
1032	 * If the hold buffer is empty, then do a timed sleep, which
1033	 * ends when the timeout expires or when enough packets
1034	 * have arrived to fill the store buffer.
1035	 */
1036	while (d->bd_hbuf == NULL) {
1037		if (d->bd_slen != 0) {
1038			/*
1039			 * A packet(s) either arrived since the previous
1040			 * read or arrived while we were asleep.
1041			 */
1042			if (d->bd_immediate || non_block || timed_out) {
1043				/*
1044				 * Rotate the buffers and return what's here
1045				 * if we are in immediate mode, non-blocking
1046				 * flag is set, or this descriptor timed out.
1047				 */
1048				ROTATE_BUFFERS(d);
1049				break;
1050			}
1051		}
1052
1053		/*
1054		 * No data is available, check to see if the bpf device
1055		 * is still pointed at a real interface.  If not, return
1056		 * ENXIO so that the userland process knows to rebind
1057		 * it before using it again.
1058		 */
1059		if (d->bd_bif == NULL) {
1060			BPFD_UNLOCK(d);
1061			return (ENXIO);
1062		}
1063
1064		if (non_block) {
1065			BPFD_UNLOCK(d);
1066			return (EWOULDBLOCK);
1067		}
1068		error = msleep(d, &d->bd_lock, PRINET|PCATCH,
1069		     "bpf", d->bd_rtout);
1070		if (error == EINTR || error == ERESTART) {
1071			BPFD_UNLOCK(d);
1072			return (error);
1073		}
1074		if (error == EWOULDBLOCK) {
1075			/*
1076			 * On a timeout, return what's in the buffer,
1077			 * which may be nothing.  If there is something
1078			 * in the store buffer, we can rotate the buffers.
1079			 */
1080			if (d->bd_hbuf)
1081				/*
1082				 * We filled up the buffer in between
1083				 * getting the timeout and arriving
1084				 * here, so we don't need to rotate.
1085				 */
1086				break;
1087
1088			if (d->bd_slen == 0) {
1089				BPFD_UNLOCK(d);
1090				return (0);
1091			}
1092			ROTATE_BUFFERS(d);
1093			break;
1094		}
1095	}
1096	/*
1097	 * At this point, we know we have something in the hold slot.
1098	 */
1099	d->bd_hbuf_in_use = 1;
1100	BPFD_UNLOCK(d);
1101
1102	/*
1103	 * Move data from hold buffer into user space.
1104	 * We know the entire buffer is transferred since
1105	 * we checked above that the read buffer is bpf_bufsize bytes.
1106  	 *
1107	 * We do not have to worry about simultaneous reads because
1108	 * we waited for sole access to the hold buffer above.
1109	 */
1110	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1111
1112	BPFD_LOCK(d);
1113	KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1114	d->bd_fbuf = d->bd_hbuf;
1115	d->bd_hbuf = NULL;
1116	d->bd_hlen = 0;
1117	bpf_buf_reclaimed(d);
1118	d->bd_hbuf_in_use = 0;
1119	wakeup(&d->bd_hbuf_in_use);
1120	BPFD_UNLOCK(d);
1121
1122	return (error);
1123}
1124
1125/*
1126 * If there are processes sleeping on this descriptor, wake them up.
1127 */
1128static __inline void
1129bpf_wakeup(struct bpf_d *d)
1130{
1131
1132	BPFD_LOCK_ASSERT(d);
1133	if (d->bd_state == BPF_WAITING) {
1134		callout_stop(&d->bd_callout);
1135		d->bd_state = BPF_IDLE;
1136	}
1137	wakeup(d);
1138	if (d->bd_async && d->bd_sig && d->bd_sigio)
1139		pgsigio(&d->bd_sigio, d->bd_sig, 0);
1140
1141	selwakeuppri(&d->bd_sel, PRINET);
1142	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1143}
1144
1145static void
1146bpf_timed_out(void *arg)
1147{
1148	struct bpf_d *d = (struct bpf_d *)arg;
1149
1150	BPFD_LOCK_ASSERT(d);
1151
1152	if (callout_pending(&d->bd_callout) ||
1153	    !callout_active(&d->bd_callout))
1154		return;
1155	if (d->bd_state == BPF_WAITING) {
1156		d->bd_state = BPF_TIMED_OUT;
1157		if (d->bd_slen != 0)
1158			bpf_wakeup(d);
1159	}
1160}
1161
1162static int
1163bpf_ready(struct bpf_d *d)
1164{
1165
1166	BPFD_LOCK_ASSERT(d);
1167
1168	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1169		return (1);
1170	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1171	    d->bd_slen != 0)
1172		return (1);
1173	return (0);
1174}
1175
1176static int
1177bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1178{
1179	struct route ro;
1180	struct sockaddr dst;
1181	struct epoch_tracker et;
1182	struct bpf_if *bp;
1183	struct bpf_d *d;
1184	struct ifnet *ifp;
1185	struct mbuf *m, *mc;
1186	int error, hlen;
1187
1188	error = devfs_get_cdevpriv((void **)&d);
1189	if (error != 0)
1190		return (error);
1191
1192	NET_EPOCH_ENTER(et);
1193	BPFD_LOCK(d);
1194	BPF_PID_REFRESH_CUR(d);
1195	counter_u64_add(d->bd_wcount, 1);
1196	if ((bp = d->bd_bif) == NULL) {
1197		error = ENXIO;
1198		goto out_locked;
1199	}
1200
1201	ifp = bp->bif_ifp;
1202	if ((ifp->if_flags & IFF_UP) == 0) {
1203		error = ENETDOWN;
1204		goto out_locked;
1205	}
1206
1207	if (uio->uio_resid == 0)
1208		goto out_locked;
1209
1210	bzero(&dst, sizeof(dst));
1211	m = NULL;
1212	hlen = 0;
1213
1214	/*
1215	 * Take extra reference, unlock d and exit from epoch section,
1216	 * since bpf_movein() can sleep.
1217	 */
1218	bpfd_ref(d);
1219	NET_EPOCH_EXIT(et);
1220	BPFD_UNLOCK(d);
1221
1222	error = bpf_movein(uio, (int)bp->bif_dlt, ifp,
1223	    &m, &dst, &hlen, d);
1224
1225	if (error != 0) {
1226		counter_u64_add(d->bd_wdcount, 1);
1227		bpfd_rele(d);
1228		return (error);
1229	}
1230
1231	BPFD_LOCK(d);
1232	/*
1233	 * Check that descriptor is still attached to the interface.
1234	 * This can happen on bpfdetach(). To avoid access to detached
1235	 * ifnet, free mbuf and return ENXIO.
1236	 */
1237	if (d->bd_bif == NULL) {
1238		counter_u64_add(d->bd_wdcount, 1);
1239		BPFD_UNLOCK(d);
1240		bpfd_rele(d);
1241		m_freem(m);
1242		return (ENXIO);
1243	}
1244	counter_u64_add(d->bd_wfcount, 1);
1245	if (d->bd_hdrcmplt)
1246		dst.sa_family = pseudo_AF_HDRCMPLT;
1247
1248	if (d->bd_feedback) {
1249		mc = m_dup(m, M_NOWAIT);
1250		if (mc != NULL)
1251			mc->m_pkthdr.rcvif = ifp;
1252		/* Set M_PROMISC for outgoing packets to be discarded. */
1253		if (d->bd_direction == BPF_D_INOUT)
1254			m->m_flags |= M_PROMISC;
1255	} else
1256		mc = NULL;
1257
1258	m->m_pkthdr.len -= hlen;
1259	m->m_len -= hlen;
1260	m->m_data += hlen;	/* XXX */
1261
1262	CURVNET_SET(ifp->if_vnet);
1263#ifdef MAC
1264	mac_bpfdesc_create_mbuf(d, m);
1265	if (mc != NULL)
1266		mac_bpfdesc_create_mbuf(d, mc);
1267#endif
1268
1269	bzero(&ro, sizeof(ro));
1270	if (hlen != 0) {
1271		ro.ro_prepend = (u_char *)&dst.sa_data;
1272		ro.ro_plen = hlen;
1273		ro.ro_flags = RT_HAS_HEADER;
1274	}
1275
1276	if (d->bd_pcp != 0)
1277		vlan_set_pcp(m, d->bd_pcp);
1278
1279	/* Avoid possible recursion on BPFD_LOCK(). */
1280	NET_EPOCH_ENTER(et);
1281	BPFD_UNLOCK(d);
1282	error = (*ifp->if_output)(ifp, m, &dst, &ro);
1283	if (error)
1284		counter_u64_add(d->bd_wdcount, 1);
1285
1286	if (mc != NULL) {
1287		if (error == 0)
1288			(*ifp->if_input)(ifp, mc);
1289		else
1290			m_freem(mc);
1291	}
1292	NET_EPOCH_EXIT(et);
1293	CURVNET_RESTORE();
1294	bpfd_rele(d);
1295	return (error);
1296
1297out_locked:
1298	counter_u64_add(d->bd_wdcount, 1);
1299	NET_EPOCH_EXIT(et);
1300	BPFD_UNLOCK(d);
1301	return (error);
1302}
1303
1304/*
1305 * Reset a descriptor by flushing its packet buffer and clearing the receive
1306 * and drop counts.  This is doable for kernel-only buffers, but with
1307 * zero-copy buffers, we can't write to (or rotate) buffers that are
1308 * currently owned by userspace.  It would be nice if we could encapsulate
1309 * this logic in the buffer code rather than here.
1310 */
1311static void
1312reset_d(struct bpf_d *d)
1313{
1314
1315	BPFD_LOCK_ASSERT(d);
1316
1317	while (d->bd_hbuf_in_use)
1318		mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
1319		    "bd_hbuf", 0);
1320	if ((d->bd_hbuf != NULL) &&
1321	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1322		/* Free the hold buffer. */
1323		d->bd_fbuf = d->bd_hbuf;
1324		d->bd_hbuf = NULL;
1325		d->bd_hlen = 0;
1326		bpf_buf_reclaimed(d);
1327	}
1328	if (bpf_canwritebuf(d))
1329		d->bd_slen = 0;
1330	counter_u64_zero(d->bd_rcount);
1331	counter_u64_zero(d->bd_dcount);
1332	counter_u64_zero(d->bd_fcount);
1333	counter_u64_zero(d->bd_wcount);
1334	counter_u64_zero(d->bd_wfcount);
1335	counter_u64_zero(d->bd_wdcount);
1336	counter_u64_zero(d->bd_zcopy);
1337}
1338
1339/*
1340 *  FIONREAD		Check for read packet available.
1341 *  BIOCGBLEN		Get buffer len [for read()].
1342 *  BIOCSETF		Set read filter.
1343 *  BIOCSETFNR		Set read filter without resetting descriptor.
1344 *  BIOCSETWF		Set write filter.
1345 *  BIOCFLUSH		Flush read packet buffer.
1346 *  BIOCPROMISC		Put interface into promiscuous mode.
1347 *  BIOCGDLT		Get link layer type.
1348 *  BIOCGETIF		Get interface name.
1349 *  BIOCSETIF		Set interface.
1350 *  BIOCSRTIMEOUT	Set read timeout.
1351 *  BIOCGRTIMEOUT	Get read timeout.
1352 *  BIOCGSTATS		Get packet stats.
1353 *  BIOCIMMEDIATE	Set immediate mode.
1354 *  BIOCVERSION		Get filter language version.
1355 *  BIOCGHDRCMPLT	Get "header already complete" flag
1356 *  BIOCSHDRCMPLT	Set "header already complete" flag
1357 *  BIOCGDIRECTION	Get packet direction flag
1358 *  BIOCSDIRECTION	Set packet direction flag
1359 *  BIOCGTSTAMP		Get time stamp format and resolution.
1360 *  BIOCSTSTAMP		Set time stamp format and resolution.
1361 *  BIOCLOCK		Set "locked" flag
1362 *  BIOCFEEDBACK	Set packet feedback mode.
1363 *  BIOCSETZBUF		Set current zero-copy buffer locations.
1364 *  BIOCGETZMAX		Get maximum zero-copy buffer size.
1365 *  BIOCROTZBUF		Force rotation of zero-copy buffer
1366 *  BIOCSETBUFMODE	Set buffer mode.
1367 *  BIOCGETBUFMODE	Get current buffer mode.
1368 *  BIOCSETVLANPCP	Set VLAN PCP tag.
1369 */
1370/* ARGSUSED */
1371static	int
1372bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1373    struct thread *td)
1374{
1375	struct bpf_d *d;
1376	int error;
1377
1378	error = devfs_get_cdevpriv((void **)&d);
1379	if (error != 0)
1380		return (error);
1381
1382	/*
1383	 * Refresh PID associated with this descriptor.
1384	 */
1385	BPFD_LOCK(d);
1386	BPF_PID_REFRESH(d, td);
1387	if (d->bd_state == BPF_WAITING)
1388		callout_stop(&d->bd_callout);
1389	d->bd_state = BPF_IDLE;
1390	BPFD_UNLOCK(d);
1391
1392	if (d->bd_locked == 1) {
1393		switch (cmd) {
1394		case BIOCGBLEN:
1395		case BIOCFLUSH:
1396		case BIOCGDLT:
1397		case BIOCGDLTLIST:
1398#ifdef COMPAT_FREEBSD32
1399		case BIOCGDLTLIST32:
1400#endif
1401		case BIOCGETIF:
1402		case BIOCGRTIMEOUT:
1403#if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1404		case BIOCGRTIMEOUT32:
1405#endif
1406		case BIOCGSTATS:
1407		case BIOCVERSION:
1408		case BIOCGRSIG:
1409		case BIOCGHDRCMPLT:
1410		case BIOCSTSTAMP:
1411		case BIOCFEEDBACK:
1412		case FIONREAD:
1413		case BIOCLOCK:
1414		case BIOCSRTIMEOUT:
1415#if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1416		case BIOCSRTIMEOUT32:
1417#endif
1418		case BIOCIMMEDIATE:
1419		case TIOCGPGRP:
1420		case BIOCROTZBUF:
1421			break;
1422		default:
1423			return (EPERM);
1424		}
1425	}
1426#ifdef COMPAT_FREEBSD32
1427	/*
1428	 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1429	 * that it will get 32-bit packet headers.
1430	 */
1431	switch (cmd) {
1432	case BIOCSETF32:
1433	case BIOCSETFNR32:
1434	case BIOCSETWF32:
1435	case BIOCGDLTLIST32:
1436	case BIOCGRTIMEOUT32:
1437	case BIOCSRTIMEOUT32:
1438		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1439			BPFD_LOCK(d);
1440			d->bd_compat32 = 1;
1441			BPFD_UNLOCK(d);
1442		}
1443	}
1444#endif
1445
1446	CURVNET_SET(TD_TO_VNET(td));
1447	switch (cmd) {
1448	default:
1449		error = EINVAL;
1450		break;
1451
1452	/*
1453	 * Check for read packet available.
1454	 */
1455	case FIONREAD:
1456		{
1457			int n;
1458
1459			BPFD_LOCK(d);
1460			n = d->bd_slen;
1461			while (d->bd_hbuf_in_use)
1462				mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1463				    PRINET, "bd_hbuf", 0);
1464			if (d->bd_hbuf)
1465				n += d->bd_hlen;
1466			BPFD_UNLOCK(d);
1467
1468			*(int *)addr = n;
1469			break;
1470		}
1471
1472	/*
1473	 * Get buffer len [for read()].
1474	 */
1475	case BIOCGBLEN:
1476		BPFD_LOCK(d);
1477		*(u_int *)addr = d->bd_bufsize;
1478		BPFD_UNLOCK(d);
1479		break;
1480
1481	/*
1482	 * Set buffer length.
1483	 */
1484	case BIOCSBLEN:
1485		error = bpf_ioctl_sblen(d, (u_int *)addr);
1486		break;
1487
1488	/*
1489	 * Set link layer read filter.
1490	 */
1491	case BIOCSETF:
1492	case BIOCSETFNR:
1493	case BIOCSETWF:
1494#ifdef COMPAT_FREEBSD32
1495	case BIOCSETF32:
1496	case BIOCSETFNR32:
1497	case BIOCSETWF32:
1498#endif
1499		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1500		break;
1501
1502	/*
1503	 * Flush read packet buffer.
1504	 */
1505	case BIOCFLUSH:
1506		BPFD_LOCK(d);
1507		reset_d(d);
1508		BPFD_UNLOCK(d);
1509		break;
1510
1511	/*
1512	 * Put interface into promiscuous mode.
1513	 */
1514	case BIOCPROMISC:
1515		BPF_LOCK();
1516		if (d->bd_bif == NULL) {
1517			/*
1518			 * No interface attached yet.
1519			 */
1520			error = EINVAL;
1521		} else if (d->bd_promisc == 0) {
1522			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1523			if (error == 0)
1524				d->bd_promisc = 1;
1525		}
1526		BPF_UNLOCK();
1527		break;
1528
1529	/*
1530	 * Get current data link type.
1531	 */
1532	case BIOCGDLT:
1533		BPF_LOCK();
1534		if (d->bd_bif == NULL)
1535			error = EINVAL;
1536		else
1537			*(u_int *)addr = d->bd_bif->bif_dlt;
1538		BPF_UNLOCK();
1539		break;
1540
1541	/*
1542	 * Get a list of supported data link types.
1543	 */
1544#ifdef COMPAT_FREEBSD32
1545	case BIOCGDLTLIST32:
1546		{
1547			struct bpf_dltlist32 *list32;
1548			struct bpf_dltlist dltlist;
1549
1550			list32 = (struct bpf_dltlist32 *)addr;
1551			dltlist.bfl_len = list32->bfl_len;
1552			dltlist.bfl_list = PTRIN(list32->bfl_list);
1553			BPF_LOCK();
1554			if (d->bd_bif == NULL)
1555				error = EINVAL;
1556			else {
1557				error = bpf_getdltlist(d, &dltlist);
1558				if (error == 0)
1559					list32->bfl_len = dltlist.bfl_len;
1560			}
1561			BPF_UNLOCK();
1562			break;
1563		}
1564#endif
1565
1566	case BIOCGDLTLIST:
1567		BPF_LOCK();
1568		if (d->bd_bif == NULL)
1569			error = EINVAL;
1570		else
1571			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1572		BPF_UNLOCK();
1573		break;
1574
1575	/*
1576	 * Set data link type.
1577	 */
1578	case BIOCSDLT:
1579		BPF_LOCK();
1580		if (d->bd_bif == NULL)
1581			error = EINVAL;
1582		else
1583			error = bpf_setdlt(d, *(u_int *)addr);
1584		BPF_UNLOCK();
1585		break;
1586
1587	/*
1588	 * Get interface name.
1589	 */
1590	case BIOCGETIF:
1591		BPF_LOCK();
1592		if (d->bd_bif == NULL)
1593			error = EINVAL;
1594		else {
1595			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1596			struct ifreq *const ifr = (struct ifreq *)addr;
1597
1598			strlcpy(ifr->ifr_name, ifp->if_xname,
1599			    sizeof(ifr->ifr_name));
1600		}
1601		BPF_UNLOCK();
1602		break;
1603
1604	/*
1605	 * Set interface.
1606	 */
1607	case BIOCSETIF:
1608		{
1609			int alloc_buf, size;
1610
1611			/*
1612			 * Behavior here depends on the buffering model.  If
1613			 * we're using kernel memory buffers, then we can
1614			 * allocate them here.  If we're using zero-copy,
1615			 * then the user process must have registered buffers
1616			 * by the time we get here.
1617			 */
1618			alloc_buf = 0;
1619			BPFD_LOCK(d);
1620			if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1621			    d->bd_sbuf == NULL)
1622				alloc_buf = 1;
1623			BPFD_UNLOCK(d);
1624			if (alloc_buf) {
1625				size = d->bd_bufsize;
1626				error = bpf_buffer_ioctl_sblen(d, &size);
1627				if (error != 0)
1628					break;
1629			}
1630			BPF_LOCK();
1631			error = bpf_setif(d, (struct ifreq *)addr);
1632			BPF_UNLOCK();
1633			break;
1634		}
1635
1636	/*
1637	 * Set read timeout.
1638	 */
1639	case BIOCSRTIMEOUT:
1640#if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1641	case BIOCSRTIMEOUT32:
1642#endif
1643		{
1644			struct timeval *tv = (struct timeval *)addr;
1645#if defined(COMPAT_FREEBSD32)
1646			struct timeval32 *tv32;
1647			struct timeval tv64;
1648
1649			if (cmd == BIOCSRTIMEOUT32) {
1650				tv32 = (struct timeval32 *)addr;
1651				tv = &tv64;
1652				tv->tv_sec = tv32->tv_sec;
1653				tv->tv_usec = tv32->tv_usec;
1654			} else
1655#endif
1656				tv = (struct timeval *)addr;
1657
1658			/*
1659			 * Subtract 1 tick from tvtohz() since this isn't
1660			 * a one-shot timer.
1661			 */
1662			if ((error = itimerfix(tv)) == 0)
1663				d->bd_rtout = tvtohz(tv) - 1;
1664			break;
1665		}
1666
1667	/*
1668	 * Get read timeout.
1669	 */
1670	case BIOCGRTIMEOUT:
1671#if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1672	case BIOCGRTIMEOUT32:
1673#endif
1674		{
1675			struct timeval *tv;
1676#if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1677			struct timeval32 *tv32;
1678			struct timeval tv64;
1679
1680			if (cmd == BIOCGRTIMEOUT32)
1681				tv = &tv64;
1682			else
1683#endif
1684				tv = (struct timeval *)addr;
1685
1686			tv->tv_sec = d->bd_rtout / hz;
1687			tv->tv_usec = (d->bd_rtout % hz) * tick;
1688#if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1689			if (cmd == BIOCGRTIMEOUT32) {
1690				tv32 = (struct timeval32 *)addr;
1691				tv32->tv_sec = tv->tv_sec;
1692				tv32->tv_usec = tv->tv_usec;
1693			}
1694#endif
1695
1696			break;
1697		}
1698
1699	/*
1700	 * Get packet stats.
1701	 */
1702	case BIOCGSTATS:
1703		{
1704			struct bpf_stat *bs = (struct bpf_stat *)addr;
1705
1706			/* XXXCSJP overflow */
1707			bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1708			bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1709			break;
1710		}
1711
1712	/*
1713	 * Set immediate mode.
1714	 */
1715	case BIOCIMMEDIATE:
1716		BPFD_LOCK(d);
1717		d->bd_immediate = *(u_int *)addr;
1718		BPFD_UNLOCK(d);
1719		break;
1720
1721	case BIOCVERSION:
1722		{
1723			struct bpf_version *bv = (struct bpf_version *)addr;
1724
1725			bv->bv_major = BPF_MAJOR_VERSION;
1726			bv->bv_minor = BPF_MINOR_VERSION;
1727			break;
1728		}
1729
1730	/*
1731	 * Get "header already complete" flag
1732	 */
1733	case BIOCGHDRCMPLT:
1734		BPFD_LOCK(d);
1735		*(u_int *)addr = d->bd_hdrcmplt;
1736		BPFD_UNLOCK(d);
1737		break;
1738
1739	/*
1740	 * Set "header already complete" flag
1741	 */
1742	case BIOCSHDRCMPLT:
1743		BPFD_LOCK(d);
1744		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1745		BPFD_UNLOCK(d);
1746		break;
1747
1748	/*
1749	 * Get packet direction flag
1750	 */
1751	case BIOCGDIRECTION:
1752		BPFD_LOCK(d);
1753		*(u_int *)addr = d->bd_direction;
1754		BPFD_UNLOCK(d);
1755		break;
1756
1757	/*
1758	 * Set packet direction flag
1759	 */
1760	case BIOCSDIRECTION:
1761		{
1762			u_int	direction;
1763
1764			direction = *(u_int *)addr;
1765			switch (direction) {
1766			case BPF_D_IN:
1767			case BPF_D_INOUT:
1768			case BPF_D_OUT:
1769				BPFD_LOCK(d);
1770				d->bd_direction = direction;
1771				BPFD_UNLOCK(d);
1772				break;
1773			default:
1774				error = EINVAL;
1775			}
1776		}
1777		break;
1778
1779	/*
1780	 * Get packet timestamp format and resolution.
1781	 */
1782	case BIOCGTSTAMP:
1783		BPFD_LOCK(d);
1784		*(u_int *)addr = d->bd_tstamp;
1785		BPFD_UNLOCK(d);
1786		break;
1787
1788	/*
1789	 * Set packet timestamp format and resolution.
1790	 */
1791	case BIOCSTSTAMP:
1792		{
1793			u_int	func;
1794
1795			func = *(u_int *)addr;
1796			if (BPF_T_VALID(func))
1797				d->bd_tstamp = func;
1798			else
1799				error = EINVAL;
1800		}
1801		break;
1802
1803	case BIOCFEEDBACK:
1804		BPFD_LOCK(d);
1805		d->bd_feedback = *(u_int *)addr;
1806		BPFD_UNLOCK(d);
1807		break;
1808
1809	case BIOCLOCK:
1810		BPFD_LOCK(d);
1811		d->bd_locked = 1;
1812		BPFD_UNLOCK(d);
1813		break;
1814
1815	case FIONBIO:		/* Non-blocking I/O */
1816		break;
1817
1818	case FIOASYNC:		/* Send signal on receive packets */
1819		BPFD_LOCK(d);
1820		d->bd_async = *(int *)addr;
1821		BPFD_UNLOCK(d);
1822		break;
1823
1824	case FIOSETOWN:
1825		/*
1826		 * XXX: Add some sort of locking here?
1827		 * fsetown() can sleep.
1828		 */
1829		error = fsetown(*(int *)addr, &d->bd_sigio);
1830		break;
1831
1832	case FIOGETOWN:
1833		BPFD_LOCK(d);
1834		*(int *)addr = fgetown(&d->bd_sigio);
1835		BPFD_UNLOCK(d);
1836		break;
1837
1838	/* This is deprecated, FIOSETOWN should be used instead. */
1839	case TIOCSPGRP:
1840		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1841		break;
1842
1843	/* This is deprecated, FIOGETOWN should be used instead. */
1844	case TIOCGPGRP:
1845		*(int *)addr = -fgetown(&d->bd_sigio);
1846		break;
1847
1848	case BIOCSRSIG:		/* Set receive signal */
1849		{
1850			u_int sig;
1851
1852			sig = *(u_int *)addr;
1853
1854			if (sig >= NSIG)
1855				error = EINVAL;
1856			else {
1857				BPFD_LOCK(d);
1858				d->bd_sig = sig;
1859				BPFD_UNLOCK(d);
1860			}
1861			break;
1862		}
1863	case BIOCGRSIG:
1864		BPFD_LOCK(d);
1865		*(u_int *)addr = d->bd_sig;
1866		BPFD_UNLOCK(d);
1867		break;
1868
1869	case BIOCGETBUFMODE:
1870		BPFD_LOCK(d);
1871		*(u_int *)addr = d->bd_bufmode;
1872		BPFD_UNLOCK(d);
1873		break;
1874
1875	case BIOCSETBUFMODE:
1876		/*
1877		 * Allow the buffering mode to be changed as long as we
1878		 * haven't yet committed to a particular mode.  Our
1879		 * definition of commitment, for now, is whether or not a
1880		 * buffer has been allocated or an interface attached, since
1881		 * that's the point where things get tricky.
1882		 */
1883		switch (*(u_int *)addr) {
1884		case BPF_BUFMODE_BUFFER:
1885			break;
1886
1887		case BPF_BUFMODE_ZBUF:
1888			if (bpf_zerocopy_enable)
1889				break;
1890			/* FALLSTHROUGH */
1891
1892		default:
1893			CURVNET_RESTORE();
1894			return (EINVAL);
1895		}
1896
1897		BPFD_LOCK(d);
1898		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1899		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1900			BPFD_UNLOCK(d);
1901			CURVNET_RESTORE();
1902			return (EBUSY);
1903		}
1904		d->bd_bufmode = *(u_int *)addr;
1905		BPFD_UNLOCK(d);
1906		break;
1907
1908	case BIOCGETZMAX:
1909		error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1910		break;
1911
1912	case BIOCSETZBUF:
1913		error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1914		break;
1915
1916	case BIOCROTZBUF:
1917		error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1918		break;
1919
1920	case BIOCSETVLANPCP:
1921		{
1922			u_int pcp;
1923
1924			pcp = *(u_int *)addr;
1925			if (pcp > BPF_PRIO_MAX || pcp < 0) {
1926				error = EINVAL;
1927				break;
1928			}
1929			d->bd_pcp = pcp;
1930			break;
1931		}
1932	}
1933	CURVNET_RESTORE();
1934	return (error);
1935}
1936
1937/*
1938 * Set d's packet filter program to fp. If this file already has a filter,
1939 * free it and replace it. Returns EINVAL for bogus requests.
1940 *
1941 * Note we use global lock here to serialize bpf_setf() and bpf_setif()
1942 * calls.
1943 */
1944static int
1945bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1946{
1947#ifdef COMPAT_FREEBSD32
1948	struct bpf_program fp_swab;
1949	struct bpf_program32 *fp32;
1950#endif
1951	struct bpf_program_buffer *fcode;
1952	struct bpf_insn *filter;
1953#ifdef BPF_JITTER
1954	bpf_jit_filter *jfunc;
1955#endif
1956	size_t size;
1957	u_int flen;
1958	bool track_event;
1959
1960#ifdef COMPAT_FREEBSD32
1961	switch (cmd) {
1962	case BIOCSETF32:
1963	case BIOCSETWF32:
1964	case BIOCSETFNR32:
1965		fp32 = (struct bpf_program32 *)fp;
1966		fp_swab.bf_len = fp32->bf_len;
1967		fp_swab.bf_insns =
1968		    (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1969		fp = &fp_swab;
1970		switch (cmd) {
1971		case BIOCSETF32:
1972			cmd = BIOCSETF;
1973			break;
1974		case BIOCSETWF32:
1975			cmd = BIOCSETWF;
1976			break;
1977		}
1978		break;
1979	}
1980#endif
1981
1982	filter = NULL;
1983#ifdef BPF_JITTER
1984	jfunc = NULL;
1985#endif
1986	/*
1987	 * Check new filter validness before acquiring any locks.
1988	 * Allocate memory for new filter, if needed.
1989	 */
1990	flen = fp->bf_len;
1991	if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1992		return (EINVAL);
1993	size = flen * sizeof(*fp->bf_insns);
1994	if (size > 0) {
1995		/* We're setting up new filter. Copy and check actual data. */
1996		fcode = bpf_program_buffer_alloc(size, M_WAITOK);
1997		filter = (struct bpf_insn *)fcode->buffer;
1998		if (copyin(fp->bf_insns, filter, size) != 0 ||
1999		    !bpf_validate(filter, flen)) {
2000			free(fcode, M_BPF);
2001			return (EINVAL);
2002		}
2003#ifdef BPF_JITTER
2004		if (cmd != BIOCSETWF) {
2005			/*
2006			 * Filter is copied inside fcode and is
2007			 * perfectly valid.
2008			 */
2009			jfunc = bpf_jitter(filter, flen);
2010		}
2011#endif
2012	}
2013
2014	track_event = false;
2015	fcode = NULL;
2016
2017	BPF_LOCK();
2018	BPFD_LOCK(d);
2019	/* Set up new filter. */
2020	if (cmd == BIOCSETWF) {
2021		if (d->bd_wfilter != NULL) {
2022			fcode = __containerof((void *)d->bd_wfilter,
2023			    struct bpf_program_buffer, buffer);
2024#ifdef BPF_JITTER
2025			fcode->func = NULL;
2026#endif
2027		}
2028		d->bd_wfilter = filter;
2029	} else {
2030		if (d->bd_rfilter != NULL) {
2031			fcode = __containerof((void *)d->bd_rfilter,
2032			    struct bpf_program_buffer, buffer);
2033#ifdef BPF_JITTER
2034			fcode->func = d->bd_bfilter;
2035#endif
2036		}
2037		d->bd_rfilter = filter;
2038#ifdef BPF_JITTER
2039		d->bd_bfilter = jfunc;
2040#endif
2041		if (cmd == BIOCSETF)
2042			reset_d(d);
2043
2044		if (bpf_check_upgrade(cmd, d, filter, flen) != 0) {
2045			/*
2046			 * Filter can be set several times without
2047			 * specifying interface. In this case just mark d
2048			 * as reader.
2049			 */
2050			d->bd_writer = 0;
2051			if (d->bd_bif != NULL) {
2052				/*
2053				 * Remove descriptor from writers-only list
2054				 * and add it to active readers list.
2055				 */
2056				CK_LIST_REMOVE(d, bd_next);
2057				CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist,
2058				    d, bd_next);
2059				CTR2(KTR_NET,
2060				    "%s: upgrade required by pid %d",
2061				    __func__, d->bd_pid);
2062				track_event = true;
2063			}
2064		}
2065	}
2066	BPFD_UNLOCK(d);
2067
2068	if (fcode != NULL)
2069		NET_EPOCH_CALL(bpf_program_buffer_free, &fcode->epoch_ctx);
2070
2071	if (track_event)
2072		EVENTHANDLER_INVOKE(bpf_track,
2073		    d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1);
2074
2075	BPF_UNLOCK();
2076	return (0);
2077}
2078
2079/*
2080 * Detach a file from its current interface (if attached at all) and attach
2081 * to the interface indicated by the name stored in ifr.
2082 * Return an errno or 0.
2083 */
2084static int
2085bpf_setif(struct bpf_d *d, struct ifreq *ifr)
2086{
2087	struct bpf_if *bp;
2088	struct ifnet *theywant;
2089
2090	BPF_LOCK_ASSERT();
2091
2092	theywant = ifunit(ifr->ifr_name);
2093	if (theywant == NULL || theywant->if_bpf == NULL)
2094		return (ENXIO);
2095
2096	bp = theywant->if_bpf;
2097	/*
2098	 * At this point, we expect the buffer is already allocated.  If not,
2099	 * return an error.
2100	 */
2101	switch (d->bd_bufmode) {
2102	case BPF_BUFMODE_BUFFER:
2103	case BPF_BUFMODE_ZBUF:
2104		if (d->bd_sbuf == NULL)
2105			return (EINVAL);
2106		break;
2107
2108	default:
2109		panic("bpf_setif: bufmode %d", d->bd_bufmode);
2110	}
2111	if (bp != d->bd_bif)
2112		bpf_attachd(d, bp);
2113	else {
2114		BPFD_LOCK(d);
2115		reset_d(d);
2116		BPFD_UNLOCK(d);
2117	}
2118	return (0);
2119}
2120
2121/*
2122 * Support for select() and poll() system calls
2123 *
2124 * Return true iff the specific operation will not block indefinitely.
2125 * Otherwise, return false but make a note that a selwakeup() must be done.
2126 */
2127static int
2128bpfpoll(struct cdev *dev, int events, struct thread *td)
2129{
2130	struct bpf_d *d;
2131	int revents;
2132
2133	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2134		return (events &
2135		    (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
2136
2137	/*
2138	 * Refresh PID associated with this descriptor.
2139	 */
2140	revents = events & (POLLOUT | POLLWRNORM);
2141	BPFD_LOCK(d);
2142	BPF_PID_REFRESH(d, td);
2143	if (events & (POLLIN | POLLRDNORM)) {
2144		if (bpf_ready(d))
2145			revents |= events & (POLLIN | POLLRDNORM);
2146		else {
2147			selrecord(td, &d->bd_sel);
2148			/* Start the read timeout if necessary. */
2149			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2150				callout_reset(&d->bd_callout, d->bd_rtout,
2151				    bpf_timed_out, d);
2152				d->bd_state = BPF_WAITING;
2153			}
2154		}
2155	}
2156	BPFD_UNLOCK(d);
2157	return (revents);
2158}
2159
2160/*
2161 * Support for kevent() system call.  Register EVFILT_READ filters and
2162 * reject all others.
2163 */
2164int
2165bpfkqfilter(struct cdev *dev, struct knote *kn)
2166{
2167	struct bpf_d *d;
2168
2169	if (devfs_get_cdevpriv((void **)&d) != 0)
2170		return (1);
2171
2172	switch (kn->kn_filter) {
2173	case EVFILT_READ:
2174		kn->kn_fop = &bpfread_filtops;
2175		break;
2176
2177	case EVFILT_WRITE:
2178		kn->kn_fop = &bpfwrite_filtops;
2179		break;
2180
2181	default:
2182		return (1);
2183	}
2184
2185	/*
2186	 * Refresh PID associated with this descriptor.
2187	 */
2188	BPFD_LOCK(d);
2189	BPF_PID_REFRESH_CUR(d);
2190	kn->kn_hook = d;
2191	knlist_add(&d->bd_sel.si_note, kn, 1);
2192	BPFD_UNLOCK(d);
2193
2194	return (0);
2195}
2196
2197static void
2198filt_bpfdetach(struct knote *kn)
2199{
2200	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2201
2202	knlist_remove(&d->bd_sel.si_note, kn, 0);
2203}
2204
2205static int
2206filt_bpfread(struct knote *kn, long hint)
2207{
2208	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2209	int ready;
2210
2211	BPFD_LOCK_ASSERT(d);
2212	ready = bpf_ready(d);
2213	if (ready) {
2214		kn->kn_data = d->bd_slen;
2215		/*
2216		 * Ignore the hold buffer if it is being copied to user space.
2217		 */
2218		if (!d->bd_hbuf_in_use && d->bd_hbuf)
2219			kn->kn_data += d->bd_hlen;
2220	} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2221		callout_reset(&d->bd_callout, d->bd_rtout,
2222		    bpf_timed_out, d);
2223		d->bd_state = BPF_WAITING;
2224	}
2225
2226	return (ready);
2227}
2228
2229static int
2230filt_bpfwrite(struct knote *kn, long hint)
2231{
2232	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2233
2234	BPFD_LOCK_ASSERT(d);
2235
2236	if (d->bd_bif == NULL) {
2237		kn->kn_data = 0;
2238		return (0);
2239	} else {
2240		kn->kn_data = d->bd_bif->bif_ifp->if_mtu;
2241		return (1);
2242	}
2243}
2244
2245#define	BPF_TSTAMP_NONE		0
2246#define	BPF_TSTAMP_FAST		1
2247#define	BPF_TSTAMP_NORMAL	2
2248#define	BPF_TSTAMP_EXTERN	3
2249
2250static int
2251bpf_ts_quality(int tstype)
2252{
2253
2254	if (tstype == BPF_T_NONE)
2255		return (BPF_TSTAMP_NONE);
2256	if ((tstype & BPF_T_FAST) != 0)
2257		return (BPF_TSTAMP_FAST);
2258
2259	return (BPF_TSTAMP_NORMAL);
2260}
2261
2262static int
2263bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2264{
2265	struct timespec ts;
2266	struct m_tag *tag;
2267	int quality;
2268
2269	quality = bpf_ts_quality(tstype);
2270	if (quality == BPF_TSTAMP_NONE)
2271		return (quality);
2272
2273	if (m != NULL) {
2274		if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) {
2275			mbuf_tstmp2timespec(m, &ts);
2276			timespec2bintime(&ts, bt);
2277			return (BPF_TSTAMP_EXTERN);
2278		}
2279		tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2280		if (tag != NULL) {
2281			*bt = *(struct bintime *)(tag + 1);
2282			return (BPF_TSTAMP_EXTERN);
2283		}
2284	}
2285	if (quality == BPF_TSTAMP_NORMAL)
2286		binuptime(bt);
2287	else
2288		getbinuptime(bt);
2289
2290	return (quality);
2291}
2292
2293/*
2294 * Incoming linkage from device drivers.  Process the packet pkt, of length
2295 * pktlen, which is stored in a contiguous buffer.  The packet is parsed
2296 * by each process' filter, and if accepted, stashed into the corresponding
2297 * buffer.
2298 */
2299void
2300bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2301{
2302	struct epoch_tracker et;
2303	struct bintime bt;
2304	struct bpf_d *d;
2305#ifdef BPF_JITTER
2306	bpf_jit_filter *bf;
2307#endif
2308	u_int slen;
2309	int gottime;
2310
2311	gottime = BPF_TSTAMP_NONE;
2312	NET_EPOCH_ENTER(et);
2313	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2314		counter_u64_add(d->bd_rcount, 1);
2315		/*
2316		 * NB: We dont call BPF_CHECK_DIRECTION() here since there
2317		 * is no way for the caller to indiciate to us whether this
2318		 * packet is inbound or outbound. In the bpf_mtap() routines,
2319		 * we use the interface pointers on the mbuf to figure it out.
2320		 */
2321#ifdef BPF_JITTER
2322		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2323		if (bf != NULL)
2324			slen = (*(bf->func))(pkt, pktlen, pktlen);
2325		else
2326#endif
2327		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2328		if (slen != 0) {
2329			/*
2330			 * Filter matches. Let's to acquire write lock.
2331			 */
2332			BPFD_LOCK(d);
2333			counter_u64_add(d->bd_fcount, 1);
2334			if (gottime < bpf_ts_quality(d->bd_tstamp))
2335				gottime = bpf_gettime(&bt, d->bd_tstamp,
2336				    NULL);
2337#ifdef MAC
2338			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2339#endif
2340				catchpacket(d, pkt, pktlen, slen,
2341				    bpf_append_bytes, &bt);
2342			BPFD_UNLOCK(d);
2343		}
2344	}
2345	NET_EPOCH_EXIT(et);
2346}
2347
2348void
2349bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
2350{
2351	if (bpf_peers_present(ifp->if_bpf))
2352		bpf_tap(ifp->if_bpf, pkt, pktlen);
2353}
2354
2355#define	BPF_CHECK_DIRECTION(d, r, i)				\
2356	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
2357	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2358
2359/*
2360 * Incoming linkage from device drivers, when packet is in an mbuf chain.
2361 * Locking model is explained in bpf_tap().
2362 */
2363void
2364bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2365{
2366	struct epoch_tracker et;
2367	struct bintime bt;
2368	struct bpf_d *d;
2369#ifdef BPF_JITTER
2370	bpf_jit_filter *bf;
2371#endif
2372	u_int pktlen, slen;
2373	int gottime;
2374
2375	/* Skip outgoing duplicate packets. */
2376	if ((m->m_flags & M_PROMISC) != 0 && m_rcvif(m) == NULL) {
2377		m->m_flags &= ~M_PROMISC;
2378		return;
2379	}
2380
2381	pktlen = m_length(m, NULL);
2382	gottime = BPF_TSTAMP_NONE;
2383
2384	NET_EPOCH_ENTER(et);
2385	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2386		if (BPF_CHECK_DIRECTION(d, m_rcvif(m), bp->bif_ifp))
2387			continue;
2388		counter_u64_add(d->bd_rcount, 1);
2389#ifdef BPF_JITTER
2390		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2391		/* XXX We cannot handle multiple mbufs. */
2392		if (bf != NULL && m->m_next == NULL)
2393			slen = (*(bf->func))(mtod(m, u_char *), pktlen,
2394			    pktlen);
2395		else
2396#endif
2397		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2398		if (slen != 0) {
2399			BPFD_LOCK(d);
2400
2401			counter_u64_add(d->bd_fcount, 1);
2402			if (gottime < bpf_ts_quality(d->bd_tstamp))
2403				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2404#ifdef MAC
2405			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2406#endif
2407				catchpacket(d, (u_char *)m, pktlen, slen,
2408				    bpf_append_mbuf, &bt);
2409			BPFD_UNLOCK(d);
2410		}
2411	}
2412	NET_EPOCH_EXIT(et);
2413}
2414
2415void
2416bpf_mtap_if(if_t ifp, struct mbuf *m)
2417{
2418	if (bpf_peers_present(ifp->if_bpf)) {
2419		M_ASSERTVALID(m);
2420		bpf_mtap(ifp->if_bpf, m);
2421	}
2422}
2423
2424/*
2425 * Incoming linkage from device drivers, when packet is in
2426 * an mbuf chain and to be prepended by a contiguous header.
2427 */
2428void
2429bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2430{
2431	struct epoch_tracker et;
2432	struct bintime bt;
2433	struct mbuf mb;
2434	struct bpf_d *d;
2435	u_int pktlen, slen;
2436	int gottime;
2437
2438	/* Skip outgoing duplicate packets. */
2439	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2440		m->m_flags &= ~M_PROMISC;
2441		return;
2442	}
2443
2444	pktlen = m_length(m, NULL);
2445	/*
2446	 * Craft on-stack mbuf suitable for passing to bpf_filter.
2447	 * Note that we cut corners here; we only setup what's
2448	 * absolutely needed--this mbuf should never go anywhere else.
2449	 */
2450	mb.m_flags = 0;
2451	mb.m_next = m;
2452	mb.m_data = data;
2453	mb.m_len = dlen;
2454	pktlen += dlen;
2455
2456	gottime = BPF_TSTAMP_NONE;
2457
2458	NET_EPOCH_ENTER(et);
2459	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2460		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2461			continue;
2462		counter_u64_add(d->bd_rcount, 1);
2463		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2464		if (slen != 0) {
2465			BPFD_LOCK(d);
2466
2467			counter_u64_add(d->bd_fcount, 1);
2468			if (gottime < bpf_ts_quality(d->bd_tstamp))
2469				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2470#ifdef MAC
2471			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2472#endif
2473				catchpacket(d, (u_char *)&mb, pktlen, slen,
2474				    bpf_append_mbuf, &bt);
2475			BPFD_UNLOCK(d);
2476		}
2477	}
2478	NET_EPOCH_EXIT(et);
2479}
2480
2481void
2482bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
2483{
2484	if (bpf_peers_present(ifp->if_bpf)) {
2485		M_ASSERTVALID(m);
2486		bpf_mtap2(ifp->if_bpf, data, dlen, m);
2487	}
2488}
2489
2490#undef	BPF_CHECK_DIRECTION
2491#undef	BPF_TSTAMP_NONE
2492#undef	BPF_TSTAMP_FAST
2493#undef	BPF_TSTAMP_NORMAL
2494#undef	BPF_TSTAMP_EXTERN
2495
2496static int
2497bpf_hdrlen(struct bpf_d *d)
2498{
2499	int hdrlen;
2500
2501	hdrlen = d->bd_bif->bif_hdrlen;
2502#ifndef BURN_BRIDGES
2503	if (d->bd_tstamp == BPF_T_NONE ||
2504	    BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2505#ifdef COMPAT_FREEBSD32
2506		if (d->bd_compat32)
2507			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2508		else
2509#endif
2510			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2511	else
2512#endif
2513		hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2514#ifdef COMPAT_FREEBSD32
2515	if (d->bd_compat32)
2516		hdrlen = BPF_WORDALIGN32(hdrlen);
2517	else
2518#endif
2519		hdrlen = BPF_WORDALIGN(hdrlen);
2520
2521	return (hdrlen - d->bd_bif->bif_hdrlen);
2522}
2523
2524static void
2525bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2526{
2527	struct bintime bt2, boottimebin;
2528	struct timeval tsm;
2529	struct timespec tsn;
2530
2531	if ((tstype & BPF_T_MONOTONIC) == 0) {
2532		bt2 = *bt;
2533		getboottimebin(&boottimebin);
2534		bintime_add(&bt2, &boottimebin);
2535		bt = &bt2;
2536	}
2537	switch (BPF_T_FORMAT(tstype)) {
2538	case BPF_T_MICROTIME:
2539		bintime2timeval(bt, &tsm);
2540		ts->bt_sec = tsm.tv_sec;
2541		ts->bt_frac = tsm.tv_usec;
2542		break;
2543	case BPF_T_NANOTIME:
2544		bintime2timespec(bt, &tsn);
2545		ts->bt_sec = tsn.tv_sec;
2546		ts->bt_frac = tsn.tv_nsec;
2547		break;
2548	case BPF_T_BINTIME:
2549		ts->bt_sec = bt->sec;
2550		ts->bt_frac = bt->frac;
2551		break;
2552	}
2553}
2554
2555/*
2556 * Move the packet data from interface memory (pkt) into the
2557 * store buffer.  "cpfn" is the routine called to do the actual data
2558 * transfer.  bcopy is passed in to copy contiguous chunks, while
2559 * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
2560 * pkt is really an mbuf.
2561 */
2562static void
2563catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2564    void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2565    struct bintime *bt)
2566{
2567	static char zeroes[BPF_ALIGNMENT];
2568	struct bpf_xhdr hdr;
2569#ifndef BURN_BRIDGES
2570	struct bpf_hdr hdr_old;
2571#ifdef COMPAT_FREEBSD32
2572	struct bpf_hdr32 hdr32_old;
2573#endif
2574#endif
2575	int caplen, curlen, hdrlen, pad, totlen;
2576	int do_wakeup = 0;
2577	int do_timestamp;
2578	int tstype;
2579
2580	BPFD_LOCK_ASSERT(d);
2581	if (d->bd_bif == NULL) {
2582		/* Descriptor was detached in concurrent thread */
2583		counter_u64_add(d->bd_dcount, 1);
2584		return;
2585	}
2586
2587	/*
2588	 * Detect whether user space has released a buffer back to us, and if
2589	 * so, move it from being a hold buffer to a free buffer.  This may
2590	 * not be the best place to do it (for example, we might only want to
2591	 * run this check if we need the space), but for now it's a reliable
2592	 * spot to do it.
2593	 */
2594	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2595		d->bd_fbuf = d->bd_hbuf;
2596		d->bd_hbuf = NULL;
2597		d->bd_hlen = 0;
2598		bpf_buf_reclaimed(d);
2599	}
2600
2601	/*
2602	 * Figure out how many bytes to move.  If the packet is
2603	 * greater or equal to the snapshot length, transfer that
2604	 * much.  Otherwise, transfer the whole packet (unless
2605	 * we hit the buffer size limit).
2606	 */
2607	hdrlen = bpf_hdrlen(d);
2608	totlen = hdrlen + min(snaplen, pktlen);
2609	if (totlen > d->bd_bufsize)
2610		totlen = d->bd_bufsize;
2611
2612	/*
2613	 * Round up the end of the previous packet to the next longword.
2614	 *
2615	 * Drop the packet if there's no room and no hope of room
2616	 * If the packet would overflow the storage buffer or the storage
2617	 * buffer is considered immutable by the buffer model, try to rotate
2618	 * the buffer and wakeup pending processes.
2619	 */
2620#ifdef COMPAT_FREEBSD32
2621	if (d->bd_compat32)
2622		curlen = BPF_WORDALIGN32(d->bd_slen);
2623	else
2624#endif
2625		curlen = BPF_WORDALIGN(d->bd_slen);
2626	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2627		if (d->bd_fbuf == NULL) {
2628			/*
2629			 * There's no room in the store buffer, and no
2630			 * prospect of room, so drop the packet.  Notify the
2631			 * buffer model.
2632			 */
2633			bpf_buffull(d);
2634			counter_u64_add(d->bd_dcount, 1);
2635			return;
2636		}
2637		KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
2638		ROTATE_BUFFERS(d);
2639		do_wakeup = 1;
2640		curlen = 0;
2641	} else {
2642		if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2643			/*
2644			 * Immediate mode is set, or the read timeout has
2645			 * already expired during a select call.  A packet
2646			 * arrived, so the reader should be woken up.
2647			 */
2648			do_wakeup = 1;
2649		}
2650		pad = curlen - d->bd_slen;
2651		KASSERT(pad >= 0 && pad <= sizeof(zeroes),
2652		    ("%s: invalid pad byte count %d", __func__, pad));
2653		if (pad > 0) {
2654			/* Zero pad bytes. */
2655			bpf_append_bytes(d, d->bd_sbuf, d->bd_slen, zeroes,
2656			    pad);
2657		}
2658	}
2659
2660	caplen = totlen - hdrlen;
2661	tstype = d->bd_tstamp;
2662	do_timestamp = tstype != BPF_T_NONE;
2663#ifndef BURN_BRIDGES
2664	if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2665		struct bpf_ts ts;
2666		if (do_timestamp)
2667			bpf_bintime2ts(bt, &ts, tstype);
2668#ifdef COMPAT_FREEBSD32
2669		if (d->bd_compat32) {
2670			bzero(&hdr32_old, sizeof(hdr32_old));
2671			if (do_timestamp) {
2672				hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2673				hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2674			}
2675			hdr32_old.bh_datalen = pktlen;
2676			hdr32_old.bh_hdrlen = hdrlen;
2677			hdr32_old.bh_caplen = caplen;
2678			bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2679			    sizeof(hdr32_old));
2680			goto copy;
2681		}
2682#endif
2683		bzero(&hdr_old, sizeof(hdr_old));
2684		if (do_timestamp) {
2685			hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2686			hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2687		}
2688		hdr_old.bh_datalen = pktlen;
2689		hdr_old.bh_hdrlen = hdrlen;
2690		hdr_old.bh_caplen = caplen;
2691		bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2692		    sizeof(hdr_old));
2693		goto copy;
2694	}
2695#endif
2696
2697	/*
2698	 * Append the bpf header.  Note we append the actual header size, but
2699	 * move forward the length of the header plus padding.
2700	 */
2701	bzero(&hdr, sizeof(hdr));
2702	if (do_timestamp)
2703		bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2704	hdr.bh_datalen = pktlen;
2705	hdr.bh_hdrlen = hdrlen;
2706	hdr.bh_caplen = caplen;
2707	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2708
2709	/*
2710	 * Copy the packet data into the store buffer and update its length.
2711	 */
2712#ifndef BURN_BRIDGES
2713copy:
2714#endif
2715	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2716	d->bd_slen = curlen + totlen;
2717
2718	if (do_wakeup)
2719		bpf_wakeup(d);
2720}
2721
2722/*
2723 * Free buffers currently in use by a descriptor.
2724 * Called on close.
2725 */
2726static void
2727bpfd_free(epoch_context_t ctx)
2728{
2729	struct bpf_d *d;
2730	struct bpf_program_buffer *p;
2731
2732	/*
2733	 * We don't need to lock out interrupts since this descriptor has
2734	 * been detached from its interface and it yet hasn't been marked
2735	 * free.
2736	 */
2737	d = __containerof(ctx, struct bpf_d, epoch_ctx);
2738	bpf_free(d);
2739	if (d->bd_rfilter != NULL) {
2740		p = __containerof((void *)d->bd_rfilter,
2741		    struct bpf_program_buffer, buffer);
2742#ifdef BPF_JITTER
2743		p->func = d->bd_bfilter;
2744#endif
2745		bpf_program_buffer_free(&p->epoch_ctx);
2746	}
2747	if (d->bd_wfilter != NULL) {
2748		p = __containerof((void *)d->bd_wfilter,
2749		    struct bpf_program_buffer, buffer);
2750#ifdef BPF_JITTER
2751		p->func = NULL;
2752#endif
2753		bpf_program_buffer_free(&p->epoch_ctx);
2754	}
2755
2756	mtx_destroy(&d->bd_lock);
2757	counter_u64_free(d->bd_rcount);
2758	counter_u64_free(d->bd_dcount);
2759	counter_u64_free(d->bd_fcount);
2760	counter_u64_free(d->bd_wcount);
2761	counter_u64_free(d->bd_wfcount);
2762	counter_u64_free(d->bd_wdcount);
2763	counter_u64_free(d->bd_zcopy);
2764	free(d, M_BPF);
2765}
2766
2767/*
2768 * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
2769 * fixed size of the link header (variable length headers not yet supported).
2770 */
2771void
2772bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2773{
2774
2775	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2776}
2777
2778/*
2779 * Attach an interface to bpf.  ifp is a pointer to the structure
2780 * defining the interface to be attached, dlt is the link layer type,
2781 * and hdrlen is the fixed size of the link header (variable length
2782 * headers are not yet supporrted).
2783 */
2784void
2785bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen,
2786    struct bpf_if **driverp)
2787{
2788	struct bpf_if *bp;
2789
2790	KASSERT(*driverp == NULL,
2791	    ("bpfattach2: driverp already initialized"));
2792
2793	bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO);
2794
2795	CK_LIST_INIT(&bp->bif_dlist);
2796	CK_LIST_INIT(&bp->bif_wlist);
2797	bp->bif_ifp = ifp;
2798	bp->bif_dlt = dlt;
2799	bp->bif_hdrlen = hdrlen;
2800	bp->bif_bpf = driverp;
2801	refcount_init(&bp->bif_refcnt, 1);
2802	*driverp = bp;
2803	/*
2804	 * Reference ifnet pointer, so it won't freed until
2805	 * we release it.
2806	 */
2807	if_ref(ifp);
2808	BPF_LOCK();
2809	CK_LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2810	BPF_UNLOCK();
2811
2812	if (bootverbose && IS_DEFAULT_VNET(curvnet))
2813		if_printf(ifp, "bpf attached\n");
2814}
2815
2816#ifdef VIMAGE
2817/*
2818 * When moving interfaces between vnet instances we need a way to
2819 * query the dlt and hdrlen before detach so we can re-attch the if_bpf
2820 * after the vmove.  We unfortunately have no device driver infrastructure
2821 * to query the interface for these values after creation/attach, thus
2822 * add this as a workaround.
2823 */
2824int
2825bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen)
2826{
2827
2828	if (bp == NULL)
2829		return (ENXIO);
2830	if (bif_dlt == NULL && bif_hdrlen == NULL)
2831		return (0);
2832
2833	if (bif_dlt != NULL)
2834		*bif_dlt = bp->bif_dlt;
2835	if (bif_hdrlen != NULL)
2836		*bif_hdrlen = bp->bif_hdrlen;
2837
2838	return (0);
2839}
2840#endif
2841
2842/*
2843 * Detach bpf from an interface. This involves detaching each descriptor
2844 * associated with the interface. Notify each descriptor as it's detached
2845 * so that any sleepers wake up and get ENXIO.
2846 */
2847void
2848bpfdetach(struct ifnet *ifp)
2849{
2850	struct bpf_if *bp, *bp_temp;
2851	struct bpf_d *d;
2852
2853	BPF_LOCK();
2854	/* Find all bpf_if struct's which reference ifp and detach them. */
2855	CK_LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2856		if (ifp != bp->bif_ifp)
2857			continue;
2858
2859		CK_LIST_REMOVE(bp, bif_next);
2860		*bp->bif_bpf = __DECONST(struct bpf_if *, &dead_bpf_if);
2861
2862		CTR4(KTR_NET,
2863		    "%s: sheduling free for encap %d (%p) for if %p",
2864		    __func__, bp->bif_dlt, bp, ifp);
2865
2866		/* Detach common descriptors */
2867		while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2868			bpf_detachd_locked(d, true);
2869		}
2870
2871		/* Detach writer-only descriptors */
2872		while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2873			bpf_detachd_locked(d, true);
2874		}
2875		bpfif_rele(bp);
2876	}
2877	BPF_UNLOCK();
2878}
2879
2880bool
2881bpf_peers_present_if(struct ifnet *ifp)
2882{
2883	struct bpf_if *bp = ifp->if_bpf;
2884
2885	return (bpf_peers_present(bp) > 0);
2886}
2887
2888/*
2889 * Get a list of available data link type of the interface.
2890 */
2891static int
2892bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2893{
2894	struct ifnet *ifp;
2895	struct bpf_if *bp;
2896	u_int *lst;
2897	int error, n, n1;
2898
2899	BPF_LOCK_ASSERT();
2900
2901	ifp = d->bd_bif->bif_ifp;
2902	n1 = 0;
2903	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2904		if (bp->bif_ifp == ifp)
2905			n1++;
2906	}
2907	if (bfl->bfl_list == NULL) {
2908		bfl->bfl_len = n1;
2909		return (0);
2910	}
2911	if (n1 > bfl->bfl_len)
2912		return (ENOMEM);
2913
2914	lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2915	n = 0;
2916	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2917		if (bp->bif_ifp != ifp)
2918			continue;
2919		lst[n++] = bp->bif_dlt;
2920	}
2921	error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2922	free(lst, M_TEMP);
2923	bfl->bfl_len = n;
2924	return (error);
2925}
2926
2927/*
2928 * Set the data link type of a BPF instance.
2929 */
2930static int
2931bpf_setdlt(struct bpf_d *d, u_int dlt)
2932{
2933	int error, opromisc;
2934	struct ifnet *ifp;
2935	struct bpf_if *bp;
2936
2937	BPF_LOCK_ASSERT();
2938	MPASS(d->bd_bif != NULL);
2939
2940	/*
2941	 * It is safe to check bd_bif without BPFD_LOCK, it can not be
2942	 * changed while we hold global lock.
2943	 */
2944	if (d->bd_bif->bif_dlt == dlt)
2945		return (0);
2946
2947	ifp = d->bd_bif->bif_ifp;
2948	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2949		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2950			break;
2951	}
2952	if (bp == NULL)
2953		return (EINVAL);
2954
2955	opromisc = d->bd_promisc;
2956	bpf_attachd(d, bp);
2957	if (opromisc) {
2958		error = ifpromisc(bp->bif_ifp, 1);
2959		if (error)
2960			if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n",
2961			    __func__, error);
2962		else
2963			d->bd_promisc = 1;
2964	}
2965	return (0);
2966}
2967
2968static void
2969bpf_drvinit(void *unused)
2970{
2971	struct cdev *dev;
2972
2973	sx_init(&bpf_sx, "bpf global lock");
2974	CK_LIST_INIT(&bpf_iflist);
2975
2976	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2977	/* For compatibility */
2978	make_dev_alias(dev, "bpf0");
2979}
2980
2981/*
2982 * Zero out the various packet counters associated with all of the bpf
2983 * descriptors.  At some point, we will probably want to get a bit more
2984 * granular and allow the user to specify descriptors to be zeroed.
2985 */
2986static void
2987bpf_zero_counters(void)
2988{
2989	struct bpf_if *bp;
2990	struct bpf_d *bd;
2991
2992	BPF_LOCK();
2993	/*
2994	 * We are protected by global lock here, interfaces and
2995	 * descriptors can not be deleted while we hold it.
2996	 */
2997	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2998		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2999			counter_u64_zero(bd->bd_rcount);
3000			counter_u64_zero(bd->bd_dcount);
3001			counter_u64_zero(bd->bd_fcount);
3002			counter_u64_zero(bd->bd_wcount);
3003			counter_u64_zero(bd->bd_wfcount);
3004			counter_u64_zero(bd->bd_zcopy);
3005		}
3006	}
3007	BPF_UNLOCK();
3008}
3009
3010/*
3011 * Fill filter statistics
3012 */
3013static void
3014bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
3015{
3016
3017	BPF_LOCK_ASSERT();
3018	bzero(d, sizeof(*d));
3019	d->bd_structsize = sizeof(*d);
3020	d->bd_immediate = bd->bd_immediate;
3021	d->bd_promisc = bd->bd_promisc;
3022	d->bd_hdrcmplt = bd->bd_hdrcmplt;
3023	d->bd_direction = bd->bd_direction;
3024	d->bd_feedback = bd->bd_feedback;
3025	d->bd_async = bd->bd_async;
3026	d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
3027	d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
3028	d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
3029	d->bd_sig = bd->bd_sig;
3030	d->bd_slen = bd->bd_slen;
3031	d->bd_hlen = bd->bd_hlen;
3032	d->bd_bufsize = bd->bd_bufsize;
3033	d->bd_pid = bd->bd_pid;
3034	strlcpy(d->bd_ifname,
3035	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
3036	d->bd_locked = bd->bd_locked;
3037	d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
3038	d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
3039	d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
3040	d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
3041	d->bd_bufmode = bd->bd_bufmode;
3042}
3043
3044/*
3045 * Handle `netstat -B' stats request
3046 */
3047static int
3048bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
3049{
3050	static const struct xbpf_d zerostats;
3051	struct xbpf_d *xbdbuf, *xbd, tempstats;
3052	int index, error;
3053	struct bpf_if *bp;
3054	struct bpf_d *bd;
3055
3056	/*
3057	 * XXX This is not technically correct. It is possible for non
3058	 * privileged users to open bpf devices. It would make sense
3059	 * if the users who opened the devices were able to retrieve
3060	 * the statistics for them, too.
3061	 */
3062	error = priv_check(req->td, PRIV_NET_BPF);
3063	if (error)
3064		return (error);
3065	/*
3066	 * Check to see if the user is requesting that the counters be
3067	 * zeroed out.  Explicitly check that the supplied data is zeroed,
3068	 * as we aren't allowing the user to set the counters currently.
3069	 */
3070	if (req->newptr != NULL) {
3071		if (req->newlen != sizeof(tempstats))
3072			return (EINVAL);
3073		memset(&tempstats, 0, sizeof(tempstats));
3074		error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
3075		if (error)
3076			return (error);
3077		if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
3078			return (EINVAL);
3079		bpf_zero_counters();
3080		return (0);
3081	}
3082	if (req->oldptr == NULL)
3083		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
3084	if (bpf_bpfd_cnt == 0)
3085		return (SYSCTL_OUT(req, 0, 0));
3086	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
3087	BPF_LOCK();
3088	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
3089		BPF_UNLOCK();
3090		free(xbdbuf, M_BPF);
3091		return (ENOMEM);
3092	}
3093	index = 0;
3094	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3095		/* Send writers-only first */
3096		CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
3097			xbd = &xbdbuf[index++];
3098			bpfstats_fill_xbpf(xbd, bd);
3099		}
3100		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3101			xbd = &xbdbuf[index++];
3102			bpfstats_fill_xbpf(xbd, bd);
3103		}
3104	}
3105	BPF_UNLOCK();
3106	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
3107	free(xbdbuf, M_BPF);
3108	return (error);
3109}
3110
3111SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
3112
3113#else /* !DEV_BPF && !NETGRAPH_BPF */
3114
3115/*
3116 * NOP stubs to allow bpf-using drivers to load and function.
3117 *
3118 * A 'better' implementation would allow the core bpf functionality
3119 * to be loaded at runtime.
3120 */
3121
3122void
3123bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
3124{
3125}
3126
3127void
3128bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
3129{
3130}
3131
3132void
3133bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3134{
3135}
3136
3137void
3138bpf_mtap_if(if_t ifp, struct mbuf *m)
3139{
3140}
3141
3142void
3143bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3144{
3145}
3146
3147void
3148bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
3149{
3150}
3151
3152void
3153bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3154{
3155
3156	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3157}
3158
3159void
3160bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3161{
3162
3163	*driverp = __DECONST(struct bpf_if *, &dead_bpf_if);
3164}
3165
3166void
3167bpfdetach(struct ifnet *ifp)
3168{
3169}
3170
3171bool
3172bpf_peers_present_if(struct ifnet *ifp)
3173{
3174	return (false);
3175}
3176
3177u_int
3178bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3179{
3180	return -1;	/* "no filter" behaviour */
3181}
3182
3183int
3184bpf_validate(const struct bpf_insn *f, int len)
3185{
3186	return 0;		/* false */
3187}
3188
3189#endif /* !DEV_BPF && !NETGRAPH_BPF */
3190
3191#ifdef DDB
3192static void
3193bpf_show_bpf_if(struct bpf_if *bpf_if)
3194{
3195
3196	if (bpf_if == NULL)
3197		return;
3198	db_printf("%p:\n", bpf_if);
3199#define	BPF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, bpf_if->e);
3200#define	BPF_DB_PRINTF_RAW(f, e)	db_printf("   %s = " f "\n", #e, e);
3201	/* bif_ext.bif_next */
3202	/* bif_ext.bif_dlist */
3203	BPF_DB_PRINTF("%#x", bif_dlt);
3204	BPF_DB_PRINTF("%u", bif_hdrlen);
3205	/* bif_wlist */
3206	BPF_DB_PRINTF("%p", bif_ifp);
3207	BPF_DB_PRINTF("%p", bif_bpf);
3208	BPF_DB_PRINTF_RAW("%u", refcount_load(&bpf_if->bif_refcnt));
3209}
3210
3211DB_SHOW_COMMAND(bpf_if, db_show_bpf_if)
3212{
3213
3214	if (!have_addr) {
3215		db_printf("usage: show bpf_if <struct bpf_if *>\n");
3216		return;
3217	}
3218
3219	bpf_show_bpf_if((struct bpf_if *)addr);
3220}
3221#endif
3222