1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2014-2019 Netflix Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29#include "opt_inet.h"
30#include "opt_inet6.h"
31#include "opt_kern_tls.h"
32#include "opt_ratelimit.h"
33#include "opt_rss.h"
34
35#include <sys/param.h>
36#include <sys/kernel.h>
37#include <sys/domainset.h>
38#include <sys/endian.h>
39#include <sys/ktls.h>
40#include <sys/lock.h>
41#include <sys/mbuf.h>
42#include <sys/mutex.h>
43#include <sys/rmlock.h>
44#include <sys/proc.h>
45#include <sys/protosw.h>
46#include <sys/refcount.h>
47#include <sys/smp.h>
48#include <sys/socket.h>
49#include <sys/socketvar.h>
50#include <sys/sysctl.h>
51#include <sys/taskqueue.h>
52#include <sys/kthread.h>
53#include <sys/uio.h>
54#include <sys/vmmeter.h>
55#if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
56#include <machine/pcb.h>
57#endif
58#include <machine/vmparam.h>
59#include <net/if.h>
60#include <net/if_var.h>
61#ifdef RSS
62#include <net/netisr.h>
63#include <net/rss_config.h>
64#endif
65#include <net/route.h>
66#include <net/route/nhop.h>
67#include <netinet/in.h>
68#include <netinet/in_pcb.h>
69#include <netinet/tcp_var.h>
70#ifdef TCP_OFFLOAD
71#include <netinet/tcp_offload.h>
72#endif
73#include <opencrypto/cryptodev.h>
74#include <opencrypto/ktls.h>
75#include <vm/vm.h>
76#include <vm/vm_pageout.h>
77#include <vm/vm_page.h>
78#include <vm/vm_pagequeue.h>
79
80struct ktls_wq {
81	struct mtx	mtx;
82	STAILQ_HEAD(, mbuf) m_head;
83	STAILQ_HEAD(, socket) so_head;
84	bool		running;
85	int		lastallocfail;
86} __aligned(CACHE_LINE_SIZE);
87
88struct ktls_reclaim_thread {
89	uint64_t wakeups;
90	uint64_t reclaims;
91	struct thread *td;
92	int running;
93};
94
95struct ktls_domain_info {
96	int count;
97	int cpu[MAXCPU];
98	struct ktls_reclaim_thread reclaim_td;
99};
100
101struct ktls_domain_info ktls_domains[MAXMEMDOM];
102static struct ktls_wq *ktls_wq;
103static struct proc *ktls_proc;
104static uma_zone_t ktls_session_zone;
105static uma_zone_t ktls_buffer_zone;
106static uint16_t ktls_cpuid_lookup[MAXCPU];
107static int ktls_init_state;
108static struct sx ktls_init_lock;
109SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init");
110
111SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
112    "Kernel TLS offload");
113SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
114    "Kernel TLS offload stats");
115
116#ifdef RSS
117static int ktls_bind_threads = 1;
118#else
119static int ktls_bind_threads;
120#endif
121SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
122    &ktls_bind_threads, 0,
123    "Bind crypto threads to cores (1) or cores and domains (2) at boot");
124
125static u_int ktls_maxlen = 16384;
126SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN,
127    &ktls_maxlen, 0, "Maximum TLS record size");
128
129static int ktls_number_threads;
130SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
131    &ktls_number_threads, 0,
132    "Number of TLS threads in thread-pool");
133
134unsigned int ktls_ifnet_max_rexmit_pct = 2;
135SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN,
136    &ktls_ifnet_max_rexmit_pct, 2,
137    "Max percent bytes retransmitted before ifnet TLS is disabled");
138
139static bool ktls_offload_enable;
140SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN,
141    &ktls_offload_enable, 0,
142    "Enable support for kernel TLS offload");
143
144static bool ktls_cbc_enable = true;
145SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN,
146    &ktls_cbc_enable, 1,
147    "Enable support of AES-CBC crypto for kernel TLS");
148
149static bool ktls_sw_buffer_cache = true;
150SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN,
151    &ktls_sw_buffer_cache, 1,
152    "Enable caching of output buffers for SW encryption");
153
154static int ktls_max_reclaim = 1024;
155SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_reclaim, CTLFLAG_RWTUN,
156    &ktls_max_reclaim, 128,
157    "Max number of 16k buffers to reclaim in thread context");
158
159static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active);
160SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
161    &ktls_tasks_active, "Number of active tasks");
162
163static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending);
164SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD,
165    &ktls_cnt_tx_pending,
166    "Number of TLS 1.0 records waiting for earlier TLS records");
167
168static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued);
169SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
170    &ktls_cnt_tx_queued,
171    "Number of TLS records in queue to tasks for SW encryption");
172
173static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued);
174SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
175    &ktls_cnt_rx_queued,
176    "Number of TLS sockets in queue to tasks for SW decryption");
177
178static COUNTER_U64_DEFINE_EARLY(ktls_offload_total);
179SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
180    CTLFLAG_RD, &ktls_offload_total,
181    "Total successful TLS setups (parameters set)");
182
183static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls);
184SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
185    CTLFLAG_RD, &ktls_offload_enable_calls,
186    "Total number of TLS enable calls made");
187
188static COUNTER_U64_DEFINE_EARLY(ktls_offload_active);
189SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
190    &ktls_offload_active, "Total Active TLS sessions");
191
192static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records);
193SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
194    &ktls_offload_corrupted_records, "Total corrupted TLS records received");
195
196static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto);
197SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
198    &ktls_offload_failed_crypto, "Total TLS crypto failures");
199
200static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet);
201SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
202    &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
203
204static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw);
205SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
206    &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
207
208static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed);
209SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
210    &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
211
212static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail);
213SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD,
214    &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet");
215
216static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok);
217SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD,
218    &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet");
219
220static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task);
221SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD,
222    &ktls_destroy_task,
223    "Number of times ktls session was destroyed via taskqueue");
224
225SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
226    "Software TLS session stats");
227SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
228    "Hardware (ifnet) TLS session stats");
229#ifdef TCP_OFFLOAD
230SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
231    "TOE TLS session stats");
232#endif
233
234static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc);
235SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
236    "Active number of software TLS sessions using AES-CBC");
237
238static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm);
239SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
240    "Active number of software TLS sessions using AES-GCM");
241
242static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20);
243SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD,
244    &ktls_sw_chacha20,
245    "Active number of software TLS sessions using Chacha20-Poly1305");
246
247static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc);
248SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
249    &ktls_ifnet_cbc,
250    "Active number of ifnet TLS sessions using AES-CBC");
251
252static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm);
253SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
254    &ktls_ifnet_gcm,
255    "Active number of ifnet TLS sessions using AES-GCM");
256
257static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20);
258SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD,
259    &ktls_ifnet_chacha20,
260    "Active number of ifnet TLS sessions using Chacha20-Poly1305");
261
262static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset);
263SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
264    &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
265
266static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped);
267SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
268    &ktls_ifnet_reset_dropped,
269    "TLS sessions dropped after failing to update ifnet send tag");
270
271static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed);
272SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
273    &ktls_ifnet_reset_failed,
274    "TLS sessions that failed to allocate a new ifnet send tag");
275
276static int ktls_ifnet_permitted;
277SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
278    &ktls_ifnet_permitted, 1,
279    "Whether to permit hardware (ifnet) TLS sessions");
280
281#ifdef TCP_OFFLOAD
282static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc);
283SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
284    &ktls_toe_cbc,
285    "Active number of TOE TLS sessions using AES-CBC");
286
287static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm);
288SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
289    &ktls_toe_gcm,
290    "Active number of TOE TLS sessions using AES-GCM");
291
292static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20);
293SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD,
294    &ktls_toe_chacha20,
295    "Active number of TOE TLS sessions using Chacha20-Poly1305");
296#endif
297
298static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
299
300static void ktls_reclaim_thread(void *ctx);
301static void ktls_reset_receive_tag(void *context, int pending);
302static void ktls_reset_send_tag(void *context, int pending);
303static void ktls_work_thread(void *ctx);
304
305int
306ktls_copyin_tls_enable(struct sockopt *sopt, struct tls_enable *tls)
307{
308	struct tls_enable_v0 tls_v0;
309	int error;
310	uint8_t *cipher_key = NULL, *iv = NULL, *auth_key = NULL;
311
312	if (sopt->sopt_valsize == sizeof(tls_v0)) {
313		error = sooptcopyin(sopt, &tls_v0, sizeof(tls_v0), sizeof(tls_v0));
314		if (error != 0)
315			goto done;
316		memset(tls, 0, sizeof(*tls));
317		tls->cipher_key = tls_v0.cipher_key;
318		tls->iv = tls_v0.iv;
319		tls->auth_key = tls_v0.auth_key;
320		tls->cipher_algorithm = tls_v0.cipher_algorithm;
321		tls->cipher_key_len = tls_v0.cipher_key_len;
322		tls->iv_len = tls_v0.iv_len;
323		tls->auth_algorithm = tls_v0.auth_algorithm;
324		tls->auth_key_len = tls_v0.auth_key_len;
325		tls->flags = tls_v0.flags;
326		tls->tls_vmajor = tls_v0.tls_vmajor;
327		tls->tls_vminor = tls_v0.tls_vminor;
328	} else
329		error = sooptcopyin(sopt, tls, sizeof(*tls), sizeof(*tls));
330
331	if (error != 0)
332		return (error);
333
334	if (tls->cipher_key_len < 0 || tls->cipher_key_len > TLS_MAX_PARAM_SIZE)
335		return (EINVAL);
336	if (tls->iv_len < 0 || tls->iv_len > sizeof(((struct ktls_session *)NULL)->params.iv))
337		return (EINVAL);
338	if (tls->auth_key_len < 0 || tls->auth_key_len > TLS_MAX_PARAM_SIZE)
339		return (EINVAL);
340
341	/* All supported algorithms require a cipher key. */
342	if (tls->cipher_key_len == 0)
343		return (EINVAL);
344
345	/*
346	 * Now do a deep copy of the variable-length arrays in the struct, so that
347	 * subsequent consumers of it can reliably assume kernel memory. This
348	 * requires doing our own allocations, which we will free in the
349	 * error paths so that our caller need only worry about outstanding
350	 * allocations existing on successful return.
351	 */
352	if (tls->cipher_key_len != 0) {
353		cipher_key = malloc(tls->cipher_key_len, M_KTLS, M_WAITOK);
354		if (sopt->sopt_td != NULL) {
355			error = copyin(tls->cipher_key, cipher_key, tls->cipher_key_len);
356			if (error != 0)
357				goto done;
358		} else {
359			bcopy(tls->cipher_key, cipher_key, tls->cipher_key_len);
360		}
361	}
362	if (tls->iv_len != 0) {
363		iv = malloc(tls->iv_len, M_KTLS, M_WAITOK);
364		if (sopt->sopt_td != NULL) {
365			error = copyin(tls->iv, iv, tls->iv_len);
366			if (error != 0)
367				goto done;
368		} else {
369			bcopy(tls->iv, iv, tls->iv_len);
370		}
371	}
372	if (tls->auth_key_len != 0) {
373		auth_key = malloc(tls->auth_key_len, M_KTLS, M_WAITOK);
374		if (sopt->sopt_td != NULL) {
375			error = copyin(tls->auth_key, auth_key, tls->auth_key_len);
376			if (error != 0)
377				goto done;
378		} else {
379			bcopy(tls->auth_key, auth_key, tls->auth_key_len);
380		}
381	}
382	tls->cipher_key = cipher_key;
383	tls->iv = iv;
384	tls->auth_key = auth_key;
385
386done:
387	if (error != 0) {
388		zfree(cipher_key, M_KTLS);
389		zfree(iv, M_KTLS);
390		zfree(auth_key, M_KTLS);
391	}
392
393	return (error);
394}
395
396void
397ktls_cleanup_tls_enable(struct tls_enable *tls)
398{
399	zfree(__DECONST(void *, tls->cipher_key), M_KTLS);
400	zfree(__DECONST(void *, tls->iv), M_KTLS);
401	zfree(__DECONST(void *, tls->auth_key), M_KTLS);
402}
403
404static u_int
405ktls_get_cpu(struct socket *so)
406{
407	struct inpcb *inp;
408#ifdef NUMA
409	struct ktls_domain_info *di;
410#endif
411	u_int cpuid;
412
413	inp = sotoinpcb(so);
414#ifdef RSS
415	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
416	if (cpuid != NETISR_CPUID_NONE)
417		return (cpuid);
418#endif
419	/*
420	 * Just use the flowid to shard connections in a repeatable
421	 * fashion.  Note that TLS 1.0 sessions rely on the
422	 * serialization provided by having the same connection use
423	 * the same queue.
424	 */
425#ifdef NUMA
426	if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
427		di = &ktls_domains[inp->inp_numa_domain];
428		cpuid = di->cpu[inp->inp_flowid % di->count];
429	} else
430#endif
431		cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
432	return (cpuid);
433}
434
435static int
436ktls_buffer_import(void *arg, void **store, int count, int domain, int flags)
437{
438	vm_page_t m;
439	int i, req;
440
441	KASSERT((ktls_maxlen & PAGE_MASK) == 0,
442	    ("%s: ktls max length %d is not page size-aligned",
443	    __func__, ktls_maxlen));
444
445	req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags);
446	for (i = 0; i < count; i++) {
447		m = vm_page_alloc_noobj_contig_domain(domain, req,
448		    atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
449		    VM_MEMATTR_DEFAULT);
450		if (m == NULL)
451			break;
452		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
453	}
454	return (i);
455}
456
457static void
458ktls_buffer_release(void *arg __unused, void **store, int count)
459{
460	vm_page_t m;
461	int i, j;
462
463	for (i = 0; i < count; i++) {
464		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
465		for (j = 0; j < atop(ktls_maxlen); j++) {
466			(void)vm_page_unwire_noq(m + j);
467			vm_page_free(m + j);
468		}
469	}
470}
471
472static void
473ktls_free_mext_contig(struct mbuf *m)
474{
475	M_ASSERTEXTPG(m);
476	uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0]));
477}
478
479static int
480ktls_init(void)
481{
482	struct thread *td;
483	struct pcpu *pc;
484	int count, domain, error, i;
485
486	ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
487	    M_WAITOK | M_ZERO);
488
489	ktls_session_zone = uma_zcreate("ktls_session",
490	    sizeof(struct ktls_session),
491	    NULL, NULL, NULL, NULL,
492	    UMA_ALIGN_CACHE, 0);
493
494	if (ktls_sw_buffer_cache) {
495		ktls_buffer_zone = uma_zcache_create("ktls_buffers",
496		    roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL,
497		    ktls_buffer_import, ktls_buffer_release, NULL,
498		    UMA_ZONE_FIRSTTOUCH);
499	}
500
501	/*
502	 * Initialize the workqueues to run the TLS work.  We create a
503	 * work queue for each CPU.
504	 */
505	CPU_FOREACH(i) {
506		STAILQ_INIT(&ktls_wq[i].m_head);
507		STAILQ_INIT(&ktls_wq[i].so_head);
508		mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
509		if (ktls_bind_threads > 1) {
510			pc = pcpu_find(i);
511			domain = pc->pc_domain;
512			count = ktls_domains[domain].count;
513			ktls_domains[domain].cpu[count] = i;
514			ktls_domains[domain].count++;
515		}
516		ktls_cpuid_lookup[ktls_number_threads] = i;
517		ktls_number_threads++;
518	}
519
520	/*
521	 * If we somehow have an empty domain, fall back to choosing
522	 * among all KTLS threads.
523	 */
524	if (ktls_bind_threads > 1) {
525		for (i = 0; i < vm_ndomains; i++) {
526			if (ktls_domains[i].count == 0) {
527				ktls_bind_threads = 1;
528				break;
529			}
530		}
531	}
532
533	/* Start kthreads for each workqueue. */
534	CPU_FOREACH(i) {
535		error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
536		    &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
537		if (error) {
538			printf("Can't add KTLS thread %d error %d\n", i, error);
539			return (error);
540		}
541	}
542
543	/*
544	 * Start an allocation thread per-domain to perform blocking allocations
545	 * of 16k physically contiguous TLS crypto destination buffers.
546	 */
547	if (ktls_sw_buffer_cache) {
548		for (domain = 0; domain < vm_ndomains; domain++) {
549			if (VM_DOMAIN_EMPTY(domain))
550				continue;
551			if (CPU_EMPTY(&cpuset_domain[domain]))
552				continue;
553			error = kproc_kthread_add(ktls_reclaim_thread,
554			    &ktls_domains[domain], &ktls_proc,
555			    &ktls_domains[domain].reclaim_td.td,
556			    0, 0, "KTLS", "reclaim_%d", domain);
557			if (error) {
558				printf("Can't add KTLS reclaim thread %d error %d\n",
559				    domain, error);
560				return (error);
561			}
562		}
563	}
564
565	if (bootverbose)
566		printf("KTLS: Initialized %d threads\n", ktls_number_threads);
567	return (0);
568}
569
570static int
571ktls_start_kthreads(void)
572{
573	int error, state;
574
575start:
576	state = atomic_load_acq_int(&ktls_init_state);
577	if (__predict_true(state > 0))
578		return (0);
579	if (state < 0)
580		return (ENXIO);
581
582	sx_xlock(&ktls_init_lock);
583	if (ktls_init_state != 0) {
584		sx_xunlock(&ktls_init_lock);
585		goto start;
586	}
587
588	error = ktls_init();
589	if (error == 0)
590		state = 1;
591	else
592		state = -1;
593	atomic_store_rel_int(&ktls_init_state, state);
594	sx_xunlock(&ktls_init_lock);
595	return (error);
596}
597
598static int
599ktls_create_session(struct socket *so, struct tls_enable *en,
600    struct ktls_session **tlsp, int direction)
601{
602	struct ktls_session *tls;
603	int error;
604
605	/* Only TLS 1.0 - 1.3 are supported. */
606	if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
607		return (EINVAL);
608	if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
609	    en->tls_vminor > TLS_MINOR_VER_THREE)
610		return (EINVAL);
611
612
613	/* No flags are currently supported. */
614	if (en->flags != 0)
615		return (EINVAL);
616
617	/* Common checks for supported algorithms. */
618	switch (en->cipher_algorithm) {
619	case CRYPTO_AES_NIST_GCM_16:
620		/*
621		 * auth_algorithm isn't used, but permit GMAC values
622		 * for compatibility.
623		 */
624		switch (en->auth_algorithm) {
625		case 0:
626#ifdef COMPAT_FREEBSD12
627		/* XXX: Really 13.0-current COMPAT. */
628		case CRYPTO_AES_128_NIST_GMAC:
629		case CRYPTO_AES_192_NIST_GMAC:
630		case CRYPTO_AES_256_NIST_GMAC:
631#endif
632			break;
633		default:
634			return (EINVAL);
635		}
636		if (en->auth_key_len != 0)
637			return (EINVAL);
638		switch (en->tls_vminor) {
639		case TLS_MINOR_VER_TWO:
640			if (en->iv_len != TLS_AEAD_GCM_LEN)
641				return (EINVAL);
642			break;
643		case TLS_MINOR_VER_THREE:
644			if (en->iv_len != TLS_1_3_GCM_IV_LEN)
645				return (EINVAL);
646			break;
647		default:
648			return (EINVAL);
649		}
650		break;
651	case CRYPTO_AES_CBC:
652		switch (en->auth_algorithm) {
653		case CRYPTO_SHA1_HMAC:
654			break;
655		case CRYPTO_SHA2_256_HMAC:
656		case CRYPTO_SHA2_384_HMAC:
657			if (en->tls_vminor != TLS_MINOR_VER_TWO)
658				return (EINVAL);
659			break;
660		default:
661			return (EINVAL);
662		}
663		if (en->auth_key_len == 0)
664			return (EINVAL);
665
666		/*
667		 * TLS 1.0 requires an implicit IV.  TLS 1.1 and 1.2
668		 * use explicit IVs.
669		 */
670		switch (en->tls_vminor) {
671		case TLS_MINOR_VER_ZERO:
672			if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
673				return (EINVAL);
674			break;
675		case TLS_MINOR_VER_ONE:
676		case TLS_MINOR_VER_TWO:
677			/* Ignore any supplied IV. */
678			en->iv_len = 0;
679			break;
680		default:
681			return (EINVAL);
682		}
683		break;
684	case CRYPTO_CHACHA20_POLY1305:
685		if (en->auth_algorithm != 0 || en->auth_key_len != 0)
686			return (EINVAL);
687		if (en->tls_vminor != TLS_MINOR_VER_TWO &&
688		    en->tls_vminor != TLS_MINOR_VER_THREE)
689			return (EINVAL);
690		if (en->iv_len != TLS_CHACHA20_IV_LEN)
691			return (EINVAL);
692		break;
693	default:
694		return (EINVAL);
695	}
696
697	error = ktls_start_kthreads();
698	if (error != 0)
699		return (error);
700
701	tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
702
703	counter_u64_add(ktls_offload_active, 1);
704
705	refcount_init(&tls->refcount, 1);
706	if (direction == KTLS_RX) {
707		TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls);
708	} else {
709		TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
710		tls->inp = so->so_pcb;
711		in_pcbref(tls->inp);
712		tls->tx = true;
713	}
714
715	tls->wq_index = ktls_get_cpu(so);
716
717	tls->params.cipher_algorithm = en->cipher_algorithm;
718	tls->params.auth_algorithm = en->auth_algorithm;
719	tls->params.tls_vmajor = en->tls_vmajor;
720	tls->params.tls_vminor = en->tls_vminor;
721	tls->params.flags = en->flags;
722	tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
723
724	/* Set the header and trailer lengths. */
725	tls->params.tls_hlen = sizeof(struct tls_record_layer);
726	switch (en->cipher_algorithm) {
727	case CRYPTO_AES_NIST_GCM_16:
728		/*
729		 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
730		 * nonce.  TLS 1.3 uses a 12 byte implicit IV.
731		 */
732		if (en->tls_vminor < TLS_MINOR_VER_THREE)
733			tls->params.tls_hlen += sizeof(uint64_t);
734		tls->params.tls_tlen = AES_GMAC_HASH_LEN;
735		tls->params.tls_bs = 1;
736		break;
737	case CRYPTO_AES_CBC:
738		switch (en->auth_algorithm) {
739		case CRYPTO_SHA1_HMAC:
740			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
741				/* Implicit IV, no nonce. */
742				tls->sequential_records = true;
743				tls->next_seqno = be64dec(en->rec_seq);
744				STAILQ_INIT(&tls->pending_records);
745			} else {
746				tls->params.tls_hlen += AES_BLOCK_LEN;
747			}
748			tls->params.tls_tlen = AES_BLOCK_LEN +
749			    SHA1_HASH_LEN;
750			break;
751		case CRYPTO_SHA2_256_HMAC:
752			tls->params.tls_hlen += AES_BLOCK_LEN;
753			tls->params.tls_tlen = AES_BLOCK_LEN +
754			    SHA2_256_HASH_LEN;
755			break;
756		case CRYPTO_SHA2_384_HMAC:
757			tls->params.tls_hlen += AES_BLOCK_LEN;
758			tls->params.tls_tlen = AES_BLOCK_LEN +
759			    SHA2_384_HASH_LEN;
760			break;
761		default:
762			panic("invalid hmac");
763		}
764		tls->params.tls_bs = AES_BLOCK_LEN;
765		break;
766	case CRYPTO_CHACHA20_POLY1305:
767		/*
768		 * Chacha20 uses a 12 byte implicit IV.
769		 */
770		tls->params.tls_tlen = POLY1305_HASH_LEN;
771		tls->params.tls_bs = 1;
772		break;
773	default:
774		panic("invalid cipher");
775	}
776
777	/*
778	 * TLS 1.3 includes optional padding which we do not support,
779	 * and also puts the "real" record type at the end of the
780	 * encrypted data.
781	 */
782	if (en->tls_vminor == TLS_MINOR_VER_THREE)
783		tls->params.tls_tlen += sizeof(uint8_t);
784
785	KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
786	    ("TLS header length too long: %d", tls->params.tls_hlen));
787	KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
788	    ("TLS trailer length too long: %d", tls->params.tls_tlen));
789
790	if (en->auth_key_len != 0) {
791		tls->params.auth_key_len = en->auth_key_len;
792		tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
793		    M_WAITOK);
794		bcopy(en->auth_key, tls->params.auth_key, en->auth_key_len);
795	}
796
797	tls->params.cipher_key_len = en->cipher_key_len;
798	tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
799	bcopy(en->cipher_key, tls->params.cipher_key, en->cipher_key_len);
800
801	/*
802	 * This holds the implicit portion of the nonce for AEAD
803	 * ciphers and the initial implicit IV for TLS 1.0.  The
804	 * explicit portions of the IV are generated in ktls_frame().
805	 */
806	if (en->iv_len != 0) {
807		tls->params.iv_len = en->iv_len;
808		bcopy(en->iv, tls->params.iv, en->iv_len);
809
810		/*
811		 * For TLS 1.2 with GCM, generate an 8-byte nonce as a
812		 * counter to generate unique explicit IVs.
813		 *
814		 * Store this counter in the last 8 bytes of the IV
815		 * array so that it is 8-byte aligned.
816		 */
817		if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
818		    en->tls_vminor == TLS_MINOR_VER_TWO)
819			arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
820	}
821
822	*tlsp = tls;
823	return (0);
824}
825
826static struct ktls_session *
827ktls_clone_session(struct ktls_session *tls, int direction)
828{
829	struct ktls_session *tls_new;
830
831	tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
832
833	counter_u64_add(ktls_offload_active, 1);
834
835	refcount_init(&tls_new->refcount, 1);
836	if (direction == KTLS_RX) {
837		TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag,
838		    tls_new);
839	} else {
840		TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag,
841		    tls_new);
842		tls_new->inp = tls->inp;
843		tls_new->tx = true;
844		in_pcbref(tls_new->inp);
845	}
846
847	/* Copy fields from existing session. */
848	tls_new->params = tls->params;
849	tls_new->wq_index = tls->wq_index;
850
851	/* Deep copy keys. */
852	if (tls_new->params.auth_key != NULL) {
853		tls_new->params.auth_key = malloc(tls->params.auth_key_len,
854		    M_KTLS, M_WAITOK);
855		memcpy(tls_new->params.auth_key, tls->params.auth_key,
856		    tls->params.auth_key_len);
857	}
858
859	tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
860	    M_WAITOK);
861	memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
862	    tls->params.cipher_key_len);
863
864	return (tls_new);
865}
866
867#ifdef TCP_OFFLOAD
868static int
869ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
870{
871	struct inpcb *inp;
872	struct tcpcb *tp;
873	int error;
874
875	inp = so->so_pcb;
876	INP_WLOCK(inp);
877	if (inp->inp_flags & INP_DROPPED) {
878		INP_WUNLOCK(inp);
879		return (ECONNRESET);
880	}
881	if (inp->inp_socket == NULL) {
882		INP_WUNLOCK(inp);
883		return (ECONNRESET);
884	}
885	tp = intotcpcb(inp);
886	if (!(tp->t_flags & TF_TOE)) {
887		INP_WUNLOCK(inp);
888		return (EOPNOTSUPP);
889	}
890
891	error = tcp_offload_alloc_tls_session(tp, tls, direction);
892	INP_WUNLOCK(inp);
893	if (error == 0) {
894		tls->mode = TCP_TLS_MODE_TOE;
895		switch (tls->params.cipher_algorithm) {
896		case CRYPTO_AES_CBC:
897			counter_u64_add(ktls_toe_cbc, 1);
898			break;
899		case CRYPTO_AES_NIST_GCM_16:
900			counter_u64_add(ktls_toe_gcm, 1);
901			break;
902		case CRYPTO_CHACHA20_POLY1305:
903			counter_u64_add(ktls_toe_chacha20, 1);
904			break;
905		}
906	}
907	return (error);
908}
909#endif
910
911/*
912 * Common code used when first enabling ifnet TLS on a connection or
913 * when allocating a new ifnet TLS session due to a routing change.
914 * This function allocates a new TLS send tag on whatever interface
915 * the connection is currently routed over.
916 */
917static int
918ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
919    struct m_snd_tag **mstp)
920{
921	union if_snd_tag_alloc_params params;
922	struct ifnet *ifp;
923	struct nhop_object *nh;
924	struct tcpcb *tp;
925	int error;
926
927	INP_RLOCK(inp);
928	if (inp->inp_flags & INP_DROPPED) {
929		INP_RUNLOCK(inp);
930		return (ECONNRESET);
931	}
932	if (inp->inp_socket == NULL) {
933		INP_RUNLOCK(inp);
934		return (ECONNRESET);
935	}
936	tp = intotcpcb(inp);
937
938	/*
939	 * Check administrative controls on ifnet TLS to determine if
940	 * ifnet TLS should be denied.
941	 *
942	 * - Always permit 'force' requests.
943	 * - ktls_ifnet_permitted == 0: always deny.
944	 */
945	if (!force && ktls_ifnet_permitted == 0) {
946		INP_RUNLOCK(inp);
947		return (ENXIO);
948	}
949
950	/*
951	 * XXX: Use the cached route in the inpcb to find the
952	 * interface.  This should perhaps instead use
953	 * rtalloc1_fib(dst, 0, 0, fibnum).  Since KTLS is only
954	 * enabled after a connection has completed key negotiation in
955	 * userland, the cached route will be present in practice.
956	 */
957	nh = inp->inp_route.ro_nh;
958	if (nh == NULL) {
959		INP_RUNLOCK(inp);
960		return (ENXIO);
961	}
962	ifp = nh->nh_ifp;
963	if_ref(ifp);
964
965	/*
966	 * Allocate a TLS + ratelimit tag if the connection has an
967	 * existing pacing rate.
968	 */
969	if (tp->t_pacing_rate != -1 &&
970	    (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) {
971		params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
972		params.tls_rate_limit.inp = inp;
973		params.tls_rate_limit.tls = tls;
974		params.tls_rate_limit.max_rate = tp->t_pacing_rate;
975	} else {
976		params.hdr.type = IF_SND_TAG_TYPE_TLS;
977		params.tls.inp = inp;
978		params.tls.tls = tls;
979	}
980	params.hdr.flowid = inp->inp_flowid;
981	params.hdr.flowtype = inp->inp_flowtype;
982	params.hdr.numa_domain = inp->inp_numa_domain;
983	INP_RUNLOCK(inp);
984
985	if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) {
986		error = EOPNOTSUPP;
987		goto out;
988	}
989	if (inp->inp_vflag & INP_IPV6) {
990		if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) {
991			error = EOPNOTSUPP;
992			goto out;
993		}
994	} else {
995		if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) {
996			error = EOPNOTSUPP;
997			goto out;
998		}
999	}
1000	error = m_snd_tag_alloc(ifp, &params, mstp);
1001out:
1002	if_rele(ifp);
1003	return (error);
1004}
1005
1006/*
1007 * Allocate an initial TLS receive tag for doing HW decryption of TLS
1008 * data.
1009 *
1010 * This function allocates a new TLS receive tag on whatever interface
1011 * the connection is currently routed over.  If the connection ends up
1012 * using a different interface for receive this will get fixed up via
1013 * ktls_input_ifp_mismatch as future packets arrive.
1014 */
1015static int
1016ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls,
1017    struct m_snd_tag **mstp)
1018{
1019	union if_snd_tag_alloc_params params;
1020	struct ifnet *ifp;
1021	struct nhop_object *nh;
1022	int error;
1023
1024	if (!ktls_ocf_recrypt_supported(tls))
1025		return (ENXIO);
1026
1027	INP_RLOCK(inp);
1028	if (inp->inp_flags & INP_DROPPED) {
1029		INP_RUNLOCK(inp);
1030		return (ECONNRESET);
1031	}
1032	if (inp->inp_socket == NULL) {
1033		INP_RUNLOCK(inp);
1034		return (ECONNRESET);
1035	}
1036
1037	/*
1038	 * Check administrative controls on ifnet TLS to determine if
1039	 * ifnet TLS should be denied.
1040	 */
1041	if (ktls_ifnet_permitted == 0) {
1042		INP_RUNLOCK(inp);
1043		return (ENXIO);
1044	}
1045
1046	/*
1047	 * XXX: As with ktls_alloc_snd_tag, use the cached route in
1048	 * the inpcb to find the interface.
1049	 */
1050	nh = inp->inp_route.ro_nh;
1051	if (nh == NULL) {
1052		INP_RUNLOCK(inp);
1053		return (ENXIO);
1054	}
1055	ifp = nh->nh_ifp;
1056	if_ref(ifp);
1057	tls->rx_ifp = ifp;
1058
1059	params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
1060	params.hdr.flowid = inp->inp_flowid;
1061	params.hdr.flowtype = inp->inp_flowtype;
1062	params.hdr.numa_domain = inp->inp_numa_domain;
1063	params.tls_rx.inp = inp;
1064	params.tls_rx.tls = tls;
1065	params.tls_rx.vlan_id = 0;
1066
1067	INP_RUNLOCK(inp);
1068
1069	if (inp->inp_vflag & INP_IPV6) {
1070		if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS6)) == 0) {
1071			error = EOPNOTSUPP;
1072			goto out;
1073		}
1074	} else {
1075		if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS4)) == 0) {
1076			error = EOPNOTSUPP;
1077			goto out;
1078		}
1079	}
1080	error = m_snd_tag_alloc(ifp, &params, mstp);
1081
1082	/*
1083	 * If this connection is over a vlan, vlan_snd_tag_alloc
1084	 * rewrites vlan_id with the saved interface.  Save the VLAN
1085	 * ID for use in ktls_reset_receive_tag which allocates new
1086	 * receive tags directly from the leaf interface bypassing
1087	 * if_vlan.
1088	 */
1089	if (error == 0)
1090		tls->rx_vlan_id = params.tls_rx.vlan_id;
1091out:
1092	return (error);
1093}
1094
1095static int
1096ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction,
1097    bool force)
1098{
1099	struct m_snd_tag *mst;
1100	int error;
1101
1102	switch (direction) {
1103	case KTLS_TX:
1104		error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
1105		if (__predict_false(error != 0))
1106			goto done;
1107		break;
1108	case KTLS_RX:
1109		KASSERT(!force, ("%s: forced receive tag", __func__));
1110		error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst);
1111		if (__predict_false(error != 0))
1112			goto done;
1113		break;
1114	default:
1115		__assert_unreachable();
1116	}
1117
1118	tls->mode = TCP_TLS_MODE_IFNET;
1119	tls->snd_tag = mst;
1120
1121	switch (tls->params.cipher_algorithm) {
1122	case CRYPTO_AES_CBC:
1123		counter_u64_add(ktls_ifnet_cbc, 1);
1124		break;
1125	case CRYPTO_AES_NIST_GCM_16:
1126		counter_u64_add(ktls_ifnet_gcm, 1);
1127		break;
1128	case CRYPTO_CHACHA20_POLY1305:
1129		counter_u64_add(ktls_ifnet_chacha20, 1);
1130		break;
1131	default:
1132		break;
1133	}
1134done:
1135	return (error);
1136}
1137
1138static void
1139ktls_use_sw(struct ktls_session *tls)
1140{
1141	tls->mode = TCP_TLS_MODE_SW;
1142	switch (tls->params.cipher_algorithm) {
1143	case CRYPTO_AES_CBC:
1144		counter_u64_add(ktls_sw_cbc, 1);
1145		break;
1146	case CRYPTO_AES_NIST_GCM_16:
1147		counter_u64_add(ktls_sw_gcm, 1);
1148		break;
1149	case CRYPTO_CHACHA20_POLY1305:
1150		counter_u64_add(ktls_sw_chacha20, 1);
1151		break;
1152	}
1153}
1154
1155static int
1156ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
1157{
1158	int error;
1159
1160	error = ktls_ocf_try(so, tls, direction);
1161	if (error)
1162		return (error);
1163	ktls_use_sw(tls);
1164	return (0);
1165}
1166
1167/*
1168 * KTLS RX stores data in the socket buffer as a list of TLS records,
1169 * where each record is stored as a control message containg the TLS
1170 * header followed by data mbufs containing the decrypted data.  This
1171 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
1172 * both encrypted and decrypted data.  TLS records decrypted by a NIC
1173 * should be queued to the socket buffer as records, but encrypted
1174 * data which needs to be decrypted by software arrives as a stream of
1175 * regular mbufs which need to be converted.  In addition, there may
1176 * already be pending encrypted data in the socket buffer when KTLS RX
1177 * is enabled.
1178 *
1179 * To manage not-yet-decrypted data for KTLS RX, the following scheme
1180 * is used:
1181 *
1182 * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
1183 *
1184 * - ktls_check_rx checks this chain of mbufs reading the TLS header
1185 *   from the first mbuf.  Once all of the data for that TLS record is
1186 *   queued, the socket is queued to a worker thread.
1187 *
1188 * - The worker thread calls ktls_decrypt to decrypt TLS records in
1189 *   the TLS chain.  Each TLS record is detached from the TLS chain,
1190 *   decrypted, and inserted into the regular socket buffer chain as
1191 *   record starting with a control message holding the TLS header and
1192 *   a chain of mbufs holding the encrypted data.
1193 */
1194
1195static void
1196sb_mark_notready(struct sockbuf *sb)
1197{
1198	struct mbuf *m;
1199
1200	m = sb->sb_mb;
1201	sb->sb_mtls = m;
1202	sb->sb_mb = NULL;
1203	sb->sb_mbtail = NULL;
1204	sb->sb_lastrecord = NULL;
1205	for (; m != NULL; m = m->m_next) {
1206		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
1207		    __func__));
1208		KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
1209		    __func__));
1210		KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
1211		    __func__));
1212		m->m_flags |= M_NOTREADY;
1213		sb->sb_acc -= m->m_len;
1214		sb->sb_tlscc += m->m_len;
1215		sb->sb_mtlstail = m;
1216	}
1217	KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
1218	    ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
1219	    sb->sb_ccc));
1220}
1221
1222/*
1223 * Return information about the pending TLS data in a socket
1224 * buffer.  On return, 'seqno' is set to the sequence number
1225 * of the next TLS record to be received, 'resid' is set to
1226 * the amount of bytes still needed for the last pending
1227 * record.  The function returns 'false' if the last pending
1228 * record contains a partial TLS header.  In that case, 'resid'
1229 * is the number of bytes needed to complete the TLS header.
1230 */
1231bool
1232ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp)
1233{
1234	struct tls_record_layer hdr;
1235	struct mbuf *m;
1236	uint64_t seqno;
1237	size_t resid;
1238	u_int offset, record_len;
1239
1240	SOCKBUF_LOCK_ASSERT(sb);
1241	MPASS(sb->sb_flags & SB_TLS_RX);
1242	seqno = sb->sb_tls_seqno;
1243	resid = sb->sb_tlscc;
1244	m = sb->sb_mtls;
1245	offset = 0;
1246
1247	if (resid == 0) {
1248		*seqnop = seqno;
1249		*residp = 0;
1250		return (true);
1251	}
1252
1253	for (;;) {
1254		seqno++;
1255
1256		if (resid < sizeof(hdr)) {
1257			*seqnop = seqno;
1258			*residp = sizeof(hdr) - resid;
1259			return (false);
1260		}
1261
1262		m_copydata(m, offset, sizeof(hdr), (void *)&hdr);
1263
1264		record_len = sizeof(hdr) + ntohs(hdr.tls_length);
1265		if (resid <= record_len) {
1266			*seqnop = seqno;
1267			*residp = record_len - resid;
1268			return (true);
1269		}
1270		resid -= record_len;
1271
1272		while (record_len != 0) {
1273			if (m->m_len - offset > record_len) {
1274				offset += record_len;
1275				break;
1276			}
1277
1278			record_len -= (m->m_len - offset);
1279			offset = 0;
1280			m = m->m_next;
1281		}
1282	}
1283}
1284
1285int
1286ktls_enable_rx(struct socket *so, struct tls_enable *en)
1287{
1288	struct ktls_session *tls;
1289	int error;
1290
1291	if (!ktls_offload_enable)
1292		return (ENOTSUP);
1293
1294	counter_u64_add(ktls_offload_enable_calls, 1);
1295
1296	/*
1297	 * This should always be true since only the TCP socket option
1298	 * invokes this function.
1299	 */
1300	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1301		return (EINVAL);
1302
1303	/*
1304	 * XXX: Don't overwrite existing sessions.  We should permit
1305	 * this to support rekeying in the future.
1306	 */
1307	if (so->so_rcv.sb_tls_info != NULL)
1308		return (EALREADY);
1309
1310	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1311		return (ENOTSUP);
1312
1313	error = ktls_create_session(so, en, &tls, KTLS_RX);
1314	if (error)
1315		return (error);
1316
1317	error = ktls_ocf_try(so, tls, KTLS_RX);
1318	if (error) {
1319		ktls_free(tls);
1320		return (error);
1321	}
1322
1323	/* Mark the socket as using TLS offload. */
1324	SOCK_RECVBUF_LOCK(so);
1325	if (SOLISTENING(so)) {
1326		SOCK_RECVBUF_UNLOCK(so);
1327		ktls_free(tls);
1328		return (EINVAL);
1329	}
1330	so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
1331	so->so_rcv.sb_tls_info = tls;
1332	so->so_rcv.sb_flags |= SB_TLS_RX;
1333
1334	/* Mark existing data as not ready until it can be decrypted. */
1335	sb_mark_notready(&so->so_rcv);
1336	ktls_check_rx(&so->so_rcv);
1337	SOCK_RECVBUF_UNLOCK(so);
1338
1339	/* Prefer TOE -> ifnet TLS -> software TLS. */
1340#ifdef TCP_OFFLOAD
1341	error = ktls_try_toe(so, tls, KTLS_RX);
1342	if (error)
1343#endif
1344		error = ktls_try_ifnet(so, tls, KTLS_RX, false);
1345	if (error)
1346		ktls_use_sw(tls);
1347
1348	counter_u64_add(ktls_offload_total, 1);
1349
1350	return (0);
1351}
1352
1353int
1354ktls_enable_tx(struct socket *so, struct tls_enable *en)
1355{
1356	struct ktls_session *tls;
1357	struct inpcb *inp;
1358	struct tcpcb *tp;
1359	int error;
1360
1361	if (!ktls_offload_enable)
1362		return (ENOTSUP);
1363
1364	counter_u64_add(ktls_offload_enable_calls, 1);
1365
1366	/*
1367	 * This should always be true since only the TCP socket option
1368	 * invokes this function.
1369	 */
1370	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1371		return (EINVAL);
1372
1373	/*
1374	 * XXX: Don't overwrite existing sessions.  We should permit
1375	 * this to support rekeying in the future.
1376	 */
1377	if (so->so_snd.sb_tls_info != NULL)
1378		return (EALREADY);
1379
1380	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1381		return (ENOTSUP);
1382
1383	/* TLS requires ext pgs */
1384	if (mb_use_ext_pgs == 0)
1385		return (ENXIO);
1386
1387	error = ktls_create_session(so, en, &tls, KTLS_TX);
1388	if (error)
1389		return (error);
1390
1391	/* Prefer TOE -> ifnet TLS -> software TLS. */
1392#ifdef TCP_OFFLOAD
1393	error = ktls_try_toe(so, tls, KTLS_TX);
1394	if (error)
1395#endif
1396		error = ktls_try_ifnet(so, tls, KTLS_TX, false);
1397	if (error)
1398		error = ktls_try_sw(so, tls, KTLS_TX);
1399
1400	if (error) {
1401		ktls_free(tls);
1402		return (error);
1403	}
1404
1405	/*
1406	 * Serialize with sosend_generic() and make sure that we're not
1407	 * operating on a listening socket.
1408	 */
1409	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1410	if (error) {
1411		ktls_free(tls);
1412		return (error);
1413	}
1414
1415	/*
1416	 * Write lock the INP when setting sb_tls_info so that
1417	 * routines in tcp_ratelimit.c can read sb_tls_info while
1418	 * holding the INP lock.
1419	 */
1420	inp = so->so_pcb;
1421	INP_WLOCK(inp);
1422	SOCK_SENDBUF_LOCK(so);
1423	so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
1424	so->so_snd.sb_tls_info = tls;
1425	if (tls->mode != TCP_TLS_MODE_SW) {
1426		tp = intotcpcb(inp);
1427		MPASS(tp->t_nic_ktls_xmit == 0);
1428		tp->t_nic_ktls_xmit = 1;
1429		if (tp->t_fb->tfb_hwtls_change != NULL)
1430			(*tp->t_fb->tfb_hwtls_change)(tp, 1);
1431	}
1432	SOCK_SENDBUF_UNLOCK(so);
1433	INP_WUNLOCK(inp);
1434	SOCK_IO_SEND_UNLOCK(so);
1435
1436	counter_u64_add(ktls_offload_total, 1);
1437
1438	return (0);
1439}
1440
1441int
1442ktls_get_rx_mode(struct socket *so, int *modep)
1443{
1444	struct ktls_session *tls;
1445	struct inpcb *inp __diagused;
1446
1447	if (SOLISTENING(so))
1448		return (EINVAL);
1449	inp = so->so_pcb;
1450	INP_WLOCK_ASSERT(inp);
1451	SOCK_RECVBUF_LOCK(so);
1452	tls = so->so_rcv.sb_tls_info;
1453	if (tls == NULL)
1454		*modep = TCP_TLS_MODE_NONE;
1455	else
1456		*modep = tls->mode;
1457	SOCK_RECVBUF_UNLOCK(so);
1458	return (0);
1459}
1460
1461/*
1462 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number.
1463 *
1464 * This function gets information about the next TCP- and TLS-
1465 * sequence number to be processed by the TLS receive worker
1466 * thread. The information is extracted from the given "inpcb"
1467 * structure. The values are stored in host endian format at the two
1468 * given output pointer locations. The TCP sequence number points to
1469 * the beginning of the TLS header.
1470 *
1471 * This function returns zero on success, else a non-zero error code
1472 * is returned.
1473 */
1474int
1475ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq)
1476{
1477	struct socket *so;
1478	struct tcpcb *tp;
1479
1480	INP_RLOCK(inp);
1481	so = inp->inp_socket;
1482	if (__predict_false(so == NULL)) {
1483		INP_RUNLOCK(inp);
1484		return (EINVAL);
1485	}
1486	if (inp->inp_flags & INP_DROPPED) {
1487		INP_RUNLOCK(inp);
1488		return (ECONNRESET);
1489	}
1490
1491	tp = intotcpcb(inp);
1492	MPASS(tp != NULL);
1493
1494	SOCKBUF_LOCK(&so->so_rcv);
1495	*tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc;
1496	*tlsseq = so->so_rcv.sb_tls_seqno;
1497	SOCKBUF_UNLOCK(&so->so_rcv);
1498
1499	INP_RUNLOCK(inp);
1500
1501	return (0);
1502}
1503
1504int
1505ktls_get_tx_mode(struct socket *so, int *modep)
1506{
1507	struct ktls_session *tls;
1508	struct inpcb *inp __diagused;
1509
1510	if (SOLISTENING(so))
1511		return (EINVAL);
1512	inp = so->so_pcb;
1513	INP_WLOCK_ASSERT(inp);
1514	SOCK_SENDBUF_LOCK(so);
1515	tls = so->so_snd.sb_tls_info;
1516	if (tls == NULL)
1517		*modep = TCP_TLS_MODE_NONE;
1518	else
1519		*modep = tls->mode;
1520	SOCK_SENDBUF_UNLOCK(so);
1521	return (0);
1522}
1523
1524/*
1525 * Switch between SW and ifnet TLS sessions as requested.
1526 */
1527int
1528ktls_set_tx_mode(struct socket *so, int mode)
1529{
1530	struct ktls_session *tls, *tls_new;
1531	struct inpcb *inp;
1532	struct tcpcb *tp;
1533	int error;
1534
1535	if (SOLISTENING(so))
1536		return (EINVAL);
1537	switch (mode) {
1538	case TCP_TLS_MODE_SW:
1539	case TCP_TLS_MODE_IFNET:
1540		break;
1541	default:
1542		return (EINVAL);
1543	}
1544
1545	inp = so->so_pcb;
1546	INP_WLOCK_ASSERT(inp);
1547	tp = intotcpcb(inp);
1548
1549	if (mode == TCP_TLS_MODE_IFNET) {
1550		/* Don't allow enabling ifnet ktls multiple times */
1551		if (tp->t_nic_ktls_xmit)
1552			return (EALREADY);
1553
1554		/*
1555		 * Don't enable ifnet ktls if we disabled it due to an
1556		 * excessive retransmission rate
1557		 */
1558		if (tp->t_nic_ktls_xmit_dis)
1559			return (ENXIO);
1560	}
1561
1562	SOCKBUF_LOCK(&so->so_snd);
1563	tls = so->so_snd.sb_tls_info;
1564	if (tls == NULL) {
1565		SOCKBUF_UNLOCK(&so->so_snd);
1566		return (0);
1567	}
1568
1569	if (tls->mode == mode) {
1570		SOCKBUF_UNLOCK(&so->so_snd);
1571		return (0);
1572	}
1573
1574	tls = ktls_hold(tls);
1575	SOCKBUF_UNLOCK(&so->so_snd);
1576	INP_WUNLOCK(inp);
1577
1578	tls_new = ktls_clone_session(tls, KTLS_TX);
1579
1580	if (mode == TCP_TLS_MODE_IFNET)
1581		error = ktls_try_ifnet(so, tls_new, KTLS_TX, true);
1582	else
1583		error = ktls_try_sw(so, tls_new, KTLS_TX);
1584	if (error) {
1585		counter_u64_add(ktls_switch_failed, 1);
1586		ktls_free(tls_new);
1587		ktls_free(tls);
1588		INP_WLOCK(inp);
1589		return (error);
1590	}
1591
1592	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1593	if (error) {
1594		counter_u64_add(ktls_switch_failed, 1);
1595		ktls_free(tls_new);
1596		ktls_free(tls);
1597		INP_WLOCK(inp);
1598		return (error);
1599	}
1600
1601	/*
1602	 * If we raced with another session change, keep the existing
1603	 * session.
1604	 */
1605	if (tls != so->so_snd.sb_tls_info) {
1606		counter_u64_add(ktls_switch_failed, 1);
1607		SOCK_IO_SEND_UNLOCK(so);
1608		ktls_free(tls_new);
1609		ktls_free(tls);
1610		INP_WLOCK(inp);
1611		return (EBUSY);
1612	}
1613
1614	INP_WLOCK(inp);
1615	SOCKBUF_LOCK(&so->so_snd);
1616	so->so_snd.sb_tls_info = tls_new;
1617	if (tls_new->mode != TCP_TLS_MODE_SW) {
1618		MPASS(tp->t_nic_ktls_xmit == 0);
1619		tp->t_nic_ktls_xmit = 1;
1620		if (tp->t_fb->tfb_hwtls_change != NULL)
1621			(*tp->t_fb->tfb_hwtls_change)(tp, 1);
1622	}
1623	SOCKBUF_UNLOCK(&so->so_snd);
1624	SOCK_IO_SEND_UNLOCK(so);
1625
1626	/*
1627	 * Drop two references on 'tls'.  The first is for the
1628	 * ktls_hold() above.  The second drops the reference from the
1629	 * socket buffer.
1630	 */
1631	KASSERT(tls->refcount >= 2, ("too few references on old session"));
1632	ktls_free(tls);
1633	ktls_free(tls);
1634
1635	if (mode == TCP_TLS_MODE_IFNET)
1636		counter_u64_add(ktls_switch_to_ifnet, 1);
1637	else
1638		counter_u64_add(ktls_switch_to_sw, 1);
1639
1640	return (0);
1641}
1642
1643/*
1644 * Try to allocate a new TLS receive tag.  This task is scheduled when
1645 * sbappend_ktls_rx detects an input path change.  If a new tag is
1646 * allocated, replace the tag in the TLS session.  If a new tag cannot
1647 * be allocated, let the session fall back to software decryption.
1648 */
1649static void
1650ktls_reset_receive_tag(void *context, int pending)
1651{
1652	union if_snd_tag_alloc_params params;
1653	struct ktls_session *tls;
1654	struct m_snd_tag *mst;
1655	struct inpcb *inp;
1656	struct ifnet *ifp;
1657	struct socket *so;
1658	int error;
1659
1660	MPASS(pending == 1);
1661
1662	tls = context;
1663	so = tls->so;
1664	inp = so->so_pcb;
1665	ifp = NULL;
1666
1667	INP_RLOCK(inp);
1668	if (inp->inp_flags & INP_DROPPED) {
1669		INP_RUNLOCK(inp);
1670		goto out;
1671	}
1672
1673	SOCKBUF_LOCK(&so->so_rcv);
1674	mst = tls->snd_tag;
1675	tls->snd_tag = NULL;
1676	if (mst != NULL)
1677		m_snd_tag_rele(mst);
1678
1679	ifp = tls->rx_ifp;
1680	if_ref(ifp);
1681	SOCKBUF_UNLOCK(&so->so_rcv);
1682
1683	params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
1684	params.hdr.flowid = inp->inp_flowid;
1685	params.hdr.flowtype = inp->inp_flowtype;
1686	params.hdr.numa_domain = inp->inp_numa_domain;
1687	params.tls_rx.inp = inp;
1688	params.tls_rx.tls = tls;
1689	params.tls_rx.vlan_id = tls->rx_vlan_id;
1690	INP_RUNLOCK(inp);
1691
1692	if (inp->inp_vflag & INP_IPV6) {
1693		if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0)
1694			goto out;
1695	} else {
1696		if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0)
1697			goto out;
1698	}
1699
1700	error = m_snd_tag_alloc(ifp, &params, &mst);
1701	if (error == 0) {
1702		SOCKBUF_LOCK(&so->so_rcv);
1703		tls->snd_tag = mst;
1704		SOCKBUF_UNLOCK(&so->so_rcv);
1705
1706		counter_u64_add(ktls_ifnet_reset, 1);
1707	} else {
1708		/*
1709		 * Just fall back to software decryption if a tag
1710		 * cannot be allocated leaving the connection intact.
1711		 * If a future input path change switches to another
1712		 * interface this connection will resume ifnet TLS.
1713		 */
1714		counter_u64_add(ktls_ifnet_reset_failed, 1);
1715	}
1716
1717out:
1718	mtx_pool_lock(mtxpool_sleep, tls);
1719	tls->reset_pending = false;
1720	mtx_pool_unlock(mtxpool_sleep, tls);
1721
1722	if (ifp != NULL)
1723		if_rele(ifp);
1724	CURVNET_SET(so->so_vnet);
1725	sorele(so);
1726	CURVNET_RESTORE();
1727	ktls_free(tls);
1728}
1729
1730/*
1731 * Try to allocate a new TLS send tag.  This task is scheduled when
1732 * ip_output detects a route change while trying to transmit a packet
1733 * holding a TLS record.  If a new tag is allocated, replace the tag
1734 * in the TLS session.  Subsequent packets on the connection will use
1735 * the new tag.  If a new tag cannot be allocated, drop the
1736 * connection.
1737 */
1738static void
1739ktls_reset_send_tag(void *context, int pending)
1740{
1741	struct epoch_tracker et;
1742	struct ktls_session *tls;
1743	struct m_snd_tag *old, *new;
1744	struct inpcb *inp;
1745	struct tcpcb *tp;
1746	int error;
1747
1748	MPASS(pending == 1);
1749
1750	tls = context;
1751	inp = tls->inp;
1752
1753	/*
1754	 * Free the old tag first before allocating a new one.
1755	 * ip[6]_output_send() will treat a NULL send tag the same as
1756	 * an ifp mismatch and drop packets until a new tag is
1757	 * allocated.
1758	 *
1759	 * Write-lock the INP when changing tls->snd_tag since
1760	 * ip[6]_output_send() holds a read-lock when reading the
1761	 * pointer.
1762	 */
1763	INP_WLOCK(inp);
1764	old = tls->snd_tag;
1765	tls->snd_tag = NULL;
1766	INP_WUNLOCK(inp);
1767	if (old != NULL)
1768		m_snd_tag_rele(old);
1769
1770	error = ktls_alloc_snd_tag(inp, tls, true, &new);
1771
1772	if (error == 0) {
1773		INP_WLOCK(inp);
1774		tls->snd_tag = new;
1775		mtx_pool_lock(mtxpool_sleep, tls);
1776		tls->reset_pending = false;
1777		mtx_pool_unlock(mtxpool_sleep, tls);
1778		INP_WUNLOCK(inp);
1779
1780		counter_u64_add(ktls_ifnet_reset, 1);
1781
1782		/*
1783		 * XXX: Should we kick tcp_output explicitly now that
1784		 * the send tag is fixed or just rely on timers?
1785		 */
1786	} else {
1787		NET_EPOCH_ENTER(et);
1788		INP_WLOCK(inp);
1789		if (!(inp->inp_flags & INP_DROPPED)) {
1790			tp = intotcpcb(inp);
1791			CURVNET_SET(inp->inp_vnet);
1792			tp = tcp_drop(tp, ECONNABORTED);
1793			CURVNET_RESTORE();
1794			if (tp != NULL) {
1795				counter_u64_add(ktls_ifnet_reset_dropped, 1);
1796				INP_WUNLOCK(inp);
1797			}
1798		} else
1799			INP_WUNLOCK(inp);
1800		NET_EPOCH_EXIT(et);
1801
1802		counter_u64_add(ktls_ifnet_reset_failed, 1);
1803
1804		/*
1805		 * Leave reset_pending true to avoid future tasks while
1806		 * the socket goes away.
1807		 */
1808	}
1809
1810	ktls_free(tls);
1811}
1812
1813void
1814ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp)
1815{
1816	struct ktls_session *tls;
1817	struct socket *so;
1818
1819	SOCKBUF_LOCK_ASSERT(sb);
1820	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
1821	    __func__, sb));
1822	so = __containerof(sb, struct socket, so_rcv);
1823
1824	tls = sb->sb_tls_info;
1825	if_rele(tls->rx_ifp);
1826	if_ref(ifp);
1827	tls->rx_ifp = ifp;
1828
1829	/*
1830	 * See if we should schedule a task to update the receive tag for
1831	 * this session.
1832	 */
1833	mtx_pool_lock(mtxpool_sleep, tls);
1834	if (!tls->reset_pending) {
1835		(void) ktls_hold(tls);
1836		soref(so);
1837		tls->so = so;
1838		tls->reset_pending = true;
1839		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1840	}
1841	mtx_pool_unlock(mtxpool_sleep, tls);
1842}
1843
1844int
1845ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
1846{
1847
1848	if (inp == NULL)
1849		return (ENOBUFS);
1850
1851	INP_LOCK_ASSERT(inp);
1852
1853	/*
1854	 * See if we should schedule a task to update the send tag for
1855	 * this session.
1856	 */
1857	mtx_pool_lock(mtxpool_sleep, tls);
1858	if (!tls->reset_pending) {
1859		(void) ktls_hold(tls);
1860		tls->reset_pending = true;
1861		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1862	}
1863	mtx_pool_unlock(mtxpool_sleep, tls);
1864	return (ENOBUFS);
1865}
1866
1867#ifdef RATELIMIT
1868int
1869ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
1870{
1871	union if_snd_tag_modify_params params = {
1872		.rate_limit.max_rate = max_pacing_rate,
1873		.rate_limit.flags = M_NOWAIT,
1874	};
1875	struct m_snd_tag *mst;
1876
1877	/* Can't get to the inp, but it should be locked. */
1878	/* INP_LOCK_ASSERT(inp); */
1879
1880	MPASS(tls->mode == TCP_TLS_MODE_IFNET);
1881
1882	if (tls->snd_tag == NULL) {
1883		/*
1884		 * Resetting send tag, ignore this change.  The
1885		 * pending reset may or may not see this updated rate
1886		 * in the tcpcb.  If it doesn't, we will just lose
1887		 * this rate change.
1888		 */
1889		return (0);
1890	}
1891
1892	mst = tls->snd_tag;
1893
1894	MPASS(mst != NULL);
1895	MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
1896
1897	return (mst->sw->snd_tag_modify(mst, &params));
1898}
1899#endif
1900
1901static void
1902ktls_destroy_help(void *context, int pending __unused)
1903{
1904	ktls_destroy(context);
1905}
1906
1907void
1908ktls_destroy(struct ktls_session *tls)
1909{
1910	struct inpcb *inp;
1911	struct tcpcb *tp;
1912	bool wlocked;
1913
1914	MPASS(tls->refcount == 0);
1915
1916	inp = tls->inp;
1917	if (tls->tx) {
1918		wlocked = INP_WLOCKED(inp);
1919		if (!wlocked && !INP_TRY_WLOCK(inp)) {
1920			/*
1921			 * rwlocks read locks are anonymous, and there
1922			 * is no way to know if our current thread
1923			 * holds an rlock on the inp.  As a rough
1924			 * estimate, check to see if the thread holds
1925			 * *any* rlocks at all.  If it does not, then we
1926			 * know that we don't hold the inp rlock, and
1927			 * can safely take the wlock
1928			 */
1929			if (curthread->td_rw_rlocks == 0) {
1930				INP_WLOCK(inp);
1931			} else {
1932				/*
1933				 * We might hold the rlock, so let's
1934				 * do the destroy in a taskqueue
1935				 * context to avoid a potential
1936				 * deadlock.  This should be very
1937				 * rare.
1938				 */
1939				counter_u64_add(ktls_destroy_task, 1);
1940				TASK_INIT(&tls->destroy_task, 0,
1941				    ktls_destroy_help, tls);
1942				(void)taskqueue_enqueue(taskqueue_thread,
1943				    &tls->destroy_task);
1944				return;
1945			}
1946		}
1947	}
1948
1949	if (tls->sequential_records) {
1950		struct mbuf *m, *n;
1951		int page_count;
1952
1953		STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) {
1954			page_count = m->m_epg_enc_cnt;
1955			while (page_count > 0) {
1956				KASSERT(page_count >= m->m_epg_nrdy,
1957				    ("%s: too few pages", __func__));
1958				page_count -= m->m_epg_nrdy;
1959				m = m_free(m);
1960			}
1961		}
1962	}
1963
1964	counter_u64_add(ktls_offload_active, -1);
1965	switch (tls->mode) {
1966	case TCP_TLS_MODE_SW:
1967		switch (tls->params.cipher_algorithm) {
1968		case CRYPTO_AES_CBC:
1969			counter_u64_add(ktls_sw_cbc, -1);
1970			break;
1971		case CRYPTO_AES_NIST_GCM_16:
1972			counter_u64_add(ktls_sw_gcm, -1);
1973			break;
1974		case CRYPTO_CHACHA20_POLY1305:
1975			counter_u64_add(ktls_sw_chacha20, -1);
1976			break;
1977		}
1978		break;
1979	case TCP_TLS_MODE_IFNET:
1980		switch (tls->params.cipher_algorithm) {
1981		case CRYPTO_AES_CBC:
1982			counter_u64_add(ktls_ifnet_cbc, -1);
1983			break;
1984		case CRYPTO_AES_NIST_GCM_16:
1985			counter_u64_add(ktls_ifnet_gcm, -1);
1986			break;
1987		case CRYPTO_CHACHA20_POLY1305:
1988			counter_u64_add(ktls_ifnet_chacha20, -1);
1989			break;
1990		}
1991		if (tls->snd_tag != NULL)
1992			m_snd_tag_rele(tls->snd_tag);
1993		if (tls->rx_ifp != NULL)
1994			if_rele(tls->rx_ifp);
1995		if (tls->tx) {
1996			INP_WLOCK_ASSERT(inp);
1997			tp = intotcpcb(inp);
1998			MPASS(tp->t_nic_ktls_xmit == 1);
1999			tp->t_nic_ktls_xmit = 0;
2000		}
2001		break;
2002#ifdef TCP_OFFLOAD
2003	case TCP_TLS_MODE_TOE:
2004		switch (tls->params.cipher_algorithm) {
2005		case CRYPTO_AES_CBC:
2006			counter_u64_add(ktls_toe_cbc, -1);
2007			break;
2008		case CRYPTO_AES_NIST_GCM_16:
2009			counter_u64_add(ktls_toe_gcm, -1);
2010			break;
2011		case CRYPTO_CHACHA20_POLY1305:
2012			counter_u64_add(ktls_toe_chacha20, -1);
2013			break;
2014		}
2015		break;
2016#endif
2017	}
2018	if (tls->ocf_session != NULL)
2019		ktls_ocf_free(tls);
2020	if (tls->params.auth_key != NULL) {
2021		zfree(tls->params.auth_key, M_KTLS);
2022		tls->params.auth_key = NULL;
2023		tls->params.auth_key_len = 0;
2024	}
2025	if (tls->params.cipher_key != NULL) {
2026		zfree(tls->params.cipher_key, M_KTLS);
2027		tls->params.cipher_key = NULL;
2028		tls->params.cipher_key_len = 0;
2029	}
2030	if (tls->tx) {
2031		INP_WLOCK_ASSERT(inp);
2032		if (!in_pcbrele_wlocked(inp) && !wlocked)
2033			INP_WUNLOCK(inp);
2034	}
2035	explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
2036
2037	uma_zfree(ktls_session_zone, tls);
2038}
2039
2040void
2041ktls_seq(struct sockbuf *sb, struct mbuf *m)
2042{
2043
2044	for (; m != NULL; m = m->m_next) {
2045		KASSERT((m->m_flags & M_EXTPG) != 0,
2046		    ("ktls_seq: mapped mbuf %p", m));
2047
2048		m->m_epg_seqno = sb->sb_tls_seqno;
2049		sb->sb_tls_seqno++;
2050	}
2051}
2052
2053/*
2054 * Add TLS framing (headers and trailers) to a chain of mbufs.  Each
2055 * mbuf in the chain must be an unmapped mbuf.  The payload of the
2056 * mbuf must be populated with the payload of each TLS record.
2057 *
2058 * The record_type argument specifies the TLS record type used when
2059 * populating the TLS header.
2060 *
2061 * The enq_count argument on return is set to the number of pages of
2062 * payload data for this entire chain that need to be encrypted via SW
2063 * encryption.  The returned value should be passed to ktls_enqueue
2064 * when scheduling encryption of this chain of mbufs.  To handle the
2065 * special case of empty fragments for TLS 1.0 sessions, an empty
2066 * fragment counts as one page.
2067 */
2068void
2069ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
2070    uint8_t record_type)
2071{
2072	struct tls_record_layer *tlshdr;
2073	struct mbuf *m;
2074	uint64_t *noncep;
2075	uint16_t tls_len;
2076	int maxlen __diagused;
2077
2078	maxlen = tls->params.max_frame_len;
2079	*enq_cnt = 0;
2080	for (m = top; m != NULL; m = m->m_next) {
2081		/*
2082		 * All mbufs in the chain should be TLS records whose
2083		 * payload does not exceed the maximum frame length.
2084		 *
2085		 * Empty TLS 1.0 records are permitted when using CBC.
2086		 */
2087		KASSERT(m->m_len <= maxlen && m->m_len >= 0 &&
2088		    (m->m_len > 0 || ktls_permit_empty_frames(tls)),
2089		    ("ktls_frame: m %p len %d", m, m->m_len));
2090
2091		/*
2092		 * TLS frames require unmapped mbufs to store session
2093		 * info.
2094		 */
2095		KASSERT((m->m_flags & M_EXTPG) != 0,
2096		    ("ktls_frame: mapped mbuf %p (top = %p)", m, top));
2097
2098		tls_len = m->m_len;
2099
2100		/* Save a reference to the session. */
2101		m->m_epg_tls = ktls_hold(tls);
2102
2103		m->m_epg_hdrlen = tls->params.tls_hlen;
2104		m->m_epg_trllen = tls->params.tls_tlen;
2105		if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
2106			int bs, delta;
2107
2108			/*
2109			 * AES-CBC pads messages to a multiple of the
2110			 * block size.  Note that the padding is
2111			 * applied after the digest and the encryption
2112			 * is done on the "plaintext || mac || padding".
2113			 * At least one byte of padding is always
2114			 * present.
2115			 *
2116			 * Compute the final trailer length assuming
2117			 * at most one block of padding.
2118			 * tls->params.tls_tlen is the maximum
2119			 * possible trailer length (padding + digest).
2120			 * delta holds the number of excess padding
2121			 * bytes if the maximum were used.  Those
2122			 * extra bytes are removed.
2123			 */
2124			bs = tls->params.tls_bs;
2125			delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
2126			m->m_epg_trllen -= delta;
2127		}
2128		m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
2129
2130		/* Populate the TLS header. */
2131		tlshdr = (void *)m->m_epg_hdr;
2132		tlshdr->tls_vmajor = tls->params.tls_vmajor;
2133
2134		/*
2135		 * TLS 1.3 masquarades as TLS 1.2 with a record type
2136		 * of TLS_RLTYPE_APP.
2137		 */
2138		if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
2139		    tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
2140			tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
2141			tlshdr->tls_type = TLS_RLTYPE_APP;
2142			/* save the real record type for later */
2143			m->m_epg_record_type = record_type;
2144			m->m_epg_trail[0] = record_type;
2145		} else {
2146			tlshdr->tls_vminor = tls->params.tls_vminor;
2147			tlshdr->tls_type = record_type;
2148		}
2149		tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
2150
2151		/*
2152		 * Store nonces / explicit IVs after the end of the
2153		 * TLS header.
2154		 *
2155		 * For GCM with TLS 1.2, an 8 byte nonce is copied
2156		 * from the end of the IV.  The nonce is then
2157		 * incremented for use by the next record.
2158		 *
2159		 * For CBC, a random nonce is inserted for TLS 1.1+.
2160		 */
2161		if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
2162		    tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
2163			noncep = (uint64_t *)(tls->params.iv + 8);
2164			be64enc(tlshdr + 1, *noncep);
2165			(*noncep)++;
2166		} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
2167		    tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
2168			arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
2169
2170		/*
2171		 * When using SW encryption, mark the mbuf not ready.
2172		 * It will be marked ready via sbready() after the
2173		 * record has been encrypted.
2174		 *
2175		 * When using ifnet TLS, unencrypted TLS records are
2176		 * sent down the stack to the NIC.
2177		 */
2178		if (tls->mode == TCP_TLS_MODE_SW) {
2179			m->m_flags |= M_NOTREADY;
2180			if (__predict_false(tls_len == 0)) {
2181				/* TLS 1.0 empty fragment. */
2182				m->m_epg_nrdy = 1;
2183			} else
2184				m->m_epg_nrdy = m->m_epg_npgs;
2185			*enq_cnt += m->m_epg_nrdy;
2186		}
2187	}
2188}
2189
2190bool
2191ktls_permit_empty_frames(struct ktls_session *tls)
2192{
2193	return (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
2194	    tls->params.tls_vminor == TLS_MINOR_VER_ZERO);
2195}
2196
2197void
2198ktls_check_rx(struct sockbuf *sb)
2199{
2200	struct tls_record_layer hdr;
2201	struct ktls_wq *wq;
2202	struct socket *so;
2203	bool running;
2204
2205	SOCKBUF_LOCK_ASSERT(sb);
2206	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
2207	    __func__, sb));
2208	so = __containerof(sb, struct socket, so_rcv);
2209
2210	if (sb->sb_flags & SB_TLS_RX_RUNNING)
2211		return;
2212
2213	/* Is there enough queued for a TLS header? */
2214	if (sb->sb_tlscc < sizeof(hdr)) {
2215		if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
2216			so->so_error = EMSGSIZE;
2217		return;
2218	}
2219
2220	m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
2221
2222	/* Is the entire record queued? */
2223	if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
2224		if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
2225			so->so_error = EMSGSIZE;
2226		return;
2227	}
2228
2229	sb->sb_flags |= SB_TLS_RX_RUNNING;
2230
2231	soref(so);
2232	wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
2233	mtx_lock(&wq->mtx);
2234	STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
2235	running = wq->running;
2236	mtx_unlock(&wq->mtx);
2237	if (!running)
2238		wakeup(wq);
2239	counter_u64_add(ktls_cnt_rx_queued, 1);
2240}
2241
2242static struct mbuf *
2243ktls_detach_record(struct sockbuf *sb, int len)
2244{
2245	struct mbuf *m, *n, *top;
2246	int remain;
2247
2248	SOCKBUF_LOCK_ASSERT(sb);
2249	MPASS(len <= sb->sb_tlscc);
2250
2251	/*
2252	 * If TLS chain is the exact size of the record,
2253	 * just grab the whole record.
2254	 */
2255	top = sb->sb_mtls;
2256	if (sb->sb_tlscc == len) {
2257		sb->sb_mtls = NULL;
2258		sb->sb_mtlstail = NULL;
2259		goto out;
2260	}
2261
2262	/*
2263	 * While it would be nice to use m_split() here, we need
2264	 * to know exactly what m_split() allocates to update the
2265	 * accounting, so do it inline instead.
2266	 */
2267	remain = len;
2268	for (m = top; remain > m->m_len; m = m->m_next)
2269		remain -= m->m_len;
2270
2271	/* Easy case: don't have to split 'm'. */
2272	if (remain == m->m_len) {
2273		sb->sb_mtls = m->m_next;
2274		if (sb->sb_mtls == NULL)
2275			sb->sb_mtlstail = NULL;
2276		m->m_next = NULL;
2277		goto out;
2278	}
2279
2280	/*
2281	 * Need to allocate an mbuf to hold the remainder of 'm'.  Try
2282	 * with M_NOWAIT first.
2283	 */
2284	n = m_get(M_NOWAIT, MT_DATA);
2285	if (n == NULL) {
2286		/*
2287		 * Use M_WAITOK with socket buffer unlocked.  If
2288		 * 'sb_mtls' changes while the lock is dropped, return
2289		 * NULL to force the caller to retry.
2290		 */
2291		SOCKBUF_UNLOCK(sb);
2292
2293		n = m_get(M_WAITOK, MT_DATA);
2294
2295		SOCKBUF_LOCK(sb);
2296		if (sb->sb_mtls != top) {
2297			m_free(n);
2298			return (NULL);
2299		}
2300	}
2301	n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED));
2302
2303	/* Store remainder in 'n'. */
2304	n->m_len = m->m_len - remain;
2305	if (m->m_flags & M_EXT) {
2306		n->m_data = m->m_data + remain;
2307		mb_dupcl(n, m);
2308	} else {
2309		bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
2310	}
2311
2312	/* Trim 'm' and update accounting. */
2313	m->m_len -= n->m_len;
2314	sb->sb_tlscc -= n->m_len;
2315	sb->sb_ccc -= n->m_len;
2316
2317	/* Account for 'n'. */
2318	sballoc_ktls_rx(sb, n);
2319
2320	/* Insert 'n' into the TLS chain. */
2321	sb->sb_mtls = n;
2322	n->m_next = m->m_next;
2323	if (sb->sb_mtlstail == m)
2324		sb->sb_mtlstail = n;
2325
2326	/* Detach the record from the TLS chain. */
2327	m->m_next = NULL;
2328
2329out:
2330	MPASS(m_length(top, NULL) == len);
2331	for (m = top; m != NULL; m = m->m_next)
2332		sbfree_ktls_rx(sb, m);
2333	sb->sb_tlsdcc = len;
2334	sb->sb_ccc += len;
2335	SBCHECK(sb);
2336	return (top);
2337}
2338
2339/*
2340 * Determine the length of the trailing zero padding and find the real
2341 * record type in the byte before the padding.
2342 *
2343 * Walking the mbuf chain backwards is clumsy, so another option would
2344 * be to scan forwards remembering the last non-zero byte before the
2345 * trailer.  However, it would be expensive to scan the entire record.
2346 * Instead, find the last non-zero byte of each mbuf in the chain
2347 * keeping track of the relative offset of that nonzero byte.
2348 *
2349 * trail_len is the size of the MAC/tag on input and is set to the
2350 * size of the full trailer including padding and the record type on
2351 * return.
2352 */
2353static int
2354tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len,
2355    int *trailer_len, uint8_t *record_typep)
2356{
2357	char *cp;
2358	u_int digest_start, last_offset, m_len, offset;
2359	uint8_t record_type;
2360
2361	digest_start = tls_len - *trailer_len;
2362	last_offset = 0;
2363	offset = 0;
2364	for (; m != NULL && offset < digest_start;
2365	     offset += m->m_len, m = m->m_next) {
2366		/* Don't look for padding in the tag. */
2367		m_len = min(digest_start - offset, m->m_len);
2368		cp = mtod(m, char *);
2369
2370		/* Find last non-zero byte in this mbuf. */
2371		while (m_len > 0 && cp[m_len - 1] == 0)
2372			m_len--;
2373		if (m_len > 0) {
2374			record_type = cp[m_len - 1];
2375			last_offset = offset + m_len;
2376		}
2377	}
2378	if (last_offset < tls->params.tls_hlen)
2379		return (EBADMSG);
2380
2381	*record_typep = record_type;
2382	*trailer_len = tls_len - last_offset + 1;
2383	return (0);
2384}
2385
2386/*
2387 * Check if a mbuf chain is fully decrypted at the given offset and
2388 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is
2389 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted
2390 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data
2391 * is encrypted.
2392 */
2393ktls_mbuf_crypto_st_t
2394ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len)
2395{
2396	int m_flags_ored = 0;
2397	int m_flags_anded = -1;
2398
2399	for (; mb != NULL; mb = mb->m_next) {
2400		if (offset < mb->m_len)
2401			break;
2402		offset -= mb->m_len;
2403	}
2404	offset += len;
2405
2406	for (; mb != NULL; mb = mb->m_next) {
2407		m_flags_ored |= mb->m_flags;
2408		m_flags_anded &= mb->m_flags;
2409
2410		if (offset <= mb->m_len)
2411			break;
2412		offset -= mb->m_len;
2413	}
2414	MPASS(mb != NULL || offset == 0);
2415
2416	if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED)
2417		return (KTLS_MBUF_CRYPTO_ST_MIXED);
2418	else
2419		return ((m_flags_ored & M_DECRYPTED) ?
2420		    KTLS_MBUF_CRYPTO_ST_DECRYPTED :
2421		    KTLS_MBUF_CRYPTO_ST_ENCRYPTED);
2422}
2423
2424/*
2425 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss
2426 */
2427static int
2428ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num)
2429{
2430	union if_snd_tag_modify_params params;
2431	struct m_snd_tag *mst;
2432	struct inpcb *inp;
2433	struct tcpcb *tp;
2434
2435	mst = so->so_rcv.sb_tls_info->snd_tag;
2436	if (__predict_false(mst == NULL))
2437		return (EINVAL);
2438
2439	inp = sotoinpcb(so);
2440	if (__predict_false(inp == NULL))
2441		return (EINVAL);
2442
2443	INP_RLOCK(inp);
2444	if (inp->inp_flags & INP_DROPPED) {
2445		INP_RUNLOCK(inp);
2446		return (ECONNRESET);
2447	}
2448
2449	tp = intotcpcb(inp);
2450	MPASS(tp != NULL);
2451
2452	/* Get the TCP sequence number of the next valid TLS header. */
2453	SOCKBUF_LOCK(&so->so_rcv);
2454	params.tls_rx.tls_hdr_tcp_sn =
2455	    tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len;
2456	params.tls_rx.tls_rec_length = tls_len;
2457	params.tls_rx.tls_seq_number = tls_rcd_num;
2458	SOCKBUF_UNLOCK(&so->so_rcv);
2459
2460	INP_RUNLOCK(inp);
2461
2462	MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX);
2463	return (mst->sw->snd_tag_modify(mst, &params));
2464}
2465
2466static void
2467ktls_drop(struct socket *so, int error)
2468{
2469	struct epoch_tracker et;
2470	struct inpcb *inp = sotoinpcb(so);
2471	struct tcpcb *tp;
2472
2473	NET_EPOCH_ENTER(et);
2474	INP_WLOCK(inp);
2475	if (!(inp->inp_flags & INP_DROPPED)) {
2476		tp = intotcpcb(inp);
2477		CURVNET_SET(inp->inp_vnet);
2478		tp = tcp_drop(tp, error);
2479		CURVNET_RESTORE();
2480		if (tp != NULL)
2481			INP_WUNLOCK(inp);
2482	} else {
2483		so->so_error = error;
2484		SOCK_RECVBUF_LOCK(so);
2485		sorwakeup_locked(so);
2486		INP_WUNLOCK(inp);
2487	}
2488	NET_EPOCH_EXIT(et);
2489}
2490
2491static void
2492ktls_decrypt(struct socket *so)
2493{
2494	char tls_header[MBUF_PEXT_HDR_LEN];
2495	struct ktls_session *tls;
2496	struct sockbuf *sb;
2497	struct tls_record_layer *hdr;
2498	struct tls_get_record tgr;
2499	struct mbuf *control, *data, *m;
2500	ktls_mbuf_crypto_st_t state;
2501	uint64_t seqno;
2502	int error, remain, tls_len, trail_len;
2503	bool tls13;
2504	uint8_t vminor, record_type;
2505
2506	hdr = (struct tls_record_layer *)tls_header;
2507	sb = &so->so_rcv;
2508	SOCKBUF_LOCK(sb);
2509	KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
2510	    ("%s: socket %p not running", __func__, so));
2511
2512	tls = sb->sb_tls_info;
2513	MPASS(tls != NULL);
2514
2515	tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE);
2516	if (tls13)
2517		vminor = TLS_MINOR_VER_TWO;
2518	else
2519		vminor = tls->params.tls_vminor;
2520	for (;;) {
2521		/* Is there enough queued for a TLS header? */
2522		if (sb->sb_tlscc < tls->params.tls_hlen)
2523			break;
2524
2525		m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
2526		tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
2527
2528		if (hdr->tls_vmajor != tls->params.tls_vmajor ||
2529		    hdr->tls_vminor != vminor)
2530			error = EINVAL;
2531		else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP)
2532			error = EINVAL;
2533		else if (tls_len < tls->params.tls_hlen || tls_len >
2534		    tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
2535		    tls->params.tls_tlen)
2536			error = EMSGSIZE;
2537		else
2538			error = 0;
2539		if (__predict_false(error != 0)) {
2540			/*
2541			 * We have a corrupted record and are likely
2542			 * out of sync.  The connection isn't
2543			 * recoverable at this point, so abort it.
2544			 */
2545			SOCKBUF_UNLOCK(sb);
2546			counter_u64_add(ktls_offload_corrupted_records, 1);
2547
2548			ktls_drop(so, error);
2549			goto deref;
2550		}
2551
2552		/* Is the entire record queued? */
2553		if (sb->sb_tlscc < tls_len)
2554			break;
2555
2556		/*
2557		 * Split out the portion of the mbuf chain containing
2558		 * this TLS record.
2559		 */
2560		data = ktls_detach_record(sb, tls_len);
2561		if (data == NULL)
2562			continue;
2563		MPASS(sb->sb_tlsdcc == tls_len);
2564
2565		seqno = sb->sb_tls_seqno;
2566		sb->sb_tls_seqno++;
2567		SBCHECK(sb);
2568		SOCKBUF_UNLOCK(sb);
2569
2570		/* get crypto state for this TLS record */
2571		state = ktls_mbuf_crypto_state(data, 0, tls_len);
2572
2573		switch (state) {
2574		case KTLS_MBUF_CRYPTO_ST_MIXED:
2575			error = ktls_ocf_recrypt(tls, hdr, data, seqno);
2576			if (error)
2577				break;
2578			/* FALLTHROUGH */
2579		case KTLS_MBUF_CRYPTO_ST_ENCRYPTED:
2580			error = ktls_ocf_decrypt(tls, hdr, data, seqno,
2581			    &trail_len);
2582			if (__predict_true(error == 0)) {
2583				if (tls13) {
2584					error = tls13_find_record_type(tls, data,
2585					    tls_len, &trail_len, &record_type);
2586				} else {
2587					record_type = hdr->tls_type;
2588				}
2589			}
2590			break;
2591		case KTLS_MBUF_CRYPTO_ST_DECRYPTED:
2592			/*
2593			 * NIC TLS is only supported for AEAD
2594			 * ciphersuites which used a fixed sized
2595			 * trailer.
2596			 */
2597			if (tls13) {
2598				trail_len = tls->params.tls_tlen - 1;
2599				error = tls13_find_record_type(tls, data,
2600				    tls_len, &trail_len, &record_type);
2601			} else {
2602				trail_len = tls->params.tls_tlen;
2603				error = 0;
2604				record_type = hdr->tls_type;
2605			}
2606			break;
2607		default:
2608			error = EINVAL;
2609			break;
2610		}
2611		if (error) {
2612			counter_u64_add(ktls_offload_failed_crypto, 1);
2613
2614			SOCKBUF_LOCK(sb);
2615			if (sb->sb_tlsdcc == 0) {
2616				/*
2617				 * sbcut/drop/flush discarded these
2618				 * mbufs.
2619				 */
2620				m_freem(data);
2621				break;
2622			}
2623
2624			/*
2625			 * Drop this TLS record's data, but keep
2626			 * decrypting subsequent records.
2627			 */
2628			sb->sb_ccc -= tls_len;
2629			sb->sb_tlsdcc = 0;
2630
2631			if (error != EMSGSIZE)
2632				error = EBADMSG;
2633			CURVNET_SET(so->so_vnet);
2634			so->so_error = error;
2635			sorwakeup_locked(so);
2636			CURVNET_RESTORE();
2637
2638			m_freem(data);
2639
2640			SOCKBUF_LOCK(sb);
2641			continue;
2642		}
2643
2644		/* Allocate the control mbuf. */
2645		memset(&tgr, 0, sizeof(tgr));
2646		tgr.tls_type = record_type;
2647		tgr.tls_vmajor = hdr->tls_vmajor;
2648		tgr.tls_vminor = hdr->tls_vminor;
2649		tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
2650		    trail_len);
2651		control = sbcreatecontrol(&tgr, sizeof(tgr),
2652		    TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
2653
2654		SOCKBUF_LOCK(sb);
2655		if (sb->sb_tlsdcc == 0) {
2656			/* sbcut/drop/flush discarded these mbufs. */
2657			MPASS(sb->sb_tlscc == 0);
2658			m_freem(data);
2659			m_freem(control);
2660			break;
2661		}
2662
2663		/*
2664		 * Clear the 'dcc' accounting in preparation for
2665		 * adding the decrypted record.
2666		 */
2667		sb->sb_ccc -= tls_len;
2668		sb->sb_tlsdcc = 0;
2669		SBCHECK(sb);
2670
2671		/* If there is no payload, drop all of the data. */
2672		if (tgr.tls_length == htobe16(0)) {
2673			m_freem(data);
2674			data = NULL;
2675		} else {
2676			/* Trim header. */
2677			remain = tls->params.tls_hlen;
2678			while (remain > 0) {
2679				if (data->m_len > remain) {
2680					data->m_data += remain;
2681					data->m_len -= remain;
2682					break;
2683				}
2684				remain -= data->m_len;
2685				data = m_free(data);
2686			}
2687
2688			/* Trim trailer and clear M_NOTREADY. */
2689			remain = be16toh(tgr.tls_length);
2690			m = data;
2691			for (m = data; remain > m->m_len; m = m->m_next) {
2692				m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
2693				remain -= m->m_len;
2694			}
2695			m->m_len = remain;
2696			m_freem(m->m_next);
2697			m->m_next = NULL;
2698			m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
2699
2700			/* Set EOR on the final mbuf. */
2701			m->m_flags |= M_EOR;
2702		}
2703
2704		sbappendcontrol_locked(sb, data, control, 0);
2705
2706		if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) {
2707			sb->sb_flags |= SB_TLS_RX_RESYNC;
2708			SOCKBUF_UNLOCK(sb);
2709			ktls_resync_ifnet(so, tls_len, seqno);
2710			SOCKBUF_LOCK(sb);
2711		} else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) {
2712			sb->sb_flags &= ~SB_TLS_RX_RESYNC;
2713			SOCKBUF_UNLOCK(sb);
2714			ktls_resync_ifnet(so, 0, seqno);
2715			SOCKBUF_LOCK(sb);
2716		}
2717	}
2718
2719	sb->sb_flags &= ~SB_TLS_RX_RUNNING;
2720
2721	if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
2722		so->so_error = EMSGSIZE;
2723
2724	sorwakeup_locked(so);
2725
2726deref:
2727	SOCKBUF_UNLOCK_ASSERT(sb);
2728
2729	CURVNET_SET(so->so_vnet);
2730	sorele(so);
2731	CURVNET_RESTORE();
2732}
2733
2734void
2735ktls_enqueue_to_free(struct mbuf *m)
2736{
2737	struct ktls_wq *wq;
2738	bool running;
2739
2740	/* Mark it for freeing. */
2741	m->m_epg_flags |= EPG_FLAG_2FREE;
2742	wq = &ktls_wq[m->m_epg_tls->wq_index];
2743	mtx_lock(&wq->mtx);
2744	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2745	running = wq->running;
2746	mtx_unlock(&wq->mtx);
2747	if (!running)
2748		wakeup(wq);
2749}
2750
2751static void *
2752ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m)
2753{
2754	void *buf;
2755	int domain, running;
2756
2757	if (m->m_epg_npgs <= 2)
2758		return (NULL);
2759	if (ktls_buffer_zone == NULL)
2760		return (NULL);
2761	if ((u_int)(ticks - wq->lastallocfail) < hz) {
2762		/*
2763		 * Rate-limit allocation attempts after a failure.
2764		 * ktls_buffer_import() will acquire a per-domain mutex to check
2765		 * the free page queues and may fail consistently if memory is
2766		 * fragmented.
2767		 */
2768		return (NULL);
2769	}
2770	buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM);
2771	if (buf == NULL) {
2772		domain = PCPU_GET(domain);
2773		wq->lastallocfail = ticks;
2774
2775		/*
2776		 * Note that this check is "racy", but the races are
2777		 * harmless, and are either a spurious wakeup if
2778		 * multiple threads fail allocations before the alloc
2779		 * thread wakes, or waiting an extra second in case we
2780		 * see an old value of running == true.
2781		 */
2782		if (!VM_DOMAIN_EMPTY(domain)) {
2783			running = atomic_load_int(&ktls_domains[domain].reclaim_td.running);
2784			if (!running)
2785				wakeup(&ktls_domains[domain].reclaim_td);
2786		}
2787	}
2788	return (buf);
2789}
2790
2791static int
2792ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m,
2793    struct ktls_session *tls, struct ktls_ocf_encrypt_state *state)
2794{
2795	vm_page_t pg;
2796	int error, i, len, off;
2797
2798	KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY),
2799	    ("%p not unready & nomap mbuf\n", m));
2800	KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen,
2801	    ("page count %d larger than maximum frame length %d", m->m_epg_npgs,
2802	    ktls_maxlen));
2803
2804	/* Anonymous mbufs are encrypted in place. */
2805	if ((m->m_epg_flags & EPG_FLAG_ANON) != 0)
2806		return (ktls_ocf_encrypt(state, tls, m, NULL, 0));
2807
2808	/*
2809	 * For file-backed mbufs (from sendfile), anonymous wired
2810	 * pages are allocated and used as the encryption destination.
2811	 */
2812	if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) {
2813		len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len -
2814		    m->m_epg_1st_off;
2815		state->dst_iov[0].iov_base = (char *)state->cbuf +
2816		    m->m_epg_1st_off;
2817		state->dst_iov[0].iov_len = len;
2818		state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf);
2819		i = 1;
2820	} else {
2821		off = m->m_epg_1st_off;
2822		for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
2823			pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
2824			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
2825			len = m_epg_pagelen(m, i, off);
2826			state->parray[i] = VM_PAGE_TO_PHYS(pg);
2827			state->dst_iov[i].iov_base =
2828			    (char *)PHYS_TO_DMAP(state->parray[i]) + off;
2829			state->dst_iov[i].iov_len = len;
2830		}
2831	}
2832	KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small"));
2833	state->dst_iov[i].iov_base = m->m_epg_trail;
2834	state->dst_iov[i].iov_len = m->m_epg_trllen;
2835
2836	error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1);
2837
2838	if (__predict_false(error != 0)) {
2839		/* Free the anonymous pages. */
2840		if (state->cbuf != NULL)
2841			uma_zfree(ktls_buffer_zone, state->cbuf);
2842		else {
2843			for (i = 0; i < m->m_epg_npgs; i++) {
2844				pg = PHYS_TO_VM_PAGE(state->parray[i]);
2845				(void)vm_page_unwire_noq(pg);
2846				vm_page_free(pg);
2847			}
2848		}
2849	}
2850	return (error);
2851}
2852
2853/* Number of TLS records in a batch passed to ktls_enqueue(). */
2854static u_int
2855ktls_batched_records(struct mbuf *m)
2856{
2857	int page_count, records;
2858
2859	records = 0;
2860	page_count = m->m_epg_enc_cnt;
2861	while (page_count > 0) {
2862		records++;
2863		page_count -= m->m_epg_nrdy;
2864		m = m->m_next;
2865	}
2866	KASSERT(page_count == 0, ("%s: mismatched page count", __func__));
2867	return (records);
2868}
2869
2870void
2871ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
2872{
2873	struct ktls_session *tls;
2874	struct ktls_wq *wq;
2875	int queued;
2876	bool running;
2877
2878	KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
2879	    (M_EXTPG | M_NOTREADY)),
2880	    ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
2881	KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
2882
2883	KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
2884
2885	m->m_epg_enc_cnt = page_count;
2886
2887	/*
2888	 * Save a pointer to the socket.  The caller is responsible
2889	 * for taking an additional reference via soref().
2890	 */
2891	m->m_epg_so = so;
2892
2893	queued = 1;
2894	tls = m->m_epg_tls;
2895	wq = &ktls_wq[tls->wq_index];
2896	mtx_lock(&wq->mtx);
2897	if (__predict_false(tls->sequential_records)) {
2898		/*
2899		 * For TLS 1.0, records must be encrypted
2900		 * sequentially.  For a given connection, all records
2901		 * queued to the associated work queue are processed
2902		 * sequentially.  However, sendfile(2) might complete
2903		 * I/O requests spanning multiple TLS records out of
2904		 * order.  Here we ensure TLS records are enqueued to
2905		 * the work queue in FIFO order.
2906		 *
2907		 * tls->next_seqno holds the sequence number of the
2908		 * next TLS record that should be enqueued to the work
2909		 * queue.  If this next record is not tls->next_seqno,
2910		 * it must be a future record, so insert it, sorted by
2911		 * TLS sequence number, into tls->pending_records and
2912		 * return.
2913		 *
2914		 * If this TLS record matches tls->next_seqno, place
2915		 * it in the work queue and then check
2916		 * tls->pending_records to see if any
2917		 * previously-queued records are now ready for
2918		 * encryption.
2919		 */
2920		if (m->m_epg_seqno != tls->next_seqno) {
2921			struct mbuf *n, *p;
2922
2923			p = NULL;
2924			STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) {
2925				if (n->m_epg_seqno > m->m_epg_seqno)
2926					break;
2927				p = n;
2928			}
2929			if (n == NULL)
2930				STAILQ_INSERT_TAIL(&tls->pending_records, m,
2931				    m_epg_stailq);
2932			else if (p == NULL)
2933				STAILQ_INSERT_HEAD(&tls->pending_records, m,
2934				    m_epg_stailq);
2935			else
2936				STAILQ_INSERT_AFTER(&tls->pending_records, p, m,
2937				    m_epg_stailq);
2938			mtx_unlock(&wq->mtx);
2939			counter_u64_add(ktls_cnt_tx_pending, 1);
2940			return;
2941		}
2942
2943		tls->next_seqno += ktls_batched_records(m);
2944		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2945
2946		while (!STAILQ_EMPTY(&tls->pending_records)) {
2947			struct mbuf *n;
2948
2949			n = STAILQ_FIRST(&tls->pending_records);
2950			if (n->m_epg_seqno != tls->next_seqno)
2951				break;
2952
2953			queued++;
2954			STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq);
2955			tls->next_seqno += ktls_batched_records(n);
2956			STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq);
2957		}
2958		counter_u64_add(ktls_cnt_tx_pending, -(queued - 1));
2959	} else
2960		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2961
2962	running = wq->running;
2963	mtx_unlock(&wq->mtx);
2964	if (!running)
2965		wakeup(wq);
2966	counter_u64_add(ktls_cnt_tx_queued, queued);
2967}
2968
2969/*
2970 * Once a file-backed mbuf (from sendfile) has been encrypted, free
2971 * the pages from the file and replace them with the anonymous pages
2972 * allocated in ktls_encrypt_record().
2973 */
2974static void
2975ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state)
2976{
2977	int i;
2978
2979	MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0);
2980
2981	/* Free the old pages. */
2982	m->m_ext.ext_free(m);
2983
2984	/* Replace them with the new pages. */
2985	if (state->cbuf != NULL) {
2986		for (i = 0; i < m->m_epg_npgs; i++)
2987			m->m_epg_pa[i] = state->parray[0] + ptoa(i);
2988
2989		/* Contig pages should go back to the cache. */
2990		m->m_ext.ext_free = ktls_free_mext_contig;
2991	} else {
2992		for (i = 0; i < m->m_epg_npgs; i++)
2993			m->m_epg_pa[i] = state->parray[i];
2994
2995		/* Use the basic free routine. */
2996		m->m_ext.ext_free = mb_free_mext_pgs;
2997	}
2998
2999	/* Pages are now writable. */
3000	m->m_epg_flags |= EPG_FLAG_ANON;
3001}
3002
3003static __noinline void
3004ktls_encrypt(struct ktls_wq *wq, struct mbuf *top)
3005{
3006	struct ktls_ocf_encrypt_state state;
3007	struct ktls_session *tls;
3008	struct socket *so;
3009	struct mbuf *m;
3010	int error, npages, total_pages;
3011
3012	so = top->m_epg_so;
3013	tls = top->m_epg_tls;
3014	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
3015	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
3016#ifdef INVARIANTS
3017	top->m_epg_so = NULL;
3018#endif
3019	total_pages = top->m_epg_enc_cnt;
3020	npages = 0;
3021
3022	/*
3023	 * Encrypt the TLS records in the chain of mbufs starting with
3024	 * 'top'.  'total_pages' gives us a total count of pages and is
3025	 * used to know when we have finished encrypting the TLS
3026	 * records originally queued with 'top'.
3027	 *
3028	 * NB: These mbufs are queued in the socket buffer and
3029	 * 'm_next' is traversing the mbufs in the socket buffer.  The
3030	 * socket buffer lock is not held while traversing this chain.
3031	 * Since the mbufs are all marked M_NOTREADY their 'm_next'
3032	 * pointers should be stable.  However, the 'm_next' of the
3033	 * last mbuf encrypted is not necessarily NULL.  It can point
3034	 * to other mbufs appended while 'top' was on the TLS work
3035	 * queue.
3036	 *
3037	 * Each mbuf holds an entire TLS record.
3038	 */
3039	error = 0;
3040	for (m = top; npages != total_pages; m = m->m_next) {
3041		KASSERT(m->m_epg_tls == tls,
3042		    ("different TLS sessions in a single mbuf chain: %p vs %p",
3043		    tls, m->m_epg_tls));
3044		KASSERT(npages + m->m_epg_npgs <= total_pages,
3045		    ("page count mismatch: top %p, total_pages %d, m %p", top,
3046		    total_pages, m));
3047
3048		error = ktls_encrypt_record(wq, m, tls, &state);
3049		if (error) {
3050			counter_u64_add(ktls_offload_failed_crypto, 1);
3051			break;
3052		}
3053
3054		if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
3055			ktls_finish_nonanon(m, &state);
3056
3057		npages += m->m_epg_nrdy;
3058
3059		/*
3060		 * Drop a reference to the session now that it is no
3061		 * longer needed.  Existing code depends on encrypted
3062		 * records having no associated session vs
3063		 * yet-to-be-encrypted records having an associated
3064		 * session.
3065		 */
3066		m->m_epg_tls = NULL;
3067		ktls_free(tls);
3068	}
3069
3070	CURVNET_SET(so->so_vnet);
3071	if (error == 0) {
3072		(void)so->so_proto->pr_ready(so, top, npages);
3073	} else {
3074		ktls_drop(so, EIO);
3075		mb_free_notready(top, total_pages);
3076	}
3077
3078	sorele(so);
3079	CURVNET_RESTORE();
3080}
3081
3082void
3083ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error)
3084{
3085	struct ktls_session *tls;
3086	struct socket *so;
3087	struct mbuf *m;
3088	int npages;
3089
3090	m = state->m;
3091
3092	if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
3093		ktls_finish_nonanon(m, state);
3094
3095	so = state->so;
3096	free(state, M_KTLS);
3097
3098	/*
3099	 * Drop a reference to the session now that it is no longer
3100	 * needed.  Existing code depends on encrypted records having
3101	 * no associated session vs yet-to-be-encrypted records having
3102	 * an associated session.
3103	 */
3104	tls = m->m_epg_tls;
3105	m->m_epg_tls = NULL;
3106	ktls_free(tls);
3107
3108	if (error != 0)
3109		counter_u64_add(ktls_offload_failed_crypto, 1);
3110
3111	CURVNET_SET(so->so_vnet);
3112	npages = m->m_epg_nrdy;
3113
3114	if (error == 0) {
3115		(void)so->so_proto->pr_ready(so, m, npages);
3116	} else {
3117		ktls_drop(so, EIO);
3118		mb_free_notready(m, npages);
3119	}
3120
3121	sorele(so);
3122	CURVNET_RESTORE();
3123}
3124
3125/*
3126 * Similar to ktls_encrypt, but used with asynchronous OCF backends
3127 * (coprocessors) where encryption does not use host CPU resources and
3128 * it can be beneficial to queue more requests than CPUs.
3129 */
3130static __noinline void
3131ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top)
3132{
3133	struct ktls_ocf_encrypt_state *state;
3134	struct ktls_session *tls;
3135	struct socket *so;
3136	struct mbuf *m, *n;
3137	int error, mpages, npages, total_pages;
3138
3139	so = top->m_epg_so;
3140	tls = top->m_epg_tls;
3141	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
3142	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
3143#ifdef INVARIANTS
3144	top->m_epg_so = NULL;
3145#endif
3146	total_pages = top->m_epg_enc_cnt;
3147	npages = 0;
3148
3149	error = 0;
3150	for (m = top; npages != total_pages; m = n) {
3151		KASSERT(m->m_epg_tls == tls,
3152		    ("different TLS sessions in a single mbuf chain: %p vs %p",
3153		    tls, m->m_epg_tls));
3154		KASSERT(npages + m->m_epg_npgs <= total_pages,
3155		    ("page count mismatch: top %p, total_pages %d, m %p", top,
3156		    total_pages, m));
3157
3158		state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO);
3159		soref(so);
3160		state->so = so;
3161		state->m = m;
3162
3163		mpages = m->m_epg_nrdy;
3164		n = m->m_next;
3165
3166		error = ktls_encrypt_record(wq, m, tls, state);
3167		if (error) {
3168			counter_u64_add(ktls_offload_failed_crypto, 1);
3169			free(state, M_KTLS);
3170			CURVNET_SET(so->so_vnet);
3171			sorele(so);
3172			CURVNET_RESTORE();
3173			break;
3174		}
3175
3176		npages += mpages;
3177	}
3178
3179	CURVNET_SET(so->so_vnet);
3180	if (error != 0) {
3181		ktls_drop(so, EIO);
3182		mb_free_notready(m, total_pages - npages);
3183	}
3184
3185	sorele(so);
3186	CURVNET_RESTORE();
3187}
3188
3189static int
3190ktls_bind_domain(int domain)
3191{
3192	int error;
3193
3194	error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]);
3195	if (error != 0)
3196		return (error);
3197	curthread->td_domain.dr_policy = DOMAINSET_PREF(domain);
3198	return (0);
3199}
3200
3201static void
3202ktls_reclaim_thread(void *ctx)
3203{
3204	struct ktls_domain_info *ktls_domain = ctx;
3205	struct ktls_reclaim_thread *sc = &ktls_domain->reclaim_td;
3206	struct sysctl_oid *oid;
3207	char name[80];
3208	int error, domain;
3209
3210	domain = ktls_domain - ktls_domains;
3211	if (bootverbose)
3212		printf("Starting KTLS reclaim thread for domain %d\n", domain);
3213	error = ktls_bind_domain(domain);
3214	if (error)
3215		printf("Unable to bind KTLS reclaim thread for domain %d: error %d\n",
3216		    domain, error);
3217	snprintf(name, sizeof(name), "domain%d", domain);
3218	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO,
3219	    name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
3220	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reclaims",
3221	    CTLFLAG_RD,  &sc->reclaims, 0, "buffers reclaimed");
3222	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups",
3223	    CTLFLAG_RD,  &sc->wakeups, 0, "thread wakeups");
3224	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running",
3225	    CTLFLAG_RD,  &sc->running, 0, "thread running");
3226
3227	for (;;) {
3228		atomic_store_int(&sc->running, 0);
3229		tsleep(sc, PZERO | PNOLOCK, "-",  0);
3230		atomic_store_int(&sc->running, 1);
3231		sc->wakeups++;
3232		/*
3233		 * Below we attempt to reclaim ktls_max_reclaim
3234		 * buffers using vm_page_reclaim_contig_domain_ext().
3235		 * We do this here, as this function can take several
3236		 * seconds to scan all of memory and it does not
3237		 * matter if this thread pauses for a while.  If we
3238		 * block a ktls worker thread, we risk developing
3239		 * backlogs of buffers to be encrypted, leading to
3240		 * surges of traffic and potential NIC output drops.
3241		 */
3242		if (vm_page_reclaim_contig_domain_ext(domain, VM_ALLOC_NORMAL,
3243		    atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
3244		    ktls_max_reclaim) != 0) {
3245			vm_wait_domain(domain);
3246		} else {
3247			sc->reclaims += ktls_max_reclaim;
3248		}
3249	}
3250}
3251
3252static void
3253ktls_work_thread(void *ctx)
3254{
3255	struct ktls_wq *wq = ctx;
3256	struct mbuf *m, *n;
3257	struct socket *so, *son;
3258	STAILQ_HEAD(, mbuf) local_m_head;
3259	STAILQ_HEAD(, socket) local_so_head;
3260	int cpu;
3261
3262	cpu = wq - ktls_wq;
3263	if (bootverbose)
3264		printf("Starting KTLS worker thread for CPU %d\n", cpu);
3265
3266	/*
3267	 * Bind to a core.  If ktls_bind_threads is > 1, then
3268	 * we bind to the NUMA domain instead.
3269	 */
3270	if (ktls_bind_threads) {
3271		int error;
3272
3273		if (ktls_bind_threads > 1) {
3274			struct pcpu *pc = pcpu_find(cpu);
3275
3276			error = ktls_bind_domain(pc->pc_domain);
3277		} else {
3278			cpuset_t mask;
3279
3280			CPU_SETOF(cpu, &mask);
3281			error = cpuset_setthread(curthread->td_tid, &mask);
3282		}
3283		if (error)
3284			printf("Unable to bind KTLS worker thread for CPU %d: error %d\n",
3285				cpu, error);
3286	}
3287#if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
3288	fpu_kern_thread(0);
3289#endif
3290	for (;;) {
3291		mtx_lock(&wq->mtx);
3292		while (STAILQ_EMPTY(&wq->m_head) &&
3293		    STAILQ_EMPTY(&wq->so_head)) {
3294			wq->running = false;
3295			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
3296			wq->running = true;
3297		}
3298
3299		STAILQ_INIT(&local_m_head);
3300		STAILQ_CONCAT(&local_m_head, &wq->m_head);
3301		STAILQ_INIT(&local_so_head);
3302		STAILQ_CONCAT(&local_so_head, &wq->so_head);
3303		mtx_unlock(&wq->mtx);
3304
3305		STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
3306			if (m->m_epg_flags & EPG_FLAG_2FREE) {
3307				ktls_free(m->m_epg_tls);
3308				m_free_raw(m);
3309			} else {
3310				if (m->m_epg_tls->sync_dispatch)
3311					ktls_encrypt(wq, m);
3312				else
3313					ktls_encrypt_async(wq, m);
3314				counter_u64_add(ktls_cnt_tx_queued, -1);
3315			}
3316		}
3317
3318		STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
3319			ktls_decrypt(so);
3320			counter_u64_add(ktls_cnt_rx_queued, -1);
3321		}
3322	}
3323}
3324
3325static void
3326ktls_disable_ifnet_help(void *context, int pending __unused)
3327{
3328	struct ktls_session *tls;
3329	struct inpcb *inp;
3330	struct tcpcb *tp;
3331	struct socket *so;
3332	int err;
3333
3334	tls = context;
3335	inp = tls->inp;
3336	if (inp == NULL)
3337		return;
3338	INP_WLOCK(inp);
3339	so = inp->inp_socket;
3340	MPASS(so != NULL);
3341	if (inp->inp_flags & INP_DROPPED) {
3342		goto out;
3343	}
3344
3345	if (so->so_snd.sb_tls_info != NULL)
3346		err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW);
3347	else
3348		err = ENXIO;
3349	if (err == 0) {
3350		counter_u64_add(ktls_ifnet_disable_ok, 1);
3351		/* ktls_set_tx_mode() drops inp wlock, so recheck flags */
3352		if ((inp->inp_flags & INP_DROPPED) == 0 &&
3353		    (tp = intotcpcb(inp)) != NULL &&
3354		    tp->t_fb->tfb_hwtls_change != NULL)
3355			(*tp->t_fb->tfb_hwtls_change)(tp, 0);
3356	} else {
3357		counter_u64_add(ktls_ifnet_disable_fail, 1);
3358	}
3359
3360out:
3361	CURVNET_SET(so->so_vnet);
3362	sorele(so);
3363	CURVNET_RESTORE();
3364	INP_WUNLOCK(inp);
3365	ktls_free(tls);
3366}
3367
3368/*
3369 * Called when re-transmits are becoming a substantial portion of the
3370 * sends on this connection.  When this happens, we transition the
3371 * connection to software TLS.  This is needed because most inline TLS
3372 * NICs keep crypto state only for in-order transmits.  This means
3373 * that to handle a TCP rexmit (which is out-of-order), the NIC must
3374 * re-DMA the entire TLS record up to and including the current
3375 * segment.  This means that when re-transmitting the last ~1448 byte
3376 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order
3377 * of magnitude more data than we are sending.  This can cause the
3378 * PCIe link to saturate well before the network, which can cause
3379 * output drops, and a general loss of capacity.
3380 */
3381void
3382ktls_disable_ifnet(void *arg)
3383{
3384	struct tcpcb *tp;
3385	struct inpcb *inp;
3386	struct socket *so;
3387	struct ktls_session *tls;
3388
3389	tp = arg;
3390	inp = tptoinpcb(tp);
3391	INP_WLOCK_ASSERT(inp);
3392	so = inp->inp_socket;
3393	SOCK_LOCK(so);
3394	tls = so->so_snd.sb_tls_info;
3395	if (tp->t_nic_ktls_xmit_dis == 1) {
3396		SOCK_UNLOCK(so);
3397		return;
3398	}
3399
3400	/*
3401	 * note that t_nic_ktls_xmit_dis is never cleared; disabling
3402	 * ifnet can only be done once per connection, so we never want
3403	 * to do it again
3404	 */
3405
3406	(void)ktls_hold(tls);
3407	soref(so);
3408	tp->t_nic_ktls_xmit_dis = 1;
3409	SOCK_UNLOCK(so);
3410	TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls);
3411	(void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task);
3412}
3413