1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2013 EMC Corp.
5 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32/*
33 * Path-compressed radix trie implementation.
34 *
35 * The implementation takes into account the following rationale:
36 * - Size of the nodes should be as small as possible but still big enough
37 *   to avoid a large maximum depth for the trie.  This is a balance
38 *   between the necessity to not wire too much physical memory for the nodes
39 *   and the necessity to avoid too much cache pollution during the trie
40 *   operations.
41 * - There is not a huge bias toward the number of lookup operations over
42 *   the number of insert and remove operations.  This basically implies
43 *   that optimizations supposedly helping one operation but hurting the
44 *   other might be carefully evaluated.
45 * - On average not many nodes are expected to be fully populated, hence
46 *   level compression may just complicate things.
47 */
48
49#include <sys/cdefs.h>
50#include "opt_ddb.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/kernel.h>
55#include <sys/libkern.h>
56#include <sys/pctrie.h>
57#include <sys/proc.h>	/* smr.h depends on struct thread. */
58#include <sys/smr.h>
59#include <sys/smr_types.h>
60
61#ifdef DDB
62#include <ddb/ddb.h>
63#endif
64
65#define	PCTRIE_MASK	(PCTRIE_COUNT - 1)
66#define	PCTRIE_LIMIT	(howmany(sizeof(uint64_t) * NBBY, PCTRIE_WIDTH) - 1)
67
68#if PCTRIE_WIDTH == 3
69typedef uint8_t pn_popmap_t;
70#elif PCTRIE_WIDTH == 4
71typedef uint16_t pn_popmap_t;
72#elif PCTRIE_WIDTH == 5
73typedef uint32_t pn_popmap_t;
74#else
75#error Unsupported width
76#endif
77_Static_assert(sizeof(pn_popmap_t) <= sizeof(int),
78    "pn_popmap_t too wide");
79
80struct pctrie_node;
81typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t;
82
83struct pctrie_node {
84	uint64_t	pn_owner;			/* Owner of record. */
85	pn_popmap_t	pn_popmap;			/* Valid children. */
86	uint8_t		pn_clev;			/* Level * WIDTH. */
87	smr_pctnode_t	pn_child[PCTRIE_COUNT];		/* Child nodes. */
88};
89
90enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED };
91
92static __inline void pctrie_node_store(smr_pctnode_t *p, void *val,
93    enum pctrie_access access);
94
95/*
96 * Map index to an array position for the children of node,
97 */
98static __inline int
99pctrie_slot(struct pctrie_node *node, uint64_t index)
100{
101	return ((index >> node->pn_clev) & PCTRIE_MASK);
102}
103
104/*
105 * Returns true if index does not belong to the specified node.  Otherwise,
106 * sets slot value, and returns false.
107 */
108static __inline bool
109pctrie_keybarr(struct pctrie_node *node, uint64_t index, int *slot)
110{
111	index = (index - node->pn_owner) >> node->pn_clev;
112	if (index >= PCTRIE_COUNT)
113		return (true);
114	*slot = index;
115	return (false);
116}
117
118/*
119 * Check radix node.
120 */
121static __inline void
122pctrie_node_put(struct pctrie_node *node)
123{
124#ifdef INVARIANTS
125	int slot;
126
127	KASSERT(powerof2(node->pn_popmap),
128	    ("pctrie_node_put: node %p has too many children %04x", node,
129	    node->pn_popmap));
130	for (slot = 0; slot < PCTRIE_COUNT; slot++) {
131		if ((node->pn_popmap & (1 << slot)) != 0)
132			continue;
133		KASSERT(smr_unserialized_load(&node->pn_child[slot], true) ==
134		    PCTRIE_NULL,
135		    ("pctrie_node_put: node %p has a child", node));
136	}
137#endif
138}
139
140/*
141 * Fetch a node pointer from a slot.
142 */
143static __inline struct pctrie_node *
144pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access)
145{
146	switch (access) {
147	case PCTRIE_UNSERIALIZED:
148		return (smr_unserialized_load(p, true));
149	case PCTRIE_LOCKED:
150		return (smr_serialized_load(p, true));
151	case PCTRIE_SMR:
152		return (smr_entered_load(p, smr));
153	}
154	__assert_unreachable();
155}
156
157static __inline void
158pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access)
159{
160	switch (access) {
161	case PCTRIE_UNSERIALIZED:
162		smr_unserialized_store(p, v, true);
163		break;
164	case PCTRIE_LOCKED:
165		smr_serialized_store(p, v, true);
166		break;
167	case PCTRIE_SMR:
168		panic("%s: Not supported in SMR section.", __func__);
169		break;
170	default:
171		__assert_unreachable();
172		break;
173	}
174}
175
176/*
177 * Get the root node for a tree.
178 */
179static __inline struct pctrie_node *
180pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access)
181{
182	return (pctrie_node_load((smr_pctnode_t *)&ptree->pt_root, smr, access));
183}
184
185/*
186 * Set the root node for a tree.
187 */
188static __inline void
189pctrie_root_store(struct pctrie *ptree, struct pctrie_node *node,
190    enum pctrie_access access)
191{
192	pctrie_node_store((smr_pctnode_t *)&ptree->pt_root, node, access);
193}
194
195/*
196 * Returns TRUE if the specified node is a leaf and FALSE otherwise.
197 */
198static __inline bool
199pctrie_isleaf(struct pctrie_node *node)
200{
201
202	return (((uintptr_t)node & PCTRIE_ISLEAF) != 0);
203}
204
205/*
206 * Returns val with leaf bit set.
207 */
208static __inline void *
209pctrie_toleaf(uint64_t *val)
210{
211	return ((void *)((uintptr_t)val | PCTRIE_ISLEAF));
212}
213
214/*
215 * Returns the associated val extracted from node.
216 */
217static __inline uint64_t *
218pctrie_toval(struct pctrie_node *node)
219{
220
221	return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS));
222}
223
224/*
225 * Make 'child' a child of 'node'.
226 */
227static __inline void
228pctrie_addnode(struct pctrie_node *node, uint64_t index,
229    struct pctrie_node *child, enum pctrie_access access)
230{
231	int slot;
232
233	slot = pctrie_slot(node, index);
234	pctrie_node_store(&node->pn_child[slot], child, access);
235	node->pn_popmap ^= 1 << slot;
236	KASSERT((node->pn_popmap & (1 << slot)) != 0,
237	    ("%s: bad popmap slot %d in node %p", __func__, slot, node));
238}
239
240/*
241 * pctrie node zone initializer.
242 */
243int
244pctrie_zone_init(void *mem, int size __unused, int flags __unused)
245{
246	struct pctrie_node *node;
247
248	node = mem;
249	node->pn_popmap = 0;
250	for (int i = 0; i < nitems(node->pn_child); i++)
251		pctrie_node_store(&node->pn_child[i], PCTRIE_NULL,
252		    PCTRIE_UNSERIALIZED);
253	return (0);
254}
255
256size_t
257pctrie_node_size(void)
258{
259
260	return (sizeof(struct pctrie_node));
261}
262
263/*
264 * Looks for where to insert the key-value pair into the trie.  Completes the
265 * insertion if it replaces a null leaf; otherwise, returns insertion location
266 * to caller.  Panics if the key already exists.
267 */
268void *
269pctrie_insert_lookup(struct pctrie *ptree, uint64_t *val)
270{
271	uint64_t index;
272	struct pctrie_node *node, *parent;
273	int slot;
274
275	index = *val;
276
277	/*
278	 * The owner of record for root is not really important because it
279	 * will never be used.
280	 */
281	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
282	parent = NULL;
283	for (;;) {
284		if (pctrie_isleaf(node)) {
285			if (node == PCTRIE_NULL) {
286				if (parent == NULL)
287					ptree->pt_root = pctrie_toleaf(val);
288				else
289					pctrie_addnode(parent, index,
290					    pctrie_toleaf(val), PCTRIE_LOCKED);
291				return (NULL);
292			}
293			if (*pctrie_toval(node) == index)
294				panic("%s: key %jx is already present",
295				    __func__, (uintmax_t)index);
296			break;
297		}
298		if (pctrie_keybarr(node, index, &slot))
299			break;
300		parent = node;
301		node = pctrie_node_load(&node->pn_child[slot], NULL,
302		    PCTRIE_LOCKED);
303	}
304
305	/*
306	 * 'node' must be replaced in the tree with a new branch node, with
307	 * children 'node' and 'val'. Return the place that points to 'node'
308	 * now, and will point to to the new branching node later.
309	 */
310	return ((parent != NULL) ? &parent->pn_child[slot]:
311	    (smr_pctnode_t *)&ptree->pt_root);
312}
313
314/*
315 * Uses new node to insert key-value pair into the trie at given location.
316 */
317void
318pctrie_insert_node(void *parentp, struct pctrie_node *parent, uint64_t *val)
319{
320	struct pctrie_node *node;
321	uint64_t index, newind;
322
323	/*
324	 * Clear the last child pointer of the newly allocated parent.  We want
325	 * to clear it after the final section has exited so lookup can not
326	 * return false negatives.  It is done here because it will be
327	 * cache-cold in the dtor callback.
328	 */
329	if (parent->pn_popmap != 0) {
330		pctrie_node_store(&parent->pn_child[ffs(parent->pn_popmap) - 1],
331		    PCTRIE_NULL, PCTRIE_UNSERIALIZED);
332		parent->pn_popmap = 0;
333	}
334
335	/*
336	 * Recover the values of the two children of the new parent node.  If
337	 * 'node' is not a leaf, this stores into 'newind' the 'owner' field,
338	 * which must be first in the node.
339	 */
340	index = *val;
341	node = pctrie_node_load(parentp, NULL, PCTRIE_UNSERIALIZED);
342	newind = *pctrie_toval(node);
343
344	/*
345	 * From the highest-order bit where the indexes differ,
346	 * compute the highest level in the trie where they differ.  Then,
347	 * compute the least index of this subtrie.
348	 */
349	_Static_assert(sizeof(long long) >= sizeof(uint64_t),
350	    "uint64 too wide");
351	_Static_assert(sizeof(uint64_t) * NBBY <=
352	    (1 << (sizeof(parent->pn_clev) * NBBY)), "pn_clev too narrow");
353	parent->pn_clev = rounddown(flsll(index ^ newind) - 1, PCTRIE_WIDTH);
354	parent->pn_owner = PCTRIE_COUNT;
355	parent->pn_owner = index & -(parent->pn_owner << parent->pn_clev);
356
357
358	/* These writes are not yet visible due to ordering. */
359	pctrie_addnode(parent, index, pctrie_toleaf(val), PCTRIE_UNSERIALIZED);
360	pctrie_addnode(parent, newind, node, PCTRIE_UNSERIALIZED);
361	/* Synchronize to make the above visible. */
362	pctrie_node_store(parentp, parent, PCTRIE_LOCKED);
363}
364
365/*
366 * Returns the value stored at the index.  If the index is not present,
367 * NULL is returned.
368 */
369static __always_inline uint64_t *
370_pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr,
371    enum pctrie_access access)
372{
373	struct pctrie_node *node;
374	uint64_t *m;
375	int slot;
376
377	node = pctrie_root_load(ptree, smr, access);
378	for (;;) {
379		if (pctrie_isleaf(node)) {
380			if ((m = pctrie_toval(node)) != NULL && *m == index)
381				return (m);
382			break;
383		}
384		if (pctrie_keybarr(node, index, &slot))
385			break;
386		node = pctrie_node_load(&node->pn_child[slot], smr, access);
387	}
388	return (NULL);
389}
390
391/*
392 * Returns the value stored at the index, assuming access is externally
393 * synchronized by a lock.
394 *
395 * If the index is not present, NULL is returned.
396 */
397uint64_t *
398pctrie_lookup(struct pctrie *ptree, uint64_t index)
399{
400	return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED));
401}
402
403/*
404 * Returns the value stored at the index without requiring an external lock.
405 *
406 * If the index is not present, NULL is returned.
407 */
408uint64_t *
409pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr)
410{
411	uint64_t *res;
412
413	smr_enter(smr);
414	res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR);
415	smr_exit(smr);
416	return (res);
417}
418
419/*
420 * Returns the value with the least index that is greater than or equal to the
421 * specified index, or NULL if there are no such values.
422 *
423 * Requires that access be externally synchronized by a lock.
424 */
425uint64_t *
426pctrie_lookup_ge(struct pctrie *ptree, uint64_t index)
427{
428	struct pctrie_node *node, *succ;
429	uint64_t *m;
430	int slot;
431
432	/*
433	 * Descend the trie as if performing an ordinary lookup for the
434	 * specified value.  However, unlike an ordinary lookup, as we descend
435	 * the trie, we use "succ" to remember the last branching-off point,
436	 * that is, the interior node under which the least value that is both
437	 * outside our current path down the trie and greater than the specified
438	 * index resides.  (The node's popmap makes it fast and easy to
439	 * recognize a branching-off point.)  If our ordinary lookup fails to
440	 * yield a value that is greater than or equal to the specified index,
441	 * then we will exit this loop and perform a lookup starting from
442	 * "succ".  If "succ" is not NULL, then that lookup is guaranteed to
443	 * succeed.
444	 */
445	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
446	succ = NULL;
447	for (;;) {
448		if (pctrie_isleaf(node)) {
449			if ((m = pctrie_toval(node)) != NULL && *m >= index)
450				return (m);
451			break;
452		}
453		if (pctrie_keybarr(node, index, &slot)) {
454			/*
455			 * If all values in this subtree are > index, then the
456			 * least value in this subtree is the answer.
457			 */
458			if (node->pn_owner > index)
459				succ = node;
460			break;
461		}
462
463		/*
464		 * Just in case the next search step leads to a subtree of all
465		 * values < index, check popmap to see if a next bigger step, to
466		 * a subtree of all pages with values > index, is available.  If
467		 * so, remember to restart the search here.
468		 */
469		if ((node->pn_popmap >> slot) > 1)
470			succ = node;
471		node = pctrie_node_load(&node->pn_child[slot], NULL,
472		    PCTRIE_LOCKED);
473	}
474
475	/*
476	 * Restart the search from the last place visited in the subtree that
477	 * included some values > index, if there was such a place.
478	 */
479	if (succ == NULL)
480		return (NULL);
481	if (succ != node) {
482		/*
483		 * Take a step to the next bigger sibling of the node chosen
484		 * last time.  In that subtree, all values > index.
485		 */
486		slot = pctrie_slot(succ, index) + 1;
487		KASSERT((succ->pn_popmap >> slot) != 0,
488		    ("%s: no popmap siblings past slot %d in node %p",
489		    __func__, slot, succ));
490		slot += ffs(succ->pn_popmap >> slot) - 1;
491		succ = pctrie_node_load(&succ->pn_child[slot], NULL,
492		    PCTRIE_LOCKED);
493	}
494
495	/*
496	 * Find the value in the subtree rooted at "succ" with the least index.
497	 */
498	while (!pctrie_isleaf(succ)) {
499		KASSERT(succ->pn_popmap != 0,
500		    ("%s: no popmap children in node %p",  __func__, succ));
501		slot = ffs(succ->pn_popmap) - 1;
502		succ = pctrie_node_load(&succ->pn_child[slot], NULL,
503		    PCTRIE_LOCKED);
504	}
505	return (pctrie_toval(succ));
506}
507
508/*
509 * Returns the value with the greatest index that is less than or equal to the
510 * specified index, or NULL if there are no such values.
511 *
512 * Requires that access be externally synchronized by a lock.
513 */
514uint64_t *
515pctrie_lookup_le(struct pctrie *ptree, uint64_t index)
516{
517	struct pctrie_node *node, *pred;
518	uint64_t *m;
519	int slot;
520
521	/*
522	 * Mirror the implementation of pctrie_lookup_ge, described above.
523	 */
524	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
525	pred = NULL;
526	for (;;) {
527		if (pctrie_isleaf(node)) {
528			if ((m = pctrie_toval(node)) != NULL && *m <= index)
529				return (m);
530			break;
531		}
532		if (pctrie_keybarr(node, index, &slot)) {
533			if (node->pn_owner < index)
534				pred = node;
535			break;
536		}
537		if ((node->pn_popmap & ((1 << slot) - 1)) != 0)
538			pred = node;
539		node = pctrie_node_load(&node->pn_child[slot], NULL,
540		    PCTRIE_LOCKED);
541	}
542	if (pred == NULL)
543		return (NULL);
544	if (pred != node) {
545		slot = pctrie_slot(pred, index);
546		KASSERT((pred->pn_popmap & ((1 << slot) - 1)) != 0,
547		    ("%s: no popmap siblings before slot %d in node %p",
548		    __func__, slot, pred));
549		slot = fls(pred->pn_popmap & ((1 << slot) - 1)) - 1;
550		pred = pctrie_node_load(&pred->pn_child[slot], NULL,
551		    PCTRIE_LOCKED);
552	}
553	while (!pctrie_isleaf(pred)) {
554		KASSERT(pred->pn_popmap != 0,
555		    ("%s: no popmap children in node %p",  __func__, pred));
556		slot = fls(pred->pn_popmap) - 1;
557		pred = pctrie_node_load(&pred->pn_child[slot], NULL,
558		    PCTRIE_LOCKED);
559	}
560	return (pctrie_toval(pred));
561}
562
563/*
564 * Remove the specified index from the tree, and return the value stored at
565 * that index.  If the index is not present, return NULL.
566 */
567uint64_t *
568pctrie_remove_lookup(struct pctrie *ptree, uint64_t index,
569    struct pctrie_node **freenode)
570{
571	struct pctrie_node *child, *node, *parent;
572	uint64_t *m;
573	int slot;
574
575	*freenode = node = NULL;
576	child = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
577	for (;;) {
578		if (pctrie_isleaf(child))
579			break;
580		parent = node;
581		node = child;
582		slot = pctrie_slot(node, index);
583		child = pctrie_node_load(&node->pn_child[slot], NULL,
584		    PCTRIE_LOCKED);
585	}
586	if ((m = pctrie_toval(child)) == NULL || *m != index)
587		return (NULL);
588	if (node == NULL) {
589		pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_LOCKED);
590		return (m);
591	}
592	KASSERT((node->pn_popmap & (1 << slot)) != 0,
593	    ("%s: bad popmap slot %d in node %p",
594	    __func__, slot, node));
595	node->pn_popmap ^= 1 << slot;
596	pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, PCTRIE_LOCKED);
597	if (!powerof2(node->pn_popmap))
598		return (m);
599	KASSERT(node->pn_popmap != 0, ("%s: bad popmap all zeroes", __func__));
600	slot = ffs(node->pn_popmap) - 1;
601	child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED);
602	KASSERT(child != PCTRIE_NULL,
603	    ("%s: bad popmap slot %d in node %p", __func__, slot, node));
604	if (parent == NULL)
605		pctrie_root_store(ptree, child, PCTRIE_LOCKED);
606	else {
607		slot = pctrie_slot(parent, index);
608		KASSERT(node ==
609		    pctrie_node_load(&parent->pn_child[slot], NULL,
610		    PCTRIE_LOCKED), ("%s: invalid child value", __func__));
611		pctrie_node_store(&parent->pn_child[slot], child,
612		    PCTRIE_LOCKED);
613	}
614	/*
615	 * The child is still valid and we can not zero the
616	 * pointer until all SMR references are gone.
617	 */
618	pctrie_node_put(node);
619	*freenode = node;
620	return (m);
621}
622
623/*
624 * Prune all the leaves of 'node' before its first non-leaf child, make child
625 * zero of 'node' point up to 'parent', make 'node' into 'parent' and that
626 * non-leaf child into 'node'.  Repeat until a node has been stripped of all
627 * children, and mark it for freeing, returning its parent.
628 */
629static struct pctrie_node *
630pctrie_reclaim_prune(struct pctrie_node **pnode,
631    struct pctrie_node *parent)
632{
633	struct pctrie_node *child, *node;
634	int slot;
635
636	node = *pnode;
637	while (node->pn_popmap != 0) {
638		slot = ffs(node->pn_popmap) - 1;
639		node->pn_popmap ^= 1 << slot;
640		child = pctrie_node_load(&node->pn_child[slot], NULL,
641		    PCTRIE_UNSERIALIZED);
642		pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL,
643		    PCTRIE_UNSERIALIZED);
644		if (pctrie_isleaf(child))
645			continue;
646		/* Climb one level down the trie. */
647		pctrie_node_store(&node->pn_child[0], parent,
648		    PCTRIE_UNSERIALIZED);
649		parent = node;
650		node = child;
651	}
652	*pnode = parent;
653	return (node);
654}
655
656/*
657 * Recover the node parent from its first child and continue pruning.
658 */
659struct pctrie_node *
660pctrie_reclaim_resume(struct pctrie_node **pnode)
661{
662	struct pctrie_node *parent, *node;
663
664	node = *pnode;
665	if (node == NULL)
666		return (NULL);
667	/* Climb one level up the trie. */
668	parent = pctrie_node_load(&node->pn_child[0], NULL,
669	    PCTRIE_UNSERIALIZED);
670	pctrie_node_store(&node->pn_child[0], PCTRIE_NULL, PCTRIE_UNSERIALIZED);
671	return (pctrie_reclaim_prune(pnode, parent));
672}
673
674/*
675 * Find the trie root, and start pruning with a NULL parent.
676 */
677struct pctrie_node *
678pctrie_reclaim_begin(struct pctrie_node **pnode,
679    struct pctrie *ptree)
680{
681	struct pctrie_node *node;
682
683	node = pctrie_root_load(ptree, NULL, PCTRIE_UNSERIALIZED);
684	pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_UNSERIALIZED);
685	if (pctrie_isleaf(node))
686		return (NULL);
687	*pnode = node;
688	return (pctrie_reclaim_prune(pnode, NULL));
689}
690
691/*
692 * Replace an existing value in the trie with another one.
693 * Panics if there is not an old value in the trie at the new value's index.
694 */
695uint64_t *
696pctrie_replace(struct pctrie *ptree, uint64_t *newval)
697{
698	struct pctrie_node *leaf, *parent, *node;
699	uint64_t *m;
700	uint64_t index;
701	int slot;
702
703	leaf = pctrie_toleaf(newval);
704	index = *newval;
705	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
706	parent = NULL;
707	for (;;) {
708		if (pctrie_isleaf(node)) {
709			if ((m = pctrie_toval(node)) != NULL && *m == index) {
710				if (parent == NULL)
711					ptree->pt_root = leaf;
712				else
713					pctrie_node_store(
714					    &parent->pn_child[slot], leaf,
715					    PCTRIE_LOCKED);
716				return (m);
717			}
718			break;
719		}
720		if (pctrie_keybarr(node, index, &slot))
721			break;
722		parent = node;
723		node = pctrie_node_load(&node->pn_child[slot], NULL,
724		    PCTRIE_LOCKED);
725	}
726	panic("%s: original replacing value not found", __func__);
727}
728
729#ifdef DDB
730/*
731 * Show details about the given node.
732 */
733DB_SHOW_COMMAND(pctrienode, db_show_pctrienode)
734{
735	struct pctrie_node *node, *tmp;
736	int slot;
737	pn_popmap_t popmap;
738
739        if (!have_addr)
740                return;
741	node = (struct pctrie_node *)addr;
742	db_printf("node %p, owner %jx, children popmap %04x, level %u:\n",
743	    (void *)node, (uintmax_t)node->pn_owner, node->pn_popmap,
744	    node->pn_clev / PCTRIE_WIDTH);
745	for (popmap = node->pn_popmap; popmap != 0; popmap ^= 1 << slot) {
746		slot = ffs(popmap) - 1;
747		tmp = pctrie_node_load(&node->pn_child[slot], NULL,
748		    PCTRIE_UNSERIALIZED);
749		db_printf("slot: %d, val: %p, value: %p, clev: %d\n",
750		    slot, (void *)tmp,
751		    pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL,
752		    node->pn_clev / PCTRIE_WIDTH);
753	}
754}
755#endif /* DDB */
756