1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2008 Yahoo!, Inc.
5 * All rights reserved.
6 * Written by: John Baldwin <jhb@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/param.h>
34#include <sys/kernel.h>
35#include <sys/bio.h>
36#include <sys/malloc.h>
37#include <sys/mbuf.h>
38#include <sys/proc.h>
39#include <sys/sglist.h>
40#include <sys/uio.h>
41
42#include <vm/vm.h>
43#include <vm/vm_page.h>
44#include <vm/pmap.h>
45#include <vm/vm_map.h>
46
47#include <sys/ktr.h>
48
49static MALLOC_DEFINE(M_SGLIST, "sglist", "scatter/gather lists");
50
51/*
52 * Convenience macros to save the state of an sglist so it can be restored
53 * if an append attempt fails.  Since sglist's only grow we only need to
54 * save the current count of segments and the length of the ending segment.
55 * Earlier segments will not be changed by an append, and the only change
56 * that can occur to the ending segment is that it can be extended.
57 */
58struct sgsave {
59	u_short sg_nseg;
60	size_t ss_len;
61};
62
63#define	SGLIST_SAVE(sg, sgsave) do {					\
64	(sgsave).sg_nseg = (sg)->sg_nseg;				\
65	if ((sgsave).sg_nseg > 0)					\
66		(sgsave).ss_len = (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len; \
67	else								\
68		(sgsave).ss_len = 0;					\
69} while (0)
70
71#define	SGLIST_RESTORE(sg, sgsave) do {					\
72	(sg)->sg_nseg = (sgsave).sg_nseg;				\
73	if ((sgsave).sg_nseg > 0)					\
74		(sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len = (sgsave).ss_len; \
75} while (0)
76
77/*
78 * Append a single (paddr, len) to a sglist.  sg is the list and ss is
79 * the current segment in the list.  If we run out of segments then
80 * EFBIG will be returned.
81 */
82static __inline int
83_sglist_append_range(struct sglist *sg, struct sglist_seg **ssp,
84    vm_paddr_t paddr, size_t len)
85{
86	struct sglist_seg *ss;
87
88	ss = *ssp;
89	if (ss->ss_paddr + ss->ss_len == paddr)
90		ss->ss_len += len;
91	else {
92		if (sg->sg_nseg == sg->sg_maxseg)
93			return (EFBIG);
94		ss++;
95		ss->ss_paddr = paddr;
96		ss->ss_len = len;
97		sg->sg_nseg++;
98		*ssp = ss;
99	}
100	return (0);
101}
102
103/*
104 * Worker routine to append a virtual address range (either kernel or
105 * user) to a scatter/gather list.
106 */
107static __inline int
108_sglist_append_buf(struct sglist *sg, void *buf, size_t len, pmap_t pmap,
109    size_t *donep)
110{
111	struct sglist_seg *ss;
112	vm_offset_t vaddr, offset;
113	vm_paddr_t paddr;
114	size_t seglen;
115	int error;
116
117	if (donep)
118		*donep = 0;
119	if (len == 0)
120		return (0);
121
122	/* Do the first page.  It may have an offset. */
123	vaddr = (vm_offset_t)buf;
124	offset = vaddr & PAGE_MASK;
125	if (pmap != NULL)
126		paddr = pmap_extract(pmap, vaddr);
127	else
128		paddr = pmap_kextract(vaddr);
129	seglen = MIN(len, PAGE_SIZE - offset);
130	if (sg->sg_nseg == 0) {
131		ss = sg->sg_segs;
132		ss->ss_paddr = paddr;
133		ss->ss_len = seglen;
134		sg->sg_nseg = 1;
135	} else {
136		ss = &sg->sg_segs[sg->sg_nseg - 1];
137		error = _sglist_append_range(sg, &ss, paddr, seglen);
138		if (error)
139			return (error);
140	}
141	vaddr += seglen;
142	len -= seglen;
143	if (donep)
144		*donep += seglen;
145
146	while (len > 0) {
147		seglen = MIN(len, PAGE_SIZE);
148		if (pmap != NULL)
149			paddr = pmap_extract(pmap, vaddr);
150		else
151			paddr = pmap_kextract(vaddr);
152		error = _sglist_append_range(sg, &ss, paddr, seglen);
153		if (error)
154			return (error);
155		vaddr += seglen;
156		len -= seglen;
157		if (donep)
158			*donep += seglen;
159	}
160
161	return (0);
162}
163
164/*
165 * Determine the number of scatter/gather list elements needed to
166 * describe a kernel virtual address range.
167 */
168int
169sglist_count(void *buf, size_t len)
170{
171	vm_offset_t vaddr, vendaddr;
172	vm_paddr_t lastaddr, paddr;
173	int nsegs;
174
175	if (len == 0)
176		return (0);
177
178	vaddr = trunc_page((vm_offset_t)buf);
179	vendaddr = (vm_offset_t)buf + len;
180	nsegs = 1;
181	lastaddr = pmap_kextract(vaddr);
182	vaddr += PAGE_SIZE;
183	while (vaddr < vendaddr) {
184		paddr = pmap_kextract(vaddr);
185		if (lastaddr + PAGE_SIZE != paddr)
186			nsegs++;
187		lastaddr = paddr;
188		vaddr += PAGE_SIZE;
189	}
190	return (nsegs);
191}
192
193/*
194 * Determine the number of scatter/gather list elements needed to
195 * describe a buffer backed by an array of VM pages.
196 */
197int
198sglist_count_vmpages(vm_page_t *m, size_t pgoff, size_t len)
199{
200	vm_paddr_t lastaddr, paddr;
201	int i, nsegs;
202
203	if (len == 0)
204		return (0);
205
206	len += pgoff;
207	nsegs = 1;
208	lastaddr = VM_PAGE_TO_PHYS(m[0]);
209	for (i = 1; len > PAGE_SIZE; len -= PAGE_SIZE, i++) {
210		paddr = VM_PAGE_TO_PHYS(m[i]);
211		if (lastaddr + PAGE_SIZE != paddr)
212			nsegs++;
213		lastaddr = paddr;
214	}
215	return (nsegs);
216}
217
218/*
219 * Determine the number of scatter/gather list elements needed to
220 * describe an M_EXTPG mbuf.
221 */
222int
223sglist_count_mbuf_epg(struct mbuf *m, size_t off, size_t len)
224{
225	vm_paddr_t nextaddr, paddr;
226	size_t seglen, segoff;
227	int i, nsegs, pglen, pgoff;
228
229	if (len == 0)
230		return (0);
231
232	nsegs = 0;
233	if (m->m_epg_hdrlen != 0) {
234		if (off >= m->m_epg_hdrlen) {
235			off -= m->m_epg_hdrlen;
236		} else {
237			seglen = m->m_epg_hdrlen - off;
238			segoff = off;
239			seglen = MIN(seglen, len);
240			off = 0;
241			len -= seglen;
242			nsegs += sglist_count(&m->m_epg_hdr[segoff],
243			    seglen);
244		}
245	}
246	nextaddr = 0;
247	pgoff = m->m_epg_1st_off;
248	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
249		pglen = m_epg_pagelen(m, i, pgoff);
250		if (off >= pglen) {
251			off -= pglen;
252			pgoff = 0;
253			continue;
254		}
255		seglen = pglen - off;
256		segoff = pgoff + off;
257		off = 0;
258		seglen = MIN(seglen, len);
259		len -= seglen;
260		paddr = m->m_epg_pa[i] + segoff;
261		if (paddr != nextaddr)
262			nsegs++;
263		nextaddr = paddr + seglen;
264		pgoff = 0;
265	};
266	if (len != 0) {
267		seglen = MIN(len, m->m_epg_trllen - off);
268		len -= seglen;
269		nsegs += sglist_count(&m->m_epg_trail[off], seglen);
270	}
271	KASSERT(len == 0, ("len != 0"));
272	return (nsegs);
273}
274
275/*
276 * Allocate a scatter/gather list along with 'nsegs' segments.  The
277 * 'mflags' parameters are the same as passed to malloc(9).  The caller
278 * should use sglist_free() to free this list.
279 */
280struct sglist *
281sglist_alloc(int nsegs, int mflags)
282{
283	struct sglist *sg;
284
285	sg = malloc(sizeof(struct sglist) + nsegs * sizeof(struct sglist_seg),
286	    M_SGLIST, mflags);
287	if (sg == NULL)
288		return (NULL);
289	sglist_init(sg, nsegs, (struct sglist_seg *)(sg + 1));
290	return (sg);
291}
292
293/*
294 * Free a scatter/gather list allocated via sglist_allc().
295 */
296void
297sglist_free(struct sglist *sg)
298{
299
300	if (sg == NULL)
301		return;
302
303	if (refcount_release(&sg->sg_refs))
304		free(sg, M_SGLIST);
305}
306
307/*
308 * Append the segments to describe a single kernel virtual address
309 * range to a scatter/gather list.  If there are insufficient
310 * segments, then this fails with EFBIG.
311 */
312int
313sglist_append(struct sglist *sg, void *buf, size_t len)
314{
315	struct sgsave save;
316	int error;
317
318	if (sg->sg_maxseg == 0)
319		return (EINVAL);
320	SGLIST_SAVE(sg, save);
321	error = _sglist_append_buf(sg, buf, len, NULL, NULL);
322	if (error)
323		SGLIST_RESTORE(sg, save);
324	return (error);
325}
326
327/*
328 * Append the segments to describe a bio's data to a scatter/gather list.
329 * If there are insufficient segments, then this fails with EFBIG.
330 *
331 * NOTE: This function expects bio_bcount to be initialized.
332 */
333int
334sglist_append_bio(struct sglist *sg, struct bio *bp)
335{
336	int error;
337
338	if ((bp->bio_flags & BIO_UNMAPPED) == 0)
339		error = sglist_append(sg, bp->bio_data, bp->bio_bcount);
340	else
341		error = sglist_append_vmpages(sg, bp->bio_ma,
342		    bp->bio_ma_offset, bp->bio_bcount);
343	return (error);
344}
345
346/*
347 * Append a single physical address range to a scatter/gather list.
348 * If there are insufficient segments, then this fails with EFBIG.
349 */
350int
351sglist_append_phys(struct sglist *sg, vm_paddr_t paddr, size_t len)
352{
353	struct sglist_seg *ss;
354	struct sgsave save;
355	int error;
356
357	if (sg->sg_maxseg == 0)
358		return (EINVAL);
359	if (len == 0)
360		return (0);
361
362	if (sg->sg_nseg == 0) {
363		sg->sg_segs[0].ss_paddr = paddr;
364		sg->sg_segs[0].ss_len = len;
365		sg->sg_nseg = 1;
366		return (0);
367	}
368	ss = &sg->sg_segs[sg->sg_nseg - 1];
369	SGLIST_SAVE(sg, save);
370	error = _sglist_append_range(sg, &ss, paddr, len);
371	if (error)
372		SGLIST_RESTORE(sg, save);
373	return (error);
374}
375
376/*
377 * Append the segments of single multi-page mbuf.
378 * If there are insufficient segments, then this fails with EFBIG.
379 */
380int
381sglist_append_mbuf_epg(struct sglist *sg, struct mbuf *m, size_t off,
382    size_t len)
383{
384	size_t seglen, segoff;
385	vm_paddr_t paddr;
386	int error, i, pglen, pgoff;
387
388	M_ASSERTEXTPG(m);
389
390	error = 0;
391	if (m->m_epg_hdrlen != 0) {
392		if (off >= m->m_epg_hdrlen) {
393			off -= m->m_epg_hdrlen;
394		} else {
395			seglen = m->m_epg_hdrlen - off;
396			segoff = off;
397			seglen = MIN(seglen, len);
398			off = 0;
399			len -= seglen;
400			error = sglist_append(sg,
401			    &m->m_epg_hdr[segoff], seglen);
402		}
403	}
404	pgoff = m->m_epg_1st_off;
405	for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
406		pglen = m_epg_pagelen(m, i, pgoff);
407		if (off >= pglen) {
408			off -= pglen;
409			pgoff = 0;
410			continue;
411		}
412		seglen = pglen - off;
413		segoff = pgoff + off;
414		off = 0;
415		seglen = MIN(seglen, len);
416		len -= seglen;
417		paddr = m->m_epg_pa[i] + segoff;
418		error = sglist_append_phys(sg, paddr, seglen);
419		pgoff = 0;
420	};
421	if (error == 0 && len > 0) {
422		seglen = MIN(len, m->m_epg_trllen - off);
423		len -= seglen;
424		error = sglist_append(sg,
425		    &m->m_epg_trail[off], seglen);
426	}
427	if (error == 0)
428		KASSERT(len == 0, ("len != 0"));
429	return (error);
430}
431
432/*
433 * Append the segments that describe a single mbuf chain to a
434 * scatter/gather list.  If there are insufficient segments, then this
435 * fails with EFBIG.
436 */
437int
438sglist_append_mbuf(struct sglist *sg, struct mbuf *m0)
439{
440	struct sgsave save;
441	struct mbuf *m;
442	int error;
443
444	if (sg->sg_maxseg == 0)
445		return (EINVAL);
446
447	error = 0;
448	SGLIST_SAVE(sg, save);
449	for (m = m0; m != NULL; m = m->m_next) {
450		if (m->m_len > 0) {
451			if ((m->m_flags & M_EXTPG) != 0)
452				error = sglist_append_mbuf_epg(sg, m,
453				    mtod(m, vm_offset_t), m->m_len);
454			else
455				error = sglist_append(sg, m->m_data,
456				    m->m_len);
457			if (error) {
458				SGLIST_RESTORE(sg, save);
459				return (error);
460			}
461		}
462	}
463	return (0);
464}
465
466/*
467 * Append the segments that describe a single mbuf to a scatter/gather
468 * list.  If there are insufficient segments, then this fails with
469 * EFBIG.
470 */
471int
472sglist_append_single_mbuf(struct sglist *sg, struct mbuf *m)
473{
474	if ((m->m_flags & M_EXTPG) != 0)
475		return (sglist_append_mbuf_epg(sg, m,
476		    mtod(m, vm_offset_t), m->m_len));
477	else
478		return (sglist_append(sg, m->m_data, m->m_len));
479}
480
481/*
482 * Append the segments that describe a buffer spanning an array of VM
483 * pages.  The buffer begins at an offset of 'pgoff' in the first
484 * page.
485 */
486int
487sglist_append_vmpages(struct sglist *sg, vm_page_t *m, size_t pgoff,
488    size_t len)
489{
490	struct sgsave save;
491	struct sglist_seg *ss;
492	vm_paddr_t paddr;
493	size_t seglen;
494	int error, i;
495
496	if (sg->sg_maxseg == 0)
497		return (EINVAL);
498	if (len == 0)
499		return (0);
500
501	SGLIST_SAVE(sg, save);
502	i = 0;
503	if (sg->sg_nseg == 0) {
504		seglen = min(PAGE_SIZE - pgoff, len);
505		sg->sg_segs[0].ss_paddr = VM_PAGE_TO_PHYS(m[0]) + pgoff;
506		sg->sg_segs[0].ss_len = seglen;
507		sg->sg_nseg = 1;
508		pgoff = 0;
509		len -= seglen;
510		i++;
511	}
512	ss = &sg->sg_segs[sg->sg_nseg - 1];
513	for (; len > 0; i++, len -= seglen) {
514		seglen = min(PAGE_SIZE - pgoff, len);
515		paddr = VM_PAGE_TO_PHYS(m[i]) + pgoff;
516		error = _sglist_append_range(sg, &ss, paddr, seglen);
517		if (error) {
518			SGLIST_RESTORE(sg, save);
519			return (error);
520		}
521		pgoff = 0;
522	}
523	return (0);
524}
525
526/*
527 * Append the segments that describe a single user address range to a
528 * scatter/gather list.  If there are insufficient segments, then this
529 * fails with EFBIG.
530 */
531int
532sglist_append_user(struct sglist *sg, void *buf, size_t len, struct thread *td)
533{
534	struct sgsave save;
535	int error;
536
537	if (sg->sg_maxseg == 0)
538		return (EINVAL);
539	SGLIST_SAVE(sg, save);
540	error = _sglist_append_buf(sg, buf, len,
541	    vmspace_pmap(td->td_proc->p_vmspace), NULL);
542	if (error)
543		SGLIST_RESTORE(sg, save);
544	return (error);
545}
546
547/*
548 * Append a subset of an existing scatter/gather list 'source' to a
549 * the scatter/gather list 'sg'.  If there are insufficient segments,
550 * then this fails with EFBIG.
551 */
552int
553sglist_append_sglist(struct sglist *sg, struct sglist *source, size_t offset,
554    size_t length)
555{
556	struct sgsave save;
557	struct sglist_seg *ss;
558	size_t seglen;
559	int error, i;
560
561	if (sg->sg_maxseg == 0 || length == 0)
562		return (EINVAL);
563	SGLIST_SAVE(sg, save);
564	error = EINVAL;
565	ss = &sg->sg_segs[sg->sg_nseg - 1];
566	for (i = 0; i < source->sg_nseg; i++) {
567		if (offset >= source->sg_segs[i].ss_len) {
568			offset -= source->sg_segs[i].ss_len;
569			continue;
570		}
571		seglen = source->sg_segs[i].ss_len - offset;
572		if (seglen > length)
573			seglen = length;
574		error = _sglist_append_range(sg, &ss,
575		    source->sg_segs[i].ss_paddr + offset, seglen);
576		if (error)
577			break;
578		offset = 0;
579		length -= seglen;
580		if (length == 0)
581			break;
582	}
583	if (length != 0)
584		error = EINVAL;
585	if (error)
586		SGLIST_RESTORE(sg, save);
587	return (error);
588}
589
590/*
591 * Append the segments that describe a single uio to a scatter/gather
592 * list.  If there are insufficient segments, then this fails with
593 * EFBIG.
594 */
595int
596sglist_append_uio(struct sglist *sg, struct uio *uio)
597{
598	struct iovec *iov;
599	struct sgsave save;
600	size_t resid, minlen;
601	pmap_t pmap;
602	int error, i;
603
604	if (sg->sg_maxseg == 0)
605		return (EINVAL);
606
607	resid = uio->uio_resid;
608	iov = uio->uio_iov;
609
610	if (uio->uio_segflg == UIO_USERSPACE) {
611		KASSERT(uio->uio_td != NULL,
612		    ("sglist_append_uio: USERSPACE but no thread"));
613		pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
614	} else
615		pmap = NULL;
616
617	error = 0;
618	SGLIST_SAVE(sg, save);
619	for (i = 0; i < uio->uio_iovcnt && resid != 0; i++) {
620		/*
621		 * Now at the first iovec to load.  Load each iovec
622		 * until we have exhausted the residual count.
623		 */
624		minlen = MIN(resid, iov[i].iov_len);
625		if (minlen > 0) {
626			error = _sglist_append_buf(sg, iov[i].iov_base, minlen,
627			    pmap, NULL);
628			if (error) {
629				SGLIST_RESTORE(sg, save);
630				return (error);
631			}
632			resid -= minlen;
633		}
634	}
635	return (0);
636}
637
638/*
639 * Append the segments that describe at most 'resid' bytes from a
640 * single uio to a scatter/gather list.  If there are insufficient
641 * segments, then only the amount that fits is appended.
642 */
643int
644sglist_consume_uio(struct sglist *sg, struct uio *uio, size_t resid)
645{
646	struct iovec *iov;
647	size_t done;
648	pmap_t pmap;
649	int error, len;
650
651	if (sg->sg_maxseg == 0)
652		return (EINVAL);
653
654	if (uio->uio_segflg == UIO_USERSPACE) {
655		KASSERT(uio->uio_td != NULL,
656		    ("sglist_consume_uio: USERSPACE but no thread"));
657		pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
658	} else
659		pmap = NULL;
660
661	error = 0;
662	while (resid > 0 && uio->uio_resid) {
663		iov = uio->uio_iov;
664		len = iov->iov_len;
665		if (len == 0) {
666			uio->uio_iov++;
667			uio->uio_iovcnt--;
668			continue;
669		}
670		if (len > resid)
671			len = resid;
672
673		/*
674		 * Try to append this iovec.  If we run out of room,
675		 * then break out of the loop.
676		 */
677		error = _sglist_append_buf(sg, iov->iov_base, len, pmap, &done);
678		iov->iov_base = (char *)iov->iov_base + done;
679		iov->iov_len -= done;
680		uio->uio_resid -= done;
681		uio->uio_offset += done;
682		resid -= done;
683		if (error)
684			break;
685	}
686	return (0);
687}
688
689/*
690 * Allocate and populate a scatter/gather list to describe a single
691 * kernel virtual address range.
692 */
693struct sglist *
694sglist_build(void *buf, size_t len, int mflags)
695{
696	struct sglist *sg;
697	int nsegs;
698
699	if (len == 0)
700		return (NULL);
701
702	nsegs = sglist_count(buf, len);
703	sg = sglist_alloc(nsegs, mflags);
704	if (sg == NULL)
705		return (NULL);
706	if (sglist_append(sg, buf, len) != 0) {
707		sglist_free(sg);
708		return (NULL);
709	}
710	return (sg);
711}
712
713/*
714 * Clone a new copy of a scatter/gather list.
715 */
716struct sglist *
717sglist_clone(struct sglist *sg, int mflags)
718{
719	struct sglist *new;
720
721	if (sg == NULL)
722		return (NULL);
723	new = sglist_alloc(sg->sg_maxseg, mflags);
724	if (new == NULL)
725		return (NULL);
726	new->sg_nseg = sg->sg_nseg;
727	bcopy(sg->sg_segs, new->sg_segs, sizeof(struct sglist_seg) *
728	    sg->sg_nseg);
729	return (new);
730}
731
732/*
733 * Calculate the total length of the segments described in a
734 * scatter/gather list.
735 */
736size_t
737sglist_length(struct sglist *sg)
738{
739	size_t space;
740	int i;
741
742	space = 0;
743	for (i = 0; i < sg->sg_nseg; i++)
744		space += sg->sg_segs[i].ss_len;
745	return (space);
746}
747
748/*
749 * Split a scatter/gather list into two lists.  The scatter/gather
750 * entries for the first 'length' bytes of the 'original' list are
751 * stored in the '*head' list and are removed from 'original'.
752 *
753 * If '*head' is NULL, then a new list will be allocated using
754 * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
755 * ENOMEM will be returned.
756 *
757 * If '*head' is not NULL, it should point to an empty sglist.  If it
758 * does not have enough room for the remaining space, then EFBIG will
759 * be returned.  If '*head' is not empty, then EINVAL will be
760 * returned.
761 *
762 * If 'original' is shared (refcount > 1), then EDOOFUS will be
763 * returned.
764 */
765int
766sglist_split(struct sglist *original, struct sglist **head, size_t length,
767    int mflags)
768{
769	struct sglist *sg;
770	size_t space, split;
771	int count, i;
772
773	if (original->sg_refs > 1)
774		return (EDOOFUS);
775
776	/* Figure out how big of a sglist '*head' has to hold. */
777	count = 0;
778	space = 0;
779	split = 0;
780	for (i = 0; i < original->sg_nseg; i++) {
781		space += original->sg_segs[i].ss_len;
782		count++;
783		if (space >= length) {
784			/*
785			 * If 'length' falls in the middle of a
786			 * scatter/gather list entry, then 'split'
787			 * holds how much of that entry will remain in
788			 * 'original'.
789			 */
790			split = space - length;
791			break;
792		}
793	}
794
795	/* Nothing to do, so leave head empty. */
796	if (count == 0)
797		return (0);
798
799	if (*head == NULL) {
800		sg = sglist_alloc(count, mflags);
801		if (sg == NULL)
802			return (ENOMEM);
803		*head = sg;
804	} else {
805		sg = *head;
806		if (sg->sg_maxseg < count)
807			return (EFBIG);
808		if (sg->sg_nseg != 0)
809			return (EINVAL);
810	}
811
812	/* Copy 'count' entries to 'sg' from 'original'. */
813	bcopy(original->sg_segs, sg->sg_segs, count *
814	    sizeof(struct sglist_seg));
815	sg->sg_nseg = count;
816
817	/*
818	 * If we had to split a list entry, fixup the last entry in
819	 * 'sg' and the new first entry in 'original'.  We also
820	 * decrement 'count' by 1 since we will only be removing
821	 * 'count - 1' segments from 'original' now.
822	 */
823	if (split != 0) {
824		count--;
825		sg->sg_segs[count].ss_len -= split;
826		original->sg_segs[count].ss_paddr =
827		    sg->sg_segs[count].ss_paddr + split;
828		original->sg_segs[count].ss_len = split;
829	}
830
831	/* Trim 'count' entries from the front of 'original'. */
832	original->sg_nseg -= count;
833	bcopy(original->sg_segs + count, original->sg_segs, count *
834	    sizeof(struct sglist_seg));
835	return (0);
836}
837
838/*
839 * Append the scatter/gather list elements in 'second' to the
840 * scatter/gather list 'first'.  If there is not enough space in
841 * 'first', EFBIG is returned.
842 */
843int
844sglist_join(struct sglist *first, struct sglist *second)
845{
846	struct sglist_seg *flast, *sfirst;
847	int append;
848
849	/* If 'second' is empty, there is nothing to do. */
850	if (second->sg_nseg == 0)
851		return (0);
852
853	/*
854	 * If the first entry in 'second' can be appended to the last entry
855	 * in 'first' then set append to '1'.
856	 */
857	append = 0;
858	flast = &first->sg_segs[first->sg_nseg - 1];
859	sfirst = &second->sg_segs[0];
860	if (first->sg_nseg != 0 &&
861	    flast->ss_paddr + flast->ss_len == sfirst->ss_paddr)
862		append = 1;
863
864	/* Make sure 'first' has enough room. */
865	if (first->sg_nseg + second->sg_nseg - append > first->sg_maxseg)
866		return (EFBIG);
867
868	/* Merge last in 'first' and first in 'second' if needed. */
869	if (append)
870		flast->ss_len += sfirst->ss_len;
871
872	/* Append new segments from 'second' to 'first'. */
873	bcopy(first->sg_segs + first->sg_nseg, second->sg_segs + append,
874	    (second->sg_nseg - append) * sizeof(struct sglist_seg));
875	first->sg_nseg += second->sg_nseg - append;
876	sglist_reset(second);
877	return (0);
878}
879
880/*
881 * Generate a new scatter/gather list from a range of an existing
882 * scatter/gather list.  The 'offset' and 'length' parameters specify
883 * the logical range of the 'original' list to extract.  If that range
884 * is not a subset of the length of 'original', then EINVAL is
885 * returned.  The new scatter/gather list is stored in '*slice'.
886 *
887 * If '*slice' is NULL, then a new list will be allocated using
888 * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
889 * ENOMEM will be returned.
890 *
891 * If '*slice' is not NULL, it should point to an empty sglist.  If it
892 * does not have enough room for the remaining space, then EFBIG will
893 * be returned.  If '*slice' is not empty, then EINVAL will be
894 * returned.
895 */
896int
897sglist_slice(struct sglist *original, struct sglist **slice, size_t offset,
898    size_t length, int mflags)
899{
900	struct sglist *sg;
901	size_t space, end, foffs, loffs;
902	int count, i, fseg;
903
904	/* Nothing to do. */
905	if (length == 0)
906		return (0);
907
908	/* Figure out how many segments '*slice' needs to have. */
909	end = offset + length;
910	space = 0;
911	count = 0;
912	fseg = 0;
913	foffs = loffs = 0;
914	for (i = 0; i < original->sg_nseg; i++) {
915		space += original->sg_segs[i].ss_len;
916		if (space > offset) {
917			/*
918			 * When we hit the first segment, store its index
919			 * in 'fseg' and the offset into the first segment
920			 * of 'offset' in 'foffs'.
921			 */
922			if (count == 0) {
923				fseg = i;
924				foffs = offset - (space -
925				    original->sg_segs[i].ss_len);
926				CTR1(KTR_DEV, "sglist_slice: foffs = %08lx",
927				    foffs);
928			}
929			count++;
930
931			/*
932			 * When we hit the last segment, break out of
933			 * the loop.  Store the amount of extra space
934			 * at the end of this segment in 'loffs'.
935			 */
936			if (space >= end) {
937				loffs = space - end;
938				CTR1(KTR_DEV, "sglist_slice: loffs = %08lx",
939				    loffs);
940				break;
941			}
942		}
943	}
944
945	/* If we never hit 'end', then 'length' ran off the end, so fail. */
946	if (space < end)
947		return (EINVAL);
948
949	if (*slice == NULL) {
950		sg = sglist_alloc(count, mflags);
951		if (sg == NULL)
952			return (ENOMEM);
953		*slice = sg;
954	} else {
955		sg = *slice;
956		if (sg->sg_maxseg < count)
957			return (EFBIG);
958		if (sg->sg_nseg != 0)
959			return (EINVAL);
960	}
961
962	/*
963	 * Copy over 'count' segments from 'original' starting at
964	 * 'fseg' to 'sg'.
965	 */
966	bcopy(original->sg_segs + fseg, sg->sg_segs,
967	    count * sizeof(struct sglist_seg));
968	sg->sg_nseg = count;
969
970	/* Fixup first and last segments if needed. */
971	if (foffs != 0) {
972		sg->sg_segs[0].ss_paddr += foffs;
973		sg->sg_segs[0].ss_len -= foffs;
974		CTR2(KTR_DEV, "sglist_slice seg[0]: %08lx:%08lx",
975		    (long)sg->sg_segs[0].ss_paddr, sg->sg_segs[0].ss_len);
976	}
977	if (loffs != 0) {
978		sg->sg_segs[count - 1].ss_len -= loffs;
979		CTR2(KTR_DEV, "sglist_slice seg[%d]: len %08x", count - 1,
980		    sg->sg_segs[count - 1].ss_len);
981	}
982	return (0);
983}
984