1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2008 Isilon Systems, Inc.
5 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6 * Copyright (c) 1998 Berkeley Software Design, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. Berkeley Software Design Inc's name may not be used to endorse or
18 *    promote products derived from this software without specific prior
19 *    written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35 */
36
37/*
38 * Implementation of the `witness' lock verifier.  Originally implemented for
39 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40 * classes in FreeBSD.
41 */
42
43/*
44 *	Main Entry: witness
45 *	Pronunciation: 'wit-n&s
46 *	Function: noun
47 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
48 *	    testimony, witness, from 2wit
49 *	Date: before 12th century
50 *	1 : attestation of a fact or event : TESTIMONY
51 *	2 : one that gives evidence; specifically : one who testifies in
52 *	    a cause or before a judicial tribunal
53 *	3 : one asked to be present at a transaction so as to be able to
54 *	    testify to its having taken place
55 *	4 : one who has personal knowledge of something
56 *	5 a : something serving as evidence or proof : SIGN
57 *	  b : public affirmation by word or example of usually
58 *	      religious faith or conviction <the heroic witness to divine
59 *	      life -- Pilot>
60 *	6 capitalized : a member of the Jehovah's Witnesses
61 */
62
63/*
64 * Special rules concerning Giant and lock orders:
65 *
66 * 1) Giant must be acquired before any other mutexes.  Stated another way,
67 *    no other mutex may be held when Giant is acquired.
68 *
69 * 2) Giant must be released when blocking on a sleepable lock.
70 *
71 * This rule is less obvious, but is a result of Giant providing the same
72 * semantics as spl().  Basically, when a thread sleeps, it must release
73 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74 * 2).
75 *
76 * 3) Giant may be acquired before or after sleepable locks.
77 *
78 * This rule is also not quite as obvious.  Giant may be acquired after
79 * a sleepable lock because it is a non-sleepable lock and non-sleepable
80 * locks may always be acquired while holding a sleepable lock.  The second
81 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85 * execute.  Thus, acquiring Giant both before and after a sleepable lock
86 * will not result in a lock order reversal.
87 */
88
89#include <sys/cdefs.h>
90#include "opt_ddb.h"
91#include "opt_hwpmc_hooks.h"
92#include "opt_stack.h"
93#include "opt_witness.h"
94
95#include <sys/param.h>
96#include <sys/bus.h>
97#include <sys/kdb.h>
98#include <sys/kernel.h>
99#include <sys/ktr.h>
100#include <sys/lock.h>
101#include <sys/malloc.h>
102#include <sys/mutex.h>
103#include <sys/priv.h>
104#include <sys/proc.h>
105#include <sys/sbuf.h>
106#include <sys/sched.h>
107#include <sys/stack.h>
108#include <sys/sysctl.h>
109#include <sys/syslog.h>
110#include <sys/systm.h>
111
112#ifdef DDB
113#include <ddb/ddb.h>
114#endif
115
116#include <machine/stdarg.h>
117
118#if !defined(DDB) && !defined(STACK)
119#error "DDB or STACK options are required for WITNESS"
120#endif
121
122/* Note that these traces do not work with KTR_ALQ. */
123#if 0
124#define	KTR_WITNESS	KTR_SUBSYS
125#else
126#define	KTR_WITNESS	0
127#endif
128
129#define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
130#define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
131#define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
132#define	LI_SLEEPABLE	0x00040000	/* Lock may be held while sleeping. */
133
134#ifndef WITNESS_COUNT
135#define	WITNESS_COUNT 		1536
136#endif
137#define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
138#define	WITNESS_PENDLIST	(512 + (MAXCPU * 4))
139
140/* Allocate 256 KB of stack data space */
141#define	WITNESS_LO_DATA_COUNT	2048
142
143/* Prime, gives load factor of ~2 at full load */
144#define	WITNESS_LO_HASH_SIZE	1021
145
146/*
147 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148 * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149 * probably be safe for the most part, but it's still a SWAG.
150 */
151#define	LOCK_NCHILDREN	5
152#define	LOCK_CHILDCOUNT	2048
153
154#define	MAX_W_NAME	64
155
156#define	FULLGRAPH_SBUF_SIZE	512
157
158/*
159 * These flags go in the witness relationship matrix and describe the
160 * relationship between any two struct witness objects.
161 */
162#define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
163#define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
164#define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
165#define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
166#define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
167#define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
168#define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
169#define	WITNESS_RELATED_MASK						\
170	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
171#define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
172					  * observed. */
173#define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
174#define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
175#define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
176
177/* Descendant to ancestor flags */
178#define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
179
180/* Ancestor to descendant flags */
181#define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
182
183#define	WITNESS_INDEX_ASSERT(i)						\
184	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
185
186static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
187
188/*
189 * Lock instances.  A lock instance is the data associated with a lock while
190 * it is held by witness.  For example, a lock instance will hold the
191 * recursion count of a lock.  Lock instances are held in lists.  Spin locks
192 * are held in a per-cpu list while sleep locks are held in per-thread list.
193 */
194struct lock_instance {
195	struct lock_object	*li_lock;
196	const char		*li_file;
197	int			li_line;
198	u_int			li_flags;
199};
200
201/*
202 * A simple list type used to build the list of locks held by a thread
203 * or CPU.  We can't simply embed the list in struct lock_object since a
204 * lock may be held by more than one thread if it is a shared lock.  Locks
205 * are added to the head of the list, so we fill up each list entry from
206 * "the back" logically.  To ease some of the arithmetic, we actually fill
207 * in each list entry the normal way (children[0] then children[1], etc.) but
208 * when we traverse the list we read children[count-1] as the first entry
209 * down to children[0] as the final entry.
210 */
211struct lock_list_entry {
212	struct lock_list_entry	*ll_next;
213	struct lock_instance	ll_children[LOCK_NCHILDREN];
214	u_int			ll_count;
215};
216
217/*
218 * The main witness structure. One of these per named lock type in the system
219 * (for example, "vnode interlock").
220 */
221struct witness {
222	char  			w_name[MAX_W_NAME];
223	uint32_t 		w_index;  /* Index in the relationship matrix */
224	struct lock_class	*w_class;
225	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
226	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
227	struct witness		*w_hash_next; /* Linked list in hash buckets. */
228	const char		*w_file; /* File where last acquired */
229	uint32_t 		w_line; /* Line where last acquired */
230	uint32_t 		w_refcount;
231	uint16_t 		w_num_ancestors; /* direct/indirect
232						  * ancestor count */
233	uint16_t 		w_num_descendants; /* direct/indirect
234						    * descendant count */
235	int16_t 		w_ddb_level;
236	unsigned		w_displayed:1;
237	unsigned		w_reversed:1;
238};
239
240STAILQ_HEAD(witness_list, witness);
241
242/*
243 * The witness hash table. Keys are witness names (const char *), elements are
244 * witness objects (struct witness *).
245 */
246struct witness_hash {
247	struct witness	*wh_array[WITNESS_HASH_SIZE];
248	uint32_t	wh_size;
249	uint32_t	wh_count;
250};
251
252/*
253 * Key type for the lock order data hash table.
254 */
255struct witness_lock_order_key {
256	uint16_t	from;
257	uint16_t	to;
258};
259
260struct witness_lock_order_data {
261	struct stack			wlod_stack;
262	struct witness_lock_order_key	wlod_key;
263	struct witness_lock_order_data	*wlod_next;
264};
265
266/*
267 * The witness lock order data hash table. Keys are witness index tuples
268 * (struct witness_lock_order_key), elements are lock order data objects
269 * (struct witness_lock_order_data).
270 */
271struct witness_lock_order_hash {
272	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
273	u_int	wloh_size;
274	u_int	wloh_count;
275};
276
277struct witness_blessed {
278	const char	*b_lock1;
279	const char	*b_lock2;
280};
281
282struct witness_pendhelp {
283	const char		*wh_type;
284	struct lock_object	*wh_lock;
285};
286
287struct witness_order_list_entry {
288	const char		*w_name;
289	struct lock_class	*w_class;
290};
291
292/*
293 * Returns 0 if one of the locks is a spin lock and the other is not.
294 * Returns 1 otherwise.
295 */
296static __inline int
297witness_lock_type_equal(struct witness *w1, struct witness *w2)
298{
299
300	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
301		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
302}
303
304static __inline int
305witness_lock_order_key_equal(const struct witness_lock_order_key *a,
306    const struct witness_lock_order_key *b)
307{
308
309	return (a->from == b->from && a->to == b->to);
310}
311
312static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
313		    const char *fname);
314static void	adopt(struct witness *parent, struct witness *child);
315static int	blessed(struct witness *, struct witness *);
316static void	depart(struct witness *w);
317static struct witness	*enroll(const char *description,
318			    struct lock_class *lock_class);
319static struct lock_instance	*find_instance(struct lock_list_entry *list,
320				    const struct lock_object *lock);
321static int	isitmychild(struct witness *parent, struct witness *child);
322static int	isitmydescendant(struct witness *parent, struct witness *child);
323static void	itismychild(struct witness *parent, struct witness *child);
324static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
325static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
326static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
327static int	sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
328static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
329#ifdef DDB
330static void	witness_ddb_compute_levels(void);
331static void	witness_ddb_display(int(*)(const char *fmt, ...));
332static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
333		    struct witness *, int indent);
334static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
335		    struct witness_list *list);
336static void	witness_ddb_level_descendants(struct witness *parent, int l);
337static void	witness_ddb_list(struct thread *td);
338#endif
339static void	witness_enter_debugger(const char *msg);
340static void	witness_debugger(int cond, const char *msg);
341static void	witness_free(struct witness *m);
342static struct witness	*witness_get(void);
343static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
344static struct witness	*witness_hash_get(const char *key);
345static void	witness_hash_put(struct witness *w);
346static void	witness_init_hash_tables(void);
347static void	witness_increment_graph_generation(void);
348static void	witness_lock_list_free(struct lock_list_entry *lle);
349static struct lock_list_entry	*witness_lock_list_get(void);
350static int	witness_lock_order_add(struct witness *parent,
351		    struct witness *child);
352static int	witness_lock_order_check(struct witness *parent,
353		    struct witness *child);
354static struct witness_lock_order_data	*witness_lock_order_get(
355					    struct witness *parent,
356					    struct witness *child);
357static void	witness_list_lock(struct lock_instance *instance,
358		    int (*prnt)(const char *fmt, ...));
359static int	witness_output(const char *fmt, ...) __printflike(1, 2);
360static int	witness_output_drain(void *arg __unused, const char *data,
361		    int len);
362static int	witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
363static void	witness_setflag(struct lock_object *lock, int flag, int set);
364
365FEATURE(witness, "kernel has witness(9) support");
366
367static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
368    "Witness Locking");
369
370/*
371 * If set to 0, lock order checking is disabled.  If set to -1,
372 * witness is completely disabled.  Otherwise witness performs full
373 * lock order checking for all locks.  At runtime, lock order checking
374 * may be toggled.  However, witness cannot be reenabled once it is
375 * completely disabled.
376 */
377static int witness_watch = 1;
378SYSCTL_PROC(_debug_witness, OID_AUTO, watch,
379    CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
380    sysctl_debug_witness_watch, "I",
381    "witness is watching lock operations");
382
383#ifdef KDB
384/*
385 * When KDB is enabled and witness_kdb is 1, it will cause the system
386 * to drop into kdebug() when:
387 *	- a lock hierarchy violation occurs
388 *	- locks are held when going to sleep.
389 */
390#ifdef WITNESS_KDB
391int	witness_kdb = 1;
392#else
393int	witness_kdb = 0;
394#endif
395SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
396#endif /* KDB */
397
398#if defined(DDB) || defined(KDB)
399/*
400 * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
401 * to print a stack trace:
402 *	- a lock hierarchy violation occurs
403 *	- locks are held when going to sleep.
404 */
405int	witness_trace = 1;
406SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
407#endif /* DDB || KDB */
408
409#ifdef WITNESS_SKIPSPIN
410int	witness_skipspin = 1;
411#else
412int	witness_skipspin = 0;
413#endif
414SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
415
416int badstack_sbuf_size;
417
418int witness_count = WITNESS_COUNT;
419SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
420    &witness_count, 0, "");
421
422/*
423 * Output channel for witness messages.  By default we print to the console.
424 */
425enum witness_channel {
426	WITNESS_CONSOLE,
427	WITNESS_LOG,
428	WITNESS_NONE,
429};
430
431static enum witness_channel witness_channel = WITNESS_CONSOLE;
432SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel,
433    CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0,
434    sysctl_debug_witness_channel, "A",
435    "Output channel for warnings");
436
437/*
438 * Call this to print out the relations between locks.
439 */
440SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph,
441    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
442    sysctl_debug_witness_fullgraph, "A",
443    "Show locks relation graphs");
444
445/*
446 * Call this to print out the witness faulty stacks.
447 */
448SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks,
449    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
450    sysctl_debug_witness_badstacks, "A",
451    "Show bad witness stacks");
452
453static struct mtx w_mtx;
454
455/* w_list */
456static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
457static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
458
459/* w_typelist */
460static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
461static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
462
463/* lock list */
464static struct lock_list_entry *w_lock_list_free = NULL;
465static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
466static u_int pending_cnt;
467
468static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
469SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
470SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
471SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
472    "");
473
474static struct witness *w_data;
475static uint8_t **w_rmatrix;
476static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
477static struct witness_hash w_hash;	/* The witness hash table. */
478
479/* The lock order data hash */
480static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
481static struct witness_lock_order_data *w_lofree = NULL;
482static struct witness_lock_order_hash w_lohash;
483static int w_max_used_index = 0;
484static unsigned int w_generation = 0;
485static const char w_notrunning[] = "Witness not running\n";
486static const char w_stillcold[] = "Witness is still cold\n";
487#ifdef __i386__
488static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
489#endif
490
491static struct witness_order_list_entry order_lists[] = {
492	/*
493	 * sx locks
494	 */
495	{ "proctree", &lock_class_sx },
496	{ "allproc", &lock_class_sx },
497	{ "allprison", &lock_class_sx },
498	{ NULL, NULL },
499	/*
500	 * Various mutexes
501	 */
502	{ "Giant", &lock_class_mtx_sleep },
503	{ "pipe mutex", &lock_class_mtx_sleep },
504	{ "sigio lock", &lock_class_mtx_sleep },
505	{ "process group", &lock_class_mtx_sleep },
506#ifdef	HWPMC_HOOKS
507	{ "pmc-sleep", &lock_class_mtx_sleep },
508#endif
509	{ "process lock", &lock_class_mtx_sleep },
510	{ "session", &lock_class_mtx_sleep },
511	{ "uidinfo hash", &lock_class_rw },
512	{ "time lock", &lock_class_mtx_sleep },
513	{ NULL, NULL },
514	/*
515	 * umtx
516	 */
517	{ "umtx lock", &lock_class_mtx_sleep },
518	{ NULL, NULL },
519	/*
520	 * Sockets
521	 */
522	{ "accept", &lock_class_mtx_sleep },
523	{ "so_snd", &lock_class_mtx_sleep },
524	{ "so_rcv", &lock_class_mtx_sleep },
525	{ "sellck", &lock_class_mtx_sleep },
526	{ NULL, NULL },
527	/*
528	 * Routing
529	 */
530	{ "so_rcv", &lock_class_mtx_sleep },
531	{ "radix node head", &lock_class_rm },
532	{ "ifaddr", &lock_class_mtx_sleep },
533	{ NULL, NULL },
534	/*
535	 * IPv4 multicast:
536	 * protocol locks before interface locks, after UDP locks.
537	 */
538	{ "in_multi_sx", &lock_class_sx },
539	{ "udpinp", &lock_class_rw },
540	{ "in_multi_list_mtx", &lock_class_mtx_sleep },
541	{ "igmp_mtx", &lock_class_mtx_sleep },
542	{ "if_addr_lock", &lock_class_mtx_sleep },
543	{ NULL, NULL },
544	/*
545	 * IPv6 multicast:
546	 * protocol locks before interface locks, after UDP locks.
547	 */
548	{ "in6_multi_sx", &lock_class_sx },
549	{ "udpinp", &lock_class_rw },
550	{ "in6_multi_list_mtx", &lock_class_mtx_sleep },
551	{ "mld_mtx", &lock_class_mtx_sleep },
552	{ "if_addr_lock", &lock_class_mtx_sleep },
553	{ NULL, NULL },
554	/*
555	 * UNIX Domain Sockets
556	 */
557	{ "unp_link_rwlock", &lock_class_rw },
558	{ "unp_list_lock", &lock_class_mtx_sleep },
559	{ "unp", &lock_class_mtx_sleep },
560	{ "so_snd", &lock_class_mtx_sleep },
561	{ NULL, NULL },
562	/*
563	 * UDP/IP
564	 */
565	{ "udpinp", &lock_class_rw },
566	{ "udp", &lock_class_mtx_sleep },
567	{ "so_snd", &lock_class_mtx_sleep },
568	{ NULL, NULL },
569	/*
570	 * TCP/IP
571	 */
572	{ "tcpinp", &lock_class_rw },
573	{ "tcp", &lock_class_mtx_sleep },
574	{ "so_snd", &lock_class_mtx_sleep },
575	{ NULL, NULL },
576	/*
577	 * BPF
578	 */
579	{ "bpf global lock", &lock_class_sx },
580	{ "bpf cdev lock", &lock_class_mtx_sleep },
581	{ NULL, NULL },
582	/*
583	 * NFS server
584	 */
585	{ "nfsd_mtx", &lock_class_mtx_sleep },
586	{ "so_snd", &lock_class_mtx_sleep },
587	{ NULL, NULL },
588
589	/*
590	 * IEEE 802.11
591	 */
592	{ "802.11 com lock", &lock_class_mtx_sleep},
593	{ NULL, NULL },
594	/*
595	 * Network drivers
596	 */
597	{ "network driver", &lock_class_mtx_sleep},
598	{ NULL, NULL },
599
600	/*
601	 * Netgraph
602	 */
603	{ "ng_node", &lock_class_mtx_sleep },
604	{ "ng_worklist", &lock_class_mtx_sleep },
605	{ NULL, NULL },
606	/*
607	 * CDEV
608	 */
609	{ "vm map (system)", &lock_class_mtx_sleep },
610	{ "vnode interlock", &lock_class_mtx_sleep },
611	{ "cdev", &lock_class_mtx_sleep },
612	{ "devthrd", &lock_class_mtx_sleep },
613	{ NULL, NULL },
614	/*
615	 * VM
616	 */
617	{ "vm map (user)", &lock_class_sx },
618	{ "vm object", &lock_class_rw },
619	{ "vm page", &lock_class_mtx_sleep },
620	{ "pmap pv global", &lock_class_rw },
621	{ "pmap", &lock_class_mtx_sleep },
622	{ "pmap pv list", &lock_class_rw },
623	{ "vm page free queue", &lock_class_mtx_sleep },
624	{ "vm pagequeue", &lock_class_mtx_sleep },
625	{ NULL, NULL },
626	/*
627	 * kqueue/VFS interaction
628	 */
629	{ "kqueue", &lock_class_mtx_sleep },
630	{ "struct mount mtx", &lock_class_mtx_sleep },
631	{ "vnode interlock", &lock_class_mtx_sleep },
632	{ NULL, NULL },
633	/*
634	 * VFS namecache
635	 */
636	{ "ncvn", &lock_class_mtx_sleep },
637	{ "ncbuc", &lock_class_mtx_sleep },
638	{ "vnode interlock", &lock_class_mtx_sleep },
639	{ "ncneg", &lock_class_mtx_sleep },
640	{ NULL, NULL },
641	/*
642	 * ZFS locking
643	 */
644	{ "dn->dn_mtx", &lock_class_sx },
645	{ "dr->dt.di.dr_mtx", &lock_class_sx },
646	{ "db->db_mtx", &lock_class_sx },
647	{ NULL, NULL },
648	/*
649	 * TCP log locks
650	 */
651	{ "TCP ID tree", &lock_class_rw },
652	{ "tcp log id bucket", &lock_class_mtx_sleep },
653	{ "tcpinp", &lock_class_rw },
654	{ "TCP log expireq", &lock_class_mtx_sleep },
655	{ NULL, NULL },
656	/*
657	 * spin locks
658	 */
659#ifdef SMP
660	{ "ap boot", &lock_class_mtx_spin },
661#endif
662	{ "rm.mutex_mtx", &lock_class_mtx_spin },
663#ifdef __i386__
664	{ "cy", &lock_class_mtx_spin },
665#endif
666	{ "scc_hwmtx", &lock_class_mtx_spin },
667	{ "uart_hwmtx", &lock_class_mtx_spin },
668	{ "fast_taskqueue", &lock_class_mtx_spin },
669	{ "intr table", &lock_class_mtx_spin },
670	{ "process slock", &lock_class_mtx_spin },
671	{ "syscons video lock", &lock_class_mtx_spin },
672	{ "sleepq chain", &lock_class_mtx_spin },
673	{ "rm_spinlock", &lock_class_mtx_spin },
674	{ "turnstile chain", &lock_class_mtx_spin },
675	{ "turnstile lock", &lock_class_mtx_spin },
676	{ "sched lock", &lock_class_mtx_spin },
677	{ "td_contested", &lock_class_mtx_spin },
678	{ "callout", &lock_class_mtx_spin },
679	{ "entropy harvest mutex", &lock_class_mtx_spin },
680#ifdef SMP
681	{ "smp rendezvous", &lock_class_mtx_spin },
682#endif
683#ifdef __powerpc__
684	{ "tlb0", &lock_class_mtx_spin },
685#endif
686	{ NULL, NULL },
687	{ "sched lock", &lock_class_mtx_spin },
688#ifdef	HWPMC_HOOKS
689	{ "pmc-per-proc", &lock_class_mtx_spin },
690#endif
691	{ NULL, NULL },
692	/*
693	 * leaf locks
694	 */
695	{ "intrcnt", &lock_class_mtx_spin },
696	{ "icu", &lock_class_mtx_spin },
697#ifdef __i386__
698	{ "allpmaps", &lock_class_mtx_spin },
699	{ "descriptor tables", &lock_class_mtx_spin },
700#endif
701	{ "clk", &lock_class_mtx_spin },
702	{ "cpuset", &lock_class_mtx_spin },
703	{ "mprof lock", &lock_class_mtx_spin },
704	{ "zombie lock", &lock_class_mtx_spin },
705	{ "ALD Queue", &lock_class_mtx_spin },
706#if defined(__i386__) || defined(__amd64__)
707	{ "pcicfg", &lock_class_mtx_spin },
708	{ "NDIS thread lock", &lock_class_mtx_spin },
709#endif
710	{ "tw_osl_io_lock", &lock_class_mtx_spin },
711	{ "tw_osl_q_lock", &lock_class_mtx_spin },
712	{ "tw_cl_io_lock", &lock_class_mtx_spin },
713	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
714	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
715#ifdef	HWPMC_HOOKS
716	{ "pmc-leaf", &lock_class_mtx_spin },
717#endif
718	{ "blocked lock", &lock_class_mtx_spin },
719	{ NULL, NULL },
720	{ NULL, NULL }
721};
722
723/*
724 * Pairs of locks which have been blessed.  Witness does not complain about
725 * order problems with blessed lock pairs.  Please do not add an entry to the
726 * table without an explanatory comment.
727 */
728static struct witness_blessed blessed_list[] = {
729	/*
730	 * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
731	 * both lock orders, so a deadlock cannot happen as a result of this
732	 * LOR.
733	 */
734	{ "dirhash",	"bufwait" },
735
736	/*
737	 * A UFS vnode may be locked in vget() while a buffer belonging to the
738	 * parent directory vnode is locked.
739	 */
740	{ "ufs",	"bufwait" },
741
742	/*
743	 * The tarfs decompression stream vnode may be locked while a
744	 * buffer belonging to a tarfs data vnode is locked.
745	 */
746	{ "tarfs",	"bufwait" },
747};
748
749/*
750 * This global is set to 0 once it becomes safe to use the witness code.
751 */
752static int witness_cold = 1;
753
754/*
755 * This global is set to 1 once the static lock orders have been enrolled
756 * so that a warning can be issued for any spin locks enrolled later.
757 */
758static int witness_spin_warn = 0;
759
760/* Trim useless garbage from filenames. */
761static const char *
762fixup_filename(const char *file)
763{
764
765	if (file == NULL)
766		return (NULL);
767	while (strncmp(file, "../", 3) == 0)
768		file += 3;
769	return (file);
770}
771
772/*
773 * Calculate the size of early witness structures.
774 */
775int
776witness_startup_count(void)
777{
778	int sz;
779
780	sz = sizeof(struct witness) * witness_count;
781	sz += sizeof(*w_rmatrix) * (witness_count + 1);
782	sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
783	    (witness_count + 1);
784
785	return (sz);
786}
787
788/*
789 * The WITNESS-enabled diagnostic code.  Note that the witness code does
790 * assume that the early boot is single-threaded at least until after this
791 * routine is completed.
792 */
793void
794witness_startup(void *mem)
795{
796	struct lock_object *lock;
797	struct witness_order_list_entry *order;
798	struct witness *w, *w1;
799	uintptr_t p;
800	int i;
801
802	p = (uintptr_t)mem;
803	w_data = (void *)p;
804	p += sizeof(struct witness) * witness_count;
805
806	w_rmatrix = (void *)p;
807	p += sizeof(*w_rmatrix) * (witness_count + 1);
808
809	for (i = 0; i < witness_count + 1; i++) {
810		w_rmatrix[i] = (void *)p;
811		p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
812	}
813	badstack_sbuf_size = witness_count * 256;
814
815	/*
816	 * We have to release Giant before initializing its witness
817	 * structure so that WITNESS doesn't get confused.
818	 */
819	mtx_unlock(&Giant);
820	mtx_assert(&Giant, MA_NOTOWNED);
821
822	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
823	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
824	    MTX_NOWITNESS | MTX_NOPROFILE);
825	for (i = witness_count - 1; i >= 0; i--) {
826		w = &w_data[i];
827		memset(w, 0, sizeof(*w));
828		w_data[i].w_index = i;	/* Witness index never changes. */
829		witness_free(w);
830	}
831	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
832	    ("%s: Invalid list of free witness objects", __func__));
833
834	/* Witness with index 0 is not used to aid in debugging. */
835	STAILQ_REMOVE_HEAD(&w_free, w_list);
836	w_free_cnt--;
837
838	for (i = 0; i < witness_count; i++) {
839		memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
840		    (witness_count + 1));
841	}
842
843	for (i = 0; i < LOCK_CHILDCOUNT; i++)
844		witness_lock_list_free(&w_locklistdata[i]);
845	witness_init_hash_tables();
846
847	/* First add in all the specified order lists. */
848	for (order = order_lists; order->w_name != NULL; order++) {
849		w = enroll(order->w_name, order->w_class);
850		if (w == NULL)
851			continue;
852		w->w_file = "order list";
853		for (order++; order->w_name != NULL; order++) {
854			w1 = enroll(order->w_name, order->w_class);
855			if (w1 == NULL)
856				continue;
857			w1->w_file = "order list";
858			itismychild(w, w1);
859			w = w1;
860		}
861	}
862	witness_spin_warn = 1;
863
864	/* Iterate through all locks and add them to witness. */
865	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
866		lock = pending_locks[i].wh_lock;
867		KASSERT(lock->lo_flags & LO_WITNESS,
868		    ("%s: lock %s is on pending list but not LO_WITNESS",
869		    __func__, lock->lo_name));
870		lock->lo_witness = enroll(pending_locks[i].wh_type,
871		    LOCK_CLASS(lock));
872	}
873
874	/* Mark the witness code as being ready for use. */
875	witness_cold = 0;
876
877	mtx_lock(&Giant);
878}
879
880void
881witness_init(struct lock_object *lock, const char *type)
882{
883	struct lock_class *class;
884
885	/* Various sanity checks. */
886	class = LOCK_CLASS(lock);
887	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
888	    (class->lc_flags & LC_RECURSABLE) == 0)
889		kassert_panic("%s: lock (%s) %s can not be recursable",
890		    __func__, class->lc_name, lock->lo_name);
891	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
892	    (class->lc_flags & LC_SLEEPABLE) == 0)
893		kassert_panic("%s: lock (%s) %s can not be sleepable",
894		    __func__, class->lc_name, lock->lo_name);
895	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
896	    (class->lc_flags & LC_UPGRADABLE) == 0)
897		kassert_panic("%s: lock (%s) %s can not be upgradable",
898		    __func__, class->lc_name, lock->lo_name);
899
900	/*
901	 * If we shouldn't watch this lock, then just clear lo_witness.
902	 * Otherwise, if witness_cold is set, then it is too early to
903	 * enroll this lock, so defer it to witness_initialize() by adding
904	 * it to the pending_locks list.  If it is not too early, then enroll
905	 * the lock now.
906	 */
907	if (witness_watch < 1 || KERNEL_PANICKED() ||
908	    (lock->lo_flags & LO_WITNESS) == 0)
909		lock->lo_witness = NULL;
910	else if (witness_cold) {
911		pending_locks[pending_cnt].wh_lock = lock;
912		pending_locks[pending_cnt++].wh_type = type;
913		if (pending_cnt > WITNESS_PENDLIST)
914			panic("%s: pending locks list is too small, "
915			    "increase WITNESS_PENDLIST\n",
916			    __func__);
917	} else
918		lock->lo_witness = enroll(type, class);
919}
920
921void
922witness_destroy(struct lock_object *lock)
923{
924	struct lock_class *class;
925	struct witness *w;
926
927	class = LOCK_CLASS(lock);
928
929	if (witness_cold)
930		panic("lock (%s) %s destroyed while witness_cold",
931		    class->lc_name, lock->lo_name);
932
933	/* XXX: need to verify that no one holds the lock */
934	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
935		return;
936	w = lock->lo_witness;
937
938	mtx_lock_spin(&w_mtx);
939	MPASS(w->w_refcount > 0);
940	w->w_refcount--;
941
942	if (w->w_refcount == 0)
943		depart(w);
944	mtx_unlock_spin(&w_mtx);
945}
946
947#ifdef DDB
948static void
949witness_ddb_compute_levels(void)
950{
951	struct witness *w;
952
953	/*
954	 * First clear all levels.
955	 */
956	STAILQ_FOREACH(w, &w_all, w_list)
957		w->w_ddb_level = -1;
958
959	/*
960	 * Look for locks with no parents and level all their descendants.
961	 */
962	STAILQ_FOREACH(w, &w_all, w_list) {
963		/* If the witness has ancestors (is not a root), skip it. */
964		if (w->w_num_ancestors > 0)
965			continue;
966		witness_ddb_level_descendants(w, 0);
967	}
968}
969
970static void
971witness_ddb_level_descendants(struct witness *w, int l)
972{
973	int i;
974
975	if (w->w_ddb_level >= l)
976		return;
977
978	w->w_ddb_level = l;
979	l++;
980
981	for (i = 1; i <= w_max_used_index; i++) {
982		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
983			witness_ddb_level_descendants(&w_data[i], l);
984	}
985}
986
987static void
988witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
989    struct witness *w, int indent)
990{
991	int i;
992
993 	for (i = 0; i < indent; i++)
994 		prnt(" ");
995	prnt("%s (type: %s, depth: %d, active refs: %d)",
996	     w->w_name, w->w_class->lc_name,
997	     w->w_ddb_level, w->w_refcount);
998 	if (w->w_displayed) {
999 		prnt(" -- (already displayed)\n");
1000 		return;
1001 	}
1002 	w->w_displayed = 1;
1003	if (w->w_file != NULL && w->w_line != 0)
1004		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
1005		    w->w_line);
1006	else
1007		prnt(" -- never acquired\n");
1008	indent++;
1009	WITNESS_INDEX_ASSERT(w->w_index);
1010	for (i = 1; i <= w_max_used_index; i++) {
1011		if (db_pager_quit)
1012			return;
1013		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1014			witness_ddb_display_descendants(prnt, &w_data[i],
1015			    indent);
1016	}
1017}
1018
1019static void
1020witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1021    struct witness_list *list)
1022{
1023	struct witness *w;
1024
1025	STAILQ_FOREACH(w, list, w_typelist) {
1026		if (w->w_file == NULL || w->w_ddb_level > 0)
1027			continue;
1028
1029		/* This lock has no anscestors - display its descendants. */
1030		witness_ddb_display_descendants(prnt, w, 0);
1031		if (db_pager_quit)
1032			return;
1033	}
1034}
1035
1036static void
1037witness_ddb_display(int(*prnt)(const char *fmt, ...))
1038{
1039	struct witness *w;
1040
1041	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1042	witness_ddb_compute_levels();
1043
1044	/* Clear all the displayed flags. */
1045	STAILQ_FOREACH(w, &w_all, w_list)
1046		w->w_displayed = 0;
1047
1048	/*
1049	 * First, handle sleep locks which have been acquired at least
1050	 * once.
1051	 */
1052	prnt("Sleep locks:\n");
1053	witness_ddb_display_list(prnt, &w_sleep);
1054	if (db_pager_quit)
1055		return;
1056
1057	/*
1058	 * Now do spin locks which have been acquired at least once.
1059	 */
1060	prnt("\nSpin locks:\n");
1061	witness_ddb_display_list(prnt, &w_spin);
1062	if (db_pager_quit)
1063		return;
1064
1065	/*
1066	 * Finally, any locks which have not been acquired yet.
1067	 */
1068	prnt("\nLocks which were never acquired:\n");
1069	STAILQ_FOREACH(w, &w_all, w_list) {
1070		if (w->w_file != NULL || w->w_refcount == 0)
1071			continue;
1072		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1073		    w->w_class->lc_name, w->w_ddb_level);
1074		if (db_pager_quit)
1075			return;
1076	}
1077}
1078#endif /* DDB */
1079
1080int
1081witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1082{
1083
1084	if (witness_watch == -1 || KERNEL_PANICKED())
1085		return (0);
1086
1087	/* Require locks that witness knows about. */
1088	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1089	    lock2->lo_witness == NULL)
1090		return (EINVAL);
1091
1092	mtx_assert(&w_mtx, MA_NOTOWNED);
1093	mtx_lock_spin(&w_mtx);
1094
1095	/*
1096	 * If we already have either an explicit or implied lock order that
1097	 * is the other way around, then return an error.
1098	 */
1099	if (witness_watch &&
1100	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1101		mtx_unlock_spin(&w_mtx);
1102		return (EDOOFUS);
1103	}
1104
1105	/* Try to add the new order. */
1106	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1107	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1108	itismychild(lock1->lo_witness, lock2->lo_witness);
1109	mtx_unlock_spin(&w_mtx);
1110	return (0);
1111}
1112
1113void
1114witness_checkorder(struct lock_object *lock, int flags, const char *file,
1115    int line, struct lock_object *interlock)
1116{
1117	struct lock_list_entry *lock_list, *lle;
1118	struct lock_instance *lock1, *lock2, *plock;
1119	struct lock_class *class, *iclass;
1120	struct witness *w, *w1;
1121	struct thread *td;
1122	int i, j;
1123
1124	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1125	    KERNEL_PANICKED())
1126		return;
1127
1128	w = lock->lo_witness;
1129	class = LOCK_CLASS(lock);
1130	td = curthread;
1131
1132	if (class->lc_flags & LC_SLEEPLOCK) {
1133		/*
1134		 * Since spin locks include a critical section, this check
1135		 * implicitly enforces a lock order of all sleep locks before
1136		 * all spin locks.
1137		 */
1138		if (td->td_critnest != 0 && !kdb_active)
1139			kassert_panic("acquiring blockable sleep lock with "
1140			    "spinlock or critical section held (%s) %s @ %s:%d",
1141			    class->lc_name, lock->lo_name,
1142			    fixup_filename(file), line);
1143
1144		/*
1145		 * If this is the first lock acquired then just return as
1146		 * no order checking is needed.
1147		 */
1148		lock_list = td->td_sleeplocks;
1149		if (lock_list == NULL || lock_list->ll_count == 0)
1150			return;
1151	} else {
1152		/*
1153		 * If this is the first lock, just return as no order
1154		 * checking is needed.  Avoid problems with thread
1155		 * migration pinning the thread while checking if
1156		 * spinlocks are held.  If at least one spinlock is held
1157		 * the thread is in a safe path and it is allowed to
1158		 * unpin it.
1159		 */
1160		sched_pin();
1161		lock_list = PCPU_GET(spinlocks);
1162		if (lock_list == NULL || lock_list->ll_count == 0) {
1163			sched_unpin();
1164			return;
1165		}
1166		sched_unpin();
1167	}
1168
1169	/*
1170	 * Check to see if we are recursing on a lock we already own.  If
1171	 * so, make sure that we don't mismatch exclusive and shared lock
1172	 * acquires.
1173	 */
1174	lock1 = find_instance(lock_list, lock);
1175	if (lock1 != NULL) {
1176		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1177		    (flags & LOP_EXCLUSIVE) == 0) {
1178			witness_output("shared lock of (%s) %s @ %s:%d\n",
1179			    class->lc_name, lock->lo_name,
1180			    fixup_filename(file), line);
1181			witness_output("while exclusively locked from %s:%d\n",
1182			    fixup_filename(lock1->li_file), lock1->li_line);
1183			kassert_panic("excl->share");
1184		}
1185		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1186		    (flags & LOP_EXCLUSIVE) != 0) {
1187			witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1188			    class->lc_name, lock->lo_name,
1189			    fixup_filename(file), line);
1190			witness_output("while share locked from %s:%d\n",
1191			    fixup_filename(lock1->li_file), lock1->li_line);
1192			kassert_panic("share->excl");
1193		}
1194		return;
1195	}
1196
1197	/* Warn if the interlock is not locked exactly once. */
1198	if (interlock != NULL) {
1199		iclass = LOCK_CLASS(interlock);
1200		lock1 = find_instance(lock_list, interlock);
1201		if (lock1 == NULL)
1202			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1203			    iclass->lc_name, interlock->lo_name,
1204			    fixup_filename(file), line);
1205		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1206			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1207			    iclass->lc_name, interlock->lo_name,
1208			    fixup_filename(file), line);
1209	}
1210
1211	/*
1212	 * Find the previously acquired lock, but ignore interlocks.
1213	 */
1214	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1215	if (interlock != NULL && plock->li_lock == interlock) {
1216		if (lock_list->ll_count > 1)
1217			plock =
1218			    &lock_list->ll_children[lock_list->ll_count - 2];
1219		else {
1220			lle = lock_list->ll_next;
1221
1222			/*
1223			 * The interlock is the only lock we hold, so
1224			 * simply return.
1225			 */
1226			if (lle == NULL)
1227				return;
1228			plock = &lle->ll_children[lle->ll_count - 1];
1229		}
1230	}
1231
1232	/*
1233	 * Try to perform most checks without a lock.  If this succeeds we
1234	 * can skip acquiring the lock and return success.  Otherwise we redo
1235	 * the check with the lock held to handle races with concurrent updates.
1236	 */
1237	w1 = plock->li_lock->lo_witness;
1238	if (witness_lock_order_check(w1, w))
1239		return;
1240
1241	mtx_lock_spin(&w_mtx);
1242	if (witness_lock_order_check(w1, w)) {
1243		mtx_unlock_spin(&w_mtx);
1244		return;
1245	}
1246	witness_lock_order_add(w1, w);
1247
1248	/*
1249	 * Check for duplicate locks of the same type.  Note that we only
1250	 * have to check for this on the last lock we just acquired.  Any
1251	 * other cases will be caught as lock order violations.
1252	 */
1253	if (w1 == w) {
1254		i = w->w_index;
1255		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1256		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1257		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1258			w->w_reversed = 1;
1259			mtx_unlock_spin(&w_mtx);
1260			witness_output(
1261			    "acquiring duplicate lock of same type: \"%s\"\n",
1262			    w->w_name);
1263			witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1264			    fixup_filename(plock->li_file), plock->li_line);
1265			witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1266			    fixup_filename(file), line);
1267			witness_debugger(1, __func__);
1268		} else
1269			mtx_unlock_spin(&w_mtx);
1270		return;
1271	}
1272	mtx_assert(&w_mtx, MA_OWNED);
1273
1274	/*
1275	 * If we know that the lock we are acquiring comes after
1276	 * the lock we most recently acquired in the lock order tree,
1277	 * then there is no need for any further checks.
1278	 */
1279	if (isitmychild(w1, w))
1280		goto out;
1281
1282	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1283		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1284			struct stack pstack;
1285			bool pstackv, trace;
1286
1287			MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1288			lock1 = &lle->ll_children[i];
1289
1290			/*
1291			 * Ignore the interlock.
1292			 */
1293			if (interlock == lock1->li_lock)
1294				continue;
1295
1296			/*
1297			 * If this lock doesn't undergo witness checking,
1298			 * then skip it.
1299			 */
1300			w1 = lock1->li_lock->lo_witness;
1301			if (w1 == NULL) {
1302				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1303				    ("lock missing witness structure"));
1304				continue;
1305			}
1306
1307			/*
1308			 * If we are locking Giant and this is a sleepable
1309			 * lock, then skip it.
1310			 */
1311			if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
1312			    lock == &Giant.lock_object)
1313				continue;
1314
1315			/*
1316			 * If we are locking a sleepable lock and this lock
1317			 * is Giant, then skip it.
1318			 */
1319			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1320			    (flags & LOP_NOSLEEP) == 0 &&
1321			    lock1->li_lock == &Giant.lock_object)
1322				continue;
1323
1324			/*
1325			 * If we are locking a sleepable lock and this lock
1326			 * isn't sleepable, we want to treat it as a lock
1327			 * order violation to enfore a general lock order of
1328			 * sleepable locks before non-sleepable locks.
1329			 */
1330			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1331			    (flags & LOP_NOSLEEP) == 0 &&
1332			    (lock1->li_flags & LI_SLEEPABLE) == 0)
1333				goto reversal;
1334
1335			/*
1336			 * If we are locking Giant and this is a non-sleepable
1337			 * lock, then treat it as a reversal.
1338			 */
1339			if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
1340			    lock == &Giant.lock_object)
1341				goto reversal;
1342
1343			/*
1344			 * Check the lock order hierarchy for a reveresal.
1345			 */
1346			if (!isitmydescendant(w, w1))
1347				continue;
1348		reversal:
1349
1350			/*
1351			 * We have a lock order violation, check to see if it
1352			 * is allowed or has already been yelled about.
1353			 */
1354
1355			/* Bail if this violation is known */
1356			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1357				goto out;
1358
1359			/* Record this as a violation */
1360			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1361			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1362			w->w_reversed = w1->w_reversed = 1;
1363			witness_increment_graph_generation();
1364
1365			/*
1366			 * If the lock order is blessed, bail before logging
1367			 * anything.  We don't look for other lock order
1368			 * violations though, which may be a bug.
1369			 */
1370			if (blessed(w, w1))
1371				goto out;
1372
1373			trace = atomic_load_int(&witness_trace);
1374			if (trace) {
1375				struct witness_lock_order_data *data;
1376
1377				pstackv = false;
1378				data = witness_lock_order_get(w, w1);
1379				if (data != NULL) {
1380					stack_copy(&data->wlod_stack,
1381					    &pstack);
1382					pstackv = true;
1383				}
1384			}
1385			mtx_unlock_spin(&w_mtx);
1386
1387#ifdef WITNESS_NO_VNODE
1388			/*
1389			 * There are known LORs between VNODE locks. They are
1390			 * not an indication of a bug. VNODE locks are flagged
1391			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1392			 * is between 2 VNODE locks.
1393			 */
1394			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1395			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1396				return;
1397#endif
1398
1399			/*
1400			 * Ok, yell about it.
1401			 */
1402			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1403			    (flags & LOP_NOSLEEP) == 0 &&
1404			    (lock1->li_flags & LI_SLEEPABLE) == 0)
1405				witness_output(
1406		"lock order reversal: (sleepable after non-sleepable)\n");
1407			else if ((lock1->li_flags & LI_SLEEPABLE) == 0
1408			    && lock == &Giant.lock_object)
1409				witness_output(
1410		"lock order reversal: (Giant after non-sleepable)\n");
1411			else
1412				witness_output("lock order reversal:\n");
1413
1414			/*
1415			 * Try to locate an earlier lock with
1416			 * witness w in our list.
1417			 */
1418			do {
1419				lock2 = &lle->ll_children[i];
1420				MPASS(lock2->li_lock != NULL);
1421				if (lock2->li_lock->lo_witness == w)
1422					break;
1423				if (i == 0 && lle->ll_next != NULL) {
1424					lle = lle->ll_next;
1425					i = lle->ll_count - 1;
1426					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1427				} else
1428					i--;
1429			} while (i >= 0);
1430			if (i < 0) {
1431				witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1432				    lock1->li_lock, lock1->li_lock->lo_name,
1433				    w1->w_name, w1->w_class->lc_name,
1434				    fixup_filename(lock1->li_file),
1435				    lock1->li_line);
1436				witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1437				    lock, lock->lo_name, w->w_name,
1438				    w->w_class->lc_name, fixup_filename(file),
1439				    line);
1440			} else {
1441				struct witness *w2 = lock2->li_lock->lo_witness;
1442
1443				witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1444				    lock2->li_lock, lock2->li_lock->lo_name,
1445				    w2->w_name, w2->w_class->lc_name,
1446				    fixup_filename(lock2->li_file),
1447				    lock2->li_line);
1448				witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1449				    lock1->li_lock, lock1->li_lock->lo_name,
1450				    w1->w_name, w1->w_class->lc_name,
1451				    fixup_filename(lock1->li_file),
1452				    lock1->li_line);
1453				witness_output(" 3rd %p %s (%s, %s) @ %s:%d\n", lock,
1454				    lock->lo_name, w->w_name,
1455				    w->w_class->lc_name, fixup_filename(file),
1456				    line);
1457			}
1458			if (trace) {
1459				char buf[64];
1460				struct sbuf sb;
1461
1462				sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1463				sbuf_set_drain(&sb, witness_output_drain,
1464				    NULL);
1465
1466				if (pstackv) {
1467					sbuf_printf(&sb,
1468				    "lock order %s -> %s established at:\n",
1469					    w->w_name, w1->w_name);
1470					stack_sbuf_print_flags(&sb, &pstack,
1471					    M_NOWAIT, STACK_SBUF_FMT_LONG);
1472				}
1473
1474				sbuf_printf(&sb,
1475				    "lock order %s -> %s attempted at:\n",
1476				    w1->w_name, w->w_name);
1477				stack_save(&pstack);
1478				stack_sbuf_print_flags(&sb, &pstack, M_NOWAIT,
1479				    STACK_SBUF_FMT_LONG);
1480
1481				sbuf_finish(&sb);
1482				sbuf_delete(&sb);
1483			}
1484			witness_enter_debugger(__func__);
1485			return;
1486		}
1487	}
1488
1489	/*
1490	 * If requested, build a new lock order.  However, don't build a new
1491	 * relationship between a sleepable lock and Giant if it is in the
1492	 * wrong direction.  The correct lock order is that sleepable locks
1493	 * always come before Giant.
1494	 */
1495	if (flags & LOP_NEWORDER &&
1496	    !(plock->li_lock == &Giant.lock_object &&
1497	    (lock->lo_flags & LO_SLEEPABLE) != 0 &&
1498	    (flags & LOP_NOSLEEP) == 0)) {
1499		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1500		    w->w_name, plock->li_lock->lo_witness->w_name);
1501		itismychild(plock->li_lock->lo_witness, w);
1502	}
1503out:
1504	mtx_unlock_spin(&w_mtx);
1505}
1506
1507void
1508witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1509{
1510	struct lock_list_entry **lock_list, *lle;
1511	struct lock_instance *instance;
1512	struct witness *w;
1513	struct thread *td;
1514
1515	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1516	    KERNEL_PANICKED())
1517		return;
1518	w = lock->lo_witness;
1519	td = curthread;
1520
1521	/* Determine lock list for this lock. */
1522	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1523		lock_list = &td->td_sleeplocks;
1524	else
1525		lock_list = PCPU_PTR(spinlocks);
1526
1527	/* Check to see if we are recursing on a lock we already own. */
1528	instance = find_instance(*lock_list, lock);
1529	if (instance != NULL) {
1530		instance->li_flags++;
1531		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1532		    td->td_proc->p_pid, lock->lo_name,
1533		    instance->li_flags & LI_RECURSEMASK);
1534		instance->li_file = file;
1535		instance->li_line = line;
1536		return;
1537	}
1538
1539	/* Update per-witness last file and line acquire. */
1540	w->w_file = file;
1541	w->w_line = line;
1542
1543	/* Find the next open lock instance in the list and fill it. */
1544	lle = *lock_list;
1545	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1546		lle = witness_lock_list_get();
1547		if (lle == NULL)
1548			return;
1549		lle->ll_next = *lock_list;
1550		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1551		    td->td_proc->p_pid, lle);
1552		*lock_list = lle;
1553	}
1554	instance = &lle->ll_children[lle->ll_count++];
1555	instance->li_lock = lock;
1556	instance->li_line = line;
1557	instance->li_file = file;
1558	instance->li_flags = 0;
1559	if ((flags & LOP_EXCLUSIVE) != 0)
1560		instance->li_flags |= LI_EXCLUSIVE;
1561	if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
1562		instance->li_flags |= LI_SLEEPABLE;
1563	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1564	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1565}
1566
1567void
1568witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1569{
1570	struct lock_instance *instance;
1571	struct lock_class *class;
1572
1573	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1574	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1575		return;
1576	class = LOCK_CLASS(lock);
1577	if (witness_watch) {
1578		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1579			kassert_panic(
1580			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1581			    class->lc_name, lock->lo_name,
1582			    fixup_filename(file), line);
1583		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1584			kassert_panic(
1585			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1586			    class->lc_name, lock->lo_name,
1587			    fixup_filename(file), line);
1588	}
1589	instance = find_instance(curthread->td_sleeplocks, lock);
1590	if (instance == NULL) {
1591		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1592		    class->lc_name, lock->lo_name,
1593		    fixup_filename(file), line);
1594		return;
1595	}
1596	if (witness_watch) {
1597		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1598			kassert_panic(
1599			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1600			    class->lc_name, lock->lo_name,
1601			    fixup_filename(file), line);
1602		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1603			kassert_panic(
1604			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1605			    class->lc_name, lock->lo_name,
1606			    instance->li_flags & LI_RECURSEMASK,
1607			    fixup_filename(file), line);
1608	}
1609	instance->li_flags |= LI_EXCLUSIVE;
1610}
1611
1612void
1613witness_downgrade(struct lock_object *lock, int flags, const char *file,
1614    int line)
1615{
1616	struct lock_instance *instance;
1617	struct lock_class *class;
1618
1619	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1620	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1621		return;
1622	class = LOCK_CLASS(lock);
1623	if (witness_watch) {
1624		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1625			kassert_panic(
1626			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1627			    class->lc_name, lock->lo_name,
1628			    fixup_filename(file), line);
1629		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1630			kassert_panic(
1631			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1632			    class->lc_name, lock->lo_name,
1633			    fixup_filename(file), line);
1634	}
1635	instance = find_instance(curthread->td_sleeplocks, lock);
1636	if (instance == NULL) {
1637		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1638		    class->lc_name, lock->lo_name,
1639		    fixup_filename(file), line);
1640		return;
1641	}
1642	if (witness_watch) {
1643		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1644			kassert_panic(
1645			    "downgrade of shared lock (%s) %s @ %s:%d",
1646			    class->lc_name, lock->lo_name,
1647			    fixup_filename(file), line);
1648		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1649			kassert_panic(
1650			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1651			    class->lc_name, lock->lo_name,
1652			    instance->li_flags & LI_RECURSEMASK,
1653			    fixup_filename(file), line);
1654	}
1655	instance->li_flags &= ~LI_EXCLUSIVE;
1656}
1657
1658void
1659witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1660{
1661	struct lock_list_entry **lock_list, *lle;
1662	struct lock_instance *instance;
1663	struct lock_class *class;
1664	struct thread *td;
1665	register_t s;
1666	int i, j;
1667
1668	if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
1669		return;
1670	td = curthread;
1671	class = LOCK_CLASS(lock);
1672
1673	/* Find lock instance associated with this lock. */
1674	if (class->lc_flags & LC_SLEEPLOCK)
1675		lock_list = &td->td_sleeplocks;
1676	else
1677		lock_list = PCPU_PTR(spinlocks);
1678	lle = *lock_list;
1679	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1680		for (i = 0; i < (*lock_list)->ll_count; i++) {
1681			instance = &(*lock_list)->ll_children[i];
1682			if (instance->li_lock == lock)
1683				goto found;
1684		}
1685
1686	/*
1687	 * When disabling WITNESS through witness_watch we could end up in
1688	 * having registered locks in the td_sleeplocks queue.
1689	 * We have to make sure we flush these queues, so just search for
1690	 * eventual register locks and remove them.
1691	 */
1692	if (witness_watch > 0) {
1693		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1694		    lock->lo_name, fixup_filename(file), line);
1695		return;
1696	} else {
1697		return;
1698	}
1699found:
1700
1701	/* First, check for shared/exclusive mismatches. */
1702	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1703	    (flags & LOP_EXCLUSIVE) == 0) {
1704		witness_output("shared unlock of (%s) %s @ %s:%d\n",
1705		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1706		witness_output("while exclusively locked from %s:%d\n",
1707		    fixup_filename(instance->li_file), instance->li_line);
1708		kassert_panic("excl->ushare");
1709	}
1710	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1711	    (flags & LOP_EXCLUSIVE) != 0) {
1712		witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1713		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1714		witness_output("while share locked from %s:%d\n",
1715		    fixup_filename(instance->li_file),
1716		    instance->li_line);
1717		kassert_panic("share->uexcl");
1718	}
1719	/* If we are recursed, unrecurse. */
1720	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1721		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1722		    td->td_proc->p_pid, instance->li_lock->lo_name,
1723		    instance->li_flags);
1724		instance->li_flags--;
1725		return;
1726	}
1727	/* The lock is now being dropped, check for NORELEASE flag */
1728	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1729		witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1730		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1731		kassert_panic("lock marked norelease");
1732	}
1733
1734	/* Otherwise, remove this item from the list. */
1735	s = intr_disable();
1736	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1737	    td->td_proc->p_pid, instance->li_lock->lo_name,
1738	    (*lock_list)->ll_count - 1);
1739	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1740		(*lock_list)->ll_children[j] =
1741		    (*lock_list)->ll_children[j + 1];
1742	(*lock_list)->ll_count--;
1743	intr_restore(s);
1744
1745	/*
1746	 * In order to reduce contention on w_mtx, we want to keep always an
1747	 * head object into lists so that frequent allocation from the
1748	 * free witness pool (and subsequent locking) is avoided.
1749	 * In order to maintain the current code simple, when the head
1750	 * object is totally unloaded it means also that we do not have
1751	 * further objects in the list, so the list ownership needs to be
1752	 * hand over to another object if the current head needs to be freed.
1753	 */
1754	if ((*lock_list)->ll_count == 0) {
1755		if (*lock_list == lle) {
1756			if (lle->ll_next == NULL)
1757				return;
1758		} else
1759			lle = *lock_list;
1760		*lock_list = lle->ll_next;
1761		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1762		    td->td_proc->p_pid, lle);
1763		witness_lock_list_free(lle);
1764	}
1765}
1766
1767void
1768witness_thread_exit(struct thread *td)
1769{
1770	struct lock_list_entry *lle;
1771	int i, n;
1772
1773	lle = td->td_sleeplocks;
1774	if (lle == NULL || KERNEL_PANICKED())
1775		return;
1776	if (lle->ll_count != 0) {
1777		for (n = 0; lle != NULL; lle = lle->ll_next)
1778			for (i = lle->ll_count - 1; i >= 0; i--) {
1779				if (n == 0)
1780					witness_output(
1781		    "Thread %p exiting with the following locks held:\n", td);
1782				n++;
1783				witness_list_lock(&lle->ll_children[i],
1784				    witness_output);
1785
1786			}
1787		kassert_panic(
1788		    "Thread %p cannot exit while holding sleeplocks\n", td);
1789	}
1790	witness_lock_list_free(lle);
1791}
1792
1793/*
1794 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1795 * exempt Giant and sleepable locks from the checks as well.  If any
1796 * non-exempt locks are held, then a supplied message is printed to the
1797 * output channel along with a list of the offending locks.  If indicated in the
1798 * flags then a failure results in a panic as well.
1799 */
1800int
1801witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1802{
1803	struct lock_list_entry *lock_list, *lle;
1804	struct lock_instance *lock1;
1805	struct thread *td;
1806	va_list ap;
1807	int i, n;
1808
1809	if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
1810		return (0);
1811	n = 0;
1812	td = curthread;
1813	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1814		for (i = lle->ll_count - 1; i >= 0; i--) {
1815			lock1 = &lle->ll_children[i];
1816			if (lock1->li_lock == lock)
1817				continue;
1818			if (flags & WARN_GIANTOK &&
1819			    lock1->li_lock == &Giant.lock_object)
1820				continue;
1821			if (flags & WARN_SLEEPOK &&
1822			    (lock1->li_flags & LI_SLEEPABLE) != 0)
1823				continue;
1824			if (n == 0) {
1825				va_start(ap, fmt);
1826				vprintf(fmt, ap);
1827				va_end(ap);
1828				printf(" with the following %slocks held:\n",
1829				    (flags & WARN_SLEEPOK) != 0 ?
1830				    "non-sleepable " : "");
1831			}
1832			n++;
1833			witness_list_lock(lock1, printf);
1834		}
1835
1836	/*
1837	 * Pin the thread in order to avoid problems with thread migration.
1838	 * Once that all verifies are passed about spinlocks ownership,
1839	 * the thread is in a safe path and it can be unpinned.
1840	 */
1841	sched_pin();
1842	lock_list = PCPU_GET(spinlocks);
1843	if (lock_list != NULL && lock_list->ll_count != 0) {
1844		sched_unpin();
1845
1846		/*
1847		 * We should only have one spinlock and as long as
1848		 * the flags cannot match for this locks class,
1849		 * check if the first spinlock is the one curthread
1850		 * should hold.
1851		 */
1852		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1853		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1854		    lock1->li_lock == lock && n == 0)
1855			return (0);
1856
1857		va_start(ap, fmt);
1858		vprintf(fmt, ap);
1859		va_end(ap);
1860		printf(" with the following %slocks held:\n",
1861		    (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1862		n += witness_list_locks(&lock_list, printf);
1863	} else
1864		sched_unpin();
1865	if (flags & WARN_PANIC && n)
1866		kassert_panic("%s", __func__);
1867	else
1868		witness_debugger(n, __func__);
1869	return (n);
1870}
1871
1872const char *
1873witness_file(struct lock_object *lock)
1874{
1875	struct witness *w;
1876
1877	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1878		return ("?");
1879	w = lock->lo_witness;
1880	return (w->w_file);
1881}
1882
1883int
1884witness_line(struct lock_object *lock)
1885{
1886	struct witness *w;
1887
1888	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1889		return (0);
1890	w = lock->lo_witness;
1891	return (w->w_line);
1892}
1893
1894static struct witness *
1895enroll(const char *description, struct lock_class *lock_class)
1896{
1897	struct witness *w;
1898
1899	MPASS(description != NULL);
1900
1901	if (witness_watch == -1 || KERNEL_PANICKED())
1902		return (NULL);
1903	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1904		if (witness_skipspin)
1905			return (NULL);
1906	} else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1907		kassert_panic("lock class %s is not sleep or spin",
1908		    lock_class->lc_name);
1909		return (NULL);
1910	}
1911
1912	mtx_lock_spin(&w_mtx);
1913	w = witness_hash_get(description);
1914	if (w)
1915		goto found;
1916	if ((w = witness_get()) == NULL)
1917		return (NULL);
1918	MPASS(strlen(description) < MAX_W_NAME);
1919	strcpy(w->w_name, description);
1920	w->w_class = lock_class;
1921	w->w_refcount = 1;
1922	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1923	if (lock_class->lc_flags & LC_SPINLOCK) {
1924		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1925		w_spin_cnt++;
1926	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1927		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1928		w_sleep_cnt++;
1929	}
1930
1931	/* Insert new witness into the hash */
1932	witness_hash_put(w);
1933	witness_increment_graph_generation();
1934	mtx_unlock_spin(&w_mtx);
1935	return (w);
1936found:
1937	w->w_refcount++;
1938	if (w->w_refcount == 1)
1939		w->w_class = lock_class;
1940	mtx_unlock_spin(&w_mtx);
1941	if (lock_class != w->w_class)
1942		kassert_panic(
1943		    "lock (%s) %s does not match earlier (%s) lock",
1944		    description, lock_class->lc_name,
1945		    w->w_class->lc_name);
1946	return (w);
1947}
1948
1949static void
1950depart(struct witness *w)
1951{
1952
1953	MPASS(w->w_refcount == 0);
1954	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1955		w_sleep_cnt--;
1956	} else {
1957		w_spin_cnt--;
1958	}
1959	/*
1960	 * Set file to NULL as it may point into a loadable module.
1961	 */
1962	w->w_file = NULL;
1963	w->w_line = 0;
1964	witness_increment_graph_generation();
1965}
1966
1967static void
1968adopt(struct witness *parent, struct witness *child)
1969{
1970	int pi, ci, i, j;
1971
1972	if (witness_cold == 0)
1973		mtx_assert(&w_mtx, MA_OWNED);
1974
1975	/* If the relationship is already known, there's no work to be done. */
1976	if (isitmychild(parent, child))
1977		return;
1978
1979	/* When the structure of the graph changes, bump up the generation. */
1980	witness_increment_graph_generation();
1981
1982	/*
1983	 * The hard part ... create the direct relationship, then propagate all
1984	 * indirect relationships.
1985	 */
1986	pi = parent->w_index;
1987	ci = child->w_index;
1988	WITNESS_INDEX_ASSERT(pi);
1989	WITNESS_INDEX_ASSERT(ci);
1990	MPASS(pi != ci);
1991	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1992	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1993
1994	/*
1995	 * If parent was not already an ancestor of child,
1996	 * then we increment the descendant and ancestor counters.
1997	 */
1998	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1999		parent->w_num_descendants++;
2000		child->w_num_ancestors++;
2001	}
2002
2003	/*
2004	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
2005	 * an ancestor of 'pi' during this loop.
2006	 */
2007	for (i = 1; i <= w_max_used_index; i++) {
2008		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
2009		    (i != pi))
2010			continue;
2011
2012		/* Find each descendant of 'i' and mark it as a descendant. */
2013		for (j = 1; j <= w_max_used_index; j++) {
2014			/*
2015			 * Skip children that are already marked as
2016			 * descendants of 'i'.
2017			 */
2018			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
2019				continue;
2020
2021			/*
2022			 * We are only interested in descendants of 'ci'. Note
2023			 * that 'ci' itself is counted as a descendant of 'ci'.
2024			 */
2025			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
2026			    (j != ci))
2027				continue;
2028			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
2029			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
2030			w_data[i].w_num_descendants++;
2031			w_data[j].w_num_ancestors++;
2032
2033			/*
2034			 * Make sure we aren't marking a node as both an
2035			 * ancestor and descendant. We should have caught
2036			 * this as a lock order reversal earlier.
2037			 */
2038			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
2039			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
2040				printf("witness rmatrix paradox! [%d][%d]=%d "
2041				    "both ancestor and descendant\n",
2042				    i, j, w_rmatrix[i][j]);
2043				kdb_backtrace();
2044				printf("Witness disabled.\n");
2045				witness_watch = -1;
2046			}
2047			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
2048			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
2049				printf("witness rmatrix paradox! [%d][%d]=%d "
2050				    "both ancestor and descendant\n",
2051				    j, i, w_rmatrix[j][i]);
2052				kdb_backtrace();
2053				printf("Witness disabled.\n");
2054				witness_watch = -1;
2055			}
2056		}
2057	}
2058}
2059
2060static void
2061itismychild(struct witness *parent, struct witness *child)
2062{
2063	int unlocked;
2064
2065	MPASS(child != NULL && parent != NULL);
2066	if (witness_cold == 0)
2067		mtx_assert(&w_mtx, MA_OWNED);
2068
2069	if (!witness_lock_type_equal(parent, child)) {
2070		if (witness_cold == 0) {
2071			unlocked = 1;
2072			mtx_unlock_spin(&w_mtx);
2073		} else {
2074			unlocked = 0;
2075		}
2076		kassert_panic(
2077		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2078		    "the same lock type", __func__, parent->w_name,
2079		    parent->w_class->lc_name, child->w_name,
2080		    child->w_class->lc_name);
2081		if (unlocked)
2082			mtx_lock_spin(&w_mtx);
2083	}
2084	adopt(parent, child);
2085}
2086
2087/*
2088 * Generic code for the isitmy*() functions. The rmask parameter is the
2089 * expected relationship of w1 to w2.
2090 */
2091static int
2092_isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2093{
2094	unsigned char r1, r2;
2095	int i1, i2;
2096
2097	i1 = w1->w_index;
2098	i2 = w2->w_index;
2099	WITNESS_INDEX_ASSERT(i1);
2100	WITNESS_INDEX_ASSERT(i2);
2101	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2102	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2103
2104	/* The flags on one better be the inverse of the flags on the other */
2105	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2106	    (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2107		/* Don't squawk if we're potentially racing with an update. */
2108		if (!mtx_owned(&w_mtx))
2109			return (0);
2110		printf("%s: rmatrix mismatch between %s (index %d) and %s "
2111		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
2112		    "w_rmatrix[%d][%d] == %hhx\n",
2113		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2114		    i2, i1, r2);
2115		kdb_backtrace();
2116		printf("Witness disabled.\n");
2117		witness_watch = -1;
2118	}
2119	return (r1 & rmask);
2120}
2121
2122/*
2123 * Checks if @child is a direct child of @parent.
2124 */
2125static int
2126isitmychild(struct witness *parent, struct witness *child)
2127{
2128
2129	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2130}
2131
2132/*
2133 * Checks if @descendant is a direct or inderect descendant of @ancestor.
2134 */
2135static int
2136isitmydescendant(struct witness *ancestor, struct witness *descendant)
2137{
2138
2139	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2140	    __func__));
2141}
2142
2143static int
2144blessed(struct witness *w1, struct witness *w2)
2145{
2146	int i;
2147	struct witness_blessed *b;
2148
2149	for (i = 0; i < nitems(blessed_list); i++) {
2150		b = &blessed_list[i];
2151		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2152			if (strcmp(w2->w_name, b->b_lock2) == 0)
2153				return (1);
2154			continue;
2155		}
2156		if (strcmp(w1->w_name, b->b_lock2) == 0)
2157			if (strcmp(w2->w_name, b->b_lock1) == 0)
2158				return (1);
2159	}
2160	return (0);
2161}
2162
2163static struct witness *
2164witness_get(void)
2165{
2166	struct witness *w;
2167	int index;
2168
2169	if (witness_cold == 0)
2170		mtx_assert(&w_mtx, MA_OWNED);
2171
2172	if (witness_watch == -1) {
2173		mtx_unlock_spin(&w_mtx);
2174		return (NULL);
2175	}
2176	if (STAILQ_EMPTY(&w_free)) {
2177		witness_watch = -1;
2178		mtx_unlock_spin(&w_mtx);
2179		printf("WITNESS: unable to allocate a new witness object\n");
2180		return (NULL);
2181	}
2182	w = STAILQ_FIRST(&w_free);
2183	STAILQ_REMOVE_HEAD(&w_free, w_list);
2184	w_free_cnt--;
2185	index = w->w_index;
2186	MPASS(index > 0 && index == w_max_used_index+1 &&
2187	    index < witness_count);
2188	bzero(w, sizeof(*w));
2189	w->w_index = index;
2190	if (index > w_max_used_index)
2191		w_max_used_index = index;
2192	return (w);
2193}
2194
2195static void
2196witness_free(struct witness *w)
2197{
2198
2199	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2200	w_free_cnt++;
2201}
2202
2203static struct lock_list_entry *
2204witness_lock_list_get(void)
2205{
2206	struct lock_list_entry *lle;
2207
2208	if (witness_watch == -1)
2209		return (NULL);
2210	mtx_lock_spin(&w_mtx);
2211	lle = w_lock_list_free;
2212	if (lle == NULL) {
2213		witness_watch = -1;
2214		mtx_unlock_spin(&w_mtx);
2215		printf("%s: witness exhausted\n", __func__);
2216		return (NULL);
2217	}
2218	w_lock_list_free = lle->ll_next;
2219	mtx_unlock_spin(&w_mtx);
2220	bzero(lle, sizeof(*lle));
2221	return (lle);
2222}
2223
2224static void
2225witness_lock_list_free(struct lock_list_entry *lle)
2226{
2227
2228	mtx_lock_spin(&w_mtx);
2229	lle->ll_next = w_lock_list_free;
2230	w_lock_list_free = lle;
2231	mtx_unlock_spin(&w_mtx);
2232}
2233
2234static struct lock_instance *
2235find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2236{
2237	struct lock_list_entry *lle;
2238	struct lock_instance *instance;
2239	int i;
2240
2241	for (lle = list; lle != NULL; lle = lle->ll_next)
2242		for (i = lle->ll_count - 1; i >= 0; i--) {
2243			instance = &lle->ll_children[i];
2244			if (instance->li_lock == lock)
2245				return (instance);
2246		}
2247	return (NULL);
2248}
2249
2250static void
2251witness_list_lock(struct lock_instance *instance,
2252    int (*prnt)(const char *fmt, ...))
2253{
2254	struct lock_object *lock;
2255
2256	lock = instance->li_lock;
2257	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2258	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2259	if (lock->lo_witness->w_name != lock->lo_name)
2260		prnt(" (%s)", lock->lo_witness->w_name);
2261	prnt(" r = %d (%p) locked @ %s:%d\n",
2262	    instance->li_flags & LI_RECURSEMASK, lock,
2263	    fixup_filename(instance->li_file), instance->li_line);
2264}
2265
2266static int
2267witness_output(const char *fmt, ...)
2268{
2269	va_list ap;
2270	int ret;
2271
2272	va_start(ap, fmt);
2273	ret = witness_voutput(fmt, ap);
2274	va_end(ap);
2275	return (ret);
2276}
2277
2278static int
2279witness_voutput(const char *fmt, va_list ap)
2280{
2281	int ret;
2282
2283	ret = 0;
2284	switch (witness_channel) {
2285	case WITNESS_CONSOLE:
2286		ret = vprintf(fmt, ap);
2287		break;
2288	case WITNESS_LOG:
2289		vlog(LOG_NOTICE, fmt, ap);
2290		break;
2291	case WITNESS_NONE:
2292		break;
2293	}
2294	return (ret);
2295}
2296
2297#ifdef DDB
2298static int
2299witness_thread_has_locks(struct thread *td)
2300{
2301
2302	if (td->td_sleeplocks == NULL)
2303		return (0);
2304	return (td->td_sleeplocks->ll_count != 0);
2305}
2306
2307static int
2308witness_proc_has_locks(struct proc *p)
2309{
2310	struct thread *td;
2311
2312	FOREACH_THREAD_IN_PROC(p, td) {
2313		if (witness_thread_has_locks(td))
2314			return (1);
2315	}
2316	return (0);
2317}
2318#endif
2319
2320int
2321witness_list_locks(struct lock_list_entry **lock_list,
2322    int (*prnt)(const char *fmt, ...))
2323{
2324	struct lock_list_entry *lle;
2325	int i, nheld;
2326
2327	nheld = 0;
2328	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2329		for (i = lle->ll_count - 1; i >= 0; i--) {
2330			witness_list_lock(&lle->ll_children[i], prnt);
2331			nheld++;
2332		}
2333	return (nheld);
2334}
2335
2336/*
2337 * This is a bit risky at best.  We call this function when we have timed
2338 * out acquiring a spin lock, and we assume that the other CPU is stuck
2339 * with this lock held.  So, we go groveling around in the other CPU's
2340 * per-cpu data to try to find the lock instance for this spin lock to
2341 * see when it was last acquired.
2342 */
2343void
2344witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2345    int (*prnt)(const char *fmt, ...))
2346{
2347	struct lock_instance *instance;
2348	struct pcpu *pc;
2349
2350	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2351		return;
2352	pc = pcpu_find(owner->td_oncpu);
2353	instance = find_instance(pc->pc_spinlocks, lock);
2354	if (instance != NULL)
2355		witness_list_lock(instance, prnt);
2356}
2357
2358void
2359witness_save(struct lock_object *lock, const char **filep, int *linep)
2360{
2361	struct lock_list_entry *lock_list;
2362	struct lock_instance *instance;
2363	struct lock_class *class;
2364
2365	/* Initialize for KMSAN's benefit. */
2366	*filep = NULL;
2367	*linep = 0;
2368
2369	/*
2370	 * This function is used independently in locking code to deal with
2371	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2372	 * is gone.
2373	 */
2374	if (SCHEDULER_STOPPED())
2375		return;
2376	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2377	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2378		return;
2379	class = LOCK_CLASS(lock);
2380	if (class->lc_flags & LC_SLEEPLOCK)
2381		lock_list = curthread->td_sleeplocks;
2382	else {
2383		if (witness_skipspin)
2384			return;
2385		lock_list = PCPU_GET(spinlocks);
2386	}
2387	instance = find_instance(lock_list, lock);
2388	if (instance == NULL) {
2389		kassert_panic("%s: lock (%s) %s not locked", __func__,
2390		    class->lc_name, lock->lo_name);
2391		return;
2392	}
2393	*filep = instance->li_file;
2394	*linep = instance->li_line;
2395}
2396
2397void
2398witness_restore(struct lock_object *lock, const char *file, int line)
2399{
2400	struct lock_list_entry *lock_list;
2401	struct lock_instance *instance;
2402	struct lock_class *class;
2403
2404	/*
2405	 * This function is used independently in locking code to deal with
2406	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2407	 * is gone.
2408	 */
2409	if (SCHEDULER_STOPPED())
2410		return;
2411	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2412	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2413		return;
2414	class = LOCK_CLASS(lock);
2415	if (class->lc_flags & LC_SLEEPLOCK)
2416		lock_list = curthread->td_sleeplocks;
2417	else {
2418		if (witness_skipspin)
2419			return;
2420		lock_list = PCPU_GET(spinlocks);
2421	}
2422	instance = find_instance(lock_list, lock);
2423	if (instance == NULL)
2424		kassert_panic("%s: lock (%s) %s not locked", __func__,
2425		    class->lc_name, lock->lo_name);
2426	lock->lo_witness->w_file = file;
2427	lock->lo_witness->w_line = line;
2428	if (instance == NULL)
2429		return;
2430	instance->li_file = file;
2431	instance->li_line = line;
2432}
2433
2434static bool
2435witness_find_instance(const struct lock_object *lock,
2436    struct lock_instance **instance)
2437{
2438#ifdef INVARIANT_SUPPORT
2439	struct lock_class *class;
2440
2441	if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
2442		return (false);
2443	class = LOCK_CLASS(lock);
2444	if ((class->lc_flags & LC_SLEEPLOCK) != 0) {
2445		*instance = find_instance(curthread->td_sleeplocks, lock);
2446		return (true);
2447	} else if ((class->lc_flags & LC_SPINLOCK) != 0) {
2448		*instance = find_instance(PCPU_GET(spinlocks), lock);
2449		return (true);
2450	} else {
2451		kassert_panic("Lock (%s) %s is not sleep or spin!",
2452		    class->lc_name, lock->lo_name);
2453		return (false);
2454	}
2455#else
2456	return (false);
2457#endif
2458}
2459
2460void
2461witness_assert(const struct lock_object *lock, int flags, const char *file,
2462    int line)
2463{
2464#ifdef INVARIANT_SUPPORT
2465	struct lock_instance *instance;
2466	struct lock_class *class;
2467
2468	if (!witness_find_instance(lock, &instance))
2469		return;
2470	class = LOCK_CLASS(lock);
2471	switch (flags) {
2472	case LA_UNLOCKED:
2473		if (instance != NULL)
2474			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2475			    class->lc_name, lock->lo_name,
2476			    fixup_filename(file), line);
2477		break;
2478	case LA_LOCKED:
2479	case LA_LOCKED | LA_RECURSED:
2480	case LA_LOCKED | LA_NOTRECURSED:
2481	case LA_SLOCKED:
2482	case LA_SLOCKED | LA_RECURSED:
2483	case LA_SLOCKED | LA_NOTRECURSED:
2484	case LA_XLOCKED:
2485	case LA_XLOCKED | LA_RECURSED:
2486	case LA_XLOCKED | LA_NOTRECURSED:
2487		if (instance == NULL) {
2488			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2489			    class->lc_name, lock->lo_name,
2490			    fixup_filename(file), line);
2491			break;
2492		}
2493		if ((flags & LA_XLOCKED) != 0 &&
2494		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2495			kassert_panic(
2496			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2497			    class->lc_name, lock->lo_name,
2498			    fixup_filename(file), line);
2499		if ((flags & LA_SLOCKED) != 0 &&
2500		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2501			kassert_panic(
2502			    "Lock (%s) %s exclusively locked @ %s:%d.",
2503			    class->lc_name, lock->lo_name,
2504			    fixup_filename(file), line);
2505		if ((flags & LA_RECURSED) != 0 &&
2506		    (instance->li_flags & LI_RECURSEMASK) == 0)
2507			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2508			    class->lc_name, lock->lo_name,
2509			    fixup_filename(file), line);
2510		if ((flags & LA_NOTRECURSED) != 0 &&
2511		    (instance->li_flags & LI_RECURSEMASK) != 0)
2512			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2513			    class->lc_name, lock->lo_name,
2514			    fixup_filename(file), line);
2515		break;
2516	default:
2517		kassert_panic("Invalid lock assertion at %s:%d.",
2518		    fixup_filename(file), line);
2519	}
2520#endif	/* INVARIANT_SUPPORT */
2521}
2522
2523/*
2524 * Checks the ownership of the lock by curthread, consulting the witness list.
2525 * Returns:
2526 *   0  if witness is disabled or did not work
2527 *   -1 if not owned
2528 *   1  if owned
2529 */
2530int
2531witness_is_owned(const struct lock_object *lock)
2532{
2533#ifdef INVARIANT_SUPPORT
2534	struct lock_instance *instance;
2535
2536	if (!witness_find_instance(lock, &instance))
2537		return (0);
2538	return (instance == NULL ? -1 : 1);
2539#else
2540	return (0);
2541#endif
2542}
2543
2544static void
2545witness_setflag(struct lock_object *lock, int flag, int set)
2546{
2547	struct lock_list_entry *lock_list;
2548	struct lock_instance *instance;
2549	struct lock_class *class;
2550
2551	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2552		return;
2553	class = LOCK_CLASS(lock);
2554	if (class->lc_flags & LC_SLEEPLOCK)
2555		lock_list = curthread->td_sleeplocks;
2556	else {
2557		if (witness_skipspin)
2558			return;
2559		lock_list = PCPU_GET(spinlocks);
2560	}
2561	instance = find_instance(lock_list, lock);
2562	if (instance == NULL) {
2563		kassert_panic("%s: lock (%s) %s not locked", __func__,
2564		    class->lc_name, lock->lo_name);
2565		return;
2566	}
2567
2568	if (set)
2569		instance->li_flags |= flag;
2570	else
2571		instance->li_flags &= ~flag;
2572}
2573
2574void
2575witness_norelease(struct lock_object *lock)
2576{
2577
2578	witness_setflag(lock, LI_NORELEASE, 1);
2579}
2580
2581void
2582witness_releaseok(struct lock_object *lock)
2583{
2584
2585	witness_setflag(lock, LI_NORELEASE, 0);
2586}
2587
2588#ifdef DDB
2589static void
2590witness_ddb_list(struct thread *td)
2591{
2592
2593	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2594	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2595
2596	if (witness_watch < 1)
2597		return;
2598
2599	witness_list_locks(&td->td_sleeplocks, db_printf);
2600
2601	/*
2602	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2603	 * if td is currently executing on some other CPU and holds spin locks
2604	 * as we won't display those locks.  If we had a MI way of getting
2605	 * the per-cpu data for a given cpu then we could use
2606	 * td->td_oncpu to get the list of spinlocks for this thread
2607	 * and "fix" this.
2608	 *
2609	 * That still wouldn't really fix this unless we locked the scheduler
2610	 * lock or stopped the other CPU to make sure it wasn't changing the
2611	 * list out from under us.  It is probably best to just not try to
2612	 * handle threads on other CPU's for now.
2613	 */
2614	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2615		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2616}
2617
2618DB_SHOW_COMMAND(locks, db_witness_list)
2619{
2620	struct thread *td;
2621
2622	if (have_addr)
2623		td = db_lookup_thread(addr, true);
2624	else
2625		td = kdb_thread;
2626	witness_ddb_list(td);
2627}
2628
2629DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2630{
2631	struct thread *td;
2632	struct proc *p;
2633
2634	/*
2635	 * It would be nice to list only threads and processes that actually
2636	 * held sleep locks, but that information is currently not exported
2637	 * by WITNESS.
2638	 */
2639	FOREACH_PROC_IN_SYSTEM(p) {
2640		if (!witness_proc_has_locks(p))
2641			continue;
2642		FOREACH_THREAD_IN_PROC(p, td) {
2643			if (!witness_thread_has_locks(td))
2644				continue;
2645			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2646			    p->p_comm, td, td->td_tid);
2647			witness_ddb_list(td);
2648			if (db_pager_quit)
2649				return;
2650		}
2651	}
2652}
2653DB_SHOW_ALIAS_FLAGS(alllocks, db_witness_list_all, DB_CMD_MEMSAFE);
2654
2655DB_SHOW_COMMAND_FLAGS(witness, db_witness_display, DB_CMD_MEMSAFE)
2656{
2657
2658	witness_ddb_display(db_printf);
2659}
2660#endif
2661
2662static void
2663sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2664{
2665	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2666	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2667	int generation, i, j;
2668
2669	tmp_data1 = NULL;
2670	tmp_data2 = NULL;
2671	tmp_w1 = NULL;
2672	tmp_w2 = NULL;
2673
2674	/* Allocate and init temporary storage space. */
2675	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2676	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2677	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2678	    M_WAITOK | M_ZERO);
2679	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2680	    M_WAITOK | M_ZERO);
2681	stack_zero(&tmp_data1->wlod_stack);
2682	stack_zero(&tmp_data2->wlod_stack);
2683
2684restart:
2685	mtx_lock_spin(&w_mtx);
2686	generation = w_generation;
2687	mtx_unlock_spin(&w_mtx);
2688	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2689	    w_lohash.wloh_count);
2690	for (i = 1; i < w_max_used_index; i++) {
2691		mtx_lock_spin(&w_mtx);
2692		if (generation != w_generation) {
2693			mtx_unlock_spin(&w_mtx);
2694
2695			/* The graph has changed, try again. */
2696			*oldidx = 0;
2697			sbuf_clear(sb);
2698			goto restart;
2699		}
2700
2701		w1 = &w_data[i];
2702		if (w1->w_reversed == 0) {
2703			mtx_unlock_spin(&w_mtx);
2704			continue;
2705		}
2706
2707		/* Copy w1 locally so we can release the spin lock. */
2708		*tmp_w1 = *w1;
2709		mtx_unlock_spin(&w_mtx);
2710
2711		if (tmp_w1->w_reversed == 0)
2712			continue;
2713		for (j = 1; j < w_max_used_index; j++) {
2714			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2715				continue;
2716
2717			mtx_lock_spin(&w_mtx);
2718			if (generation != w_generation) {
2719				mtx_unlock_spin(&w_mtx);
2720
2721				/* The graph has changed, try again. */
2722				*oldidx = 0;
2723				sbuf_clear(sb);
2724				goto restart;
2725			}
2726
2727			w2 = &w_data[j];
2728			data1 = witness_lock_order_get(w1, w2);
2729			data2 = witness_lock_order_get(w2, w1);
2730
2731			/*
2732			 * Copy information locally so we can release the
2733			 * spin lock.
2734			 */
2735			*tmp_w2 = *w2;
2736
2737			if (data1) {
2738				stack_zero(&tmp_data1->wlod_stack);
2739				stack_copy(&data1->wlod_stack,
2740				    &tmp_data1->wlod_stack);
2741			}
2742			if (data2 && data2 != data1) {
2743				stack_zero(&tmp_data2->wlod_stack);
2744				stack_copy(&data2->wlod_stack,
2745				    &tmp_data2->wlod_stack);
2746			}
2747			mtx_unlock_spin(&w_mtx);
2748
2749			if (blessed(tmp_w1, tmp_w2))
2750				continue;
2751
2752			sbuf_printf(sb,
2753	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2754			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2755			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2756			if (data1) {
2757				sbuf_printf(sb,
2758			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2759				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2760				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2761				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2762				sbuf_putc(sb, '\n');
2763			}
2764			if (data2 && data2 != data1) {
2765				sbuf_printf(sb,
2766			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2767				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2768				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2769				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2770				sbuf_putc(sb, '\n');
2771			}
2772		}
2773	}
2774	mtx_lock_spin(&w_mtx);
2775	if (generation != w_generation) {
2776		mtx_unlock_spin(&w_mtx);
2777
2778		/*
2779		 * The graph changed while we were printing stack data,
2780		 * try again.
2781		 */
2782		*oldidx = 0;
2783		sbuf_clear(sb);
2784		goto restart;
2785	}
2786	mtx_unlock_spin(&w_mtx);
2787
2788	/* Free temporary storage space. */
2789	free(tmp_data1, M_TEMP);
2790	free(tmp_data2, M_TEMP);
2791	free(tmp_w1, M_TEMP);
2792	free(tmp_w2, M_TEMP);
2793}
2794
2795static int
2796sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2797{
2798	struct sbuf *sb;
2799	int error;
2800
2801	if (witness_watch < 1) {
2802		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2803		return (error);
2804	}
2805	if (witness_cold) {
2806		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2807		return (error);
2808	}
2809	error = 0;
2810	sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2811	if (sb == NULL)
2812		return (ENOMEM);
2813
2814	sbuf_print_witness_badstacks(sb, &req->oldidx);
2815
2816	sbuf_finish(sb);
2817	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2818	sbuf_delete(sb);
2819
2820	return (error);
2821}
2822
2823#ifdef DDB
2824static int
2825sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2826{
2827
2828	return (db_printf("%.*s", len, data));
2829}
2830
2831DB_SHOW_COMMAND_FLAGS(badstacks, db_witness_badstacks, DB_CMD_MEMSAFE)
2832{
2833	struct sbuf sb;
2834	char buffer[128];
2835	size_t dummy;
2836
2837	sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2838	sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2839	sbuf_print_witness_badstacks(&sb, &dummy);
2840	sbuf_finish(&sb);
2841}
2842#endif
2843
2844static int
2845sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2846{
2847	static const struct {
2848		enum witness_channel channel;
2849		const char *name;
2850	} channels[] = {
2851		{ WITNESS_CONSOLE, "console" },
2852		{ WITNESS_LOG, "log" },
2853		{ WITNESS_NONE, "none" },
2854	};
2855	char buf[16];
2856	u_int i;
2857	int error;
2858
2859	buf[0] = '\0';
2860	for (i = 0; i < nitems(channels); i++)
2861		if (witness_channel == channels[i].channel) {
2862			snprintf(buf, sizeof(buf), "%s", channels[i].name);
2863			break;
2864		}
2865
2866	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2867	if (error != 0 || req->newptr == NULL)
2868		return (error);
2869
2870	error = EINVAL;
2871	for (i = 0; i < nitems(channels); i++)
2872		if (strcmp(channels[i].name, buf) == 0) {
2873			witness_channel = channels[i].channel;
2874			error = 0;
2875			break;
2876		}
2877	return (error);
2878}
2879
2880static int
2881sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2882{
2883	struct witness *w;
2884	struct sbuf *sb;
2885	int error;
2886
2887#ifdef __i386__
2888	error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2889	return (error);
2890#endif
2891
2892	if (witness_watch < 1) {
2893		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2894		return (error);
2895	}
2896	if (witness_cold) {
2897		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2898		return (error);
2899	}
2900	error = 0;
2901
2902	error = sysctl_wire_old_buffer(req, 0);
2903	if (error != 0)
2904		return (error);
2905	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2906	if (sb == NULL)
2907		return (ENOMEM);
2908	sbuf_putc(sb, '\n');
2909
2910	mtx_lock_spin(&w_mtx);
2911	STAILQ_FOREACH(w, &w_all, w_list)
2912		w->w_displayed = 0;
2913	STAILQ_FOREACH(w, &w_all, w_list)
2914		witness_add_fullgraph(sb, w);
2915	mtx_unlock_spin(&w_mtx);
2916
2917	/*
2918	 * Close the sbuf and return to userland.
2919	 */
2920	error = sbuf_finish(sb);
2921	sbuf_delete(sb);
2922
2923	return (error);
2924}
2925
2926static int
2927sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2928{
2929	int error, value;
2930
2931	value = witness_watch;
2932	error = sysctl_handle_int(oidp, &value, 0, req);
2933	if (error != 0 || req->newptr == NULL)
2934		return (error);
2935	if (value > 1 || value < -1 ||
2936	    (witness_watch == -1 && value != witness_watch))
2937		return (EINVAL);
2938	witness_watch = value;
2939	return (0);
2940}
2941
2942static void
2943witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2944{
2945	int i;
2946
2947	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2948		return;
2949	w->w_displayed = 1;
2950
2951	WITNESS_INDEX_ASSERT(w->w_index);
2952	for (i = 1; i <= w_max_used_index; i++) {
2953		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2954			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2955			    w_data[i].w_name);
2956			witness_add_fullgraph(sb, &w_data[i]);
2957		}
2958	}
2959}
2960
2961/*
2962 * A simple hash function. Takes a key pointer and a key size. If size == 0,
2963 * interprets the key as a string and reads until the null
2964 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2965 * hash value computed from the key.
2966 */
2967static uint32_t
2968witness_hash_djb2(const uint8_t *key, uint32_t size)
2969{
2970	unsigned int hash = 5381;
2971	int i;
2972
2973	/* hash = hash * 33 + key[i] */
2974	if (size)
2975		for (i = 0; i < size; i++)
2976			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2977	else
2978		for (i = 0; key[i] != 0; i++)
2979			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2980
2981	return (hash);
2982}
2983
2984/*
2985 * Initializes the two witness hash tables. Called exactly once from
2986 * witness_initialize().
2987 */
2988static void
2989witness_init_hash_tables(void)
2990{
2991	int i;
2992
2993	MPASS(witness_cold);
2994
2995	/* Initialize the hash tables. */
2996	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2997		w_hash.wh_array[i] = NULL;
2998
2999	w_hash.wh_size = WITNESS_HASH_SIZE;
3000	w_hash.wh_count = 0;
3001
3002	/* Initialize the lock order data hash. */
3003	w_lofree = NULL;
3004	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
3005		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
3006		w_lodata[i].wlod_next = w_lofree;
3007		w_lofree = &w_lodata[i];
3008	}
3009	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
3010	w_lohash.wloh_count = 0;
3011	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
3012		w_lohash.wloh_array[i] = NULL;
3013}
3014
3015static struct witness *
3016witness_hash_get(const char *key)
3017{
3018	struct witness *w;
3019	uint32_t hash;
3020
3021	MPASS(key != NULL);
3022	if (witness_cold == 0)
3023		mtx_assert(&w_mtx, MA_OWNED);
3024	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
3025	w = w_hash.wh_array[hash];
3026	while (w != NULL) {
3027		if (strcmp(w->w_name, key) == 0)
3028			goto out;
3029		w = w->w_hash_next;
3030	}
3031
3032out:
3033	return (w);
3034}
3035
3036static void
3037witness_hash_put(struct witness *w)
3038{
3039	uint32_t hash;
3040
3041	MPASS(w != NULL);
3042	MPASS(w->w_name != NULL);
3043	if (witness_cold == 0)
3044		mtx_assert(&w_mtx, MA_OWNED);
3045	KASSERT(witness_hash_get(w->w_name) == NULL,
3046	    ("%s: trying to add a hash entry that already exists!", __func__));
3047	KASSERT(w->w_hash_next == NULL,
3048	    ("%s: w->w_hash_next != NULL", __func__));
3049
3050	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
3051	w->w_hash_next = w_hash.wh_array[hash];
3052	w_hash.wh_array[hash] = w;
3053	w_hash.wh_count++;
3054}
3055
3056static struct witness_lock_order_data *
3057witness_lock_order_get(struct witness *parent, struct witness *child)
3058{
3059	struct witness_lock_order_data *data = NULL;
3060	struct witness_lock_order_key key;
3061	unsigned int hash;
3062
3063	MPASS(parent != NULL && child != NULL);
3064	key.from = parent->w_index;
3065	key.to = child->w_index;
3066	WITNESS_INDEX_ASSERT(key.from);
3067	WITNESS_INDEX_ASSERT(key.to);
3068	if ((w_rmatrix[parent->w_index][child->w_index]
3069	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
3070		goto out;
3071
3072	hash = witness_hash_djb2((const char*)&key,
3073	    sizeof(key)) % w_lohash.wloh_size;
3074	data = w_lohash.wloh_array[hash];
3075	while (data != NULL) {
3076		if (witness_lock_order_key_equal(&data->wlod_key, &key))
3077			break;
3078		data = data->wlod_next;
3079	}
3080
3081out:
3082	return (data);
3083}
3084
3085/*
3086 * Verify that parent and child have a known relationship, are not the same,
3087 * and child is actually a child of parent.  This is done without w_mtx
3088 * to avoid contention in the common case.
3089 */
3090static int
3091witness_lock_order_check(struct witness *parent, struct witness *child)
3092{
3093
3094	if (parent != child &&
3095	    w_rmatrix[parent->w_index][child->w_index]
3096	    & WITNESS_LOCK_ORDER_KNOWN &&
3097	    isitmychild(parent, child))
3098		return (1);
3099
3100	return (0);
3101}
3102
3103static int
3104witness_lock_order_add(struct witness *parent, struct witness *child)
3105{
3106	struct witness_lock_order_data *data = NULL;
3107	struct witness_lock_order_key key;
3108	unsigned int hash;
3109
3110	MPASS(parent != NULL && child != NULL);
3111	key.from = parent->w_index;
3112	key.to = child->w_index;
3113	WITNESS_INDEX_ASSERT(key.from);
3114	WITNESS_INDEX_ASSERT(key.to);
3115	if (w_rmatrix[parent->w_index][child->w_index]
3116	    & WITNESS_LOCK_ORDER_KNOWN)
3117		return (1);
3118
3119	hash = witness_hash_djb2((const char*)&key,
3120	    sizeof(key)) % w_lohash.wloh_size;
3121	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3122	data = w_lofree;
3123	if (data == NULL)
3124		return (0);
3125	w_lofree = data->wlod_next;
3126	data->wlod_next = w_lohash.wloh_array[hash];
3127	data->wlod_key = key;
3128	w_lohash.wloh_array[hash] = data;
3129	w_lohash.wloh_count++;
3130	stack_save(&data->wlod_stack);
3131	return (1);
3132}
3133
3134/* Call this whenever the structure of the witness graph changes. */
3135static void
3136witness_increment_graph_generation(void)
3137{
3138
3139	if (witness_cold == 0)
3140		mtx_assert(&w_mtx, MA_OWNED);
3141	w_generation++;
3142}
3143
3144static int
3145witness_output_drain(void *arg __unused, const char *data, int len)
3146{
3147
3148	witness_output("%.*s", len, data);
3149	return (len);
3150}
3151
3152static void
3153witness_debugger(int cond, const char *msg)
3154{
3155	char buf[32];
3156	struct sbuf sb;
3157	struct stack st;
3158
3159	if (!cond)
3160		return;
3161
3162	if (witness_trace) {
3163		sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3164		sbuf_set_drain(&sb, witness_output_drain, NULL);
3165
3166		stack_save(&st);
3167		witness_output("stack backtrace:\n");
3168		stack_sbuf_print_ddb(&sb, &st);
3169
3170		sbuf_finish(&sb);
3171	}
3172
3173	witness_enter_debugger(msg);
3174}
3175
3176static void
3177witness_enter_debugger(const char *msg)
3178{
3179#ifdef KDB
3180	if (witness_kdb)
3181		kdb_enter(KDB_WHY_WITNESS, msg);
3182#endif
3183}
3184