1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1999-2004 Poul-Henning Kamp
5 * Copyright (c) 1999 Michael Smith
6 * Copyright (c) 1989, 1993
7 *	The Regents of the University of California.  All rights reserved.
8 * (c) UNIX System Laboratories, Inc.
9 * All or some portions of this file are derived from material licensed
10 * to the University of California by American Telephone and Telegraph
11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12 * the permission of UNIX System Laboratories, Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39#include <sys/param.h>
40#include <sys/conf.h>
41#include <sys/smp.h>
42#include <sys/devctl.h>
43#include <sys/eventhandler.h>
44#include <sys/fcntl.h>
45#include <sys/jail.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/libkern.h>
49#include <sys/limits.h>
50#include <sys/malloc.h>
51#include <sys/mount.h>
52#include <sys/mutex.h>
53#include <sys/namei.h>
54#include <sys/priv.h>
55#include <sys/proc.h>
56#include <sys/filedesc.h>
57#include <sys/reboot.h>
58#include <sys/sbuf.h>
59#include <sys/syscallsubr.h>
60#include <sys/sysproto.h>
61#include <sys/sx.h>
62#include <sys/sysctl.h>
63#include <sys/systm.h>
64#include <sys/taskqueue.h>
65#include <sys/vnode.h>
66#include <vm/uma.h>
67
68#include <geom/geom.h>
69
70#include <machine/stdarg.h>
71
72#include <security/audit/audit.h>
73#include <security/mac/mac_framework.h>
74
75#define	VFS_MOUNTARG_SIZE_MAX	(1024 * 64)
76
77static int	vfs_domount(struct thread *td, const char *fstype, char *fspath,
78		    uint64_t fsflags, bool jail_export,
79		    struct vfsoptlist **optlist);
80static void	free_mntarg(struct mntarg *ma);
81
82static int	usermount = 0;
83SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
84    "Unprivileged users may mount and unmount file systems");
85
86static bool	default_autoro = false;
87SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
88    "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
89
90static bool	recursive_forced_unmount = false;
91SYSCTL_BOOL(_vfs, OID_AUTO, recursive_forced_unmount, CTLFLAG_RW,
92    &recursive_forced_unmount, 0, "Recursively unmount stacked upper mounts"
93    " when a file system is forcibly unmounted");
94
95static SYSCTL_NODE(_vfs, OID_AUTO, deferred_unmount,
96    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "deferred unmount controls");
97
98static unsigned int	deferred_unmount_retry_limit = 10;
99SYSCTL_UINT(_vfs_deferred_unmount, OID_AUTO, retry_limit, CTLFLAG_RW,
100    &deferred_unmount_retry_limit, 0,
101    "Maximum number of retries for deferred unmount failure");
102
103static int	deferred_unmount_retry_delay_hz;
104SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, retry_delay_hz, CTLFLAG_RW,
105    &deferred_unmount_retry_delay_hz, 0,
106    "Delay in units of [1/kern.hz]s when retrying a failed deferred unmount");
107
108static int	deferred_unmount_total_retries = 0;
109SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, total_retries, CTLFLAG_RD,
110    &deferred_unmount_total_retries, 0,
111    "Total number of retried deferred unmounts");
112
113MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
114MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
115static uma_zone_t mount_zone;
116
117/* List of mounted filesystems. */
118struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
119
120/* For any iteration/modification of mountlist */
121struct mtx_padalign __exclusive_cache_line mountlist_mtx;
122
123EVENTHANDLER_LIST_DEFINE(vfs_mounted);
124EVENTHANDLER_LIST_DEFINE(vfs_unmounted);
125
126static void vfs_deferred_unmount(void *arg, int pending);
127static struct timeout_task deferred_unmount_task;
128static struct mtx deferred_unmount_lock;
129MTX_SYSINIT(deferred_unmount, &deferred_unmount_lock, "deferred_unmount",
130    MTX_DEF);
131static STAILQ_HEAD(, mount) deferred_unmount_list =
132    STAILQ_HEAD_INITIALIZER(deferred_unmount_list);
133TASKQUEUE_DEFINE_THREAD(deferred_unmount);
134
135static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
136
137/*
138 * Global opts, taken by all filesystems
139 */
140static const char *global_opts[] = {
141	"errmsg",
142	"fstype",
143	"fspath",
144	"ro",
145	"rw",
146	"nosuid",
147	"noexec",
148	NULL
149};
150
151static int
152mount_init(void *mem, int size, int flags)
153{
154	struct mount *mp;
155
156	mp = (struct mount *)mem;
157	mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
158	mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
159	lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
160	mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
161	mp->mnt_ref = 0;
162	mp->mnt_vfs_ops = 1;
163	mp->mnt_rootvnode = NULL;
164	return (0);
165}
166
167static void
168mount_fini(void *mem, int size)
169{
170	struct mount *mp;
171
172	mp = (struct mount *)mem;
173	uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
174	lockdestroy(&mp->mnt_explock);
175	mtx_destroy(&mp->mnt_listmtx);
176	mtx_destroy(&mp->mnt_mtx);
177}
178
179static void
180vfs_mount_init(void *dummy __unused)
181{
182	TIMEOUT_TASK_INIT(taskqueue_deferred_unmount, &deferred_unmount_task,
183	    0, vfs_deferred_unmount, NULL);
184	deferred_unmount_retry_delay_hz = hz;
185	mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
186	    NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
187	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
188}
189SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
190
191/*
192 * ---------------------------------------------------------------------
193 * Functions for building and sanitizing the mount options
194 */
195
196/* Remove one mount option. */
197static void
198vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
199{
200
201	TAILQ_REMOVE(opts, opt, link);
202	free(opt->name, M_MOUNT);
203	if (opt->value != NULL)
204		free(opt->value, M_MOUNT);
205	free(opt, M_MOUNT);
206}
207
208/* Release all resources related to the mount options. */
209void
210vfs_freeopts(struct vfsoptlist *opts)
211{
212	struct vfsopt *opt;
213
214	while (!TAILQ_EMPTY(opts)) {
215		opt = TAILQ_FIRST(opts);
216		vfs_freeopt(opts, opt);
217	}
218	free(opts, M_MOUNT);
219}
220
221void
222vfs_deleteopt(struct vfsoptlist *opts, const char *name)
223{
224	struct vfsopt *opt, *temp;
225
226	if (opts == NULL)
227		return;
228	TAILQ_FOREACH_SAFE(opt, opts, link, temp)  {
229		if (strcmp(opt->name, name) == 0)
230			vfs_freeopt(opts, opt);
231	}
232}
233
234static int
235vfs_isopt_ro(const char *opt)
236{
237
238	if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
239	    strcmp(opt, "norw") == 0)
240		return (1);
241	return (0);
242}
243
244static int
245vfs_isopt_rw(const char *opt)
246{
247
248	if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
249		return (1);
250	return (0);
251}
252
253/*
254 * Check if options are equal (with or without the "no" prefix).
255 */
256static int
257vfs_equalopts(const char *opt1, const char *opt2)
258{
259	char *p;
260
261	/* "opt" vs. "opt" or "noopt" vs. "noopt" */
262	if (strcmp(opt1, opt2) == 0)
263		return (1);
264	/* "noopt" vs. "opt" */
265	if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
266		return (1);
267	/* "opt" vs. "noopt" */
268	if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
269		return (1);
270	while ((p = strchr(opt1, '.')) != NULL &&
271	    !strncmp(opt1, opt2, ++p - opt1)) {
272		opt2 += p - opt1;
273		opt1 = p;
274		/* "foo.noopt" vs. "foo.opt" */
275		if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
276			return (1);
277		/* "foo.opt" vs. "foo.noopt" */
278		if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
279			return (1);
280	}
281	/* "ro" / "rdonly" / "norw" / "rw" / "noro" */
282	if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
283	    (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
284		return (1);
285	return (0);
286}
287
288/*
289 * If a mount option is specified several times,
290 * (with or without the "no" prefix) only keep
291 * the last occurrence of it.
292 */
293static void
294vfs_sanitizeopts(struct vfsoptlist *opts)
295{
296	struct vfsopt *opt, *opt2, *tmp;
297
298	TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
299		opt2 = TAILQ_PREV(opt, vfsoptlist, link);
300		while (opt2 != NULL) {
301			if (vfs_equalopts(opt->name, opt2->name)) {
302				tmp = TAILQ_PREV(opt2, vfsoptlist, link);
303				vfs_freeopt(opts, opt2);
304				opt2 = tmp;
305			} else {
306				opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
307			}
308		}
309	}
310}
311
312/*
313 * Build a linked list of mount options from a struct uio.
314 */
315int
316vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
317{
318	struct vfsoptlist *opts;
319	struct vfsopt *opt;
320	size_t memused, namelen, optlen;
321	unsigned int i, iovcnt;
322	int error;
323
324	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
325	TAILQ_INIT(opts);
326	memused = 0;
327	iovcnt = auio->uio_iovcnt;
328	for (i = 0; i < iovcnt; i += 2) {
329		namelen = auio->uio_iov[i].iov_len;
330		optlen = auio->uio_iov[i + 1].iov_len;
331		memused += sizeof(struct vfsopt) + optlen + namelen;
332		/*
333		 * Avoid consuming too much memory, and attempts to overflow
334		 * memused.
335		 */
336		if (memused > VFS_MOUNTARG_SIZE_MAX ||
337		    optlen > VFS_MOUNTARG_SIZE_MAX ||
338		    namelen > VFS_MOUNTARG_SIZE_MAX) {
339			error = EINVAL;
340			goto bad;
341		}
342
343		opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
344		opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
345		opt->value = NULL;
346		opt->len = 0;
347		opt->pos = i / 2;
348		opt->seen = 0;
349
350		/*
351		 * Do this early, so jumps to "bad" will free the current
352		 * option.
353		 */
354		TAILQ_INSERT_TAIL(opts, opt, link);
355
356		if (auio->uio_segflg == UIO_SYSSPACE) {
357			bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
358		} else {
359			error = copyin(auio->uio_iov[i].iov_base, opt->name,
360			    namelen);
361			if (error)
362				goto bad;
363		}
364		/* Ensure names are null-terminated strings. */
365		if (namelen == 0 || opt->name[namelen - 1] != '\0') {
366			error = EINVAL;
367			goto bad;
368		}
369		if (optlen != 0) {
370			opt->len = optlen;
371			opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
372			if (auio->uio_segflg == UIO_SYSSPACE) {
373				bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
374				    optlen);
375			} else {
376				error = copyin(auio->uio_iov[i + 1].iov_base,
377				    opt->value, optlen);
378				if (error)
379					goto bad;
380			}
381		}
382	}
383	vfs_sanitizeopts(opts);
384	*options = opts;
385	return (0);
386bad:
387	vfs_freeopts(opts);
388	return (error);
389}
390
391/*
392 * Merge the old mount options with the new ones passed
393 * in the MNT_UPDATE case.
394 *
395 * XXX: This function will keep a "nofoo" option in the new
396 * options.  E.g, if the option's canonical name is "foo",
397 * "nofoo" ends up in the mount point's active options.
398 */
399static void
400vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
401{
402	struct vfsopt *opt, *new;
403
404	TAILQ_FOREACH(opt, oldopts, link) {
405		new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
406		new->name = strdup(opt->name, M_MOUNT);
407		if (opt->len != 0) {
408			new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
409			bcopy(opt->value, new->value, opt->len);
410		} else
411			new->value = NULL;
412		new->len = opt->len;
413		new->seen = opt->seen;
414		TAILQ_INSERT_HEAD(toopts, new, link);
415	}
416	vfs_sanitizeopts(toopts);
417}
418
419/*
420 * Mount a filesystem.
421 */
422#ifndef _SYS_SYSPROTO_H_
423struct nmount_args {
424	struct iovec *iovp;
425	unsigned int iovcnt;
426	int flags;
427};
428#endif
429int
430sys_nmount(struct thread *td, struct nmount_args *uap)
431{
432	struct uio *auio;
433	int error;
434	u_int iovcnt;
435	uint64_t flags;
436
437	/*
438	 * Mount flags are now 64-bits. On 32-bit archtectures only
439	 * 32-bits are passed in, but from here on everything handles
440	 * 64-bit flags correctly.
441	 */
442	flags = uap->flags;
443
444	AUDIT_ARG_FFLAGS(flags);
445	CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
446	    uap->iovp, uap->iovcnt, flags);
447
448	/*
449	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
450	 * userspace to set this flag, but we must filter it out if we want
451	 * MNT_UPDATE on the root file system to work.
452	 * MNT_ROOTFS should only be set by the kernel when mounting its
453	 * root file system.
454	 */
455	flags &= ~MNT_ROOTFS;
456
457	iovcnt = uap->iovcnt;
458	/*
459	 * Check that we have an even number of iovec's
460	 * and that we have at least two options.
461	 */
462	if ((iovcnt & 1) || (iovcnt < 4)) {
463		CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
464		    uap->iovcnt);
465		return (EINVAL);
466	}
467
468	error = copyinuio(uap->iovp, iovcnt, &auio);
469	if (error) {
470		CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
471		    __func__, error);
472		return (error);
473	}
474	error = vfs_donmount(td, flags, auio);
475
476	freeuio(auio);
477	return (error);
478}
479
480/*
481 * ---------------------------------------------------------------------
482 * Various utility functions
483 */
484
485/*
486 * Get a reference on a mount point from a vnode.
487 *
488 * The vnode is allowed to be passed unlocked and race against dooming. Note in
489 * such case there are no guarantees the referenced mount point will still be
490 * associated with it after the function returns.
491 */
492struct mount *
493vfs_ref_from_vp(struct vnode *vp)
494{
495	struct mount *mp;
496	struct mount_pcpu *mpcpu;
497
498	mp = atomic_load_ptr(&vp->v_mount);
499	if (__predict_false(mp == NULL)) {
500		return (mp);
501	}
502	if (vfs_op_thread_enter(mp, mpcpu)) {
503		if (__predict_true(mp == vp->v_mount)) {
504			vfs_mp_count_add_pcpu(mpcpu, ref, 1);
505			vfs_op_thread_exit(mp, mpcpu);
506		} else {
507			vfs_op_thread_exit(mp, mpcpu);
508			mp = NULL;
509		}
510	} else {
511		MNT_ILOCK(mp);
512		if (mp == vp->v_mount) {
513			MNT_REF(mp);
514			MNT_IUNLOCK(mp);
515		} else {
516			MNT_IUNLOCK(mp);
517			mp = NULL;
518		}
519	}
520	return (mp);
521}
522
523void
524vfs_ref(struct mount *mp)
525{
526	struct mount_pcpu *mpcpu;
527
528	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
529	if (vfs_op_thread_enter(mp, mpcpu)) {
530		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
531		vfs_op_thread_exit(mp, mpcpu);
532		return;
533	}
534
535	MNT_ILOCK(mp);
536	MNT_REF(mp);
537	MNT_IUNLOCK(mp);
538}
539
540/*
541 * Register ump as an upper mount of the mount associated with
542 * vnode vp.  This registration will be tracked through
543 * mount_upper_node upper, which should be allocated by the
544 * caller and stored in per-mount data associated with mp.
545 *
546 * If successful, this function will return the mount associated
547 * with vp, and will ensure that it cannot be unmounted until
548 * ump has been unregistered as one of its upper mounts.
549 *
550 * Upon failure this function will return NULL.
551 */
552struct mount *
553vfs_register_upper_from_vp(struct vnode *vp, struct mount *ump,
554    struct mount_upper_node *upper)
555{
556	struct mount *mp;
557
558	mp = atomic_load_ptr(&vp->v_mount);
559	if (mp == NULL)
560		return (NULL);
561	MNT_ILOCK(mp);
562	if (mp != vp->v_mount ||
563	    ((mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_RECURSE)) != 0)) {
564		MNT_IUNLOCK(mp);
565		return (NULL);
566	}
567	KASSERT(ump != mp, ("upper and lower mounts are identical"));
568	upper->mp = ump;
569	MNT_REF(mp);
570	TAILQ_INSERT_TAIL(&mp->mnt_uppers, upper, mnt_upper_link);
571	MNT_IUNLOCK(mp);
572	return (mp);
573}
574
575/*
576 * Register upper mount ump to receive vnode unlink/reclaim
577 * notifications from lower mount mp. This registration will
578 * be tracked through mount_upper_node upper, which should be
579 * allocated by the caller and stored in per-mount data
580 * associated with mp.
581 *
582 * ump must already be registered as an upper mount of mp
583 * through a call to vfs_register_upper_from_vp().
584 */
585void
586vfs_register_for_notification(struct mount *mp, struct mount *ump,
587    struct mount_upper_node *upper)
588{
589	upper->mp = ump;
590	MNT_ILOCK(mp);
591	TAILQ_INSERT_TAIL(&mp->mnt_notify, upper, mnt_upper_link);
592	MNT_IUNLOCK(mp);
593}
594
595static void
596vfs_drain_upper_locked(struct mount *mp)
597{
598	mtx_assert(MNT_MTX(mp), MA_OWNED);
599	while (mp->mnt_upper_pending != 0) {
600		mp->mnt_kern_flag |= MNTK_UPPER_WAITER;
601		msleep(&mp->mnt_uppers, MNT_MTX(mp), 0, "mntupw", 0);
602	}
603}
604
605/*
606 * Undo a previous call to vfs_register_for_notification().
607 * The mount represented by upper must be currently registered
608 * as an upper mount for mp.
609 */
610void
611vfs_unregister_for_notification(struct mount *mp,
612    struct mount_upper_node *upper)
613{
614	MNT_ILOCK(mp);
615	vfs_drain_upper_locked(mp);
616	TAILQ_REMOVE(&mp->mnt_notify, upper, mnt_upper_link);
617	MNT_IUNLOCK(mp);
618}
619
620/*
621 * Undo a previous call to vfs_register_upper_from_vp().
622 * This must be done before mp can be unmounted.
623 */
624void
625vfs_unregister_upper(struct mount *mp, struct mount_upper_node *upper)
626{
627	MNT_ILOCK(mp);
628	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
629	    ("registered upper with pending unmount"));
630	vfs_drain_upper_locked(mp);
631	TAILQ_REMOVE(&mp->mnt_uppers, upper, mnt_upper_link);
632	if ((mp->mnt_kern_flag & MNTK_TASKQUEUE_WAITER) != 0 &&
633	    TAILQ_EMPTY(&mp->mnt_uppers)) {
634		mp->mnt_kern_flag &= ~MNTK_TASKQUEUE_WAITER;
635		wakeup(&mp->mnt_taskqueue_link);
636	}
637	MNT_REL(mp);
638	MNT_IUNLOCK(mp);
639}
640
641void
642vfs_rel(struct mount *mp)
643{
644	struct mount_pcpu *mpcpu;
645
646	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
647	if (vfs_op_thread_enter(mp, mpcpu)) {
648		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
649		vfs_op_thread_exit(mp, mpcpu);
650		return;
651	}
652
653	MNT_ILOCK(mp);
654	MNT_REL(mp);
655	MNT_IUNLOCK(mp);
656}
657
658/*
659 * Allocate and initialize the mount point struct.
660 */
661struct mount *
662vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
663    struct ucred *cred)
664{
665	struct mount *mp;
666
667	mp = uma_zalloc(mount_zone, M_WAITOK);
668	bzero(&mp->mnt_startzero,
669	    __rangeof(struct mount, mnt_startzero, mnt_endzero));
670	mp->mnt_kern_flag = 0;
671	mp->mnt_flag = 0;
672	mp->mnt_rootvnode = NULL;
673	mp->mnt_vnodecovered = NULL;
674	mp->mnt_op = NULL;
675	mp->mnt_vfc = NULL;
676	TAILQ_INIT(&mp->mnt_nvnodelist);
677	mp->mnt_nvnodelistsize = 0;
678	TAILQ_INIT(&mp->mnt_lazyvnodelist);
679	mp->mnt_lazyvnodelistsize = 0;
680	MPPASS(mp->mnt_ref == 0 && mp->mnt_lockref == 0 &&
681	    mp->mnt_writeopcount == 0, mp);
682	MPASSERT(mp->mnt_vfs_ops == 1, mp,
683	    ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
684	(void) vfs_busy(mp, MBF_NOWAIT);
685	atomic_add_acq_int(&vfsp->vfc_refcount, 1);
686	mp->mnt_op = vfsp->vfc_vfsops;
687	mp->mnt_vfc = vfsp;
688	mp->mnt_stat.f_type = vfsp->vfc_typenum;
689	mp->mnt_gen++;
690	strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
691	mp->mnt_vnodecovered = vp;
692	mp->mnt_cred = crdup(cred);
693	mp->mnt_stat.f_owner = cred->cr_uid;
694	strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
695	mp->mnt_iosize_max = DFLTPHYS;
696#ifdef MAC
697	mac_mount_init(mp);
698	mac_mount_create(cred, mp);
699#endif
700	arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
701	mp->mnt_upper_pending = 0;
702	TAILQ_INIT(&mp->mnt_uppers);
703	TAILQ_INIT(&mp->mnt_notify);
704	mp->mnt_taskqueue_flags = 0;
705	mp->mnt_unmount_retries = 0;
706	return (mp);
707}
708
709/*
710 * Destroy the mount struct previously allocated by vfs_mount_alloc().
711 */
712void
713vfs_mount_destroy(struct mount *mp)
714{
715
716	MPPASS(mp->mnt_vfs_ops != 0, mp);
717
718	vfs_assert_mount_counters(mp);
719
720	MNT_ILOCK(mp);
721	mp->mnt_kern_flag |= MNTK_REFEXPIRE;
722	if (mp->mnt_kern_flag & MNTK_MWAIT) {
723		mp->mnt_kern_flag &= ~MNTK_MWAIT;
724		wakeup(mp);
725	}
726	while (mp->mnt_ref)
727		msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
728	KASSERT(mp->mnt_ref == 0,
729	    ("%s: invalid refcount in the drain path @ %s:%d", __func__,
730	    __FILE__, __LINE__));
731	MPPASS(mp->mnt_writeopcount == 0, mp);
732	MPPASS(mp->mnt_secondary_writes == 0, mp);
733	atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
734	if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
735		struct vnode *vp;
736
737		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
738			vn_printf(vp, "dangling vnode ");
739		panic("unmount: dangling vnode");
740	}
741	KASSERT(mp->mnt_upper_pending == 0, ("mnt_upper_pending"));
742	KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
743	KASSERT(TAILQ_EMPTY(&mp->mnt_notify), ("mnt_notify"));
744	MPPASS(mp->mnt_nvnodelistsize == 0, mp);
745	MPPASS(mp->mnt_lazyvnodelistsize == 0, mp);
746	MPPASS(mp->mnt_lockref == 0, mp);
747	MNT_IUNLOCK(mp);
748
749	MPASSERT(mp->mnt_vfs_ops == 1, mp,
750	    ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
751
752	MPASSERT(mp->mnt_rootvnode == NULL, mp,
753	    ("mount point still has a root vnode %p", mp->mnt_rootvnode));
754
755	if (mp->mnt_vnodecovered != NULL)
756		vrele(mp->mnt_vnodecovered);
757#ifdef MAC
758	mac_mount_destroy(mp);
759#endif
760	if (mp->mnt_opt != NULL)
761		vfs_freeopts(mp->mnt_opt);
762	if (mp->mnt_exjail != NULL) {
763		atomic_subtract_int(&mp->mnt_exjail->cr_prison->pr_exportcnt,
764		    1);
765		crfree(mp->mnt_exjail);
766	}
767	if (mp->mnt_export != NULL) {
768		vfs_free_addrlist(mp->mnt_export);
769		free(mp->mnt_export, M_MOUNT);
770	}
771	crfree(mp->mnt_cred);
772	uma_zfree(mount_zone, mp);
773}
774
775static bool
776vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
777{
778	/* This is an upgrade of an exisiting mount. */
779	if ((fsflags & MNT_UPDATE) != 0)
780		return (false);
781	/* This is already an R/O mount. */
782	if ((fsflags & MNT_RDONLY) != 0)
783		return (false);
784
785	switch (error) {
786	case ENODEV:	/* generic, geom, ... */
787	case EACCES:	/* cam/scsi, ... */
788	case EROFS:	/* md, mmcsd, ... */
789		/*
790		 * These errors can be returned by the storage layer to signal
791		 * that the media is read-only.  No harm in the R/O mount
792		 * attempt if the error was returned for some other reason.
793		 */
794		return (true);
795	default:
796		return (false);
797	}
798}
799
800int
801vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
802{
803	struct vfsoptlist *optlist;
804	struct vfsopt *opt, *tmp_opt;
805	char *fstype, *fspath, *errmsg;
806	int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
807	bool autoro, has_nonexport, jail_export;
808
809	errmsg = fspath = NULL;
810	errmsg_len = fspathlen = 0;
811	errmsg_pos = -1;
812	autoro = default_autoro;
813
814	error = vfs_buildopts(fsoptions, &optlist);
815	if (error)
816		return (error);
817
818	if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
819		errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
820
821	/*
822	 * We need these two options before the others,
823	 * and they are mandatory for any filesystem.
824	 * Ensure they are NUL terminated as well.
825	 */
826	fstypelen = 0;
827	error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
828	if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
829		error = EINVAL;
830		if (errmsg != NULL)
831			strncpy(errmsg, "Invalid fstype", errmsg_len);
832		goto bail;
833	}
834	fspathlen = 0;
835	error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
836	if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
837		error = EINVAL;
838		if (errmsg != NULL)
839			strncpy(errmsg, "Invalid fspath", errmsg_len);
840		goto bail;
841	}
842
843	/*
844	 * Check to see that "export" is only used with the "update", "fstype",
845	 * "fspath", "from" and "errmsg" options when in a vnet jail.
846	 * These are the ones used to set/update exports by mountd(8).
847	 * If only the above options are set in a jail that can run mountd(8),
848	 * then the jail_export argument of vfs_domount() will be true.
849	 * When jail_export is true, the vfs_suser() check does not cause
850	 * failure, but limits the update to exports only.
851	 * This allows mountd(8) running within the vnet jail
852	 * to export file systems visible within the jail, but
853	 * mounted outside of the jail.
854	 */
855	/*
856	 * We need to see if we have the "update" option
857	 * before we call vfs_domount(), since vfs_domount() has special
858	 * logic based on MNT_UPDATE.  This is very important
859	 * when we want to update the root filesystem.
860	 */
861	has_nonexport = false;
862	jail_export = false;
863	TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
864		int do_freeopt = 0;
865
866		if (jailed(td->td_ucred) &&
867		    strcmp(opt->name, "export") != 0 &&
868		    strcmp(opt->name, "update") != 0 &&
869		    strcmp(opt->name, "fstype") != 0 &&
870		    strcmp(opt->name, "fspath") != 0 &&
871		    strcmp(opt->name, "from") != 0 &&
872		    strcmp(opt->name, "errmsg") != 0)
873			has_nonexport = true;
874		if (strcmp(opt->name, "update") == 0) {
875			fsflags |= MNT_UPDATE;
876			do_freeopt = 1;
877		}
878		else if (strcmp(opt->name, "async") == 0)
879			fsflags |= MNT_ASYNC;
880		else if (strcmp(opt->name, "force") == 0) {
881			fsflags |= MNT_FORCE;
882			do_freeopt = 1;
883		}
884		else if (strcmp(opt->name, "reload") == 0) {
885			fsflags |= MNT_RELOAD;
886			do_freeopt = 1;
887		}
888		else if (strcmp(opt->name, "multilabel") == 0)
889			fsflags |= MNT_MULTILABEL;
890		else if (strcmp(opt->name, "noasync") == 0)
891			fsflags &= ~MNT_ASYNC;
892		else if (strcmp(opt->name, "noatime") == 0)
893			fsflags |= MNT_NOATIME;
894		else if (strcmp(opt->name, "atime") == 0) {
895			free(opt->name, M_MOUNT);
896			opt->name = strdup("nonoatime", M_MOUNT);
897		}
898		else if (strcmp(opt->name, "noclusterr") == 0)
899			fsflags |= MNT_NOCLUSTERR;
900		else if (strcmp(opt->name, "clusterr") == 0) {
901			free(opt->name, M_MOUNT);
902			opt->name = strdup("nonoclusterr", M_MOUNT);
903		}
904		else if (strcmp(opt->name, "noclusterw") == 0)
905			fsflags |= MNT_NOCLUSTERW;
906		else if (strcmp(opt->name, "clusterw") == 0) {
907			free(opt->name, M_MOUNT);
908			opt->name = strdup("nonoclusterw", M_MOUNT);
909		}
910		else if (strcmp(opt->name, "noexec") == 0)
911			fsflags |= MNT_NOEXEC;
912		else if (strcmp(opt->name, "exec") == 0) {
913			free(opt->name, M_MOUNT);
914			opt->name = strdup("nonoexec", M_MOUNT);
915		}
916		else if (strcmp(opt->name, "nosuid") == 0)
917			fsflags |= MNT_NOSUID;
918		else if (strcmp(opt->name, "suid") == 0) {
919			free(opt->name, M_MOUNT);
920			opt->name = strdup("nonosuid", M_MOUNT);
921		}
922		else if (strcmp(opt->name, "nosymfollow") == 0)
923			fsflags |= MNT_NOSYMFOLLOW;
924		else if (strcmp(opt->name, "symfollow") == 0) {
925			free(opt->name, M_MOUNT);
926			opt->name = strdup("nonosymfollow", M_MOUNT);
927		}
928		else if (strcmp(opt->name, "noro") == 0) {
929			fsflags &= ~MNT_RDONLY;
930			autoro = false;
931		}
932		else if (strcmp(opt->name, "rw") == 0) {
933			fsflags &= ~MNT_RDONLY;
934			autoro = false;
935		}
936		else if (strcmp(opt->name, "ro") == 0) {
937			fsflags |= MNT_RDONLY;
938			autoro = false;
939		}
940		else if (strcmp(opt->name, "rdonly") == 0) {
941			free(opt->name, M_MOUNT);
942			opt->name = strdup("ro", M_MOUNT);
943			fsflags |= MNT_RDONLY;
944			autoro = false;
945		}
946		else if (strcmp(opt->name, "autoro") == 0) {
947			do_freeopt = 1;
948			autoro = true;
949		}
950		else if (strcmp(opt->name, "suiddir") == 0)
951			fsflags |= MNT_SUIDDIR;
952		else if (strcmp(opt->name, "sync") == 0)
953			fsflags |= MNT_SYNCHRONOUS;
954		else if (strcmp(opt->name, "union") == 0)
955			fsflags |= MNT_UNION;
956		else if (strcmp(opt->name, "export") == 0) {
957			fsflags |= MNT_EXPORTED;
958			jail_export = true;
959		} else if (strcmp(opt->name, "automounted") == 0) {
960			fsflags |= MNT_AUTOMOUNTED;
961			do_freeopt = 1;
962		} else if (strcmp(opt->name, "nocover") == 0) {
963			fsflags |= MNT_NOCOVER;
964			do_freeopt = 1;
965		} else if (strcmp(opt->name, "cover") == 0) {
966			fsflags &= ~MNT_NOCOVER;
967			do_freeopt = 1;
968		} else if (strcmp(opt->name, "emptydir") == 0) {
969			fsflags |= MNT_EMPTYDIR;
970			do_freeopt = 1;
971		} else if (strcmp(opt->name, "noemptydir") == 0) {
972			fsflags &= ~MNT_EMPTYDIR;
973			do_freeopt = 1;
974		}
975		if (do_freeopt)
976			vfs_freeopt(optlist, opt);
977	}
978
979	/*
980	 * Be ultra-paranoid about making sure the type and fspath
981	 * variables will fit in our mp buffers, including the
982	 * terminating NUL.
983	 */
984	if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
985		error = ENAMETOOLONG;
986		goto bail;
987	}
988
989	/*
990	 * If has_nonexport is true or the caller is not running within a
991	 * vnet prison that can run mountd(8), set jail_export false.
992	 */
993	if (has_nonexport || !jailed(td->td_ucred) ||
994	    !prison_check_nfsd(td->td_ucred))
995		jail_export = false;
996
997	error = vfs_domount(td, fstype, fspath, fsflags, jail_export, &optlist);
998	if (error == ENODEV) {
999		error = EINVAL;
1000		if (errmsg != NULL)
1001			strncpy(errmsg, "Invalid fstype", errmsg_len);
1002		goto bail;
1003	}
1004
1005	/*
1006	 * See if we can mount in the read-only mode if the error code suggests
1007	 * that it could be possible and the mount options allow for that.
1008	 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
1009	 * overridden by "autoro".
1010	 */
1011	if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
1012		printf("%s: R/W mount failed, possibly R/O media,"
1013		    " trying R/O mount\n", __func__);
1014		fsflags |= MNT_RDONLY;
1015		error = vfs_domount(td, fstype, fspath, fsflags, jail_export,
1016		    &optlist);
1017	}
1018bail:
1019	/* copyout the errmsg */
1020	if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
1021	    && errmsg_len > 0 && errmsg != NULL) {
1022		if (fsoptions->uio_segflg == UIO_SYSSPACE) {
1023			bcopy(errmsg,
1024			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
1025			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
1026		} else {
1027			(void)copyout(errmsg,
1028			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
1029			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
1030		}
1031	}
1032
1033	if (optlist != NULL)
1034		vfs_freeopts(optlist);
1035	return (error);
1036}
1037
1038/*
1039 * Old mount API.
1040 */
1041#ifndef _SYS_SYSPROTO_H_
1042struct mount_args {
1043	char	*type;
1044	char	*path;
1045	int	flags;
1046	caddr_t	data;
1047};
1048#endif
1049/* ARGSUSED */
1050int
1051sys_mount(struct thread *td, struct mount_args *uap)
1052{
1053	char *fstype;
1054	struct vfsconf *vfsp = NULL;
1055	struct mntarg *ma = NULL;
1056	uint64_t flags;
1057	int error;
1058
1059	/*
1060	 * Mount flags are now 64-bits. On 32-bit architectures only
1061	 * 32-bits are passed in, but from here on everything handles
1062	 * 64-bit flags correctly.
1063	 */
1064	flags = uap->flags;
1065
1066	AUDIT_ARG_FFLAGS(flags);
1067
1068	/*
1069	 * Filter out MNT_ROOTFS.  We do not want clients of mount() in
1070	 * userspace to set this flag, but we must filter it out if we want
1071	 * MNT_UPDATE on the root file system to work.
1072	 * MNT_ROOTFS should only be set by the kernel when mounting its
1073	 * root file system.
1074	 */
1075	flags &= ~MNT_ROOTFS;
1076
1077	fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
1078	error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
1079	if (error) {
1080		free(fstype, M_TEMP);
1081		return (error);
1082	}
1083
1084	AUDIT_ARG_TEXT(fstype);
1085	vfsp = vfs_byname_kld(fstype, td, &error);
1086	free(fstype, M_TEMP);
1087	if (vfsp == NULL)
1088		return (EINVAL);
1089	if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
1090	    vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
1091	    ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
1092	    vfsp->vfc_vfsops->vfs_cmount == NULL))
1093		return (EOPNOTSUPP);
1094
1095	ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
1096	ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
1097	ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
1098	ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
1099	ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
1100
1101	if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
1102		return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
1103	return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
1104}
1105
1106/*
1107 * vfs_domount_first(): first file system mount (not update)
1108 */
1109static int
1110vfs_domount_first(
1111	struct thread *td,		/* Calling thread. */
1112	struct vfsconf *vfsp,		/* File system type. */
1113	char *fspath,			/* Mount path. */
1114	struct vnode *vp,		/* Vnode to be covered. */
1115	uint64_t fsflags,		/* Flags common to all filesystems. */
1116	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1117	)
1118{
1119	struct vattr va;
1120	struct mount *mp;
1121	struct vnode *newdp, *rootvp;
1122	int error, error1;
1123	bool unmounted;
1124
1125	ASSERT_VOP_ELOCKED(vp, __func__);
1126	KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
1127
1128	/*
1129	 * If the jail of the calling thread lacks permission for this type of
1130	 * file system, or is trying to cover its own root, deny immediately.
1131	 */
1132	if (jailed(td->td_ucred) && (!prison_allow(td->td_ucred,
1133	    vfsp->vfc_prison_flag) || vp == td->td_ucred->cr_prison->pr_root)) {
1134		vput(vp);
1135		return (EPERM);
1136	}
1137
1138	/*
1139	 * If the user is not root, ensure that they own the directory
1140	 * onto which we are attempting to mount.
1141	 */
1142	error = VOP_GETATTR(vp, &va, td->td_ucred);
1143	if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
1144		error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
1145	if (error == 0)
1146		error = vinvalbuf(vp, V_SAVE, 0, 0);
1147	if (vfsp->vfc_flags & VFCF_FILEMOUNT) {
1148		if (error == 0 && vp->v_type != VDIR && vp->v_type != VREG)
1149			error = EINVAL;
1150		/*
1151		 * For file mounts, ensure that there is only one hardlink to the file.
1152		 */
1153		if (error == 0 && vp->v_type == VREG && va.va_nlink != 1)
1154			error = EINVAL;
1155	} else {
1156		if (error == 0 && vp->v_type != VDIR)
1157			error = ENOTDIR;
1158	}
1159	if (error == 0 && (fsflags & MNT_EMPTYDIR) != 0)
1160		error = vn_dir_check_empty(vp);
1161	if (error == 0) {
1162		VI_LOCK(vp);
1163		if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
1164			vp->v_iflag |= VI_MOUNT;
1165		else
1166			error = EBUSY;
1167		VI_UNLOCK(vp);
1168	}
1169	if (error != 0) {
1170		vput(vp);
1171		return (error);
1172	}
1173	vn_seqc_write_begin(vp);
1174	VOP_UNLOCK(vp);
1175
1176	/* Allocate and initialize the filesystem. */
1177	mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
1178	/* XXXMAC: pass to vfs_mount_alloc? */
1179	mp->mnt_optnew = *optlist;
1180	/* Set the mount level flags. */
1181	mp->mnt_flag = (fsflags &
1182	    (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY | MNT_FORCE));
1183
1184	/*
1185	 * Mount the filesystem.
1186	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1187	 * get.  No freeing of cn_pnbuf.
1188	 */
1189	error1 = 0;
1190	unmounted = true;
1191	if ((error = VFS_MOUNT(mp)) != 0 ||
1192	    (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
1193	    (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
1194		rootvp = NULL;
1195		if (error1 != 0) {
1196			MPASS(error == 0);
1197			rootvp = vfs_cache_root_clear(mp);
1198			if (rootvp != NULL) {
1199				vhold(rootvp);
1200				vrele(rootvp);
1201			}
1202			(void)vn_start_write(NULL, &mp, V_WAIT);
1203			MNT_ILOCK(mp);
1204			mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_UNMOUNTF;
1205			MNT_IUNLOCK(mp);
1206			VFS_PURGE(mp);
1207			error = VFS_UNMOUNT(mp, 0);
1208			vn_finished_write(mp);
1209			if (error != 0) {
1210				printf(
1211		    "failed post-mount (%d): rollback unmount returned %d\n",
1212				    error1, error);
1213				unmounted = false;
1214			}
1215			error = error1;
1216		}
1217		vfs_unbusy(mp);
1218		mp->mnt_vnodecovered = NULL;
1219		if (unmounted) {
1220			/* XXXKIB wait for mnt_lockref drain? */
1221			vfs_mount_destroy(mp);
1222		}
1223		VI_LOCK(vp);
1224		vp->v_iflag &= ~VI_MOUNT;
1225		VI_UNLOCK(vp);
1226		if (rootvp != NULL) {
1227			vn_seqc_write_end(rootvp);
1228			vdrop(rootvp);
1229		}
1230		vn_seqc_write_end(vp);
1231		vrele(vp);
1232		return (error);
1233	}
1234	vn_seqc_write_begin(newdp);
1235	VOP_UNLOCK(newdp);
1236
1237	if (mp->mnt_opt != NULL)
1238		vfs_freeopts(mp->mnt_opt);
1239	mp->mnt_opt = mp->mnt_optnew;
1240	*optlist = NULL;
1241
1242	/*
1243	 * Prevent external consumers of mount options from reading mnt_optnew.
1244	 */
1245	mp->mnt_optnew = NULL;
1246
1247	MNT_ILOCK(mp);
1248	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1249	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1250		mp->mnt_kern_flag |= MNTK_ASYNC;
1251	else
1252		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1253	MNT_IUNLOCK(mp);
1254
1255	/*
1256	 * VIRF_MOUNTPOINT and v_mountedhere need to be set under the
1257	 * vp lock to satisfy vfs_lookup() requirements.
1258	 */
1259	VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
1260	VI_LOCK(vp);
1261	vn_irflag_set_locked(vp, VIRF_MOUNTPOINT);
1262	vp->v_mountedhere = mp;
1263	VI_UNLOCK(vp);
1264	VOP_UNLOCK(vp);
1265	cache_purge(vp);
1266
1267	/*
1268	 * We need to lock both vnodes.
1269	 *
1270	 * Use vn_lock_pair to avoid establishing an ordering between vnodes
1271	 * from different filesystems.
1272	 */
1273	vn_lock_pair(vp, false, LK_EXCLUSIVE, newdp, false, LK_EXCLUSIVE);
1274
1275	VI_LOCK(vp);
1276	vp->v_iflag &= ~VI_MOUNT;
1277	VI_UNLOCK(vp);
1278	/* Place the new filesystem at the end of the mount list. */
1279	mtx_lock(&mountlist_mtx);
1280	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1281	mtx_unlock(&mountlist_mtx);
1282	vfs_event_signal(NULL, VQ_MOUNT, 0);
1283	VOP_UNLOCK(vp);
1284	EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1285	VOP_UNLOCK(newdp);
1286	mount_devctl_event("MOUNT", mp, false);
1287	mountcheckdirs(vp, newdp);
1288	vn_seqc_write_end(vp);
1289	vn_seqc_write_end(newdp);
1290	vrele(newdp);
1291	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1292		vfs_allocate_syncvnode(mp);
1293	vfs_op_exit(mp);
1294	vfs_unbusy(mp);
1295	return (0);
1296}
1297
1298/*
1299 * vfs_domount_update(): update of mounted file system
1300 */
1301static int
1302vfs_domount_update(
1303	struct thread *td,		/* Calling thread. */
1304	struct vnode *vp,		/* Mount point vnode. */
1305	uint64_t fsflags,		/* Flags common to all filesystems. */
1306	bool jail_export,		/* Got export option in vnet prison. */
1307	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1308	)
1309{
1310	struct export_args export;
1311	struct o2export_args o2export;
1312	struct vnode *rootvp;
1313	void *bufp;
1314	struct mount *mp;
1315	int error, export_error, i, len, fsid_up_len;
1316	uint64_t flag, mnt_union;
1317	gid_t *grps;
1318	fsid_t *fsid_up;
1319	bool vfs_suser_failed;
1320
1321	ASSERT_VOP_ELOCKED(vp, __func__);
1322	KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1323	mp = vp->v_mount;
1324
1325	if ((vp->v_vflag & VV_ROOT) == 0) {
1326		if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1327		    == 0)
1328			error = EXDEV;
1329		else
1330			error = EINVAL;
1331		vput(vp);
1332		return (error);
1333	}
1334
1335	/*
1336	 * We only allow the filesystem to be reloaded if it
1337	 * is currently mounted read-only.
1338	 */
1339	flag = mp->mnt_flag;
1340	if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1341		vput(vp);
1342		return (EOPNOTSUPP);	/* Needs translation */
1343	}
1344	/*
1345	 * Only privileged root, or (if MNT_USER is set) the user that
1346	 * did the original mount is permitted to update it.
1347	 */
1348	/*
1349	 * For the case of mountd(8) doing exports in a jail, the vfs_suser()
1350	 * call does not cause failure.  vfs_domount() has already checked
1351	 * that "root" is doing this and vfs_suser() will fail when
1352	 * the file system has been mounted outside the jail.
1353	 * jail_export set true indicates that "export" is not mixed
1354	 * with other options that change mount behaviour.
1355	 */
1356	vfs_suser_failed = false;
1357	error = vfs_suser(mp, td);
1358	if (jail_export && error != 0) {
1359		error = 0;
1360		vfs_suser_failed = true;
1361	}
1362	if (error != 0) {
1363		vput(vp);
1364		return (error);
1365	}
1366	if (vfs_busy(mp, MBF_NOWAIT)) {
1367		vput(vp);
1368		return (EBUSY);
1369	}
1370	VI_LOCK(vp);
1371	if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1372		VI_UNLOCK(vp);
1373		vfs_unbusy(mp);
1374		vput(vp);
1375		return (EBUSY);
1376	}
1377	vp->v_iflag |= VI_MOUNT;
1378	VI_UNLOCK(vp);
1379	VOP_UNLOCK(vp);
1380
1381	rootvp = NULL;
1382	vfs_op_enter(mp);
1383	vn_seqc_write_begin(vp);
1384
1385	if (vfs_getopt(*optlist, "fsid", (void **)&fsid_up,
1386	    &fsid_up_len) == 0) {
1387		if (fsid_up_len != sizeof(*fsid_up)) {
1388			error = EINVAL;
1389			goto end;
1390		}
1391		if (fsidcmp(fsid_up, &mp->mnt_stat.f_fsid) != 0) {
1392			error = ENOENT;
1393			goto end;
1394		}
1395		vfs_deleteopt(*optlist, "fsid");
1396	}
1397
1398	mnt_union = 0;
1399	MNT_ILOCK(mp);
1400	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1401		MNT_IUNLOCK(mp);
1402		error = EBUSY;
1403		goto end;
1404	}
1405	if (vfs_suser_failed) {
1406		KASSERT((fsflags & (MNT_EXPORTED | MNT_UPDATE)) ==
1407		    (MNT_EXPORTED | MNT_UPDATE),
1408		    ("%s: jailed export did not set expected fsflags",
1409		     __func__));
1410		/*
1411		 * For this case, only MNT_UPDATE and
1412		 * MNT_EXPORTED have been set in fsflags
1413		 * by the options.  Only set MNT_UPDATE,
1414		 * since that is the one that would be set
1415		 * when set in fsflags, below.
1416		 */
1417		mp->mnt_flag |= MNT_UPDATE;
1418	} else {
1419		mp->mnt_flag &= ~MNT_UPDATEMASK;
1420		if ((mp->mnt_flag & MNT_UNION) == 0 &&
1421		    (fsflags & MNT_UNION) != 0) {
1422			fsflags &= ~MNT_UNION;
1423			mnt_union = MNT_UNION;
1424		}
1425		mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1426		    MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1427		if ((mp->mnt_flag & MNT_ASYNC) == 0)
1428			mp->mnt_kern_flag &= ~MNTK_ASYNC;
1429	}
1430	rootvp = vfs_cache_root_clear(mp);
1431	MNT_IUNLOCK(mp);
1432	mp->mnt_optnew = *optlist;
1433	vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1434
1435	/*
1436	 * Mount the filesystem.
1437	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1438	 * get.  No freeing of cn_pnbuf.
1439	 */
1440	/*
1441	 * For the case of mountd(8) doing exports from within a vnet jail,
1442	 * "from" is typically not set correctly such that VFS_MOUNT() will
1443	 * return ENOENT. It is not obvious that VFS_MOUNT() ever needs to be
1444	 * called when mountd is doing exports, but this check only applies to
1445	 * the specific case where it is running inside a vnet jail, to
1446	 * avoid any POLA violation.
1447	 */
1448	error = 0;
1449	if (!jail_export)
1450		error = VFS_MOUNT(mp);
1451
1452	export_error = 0;
1453	/* Process the export option. */
1454	if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1455	    &len) == 0) {
1456		/* Assume that there is only 1 ABI for each length. */
1457		switch (len) {
1458		case (sizeof(struct oexport_args)):
1459			bzero(&o2export, sizeof(o2export));
1460			/* FALLTHROUGH */
1461		case (sizeof(o2export)):
1462			bcopy(bufp, &o2export, len);
1463			export.ex_flags = (uint64_t)o2export.ex_flags;
1464			export.ex_root = o2export.ex_root;
1465			export.ex_uid = o2export.ex_anon.cr_uid;
1466			export.ex_groups = NULL;
1467			export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1468			if (export.ex_ngroups > 0) {
1469				if (export.ex_ngroups <= XU_NGROUPS) {
1470					export.ex_groups = malloc(
1471					    export.ex_ngroups * sizeof(gid_t),
1472					    M_TEMP, M_WAITOK);
1473					for (i = 0; i < export.ex_ngroups; i++)
1474						export.ex_groups[i] =
1475						  o2export.ex_anon.cr_groups[i];
1476				} else
1477					export_error = EINVAL;
1478			} else if (export.ex_ngroups < 0)
1479				export_error = EINVAL;
1480			export.ex_addr = o2export.ex_addr;
1481			export.ex_addrlen = o2export.ex_addrlen;
1482			export.ex_mask = o2export.ex_mask;
1483			export.ex_masklen = o2export.ex_masklen;
1484			export.ex_indexfile = o2export.ex_indexfile;
1485			export.ex_numsecflavors = o2export.ex_numsecflavors;
1486			if (export.ex_numsecflavors < MAXSECFLAVORS) {
1487				for (i = 0; i < export.ex_numsecflavors; i++)
1488					export.ex_secflavors[i] =
1489					    o2export.ex_secflavors[i];
1490			} else
1491				export_error = EINVAL;
1492			if (export_error == 0)
1493				export_error = vfs_export(mp, &export, true);
1494			free(export.ex_groups, M_TEMP);
1495			break;
1496		case (sizeof(export)):
1497			bcopy(bufp, &export, len);
1498			grps = NULL;
1499			if (export.ex_ngroups > 0) {
1500				if (export.ex_ngroups <= NGROUPS_MAX) {
1501					grps = malloc(export.ex_ngroups *
1502					    sizeof(gid_t), M_TEMP, M_WAITOK);
1503					export_error = copyin(export.ex_groups,
1504					    grps, export.ex_ngroups *
1505					    sizeof(gid_t));
1506					if (export_error == 0)
1507						export.ex_groups = grps;
1508				} else
1509					export_error = EINVAL;
1510			} else if (export.ex_ngroups == 0)
1511				export.ex_groups = NULL;
1512			else
1513				export_error = EINVAL;
1514			if (export_error == 0)
1515				export_error = vfs_export(mp, &export, true);
1516			free(grps, M_TEMP);
1517			break;
1518		default:
1519			export_error = EINVAL;
1520			break;
1521		}
1522	}
1523
1524	MNT_ILOCK(mp);
1525	if (error == 0) {
1526		mp->mnt_flag &= ~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1527		    MNT_SNAPSHOT);
1528		mp->mnt_flag |= mnt_union;
1529	} else {
1530		/*
1531		 * If we fail, restore old mount flags. MNT_QUOTA is special,
1532		 * because it is not part of MNT_UPDATEMASK, but it could have
1533		 * changed in the meantime if quotactl(2) was called.
1534		 * All in all we want current value of MNT_QUOTA, not the old
1535		 * one.
1536		 */
1537		mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1538	}
1539	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1540	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1541		mp->mnt_kern_flag |= MNTK_ASYNC;
1542	else
1543		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1544	MNT_IUNLOCK(mp);
1545
1546	if (error != 0)
1547		goto end;
1548
1549	mount_devctl_event("REMOUNT", mp, true);
1550	if (mp->mnt_opt != NULL)
1551		vfs_freeopts(mp->mnt_opt);
1552	mp->mnt_opt = mp->mnt_optnew;
1553	*optlist = NULL;
1554	(void)VFS_STATFS(mp, &mp->mnt_stat);
1555	/*
1556	 * Prevent external consumers of mount options from reading
1557	 * mnt_optnew.
1558	 */
1559	mp->mnt_optnew = NULL;
1560
1561	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1562		vfs_allocate_syncvnode(mp);
1563	else
1564		vfs_deallocate_syncvnode(mp);
1565end:
1566	vfs_op_exit(mp);
1567	if (rootvp != NULL) {
1568		vn_seqc_write_end(rootvp);
1569		vrele(rootvp);
1570	}
1571	vn_seqc_write_end(vp);
1572	vfs_unbusy(mp);
1573	VI_LOCK(vp);
1574	vp->v_iflag &= ~VI_MOUNT;
1575	VI_UNLOCK(vp);
1576	vrele(vp);
1577	return (error != 0 ? error : export_error);
1578}
1579
1580/*
1581 * vfs_domount(): actually attempt a filesystem mount.
1582 */
1583static int
1584vfs_domount(
1585	struct thread *td,		/* Calling thread. */
1586	const char *fstype,		/* Filesystem type. */
1587	char *fspath,			/* Mount path. */
1588	uint64_t fsflags,		/* Flags common to all filesystems. */
1589	bool jail_export,		/* Got export option in vnet prison. */
1590	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1591	)
1592{
1593	struct vfsconf *vfsp;
1594	struct nameidata nd;
1595	struct vnode *vp;
1596	char *pathbuf;
1597	int error;
1598
1599	/*
1600	 * Be ultra-paranoid about making sure the type and fspath
1601	 * variables will fit in our mp buffers, including the
1602	 * terminating NUL.
1603	 */
1604	if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1605		return (ENAMETOOLONG);
1606
1607	if (jail_export) {
1608		error = priv_check(td, PRIV_NFS_DAEMON);
1609		if (error)
1610			return (error);
1611	} else if (jailed(td->td_ucred) || usermount == 0) {
1612		if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1613			return (error);
1614	}
1615
1616	/*
1617	 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1618	 */
1619	if (fsflags & MNT_EXPORTED) {
1620		error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1621		if (error)
1622			return (error);
1623	}
1624	if (fsflags & MNT_SUIDDIR) {
1625		error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1626		if (error)
1627			return (error);
1628	}
1629	/*
1630	 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1631	 */
1632	if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1633		if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1634			fsflags |= MNT_NOSUID | MNT_USER;
1635	}
1636
1637	/* Load KLDs before we lock the covered vnode to avoid reversals. */
1638	vfsp = NULL;
1639	if ((fsflags & MNT_UPDATE) == 0) {
1640		/* Don't try to load KLDs if we're mounting the root. */
1641		if (fsflags & MNT_ROOTFS) {
1642			if ((vfsp = vfs_byname(fstype)) == NULL)
1643				return (ENODEV);
1644		} else {
1645			if ((vfsp = vfs_byname_kld(fstype, td, &error)) == NULL)
1646				return (error);
1647		}
1648	}
1649
1650	/*
1651	 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1652	 */
1653	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1 | WANTPARENT,
1654	    UIO_SYSSPACE, fspath);
1655	error = namei(&nd);
1656	if (error != 0)
1657		return (error);
1658	vp = nd.ni_vp;
1659	/*
1660	 * Don't allow stacking file mounts to work around problems with the way
1661	 * that namei sets nd.ni_dvp to vp_crossmp for these.
1662	 */
1663	if (vp->v_type == VREG)
1664		fsflags |= MNT_NOCOVER;
1665	if ((fsflags & MNT_UPDATE) == 0) {
1666		if ((vp->v_vflag & VV_ROOT) != 0 &&
1667		    (fsflags & MNT_NOCOVER) != 0) {
1668			vput(vp);
1669			error = EBUSY;
1670			goto out;
1671		}
1672		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1673		strcpy(pathbuf, fspath);
1674		/*
1675		 * Note: we allow any vnode type here. If the path sanity check
1676		 * succeeds, the type will be validated in vfs_domount_first
1677		 * above.
1678		 */
1679		if (vp->v_type == VDIR)
1680			error = vn_path_to_global_path(td, vp, pathbuf,
1681			    MNAMELEN);
1682		else
1683			error = vn_path_to_global_path_hardlink(td, vp,
1684			    nd.ni_dvp, pathbuf, MNAMELEN,
1685			    nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen);
1686		if (error == 0) {
1687			error = vfs_domount_first(td, vfsp, pathbuf, vp,
1688			    fsflags, optlist);
1689		}
1690		free(pathbuf, M_TEMP);
1691	} else
1692		error = vfs_domount_update(td, vp, fsflags, jail_export,
1693		    optlist);
1694
1695out:
1696	NDFREE_PNBUF(&nd);
1697	vrele(nd.ni_dvp);
1698
1699	return (error);
1700}
1701
1702/*
1703 * Unmount a filesystem.
1704 *
1705 * Note: unmount takes a path to the vnode mounted on as argument, not
1706 * special file (as before).
1707 */
1708#ifndef _SYS_SYSPROTO_H_
1709struct unmount_args {
1710	char	*path;
1711	int	flags;
1712};
1713#endif
1714/* ARGSUSED */
1715int
1716sys_unmount(struct thread *td, struct unmount_args *uap)
1717{
1718
1719	return (kern_unmount(td, uap->path, uap->flags));
1720}
1721
1722int
1723kern_unmount(struct thread *td, const char *path, int flags)
1724{
1725	struct nameidata nd;
1726	struct mount *mp;
1727	char *fsidbuf, *pathbuf;
1728	fsid_t fsid;
1729	int error;
1730
1731	AUDIT_ARG_VALUE(flags);
1732	if (jailed(td->td_ucred) || usermount == 0) {
1733		error = priv_check(td, PRIV_VFS_UNMOUNT);
1734		if (error)
1735			return (error);
1736	}
1737
1738	if (flags & MNT_BYFSID) {
1739		fsidbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1740		error = copyinstr(path, fsidbuf, MNAMELEN, NULL);
1741		if (error) {
1742			free(fsidbuf, M_TEMP);
1743			return (error);
1744		}
1745
1746		AUDIT_ARG_TEXT(fsidbuf);
1747		/* Decode the filesystem ID. */
1748		if (sscanf(fsidbuf, "FSID:%d:%d", &fsid.val[0], &fsid.val[1]) != 2) {
1749			free(fsidbuf, M_TEMP);
1750			return (EINVAL);
1751		}
1752
1753		mp = vfs_getvfs(&fsid);
1754		free(fsidbuf, M_TEMP);
1755		if (mp == NULL) {
1756			return (ENOENT);
1757		}
1758	} else {
1759		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1760		error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1761		if (error) {
1762			free(pathbuf, M_TEMP);
1763			return (error);
1764		}
1765
1766		/*
1767		 * Try to find global path for path argument.
1768		 */
1769		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1770		    UIO_SYSSPACE, pathbuf);
1771		if (namei(&nd) == 0) {
1772			NDFREE_PNBUF(&nd);
1773			error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1774			    MNAMELEN);
1775			if (error == 0)
1776				vput(nd.ni_vp);
1777		}
1778		mtx_lock(&mountlist_mtx);
1779		TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1780			if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1781				vfs_ref(mp);
1782				break;
1783			}
1784		}
1785		mtx_unlock(&mountlist_mtx);
1786		free(pathbuf, M_TEMP);
1787		if (mp == NULL) {
1788			/*
1789			 * Previously we returned ENOENT for a nonexistent path and
1790			 * EINVAL for a non-mountpoint.  We cannot tell these apart
1791			 * now, so in the !MNT_BYFSID case return the more likely
1792			 * EINVAL for compatibility.
1793			 */
1794			return (EINVAL);
1795		}
1796	}
1797
1798	/*
1799	 * Don't allow unmounting the root filesystem.
1800	 */
1801	if (mp->mnt_flag & MNT_ROOTFS) {
1802		vfs_rel(mp);
1803		return (EINVAL);
1804	}
1805	error = dounmount(mp, flags, td);
1806	return (error);
1807}
1808
1809/*
1810 * Return error if any of the vnodes, ignoring the root vnode
1811 * and the syncer vnode, have non-zero usecount.
1812 *
1813 * This function is purely advisory - it can return false positives
1814 * and negatives.
1815 */
1816static int
1817vfs_check_usecounts(struct mount *mp)
1818{
1819	struct vnode *vp, *mvp;
1820
1821	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1822		if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1823		    vp->v_usecount != 0) {
1824			VI_UNLOCK(vp);
1825			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1826			return (EBUSY);
1827		}
1828		VI_UNLOCK(vp);
1829	}
1830
1831	return (0);
1832}
1833
1834static void
1835dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1836{
1837
1838	mtx_assert(MNT_MTX(mp), MA_OWNED);
1839	mp->mnt_kern_flag &= ~mntkflags;
1840	if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1841		mp->mnt_kern_flag &= ~MNTK_MWAIT;
1842		wakeup(mp);
1843	}
1844	vfs_op_exit_locked(mp);
1845	MNT_IUNLOCK(mp);
1846	if (coveredvp != NULL) {
1847		VOP_UNLOCK(coveredvp);
1848		vdrop(coveredvp);
1849	}
1850	vn_finished_write(mp);
1851	vfs_rel(mp);
1852}
1853
1854/*
1855 * There are various reference counters associated with the mount point.
1856 * Normally it is permitted to modify them without taking the mnt ilock,
1857 * but this behavior can be temporarily disabled if stable value is needed
1858 * or callers are expected to block (e.g. to not allow new users during
1859 * forced unmount).
1860 */
1861void
1862vfs_op_enter(struct mount *mp)
1863{
1864	struct mount_pcpu *mpcpu;
1865	int cpu;
1866
1867	MNT_ILOCK(mp);
1868	mp->mnt_vfs_ops++;
1869	if (mp->mnt_vfs_ops > 1) {
1870		MNT_IUNLOCK(mp);
1871		return;
1872	}
1873	vfs_op_barrier_wait(mp);
1874	CPU_FOREACH(cpu) {
1875		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1876
1877		mp->mnt_ref += mpcpu->mntp_ref;
1878		mpcpu->mntp_ref = 0;
1879
1880		mp->mnt_lockref += mpcpu->mntp_lockref;
1881		mpcpu->mntp_lockref = 0;
1882
1883		mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1884		mpcpu->mntp_writeopcount = 0;
1885	}
1886	MPASSERT(mp->mnt_ref > 0 && mp->mnt_lockref >= 0 &&
1887	    mp->mnt_writeopcount >= 0, mp,
1888	    ("invalid count(s): ref %d lockref %d writeopcount %d",
1889	    mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount));
1890	MNT_IUNLOCK(mp);
1891	vfs_assert_mount_counters(mp);
1892}
1893
1894void
1895vfs_op_exit_locked(struct mount *mp)
1896{
1897
1898	mtx_assert(MNT_MTX(mp), MA_OWNED);
1899
1900	MPASSERT(mp->mnt_vfs_ops > 0, mp,
1901	    ("invalid vfs_ops count %d", mp->mnt_vfs_ops));
1902	MPASSERT(mp->mnt_vfs_ops > 1 ||
1903	    (mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_SUSPEND)) == 0, mp,
1904	    ("vfs_ops too low %d in unmount or suspend", mp->mnt_vfs_ops));
1905	mp->mnt_vfs_ops--;
1906}
1907
1908void
1909vfs_op_exit(struct mount *mp)
1910{
1911
1912	MNT_ILOCK(mp);
1913	vfs_op_exit_locked(mp);
1914	MNT_IUNLOCK(mp);
1915}
1916
1917struct vfs_op_barrier_ipi {
1918	struct mount *mp;
1919	struct smp_rendezvous_cpus_retry_arg srcra;
1920};
1921
1922static void
1923vfs_op_action_func(void *arg)
1924{
1925	struct vfs_op_barrier_ipi *vfsopipi;
1926	struct mount *mp;
1927
1928	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1929	mp = vfsopipi->mp;
1930
1931	if (!vfs_op_thread_entered(mp))
1932		smp_rendezvous_cpus_done(arg);
1933}
1934
1935static void
1936vfs_op_wait_func(void *arg, int cpu)
1937{
1938	struct vfs_op_barrier_ipi *vfsopipi;
1939	struct mount *mp;
1940	struct mount_pcpu *mpcpu;
1941
1942	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1943	mp = vfsopipi->mp;
1944
1945	mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1946	while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1947		cpu_spinwait();
1948}
1949
1950void
1951vfs_op_barrier_wait(struct mount *mp)
1952{
1953	struct vfs_op_barrier_ipi vfsopipi;
1954
1955	vfsopipi.mp = mp;
1956
1957	smp_rendezvous_cpus_retry(all_cpus,
1958	    smp_no_rendezvous_barrier,
1959	    vfs_op_action_func,
1960	    smp_no_rendezvous_barrier,
1961	    vfs_op_wait_func,
1962	    &vfsopipi.srcra);
1963}
1964
1965#ifdef DIAGNOSTIC
1966void
1967vfs_assert_mount_counters(struct mount *mp)
1968{
1969	struct mount_pcpu *mpcpu;
1970	int cpu;
1971
1972	if (mp->mnt_vfs_ops == 0)
1973		return;
1974
1975	CPU_FOREACH(cpu) {
1976		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1977		if (mpcpu->mntp_ref != 0 ||
1978		    mpcpu->mntp_lockref != 0 ||
1979		    mpcpu->mntp_writeopcount != 0)
1980			vfs_dump_mount_counters(mp);
1981	}
1982}
1983
1984void
1985vfs_dump_mount_counters(struct mount *mp)
1986{
1987	struct mount_pcpu *mpcpu;
1988	int ref, lockref, writeopcount;
1989	int cpu;
1990
1991	printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1992
1993	printf("        ref : ");
1994	ref = mp->mnt_ref;
1995	CPU_FOREACH(cpu) {
1996		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1997		printf("%d ", mpcpu->mntp_ref);
1998		ref += mpcpu->mntp_ref;
1999	}
2000	printf("\n");
2001	printf("    lockref : ");
2002	lockref = mp->mnt_lockref;
2003	CPU_FOREACH(cpu) {
2004		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
2005		printf("%d ", mpcpu->mntp_lockref);
2006		lockref += mpcpu->mntp_lockref;
2007	}
2008	printf("\n");
2009	printf("writeopcount: ");
2010	writeopcount = mp->mnt_writeopcount;
2011	CPU_FOREACH(cpu) {
2012		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
2013		printf("%d ", mpcpu->mntp_writeopcount);
2014		writeopcount += mpcpu->mntp_writeopcount;
2015	}
2016	printf("\n");
2017
2018	printf("counter       struct total\n");
2019	printf("ref             %-5d  %-5d\n", mp->mnt_ref, ref);
2020	printf("lockref         %-5d  %-5d\n", mp->mnt_lockref, lockref);
2021	printf("writeopcount    %-5d  %-5d\n", mp->mnt_writeopcount, writeopcount);
2022
2023	panic("invalid counts on struct mount");
2024}
2025#endif
2026
2027int
2028vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
2029{
2030	struct mount_pcpu *mpcpu;
2031	int cpu, sum;
2032
2033	switch (which) {
2034	case MNT_COUNT_REF:
2035		sum = mp->mnt_ref;
2036		break;
2037	case MNT_COUNT_LOCKREF:
2038		sum = mp->mnt_lockref;
2039		break;
2040	case MNT_COUNT_WRITEOPCOUNT:
2041		sum = mp->mnt_writeopcount;
2042		break;
2043	}
2044
2045	CPU_FOREACH(cpu) {
2046		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
2047		switch (which) {
2048		case MNT_COUNT_REF:
2049			sum += mpcpu->mntp_ref;
2050			break;
2051		case MNT_COUNT_LOCKREF:
2052			sum += mpcpu->mntp_lockref;
2053			break;
2054		case MNT_COUNT_WRITEOPCOUNT:
2055			sum += mpcpu->mntp_writeopcount;
2056			break;
2057		}
2058	}
2059	return (sum);
2060}
2061
2062static bool
2063deferred_unmount_enqueue(struct mount *mp, uint64_t flags, bool requeue,
2064    int timeout_ticks)
2065{
2066	bool enqueued;
2067
2068	enqueued = false;
2069	mtx_lock(&deferred_unmount_lock);
2070	if ((mp->mnt_taskqueue_flags & MNT_DEFERRED) == 0 || requeue) {
2071		mp->mnt_taskqueue_flags = flags | MNT_DEFERRED;
2072		STAILQ_INSERT_TAIL(&deferred_unmount_list, mp,
2073		    mnt_taskqueue_link);
2074		enqueued = true;
2075	}
2076	mtx_unlock(&deferred_unmount_lock);
2077
2078	if (enqueued) {
2079		taskqueue_enqueue_timeout(taskqueue_deferred_unmount,
2080		    &deferred_unmount_task, timeout_ticks);
2081	}
2082
2083	return (enqueued);
2084}
2085
2086/*
2087 * Taskqueue handler for processing async/recursive unmounts
2088 */
2089static void
2090vfs_deferred_unmount(void *argi __unused, int pending __unused)
2091{
2092	STAILQ_HEAD(, mount) local_unmounts;
2093	uint64_t flags;
2094	struct mount *mp, *tmp;
2095	int error;
2096	unsigned int retries;
2097	bool unmounted;
2098
2099	STAILQ_INIT(&local_unmounts);
2100	mtx_lock(&deferred_unmount_lock);
2101	STAILQ_CONCAT(&local_unmounts, &deferred_unmount_list);
2102	mtx_unlock(&deferred_unmount_lock);
2103
2104	STAILQ_FOREACH_SAFE(mp, &local_unmounts, mnt_taskqueue_link, tmp) {
2105		flags = mp->mnt_taskqueue_flags;
2106		KASSERT((flags & MNT_DEFERRED) != 0,
2107		    ("taskqueue unmount without MNT_DEFERRED"));
2108		error = dounmount(mp, flags, curthread);
2109		if (error != 0) {
2110			MNT_ILOCK(mp);
2111			unmounted = ((mp->mnt_kern_flag & MNTK_REFEXPIRE) != 0);
2112			MNT_IUNLOCK(mp);
2113
2114			/*
2115			 * The deferred unmount thread is the only thread that
2116			 * modifies the retry counts, so locking/atomics aren't
2117			 * needed here.
2118			 */
2119			retries = (mp->mnt_unmount_retries)++;
2120			deferred_unmount_total_retries++;
2121			if (!unmounted && retries < deferred_unmount_retry_limit) {
2122				deferred_unmount_enqueue(mp, flags, true,
2123				    -deferred_unmount_retry_delay_hz);
2124			} else {
2125				if (retries >= deferred_unmount_retry_limit) {
2126					printf("giving up on deferred unmount "
2127					    "of %s after %d retries, error %d\n",
2128					    mp->mnt_stat.f_mntonname, retries, error);
2129				}
2130				vfs_rel(mp);
2131			}
2132		}
2133	}
2134}
2135
2136/*
2137 * Do the actual filesystem unmount.
2138 */
2139int
2140dounmount(struct mount *mp, uint64_t flags, struct thread *td)
2141{
2142	struct mount_upper_node *upper;
2143	struct vnode *coveredvp, *rootvp;
2144	int error;
2145	uint64_t async_flag;
2146	int mnt_gen_r;
2147	unsigned int retries;
2148
2149	KASSERT((flags & MNT_DEFERRED) == 0 ||
2150	    (flags & (MNT_RECURSE | MNT_FORCE)) == (MNT_RECURSE | MNT_FORCE),
2151	    ("MNT_DEFERRED requires MNT_RECURSE | MNT_FORCE"));
2152
2153	/*
2154	 * If the caller has explicitly requested the unmount to be handled by
2155	 * the taskqueue and we're not already in taskqueue context, queue
2156	 * up the unmount request and exit.  This is done prior to any
2157	 * credential checks; MNT_DEFERRED should be used only for kernel-
2158	 * initiated unmounts and will therefore be processed with the
2159	 * (kernel) credentials of the taskqueue thread.  Still, callers
2160	 * should be sure this is the behavior they want.
2161	 */
2162	if ((flags & MNT_DEFERRED) != 0 &&
2163	    taskqueue_member(taskqueue_deferred_unmount, curthread) == 0) {
2164		if (!deferred_unmount_enqueue(mp, flags, false, 0))
2165			vfs_rel(mp);
2166		return (EINPROGRESS);
2167	}
2168
2169	/*
2170	 * Only privileged root, or (if MNT_USER is set) the user that did the
2171	 * original mount is permitted to unmount this filesystem.
2172	 * This check should be made prior to queueing up any recursive
2173	 * unmounts of upper filesystems.  Those unmounts will be executed
2174	 * with kernel thread credentials and are expected to succeed, so
2175	 * we must at least ensure the originating context has sufficient
2176	 * privilege to unmount the base filesystem before proceeding with
2177	 * the uppers.
2178	 */
2179	error = vfs_suser(mp, td);
2180	if (error != 0) {
2181		KASSERT((flags & MNT_DEFERRED) == 0,
2182		    ("taskqueue unmount with insufficient privilege"));
2183		vfs_rel(mp);
2184		return (error);
2185	}
2186
2187	if (recursive_forced_unmount && ((flags & MNT_FORCE) != 0))
2188		flags |= MNT_RECURSE;
2189
2190	if ((flags & MNT_RECURSE) != 0) {
2191		KASSERT((flags & MNT_FORCE) != 0,
2192		    ("MNT_RECURSE requires MNT_FORCE"));
2193
2194		MNT_ILOCK(mp);
2195		/*
2196		 * Set MNTK_RECURSE to prevent new upper mounts from being
2197		 * added, and note that an operation on the uppers list is in
2198		 * progress.  This will ensure that unregistration from the
2199		 * uppers list, and therefore any pending unmount of the upper
2200		 * FS, can't complete until after we finish walking the list.
2201		 */
2202		mp->mnt_kern_flag |= MNTK_RECURSE;
2203		mp->mnt_upper_pending++;
2204		TAILQ_FOREACH(upper, &mp->mnt_uppers, mnt_upper_link) {
2205			retries = upper->mp->mnt_unmount_retries;
2206			if (retries > deferred_unmount_retry_limit) {
2207				error = EBUSY;
2208				continue;
2209			}
2210			MNT_IUNLOCK(mp);
2211
2212			vfs_ref(upper->mp);
2213			if (!deferred_unmount_enqueue(upper->mp, flags,
2214			    false, 0))
2215				vfs_rel(upper->mp);
2216			MNT_ILOCK(mp);
2217		}
2218		mp->mnt_upper_pending--;
2219		if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
2220		    mp->mnt_upper_pending == 0) {
2221			mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
2222			wakeup(&mp->mnt_uppers);
2223		}
2224
2225		/*
2226		 * If we're not on the taskqueue, wait until the uppers list
2227		 * is drained before proceeding with unmount.  Otherwise, if
2228		 * we are on the taskqueue and there are still pending uppers,
2229		 * just re-enqueue on the end of the taskqueue.
2230		 */
2231		if ((flags & MNT_DEFERRED) == 0) {
2232			while (error == 0 && !TAILQ_EMPTY(&mp->mnt_uppers)) {
2233				mp->mnt_kern_flag |= MNTK_TASKQUEUE_WAITER;
2234				error = msleep(&mp->mnt_taskqueue_link,
2235				    MNT_MTX(mp), PCATCH, "umntqw", 0);
2236			}
2237			if (error != 0) {
2238				MNT_REL(mp);
2239				MNT_IUNLOCK(mp);
2240				return (error);
2241			}
2242		} else if (!TAILQ_EMPTY(&mp->mnt_uppers)) {
2243			MNT_IUNLOCK(mp);
2244			if (error == 0)
2245				deferred_unmount_enqueue(mp, flags, true, 0);
2246			return (error);
2247		}
2248		MNT_IUNLOCK(mp);
2249		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers not empty"));
2250	}
2251
2252	/* Allow the taskqueue to safely re-enqueue on failure */
2253	if ((flags & MNT_DEFERRED) != 0)
2254		vfs_ref(mp);
2255
2256	if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
2257		mnt_gen_r = mp->mnt_gen;
2258		VI_LOCK(coveredvp);
2259		vholdl(coveredvp);
2260		vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
2261		/*
2262		 * Check for mp being unmounted while waiting for the
2263		 * covered vnode lock.
2264		 */
2265		if (coveredvp->v_mountedhere != mp ||
2266		    coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
2267			VOP_UNLOCK(coveredvp);
2268			vdrop(coveredvp);
2269			vfs_rel(mp);
2270			return (EBUSY);
2271		}
2272	}
2273
2274	vfs_op_enter(mp);
2275
2276	vn_start_write(NULL, &mp, V_WAIT);
2277	MNT_ILOCK(mp);
2278	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
2279	    (mp->mnt_flag & MNT_UPDATE) != 0 ||
2280	    !TAILQ_EMPTY(&mp->mnt_uppers)) {
2281		dounmount_cleanup(mp, coveredvp, 0);
2282		return (EBUSY);
2283	}
2284	mp->mnt_kern_flag |= MNTK_UNMOUNT;
2285	rootvp = vfs_cache_root_clear(mp);
2286	if (coveredvp != NULL)
2287		vn_seqc_write_begin(coveredvp);
2288	if (flags & MNT_NONBUSY) {
2289		MNT_IUNLOCK(mp);
2290		error = vfs_check_usecounts(mp);
2291		MNT_ILOCK(mp);
2292		if (error != 0) {
2293			vn_seqc_write_end(coveredvp);
2294			dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
2295			if (rootvp != NULL) {
2296				vn_seqc_write_end(rootvp);
2297				vrele(rootvp);
2298			}
2299			return (error);
2300		}
2301	}
2302	/* Allow filesystems to detect that a forced unmount is in progress. */
2303	if (flags & MNT_FORCE) {
2304		mp->mnt_kern_flag |= MNTK_UNMOUNTF;
2305		MNT_IUNLOCK(mp);
2306		/*
2307		 * Must be done after setting MNTK_UNMOUNTF and before
2308		 * waiting for mnt_lockref to become 0.
2309		 */
2310		VFS_PURGE(mp);
2311		MNT_ILOCK(mp);
2312	}
2313	error = 0;
2314	if (mp->mnt_lockref) {
2315		mp->mnt_kern_flag |= MNTK_DRAINING;
2316		error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
2317		    "mount drain", 0);
2318	}
2319	MNT_IUNLOCK(mp);
2320	KASSERT(mp->mnt_lockref == 0,
2321	    ("%s: invalid lock refcount in the drain path @ %s:%d",
2322	    __func__, __FILE__, __LINE__));
2323	KASSERT(error == 0,
2324	    ("%s: invalid return value for msleep in the drain path @ %s:%d",
2325	    __func__, __FILE__, __LINE__));
2326
2327	/*
2328	 * We want to keep the vnode around so that we can vn_seqc_write_end
2329	 * after we are done with unmount. Downgrade our reference to a mere
2330	 * hold count so that we don't interefere with anything.
2331	 */
2332	if (rootvp != NULL) {
2333		vhold(rootvp);
2334		vrele(rootvp);
2335	}
2336
2337	if (mp->mnt_flag & MNT_EXPUBLIC)
2338		vfs_setpublicfs(NULL, NULL, NULL);
2339
2340	vfs_periodic(mp, MNT_WAIT);
2341	MNT_ILOCK(mp);
2342	async_flag = mp->mnt_flag & MNT_ASYNC;
2343	mp->mnt_flag &= ~MNT_ASYNC;
2344	mp->mnt_kern_flag &= ~MNTK_ASYNC;
2345	MNT_IUNLOCK(mp);
2346	vfs_deallocate_syncvnode(mp);
2347	error = VFS_UNMOUNT(mp, flags);
2348	vn_finished_write(mp);
2349	vfs_rel(mp);
2350	/*
2351	 * If we failed to flush the dirty blocks for this mount point,
2352	 * undo all the cdir/rdir and rootvnode changes we made above.
2353	 * Unless we failed to do so because the device is reporting that
2354	 * it doesn't exist anymore.
2355	 */
2356	if (error && error != ENXIO) {
2357		MNT_ILOCK(mp);
2358		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
2359			MNT_IUNLOCK(mp);
2360			vfs_allocate_syncvnode(mp);
2361			MNT_ILOCK(mp);
2362		}
2363		mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
2364		mp->mnt_flag |= async_flag;
2365		if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
2366		    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
2367			mp->mnt_kern_flag |= MNTK_ASYNC;
2368		if (mp->mnt_kern_flag & MNTK_MWAIT) {
2369			mp->mnt_kern_flag &= ~MNTK_MWAIT;
2370			wakeup(mp);
2371		}
2372		vfs_op_exit_locked(mp);
2373		MNT_IUNLOCK(mp);
2374		if (coveredvp) {
2375			vn_seqc_write_end(coveredvp);
2376			VOP_UNLOCK(coveredvp);
2377			vdrop(coveredvp);
2378		}
2379		if (rootvp != NULL) {
2380			vn_seqc_write_end(rootvp);
2381			vdrop(rootvp);
2382		}
2383		return (error);
2384	}
2385
2386	mtx_lock(&mountlist_mtx);
2387	TAILQ_REMOVE(&mountlist, mp, mnt_list);
2388	mtx_unlock(&mountlist_mtx);
2389	EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
2390	if (coveredvp != NULL) {
2391		VI_LOCK(coveredvp);
2392		vn_irflag_unset_locked(coveredvp, VIRF_MOUNTPOINT);
2393		coveredvp->v_mountedhere = NULL;
2394		vn_seqc_write_end_locked(coveredvp);
2395		VI_UNLOCK(coveredvp);
2396		VOP_UNLOCK(coveredvp);
2397		vdrop(coveredvp);
2398	}
2399	mount_devctl_event("UNMOUNT", mp, false);
2400	if (rootvp != NULL) {
2401		vn_seqc_write_end(rootvp);
2402		vdrop(rootvp);
2403	}
2404	vfs_event_signal(NULL, VQ_UNMOUNT, 0);
2405	if (rootvnode != NULL && mp == rootvnode->v_mount) {
2406		vrele(rootvnode);
2407		rootvnode = NULL;
2408	}
2409	if (mp == rootdevmp)
2410		rootdevmp = NULL;
2411	if ((flags & MNT_DEFERRED) != 0)
2412		vfs_rel(mp);
2413	vfs_mount_destroy(mp);
2414	return (0);
2415}
2416
2417/*
2418 * Report errors during filesystem mounting.
2419 */
2420void
2421vfs_mount_error(struct mount *mp, const char *fmt, ...)
2422{
2423	struct vfsoptlist *moptlist = mp->mnt_optnew;
2424	va_list ap;
2425	int error, len;
2426	char *errmsg;
2427
2428	error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
2429	if (error || errmsg == NULL || len <= 0)
2430		return;
2431
2432	va_start(ap, fmt);
2433	vsnprintf(errmsg, (size_t)len, fmt, ap);
2434	va_end(ap);
2435}
2436
2437void
2438vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
2439{
2440	va_list ap;
2441	int error, len;
2442	char *errmsg;
2443
2444	error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
2445	if (error || errmsg == NULL || len <= 0)
2446		return;
2447
2448	va_start(ap, fmt);
2449	vsnprintf(errmsg, (size_t)len, fmt, ap);
2450	va_end(ap);
2451}
2452
2453/*
2454 * ---------------------------------------------------------------------
2455 * Functions for querying mount options/arguments from filesystems.
2456 */
2457
2458/*
2459 * Check that no unknown options are given
2460 */
2461int
2462vfs_filteropt(struct vfsoptlist *opts, const char **legal)
2463{
2464	struct vfsopt *opt;
2465	char errmsg[255];
2466	const char **t, *p, *q;
2467	int ret = 0;
2468
2469	TAILQ_FOREACH(opt, opts, link) {
2470		p = opt->name;
2471		q = NULL;
2472		if (p[0] == 'n' && p[1] == 'o')
2473			q = p + 2;
2474		for(t = global_opts; *t != NULL; t++) {
2475			if (strcmp(*t, p) == 0)
2476				break;
2477			if (q != NULL) {
2478				if (strcmp(*t, q) == 0)
2479					break;
2480			}
2481		}
2482		if (*t != NULL)
2483			continue;
2484		for(t = legal; *t != NULL; t++) {
2485			if (strcmp(*t, p) == 0)
2486				break;
2487			if (q != NULL) {
2488				if (strcmp(*t, q) == 0)
2489					break;
2490			}
2491		}
2492		if (*t != NULL)
2493			continue;
2494		snprintf(errmsg, sizeof(errmsg),
2495		    "mount option <%s> is unknown", p);
2496		ret = EINVAL;
2497	}
2498	if (ret != 0) {
2499		TAILQ_FOREACH(opt, opts, link) {
2500			if (strcmp(opt->name, "errmsg") == 0) {
2501				strncpy((char *)opt->value, errmsg, opt->len);
2502				break;
2503			}
2504		}
2505		if (opt == NULL)
2506			printf("%s\n", errmsg);
2507	}
2508	return (ret);
2509}
2510
2511/*
2512 * Get a mount option by its name.
2513 *
2514 * Return 0 if the option was found, ENOENT otherwise.
2515 * If len is non-NULL it will be filled with the length
2516 * of the option. If buf is non-NULL, it will be filled
2517 * with the address of the option.
2518 */
2519int
2520vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
2521{
2522	struct vfsopt *opt;
2523
2524	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2525
2526	TAILQ_FOREACH(opt, opts, link) {
2527		if (strcmp(name, opt->name) == 0) {
2528			opt->seen = 1;
2529			if (len != NULL)
2530				*len = opt->len;
2531			if (buf != NULL)
2532				*buf = opt->value;
2533			return (0);
2534		}
2535	}
2536	return (ENOENT);
2537}
2538
2539int
2540vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2541{
2542	struct vfsopt *opt;
2543
2544	if (opts == NULL)
2545		return (-1);
2546
2547	TAILQ_FOREACH(opt, opts, link) {
2548		if (strcmp(name, opt->name) == 0) {
2549			opt->seen = 1;
2550			return (opt->pos);
2551		}
2552	}
2553	return (-1);
2554}
2555
2556int
2557vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2558{
2559	char *opt_value, *vtp;
2560	quad_t iv;
2561	int error, opt_len;
2562
2563	error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2564	if (error != 0)
2565		return (error);
2566	if (opt_len == 0 || opt_value == NULL)
2567		return (EINVAL);
2568	if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2569		return (EINVAL);
2570	iv = strtoq(opt_value, &vtp, 0);
2571	if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2572		return (EINVAL);
2573	if (iv < 0)
2574		return (EINVAL);
2575	switch (vtp[0]) {
2576	case 't': case 'T':
2577		iv *= 1024;
2578		/* FALLTHROUGH */
2579	case 'g': case 'G':
2580		iv *= 1024;
2581		/* FALLTHROUGH */
2582	case 'm': case 'M':
2583		iv *= 1024;
2584		/* FALLTHROUGH */
2585	case 'k': case 'K':
2586		iv *= 1024;
2587	case '\0':
2588		break;
2589	default:
2590		return (EINVAL);
2591	}
2592	*value = iv;
2593
2594	return (0);
2595}
2596
2597char *
2598vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2599{
2600	struct vfsopt *opt;
2601
2602	*error = 0;
2603	TAILQ_FOREACH(opt, opts, link) {
2604		if (strcmp(name, opt->name) != 0)
2605			continue;
2606		opt->seen = 1;
2607		if (opt->len == 0 ||
2608		    ((char *)opt->value)[opt->len - 1] != '\0') {
2609			*error = EINVAL;
2610			return (NULL);
2611		}
2612		return (opt->value);
2613	}
2614	*error = ENOENT;
2615	return (NULL);
2616}
2617
2618int
2619vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2620	uint64_t val)
2621{
2622	struct vfsopt *opt;
2623
2624	TAILQ_FOREACH(opt, opts, link) {
2625		if (strcmp(name, opt->name) == 0) {
2626			opt->seen = 1;
2627			if (w != NULL)
2628				*w |= val;
2629			return (1);
2630		}
2631	}
2632	if (w != NULL)
2633		*w &= ~val;
2634	return (0);
2635}
2636
2637int
2638vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2639{
2640	va_list ap;
2641	struct vfsopt *opt;
2642	int ret;
2643
2644	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2645
2646	TAILQ_FOREACH(opt, opts, link) {
2647		if (strcmp(name, opt->name) != 0)
2648			continue;
2649		opt->seen = 1;
2650		if (opt->len == 0 || opt->value == NULL)
2651			return (0);
2652		if (((char *)opt->value)[opt->len - 1] != '\0')
2653			return (0);
2654		va_start(ap, fmt);
2655		ret = vsscanf(opt->value, fmt, ap);
2656		va_end(ap);
2657		return (ret);
2658	}
2659	return (0);
2660}
2661
2662int
2663vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2664{
2665	struct vfsopt *opt;
2666
2667	TAILQ_FOREACH(opt, opts, link) {
2668		if (strcmp(name, opt->name) != 0)
2669			continue;
2670		opt->seen = 1;
2671		if (opt->value == NULL)
2672			opt->len = len;
2673		else {
2674			if (opt->len != len)
2675				return (EINVAL);
2676			bcopy(value, opt->value, len);
2677		}
2678		return (0);
2679	}
2680	return (ENOENT);
2681}
2682
2683int
2684vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2685{
2686	struct vfsopt *opt;
2687
2688	TAILQ_FOREACH(opt, opts, link) {
2689		if (strcmp(name, opt->name) != 0)
2690			continue;
2691		opt->seen = 1;
2692		if (opt->value == NULL)
2693			opt->len = len;
2694		else {
2695			if (opt->len < len)
2696				return (EINVAL);
2697			opt->len = len;
2698			bcopy(value, opt->value, len);
2699		}
2700		return (0);
2701	}
2702	return (ENOENT);
2703}
2704
2705int
2706vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2707{
2708	struct vfsopt *opt;
2709
2710	TAILQ_FOREACH(opt, opts, link) {
2711		if (strcmp(name, opt->name) != 0)
2712			continue;
2713		opt->seen = 1;
2714		if (opt->value == NULL)
2715			opt->len = strlen(value) + 1;
2716		else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2717			return (EINVAL);
2718		return (0);
2719	}
2720	return (ENOENT);
2721}
2722
2723/*
2724 * Find and copy a mount option.
2725 *
2726 * The size of the buffer has to be specified
2727 * in len, if it is not the same length as the
2728 * mount option, EINVAL is returned.
2729 * Returns ENOENT if the option is not found.
2730 */
2731int
2732vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2733{
2734	struct vfsopt *opt;
2735
2736	KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2737
2738	TAILQ_FOREACH(opt, opts, link) {
2739		if (strcmp(name, opt->name) == 0) {
2740			opt->seen = 1;
2741			if (len != opt->len)
2742				return (EINVAL);
2743			bcopy(opt->value, dest, opt->len);
2744			return (0);
2745		}
2746	}
2747	return (ENOENT);
2748}
2749
2750int
2751__vfs_statfs(struct mount *mp, struct statfs *sbp)
2752{
2753	/*
2754	 * Filesystems only fill in part of the structure for updates, we
2755	 * have to read the entirety first to get all content.
2756	 */
2757	if (sbp != &mp->mnt_stat)
2758		memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2759
2760	/*
2761	 * Set these in case the underlying filesystem fails to do so.
2762	 */
2763	sbp->f_version = STATFS_VERSION;
2764	sbp->f_namemax = NAME_MAX;
2765	sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2766	sbp->f_nvnodelistsize = mp->mnt_nvnodelistsize;
2767
2768	return (mp->mnt_op->vfs_statfs(mp, sbp));
2769}
2770
2771void
2772vfs_mountedfrom(struct mount *mp, const char *from)
2773{
2774
2775	bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2776	strlcpy(mp->mnt_stat.f_mntfromname, from,
2777	    sizeof mp->mnt_stat.f_mntfromname);
2778}
2779
2780/*
2781 * ---------------------------------------------------------------------
2782 * This is the api for building mount args and mounting filesystems from
2783 * inside the kernel.
2784 *
2785 * The API works by accumulation of individual args.  First error is
2786 * latched.
2787 *
2788 * XXX: should be documented in new manpage kernel_mount(9)
2789 */
2790
2791/* A memory allocation which must be freed when we are done */
2792struct mntaarg {
2793	SLIST_ENTRY(mntaarg)	next;
2794};
2795
2796/* The header for the mount arguments */
2797struct mntarg {
2798	struct iovec *v;
2799	int len;
2800	int error;
2801	SLIST_HEAD(, mntaarg)	list;
2802};
2803
2804/*
2805 * Add a boolean argument.
2806 *
2807 * flag is the boolean value.
2808 * name must start with "no".
2809 */
2810struct mntarg *
2811mount_argb(struct mntarg *ma, int flag, const char *name)
2812{
2813
2814	KASSERT(name[0] == 'n' && name[1] == 'o',
2815	    ("mount_argb(...,%s): name must start with 'no'", name));
2816
2817	return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2818}
2819
2820/*
2821 * Add an argument printf style
2822 */
2823struct mntarg *
2824mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2825{
2826	va_list ap;
2827	struct mntaarg *maa;
2828	struct sbuf *sb;
2829	int len;
2830
2831	if (ma == NULL) {
2832		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2833		SLIST_INIT(&ma->list);
2834	}
2835	if (ma->error)
2836		return (ma);
2837
2838	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2839	    M_MOUNT, M_WAITOK);
2840	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2841	ma->v[ma->len].iov_len = strlen(name) + 1;
2842	ma->len++;
2843
2844	sb = sbuf_new_auto();
2845	va_start(ap, fmt);
2846	sbuf_vprintf(sb, fmt, ap);
2847	va_end(ap);
2848	sbuf_finish(sb);
2849	len = sbuf_len(sb) + 1;
2850	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2851	SLIST_INSERT_HEAD(&ma->list, maa, next);
2852	bcopy(sbuf_data(sb), maa + 1, len);
2853	sbuf_delete(sb);
2854
2855	ma->v[ma->len].iov_base = maa + 1;
2856	ma->v[ma->len].iov_len = len;
2857	ma->len++;
2858
2859	return (ma);
2860}
2861
2862/*
2863 * Add an argument which is a userland string.
2864 */
2865struct mntarg *
2866mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2867{
2868	struct mntaarg *maa;
2869	char *tbuf;
2870
2871	if (val == NULL)
2872		return (ma);
2873	if (ma == NULL) {
2874		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2875		SLIST_INIT(&ma->list);
2876	}
2877	if (ma->error)
2878		return (ma);
2879	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2880	SLIST_INSERT_HEAD(&ma->list, maa, next);
2881	tbuf = (void *)(maa + 1);
2882	ma->error = copyinstr(val, tbuf, len, NULL);
2883	return (mount_arg(ma, name, tbuf, -1));
2884}
2885
2886/*
2887 * Plain argument.
2888 *
2889 * If length is -1, treat value as a C string.
2890 */
2891struct mntarg *
2892mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2893{
2894
2895	if (ma == NULL) {
2896		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2897		SLIST_INIT(&ma->list);
2898	}
2899	if (ma->error)
2900		return (ma);
2901
2902	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2903	    M_MOUNT, M_WAITOK);
2904	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2905	ma->v[ma->len].iov_len = strlen(name) + 1;
2906	ma->len++;
2907
2908	ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2909	if (len < 0)
2910		ma->v[ma->len].iov_len = strlen(val) + 1;
2911	else
2912		ma->v[ma->len].iov_len = len;
2913	ma->len++;
2914	return (ma);
2915}
2916
2917/*
2918 * Free a mntarg structure
2919 */
2920static void
2921free_mntarg(struct mntarg *ma)
2922{
2923	struct mntaarg *maa;
2924
2925	while (!SLIST_EMPTY(&ma->list)) {
2926		maa = SLIST_FIRST(&ma->list);
2927		SLIST_REMOVE_HEAD(&ma->list, next);
2928		free(maa, M_MOUNT);
2929	}
2930	free(ma->v, M_MOUNT);
2931	free(ma, M_MOUNT);
2932}
2933
2934/*
2935 * Mount a filesystem
2936 */
2937int
2938kernel_mount(struct mntarg *ma, uint64_t flags)
2939{
2940	struct uio auio;
2941	int error;
2942
2943	KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2944	KASSERT(ma->error != 0 || ma->v != NULL, ("kernel_mount NULL ma->v"));
2945	KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2946
2947	error = ma->error;
2948	if (error == 0) {
2949		auio.uio_iov = ma->v;
2950		auio.uio_iovcnt = ma->len;
2951		auio.uio_segflg = UIO_SYSSPACE;
2952		error = vfs_donmount(curthread, flags, &auio);
2953	}
2954	free_mntarg(ma);
2955	return (error);
2956}
2957
2958/* Map from mount options to printable formats. */
2959static struct mntoptnames optnames[] = {
2960	MNTOPT_NAMES
2961};
2962
2963#define DEVCTL_LEN 1024
2964static void
2965mount_devctl_event(const char *type, struct mount *mp, bool donew)
2966{
2967	const uint8_t *cp;
2968	struct mntoptnames *fp;
2969	struct sbuf sb;
2970	struct statfs *sfp = &mp->mnt_stat;
2971	char *buf;
2972
2973	buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2974	if (buf == NULL)
2975		return;
2976	sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2977	sbuf_cpy(&sb, "mount-point=\"");
2978	devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2979	sbuf_cat(&sb, "\" mount-dev=\"");
2980	devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2981	sbuf_cat(&sb, "\" mount-type=\"");
2982	devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2983	sbuf_cat(&sb, "\" fsid=0x");
2984	cp = (const uint8_t *)&sfp->f_fsid.val[0];
2985	for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2986		sbuf_printf(&sb, "%02x", cp[i]);
2987	sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2988	for (fp = optnames; fp->o_opt != 0; fp++) {
2989		if ((mp->mnt_flag & fp->o_opt) != 0) {
2990			sbuf_cat(&sb, fp->o_name);
2991			sbuf_putc(&sb, ';');
2992		}
2993	}
2994	sbuf_putc(&sb, '"');
2995	sbuf_finish(&sb);
2996
2997	/*
2998	 * Options are not published because the form of the options depends on
2999	 * the file system and may include binary data. In addition, they don't
3000	 * necessarily provide enough useful information to be actionable when
3001	 * devd processes them.
3002	 */
3003
3004	if (sbuf_error(&sb) == 0)
3005		devctl_notify("VFS", "FS", type, sbuf_data(&sb));
3006	sbuf_delete(&sb);
3007	free(buf, M_MOUNT);
3008}
3009
3010/*
3011 * Force remount specified mount point to read-only.  The argument
3012 * must be busied to avoid parallel unmount attempts.
3013 *
3014 * Intended use is to prevent further writes if some metadata
3015 * inconsistency is detected.  Note that the function still flushes
3016 * all cached metadata and data for the mount point, which might be
3017 * not always suitable.
3018 */
3019int
3020vfs_remount_ro(struct mount *mp)
3021{
3022	struct vfsoptlist *opts;
3023	struct vfsopt *opt;
3024	struct vnode *vp_covered, *rootvp;
3025	int error;
3026
3027	vfs_op_enter(mp);
3028	KASSERT(mp->mnt_lockref > 0,
3029	    ("vfs_remount_ro: mp %p is not busied", mp));
3030	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
3031	    ("vfs_remount_ro: mp %p is being unmounted (and busy?)", mp));
3032
3033	rootvp = NULL;
3034	vp_covered = mp->mnt_vnodecovered;
3035	error = vget(vp_covered, LK_EXCLUSIVE | LK_NOWAIT);
3036	if (error != 0) {
3037		vfs_op_exit(mp);
3038		return (error);
3039	}
3040	VI_LOCK(vp_covered);
3041	if ((vp_covered->v_iflag & VI_MOUNT) != 0) {
3042		VI_UNLOCK(vp_covered);
3043		vput(vp_covered);
3044		vfs_op_exit(mp);
3045		return (EBUSY);
3046	}
3047	vp_covered->v_iflag |= VI_MOUNT;
3048	VI_UNLOCK(vp_covered);
3049	vn_seqc_write_begin(vp_covered);
3050
3051	MNT_ILOCK(mp);
3052	if ((mp->mnt_flag & MNT_RDONLY) != 0) {
3053		MNT_IUNLOCK(mp);
3054		error = EBUSY;
3055		goto out;
3056	}
3057	mp->mnt_flag |= MNT_UPDATE | MNT_FORCE | MNT_RDONLY;
3058	rootvp = vfs_cache_root_clear(mp);
3059	MNT_IUNLOCK(mp);
3060
3061	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK | M_ZERO);
3062	TAILQ_INIT(opts);
3063	opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK | M_ZERO);
3064	opt->name = strdup("ro", M_MOUNT);
3065	opt->value = NULL;
3066	TAILQ_INSERT_TAIL(opts, opt, link);
3067	vfs_mergeopts(opts, mp->mnt_opt);
3068	mp->mnt_optnew = opts;
3069
3070	error = VFS_MOUNT(mp);
3071
3072	if (error == 0) {
3073		MNT_ILOCK(mp);
3074		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE);
3075		MNT_IUNLOCK(mp);
3076		vfs_deallocate_syncvnode(mp);
3077		if (mp->mnt_opt != NULL)
3078			vfs_freeopts(mp->mnt_opt);
3079		mp->mnt_opt = mp->mnt_optnew;
3080	} else {
3081		MNT_ILOCK(mp);
3082		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE | MNT_RDONLY);
3083		MNT_IUNLOCK(mp);
3084		vfs_freeopts(mp->mnt_optnew);
3085	}
3086	mp->mnt_optnew = NULL;
3087
3088out:
3089	vfs_op_exit(mp);
3090	VI_LOCK(vp_covered);
3091	vp_covered->v_iflag &= ~VI_MOUNT;
3092	VI_UNLOCK(vp_covered);
3093	vput(vp_covered);
3094	vn_seqc_write_end(vp_covered);
3095	if (rootvp != NULL) {
3096		vn_seqc_write_end(rootvp);
3097		vrele(rootvp);
3098	}
3099	return (error);
3100}
3101
3102/*
3103 * Suspend write operations on all local writeable filesystems.  Does
3104 * full sync of them in the process.
3105 *
3106 * Iterate over the mount points in reverse order, suspending most
3107 * recently mounted filesystems first.  It handles a case where a
3108 * filesystem mounted from a md(4) vnode-backed device should be
3109 * suspended before the filesystem that owns the vnode.
3110 */
3111void
3112suspend_all_fs(void)
3113{
3114	struct mount *mp;
3115	int error;
3116
3117	mtx_lock(&mountlist_mtx);
3118	TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
3119		error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
3120		if (error != 0)
3121			continue;
3122		if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
3123		    (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
3124			mtx_lock(&mountlist_mtx);
3125			vfs_unbusy(mp);
3126			continue;
3127		}
3128		error = vfs_write_suspend(mp, 0);
3129		if (error == 0) {
3130			MNT_ILOCK(mp);
3131			MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
3132			mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
3133			MNT_IUNLOCK(mp);
3134			mtx_lock(&mountlist_mtx);
3135		} else {
3136			printf("suspend of %s failed, error %d\n",
3137			    mp->mnt_stat.f_mntonname, error);
3138			mtx_lock(&mountlist_mtx);
3139			vfs_unbusy(mp);
3140		}
3141	}
3142	mtx_unlock(&mountlist_mtx);
3143}
3144
3145/*
3146 * Clone the mnt_exjail field to a new mount point.
3147 */
3148void
3149vfs_exjail_clone(struct mount *inmp, struct mount *outmp)
3150{
3151	struct ucred *cr;
3152	struct prison *pr;
3153
3154	MNT_ILOCK(inmp);
3155	cr = inmp->mnt_exjail;
3156	if (cr != NULL) {
3157		crhold(cr);
3158		MNT_IUNLOCK(inmp);
3159		pr = cr->cr_prison;
3160		sx_slock(&allprison_lock);
3161		if (!prison_isalive(pr)) {
3162			sx_sunlock(&allprison_lock);
3163			crfree(cr);
3164			return;
3165		}
3166		MNT_ILOCK(outmp);
3167		if (outmp->mnt_exjail == NULL) {
3168			outmp->mnt_exjail = cr;
3169			atomic_add_int(&pr->pr_exportcnt, 1);
3170			cr = NULL;
3171		}
3172		MNT_IUNLOCK(outmp);
3173		sx_sunlock(&allprison_lock);
3174		if (cr != NULL)
3175			crfree(cr);
3176	} else
3177		MNT_IUNLOCK(inmp);
3178}
3179
3180void
3181resume_all_fs(void)
3182{
3183	struct mount *mp;
3184
3185	mtx_lock(&mountlist_mtx);
3186	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3187		if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
3188			continue;
3189		mtx_unlock(&mountlist_mtx);
3190		MNT_ILOCK(mp);
3191		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
3192		mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
3193		MNT_IUNLOCK(mp);
3194		vfs_write_resume(mp, 0);
3195		mtx_lock(&mountlist_mtx);
3196		vfs_unbusy(mp);
3197	}
3198	mtx_unlock(&mountlist_mtx);
3199}
3200