1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2006 Poul-Henning Kamp
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * Convert MS-DOS FAT format timestamps to and from unix timespecs
29 *
30 * FAT filestamps originally consisted of two 16 bit integers, encoded like
31 * this:
32 *
33 *	yyyyyyymmmmddddd (year - 1980, month, day)
34 *
35 *      hhhhhmmmmmmsssss (hour, minutes, seconds divided by two)
36 *
37 * Subsequently even Microsoft realized that files could be accessed in less
38 * than two seconds and a byte was added containing:
39 *
40 *      sfffffff	 (second mod two, 100ths of second)
41 *
42 * FAT timestamps are in the local timezone, with no indication of which
43 * timezone much less if daylight savings time applies.
44 *
45 * Later on again, in Windows NT, timestamps were defined relative to GMT.
46 *
47 * Purists will point out that UTC replaced GMT for such uses around
48 * half a century ago, already then.  Ironically "NT" was an abbreviation of
49 * "New Technology".  Anyway...
50 *
51 * The 'utc' argument determines if the resulting FATTIME timestamp
52 * should be on the UTC or local timezone calendar.
53 *
54 * The conversion functions below cut time into four-year leap-year
55 * cycles rather than single years and uses table lookups inside those
56 * cycles to get the months and years sorted out.
57 *
58 * Obviously we cannot calculate the correct table index going from
59 * a posix seconds count to Y/M/D, but we can get pretty close by
60 * dividing the daycount by 32 (giving a too low index), and then
61 * adjusting upwards a couple of steps if necessary.
62 *
63 * FAT timestamps have 7 bits for the year and starts at 1980, so
64 * they can represent up to 2107 which means that the non-leap-year
65 * 2100 must be handled.
66 */
67
68#include <sys/param.h>
69#include <sys/types.h>
70#include <sys/time.h>
71#include <sys/clock.h>
72
73#ifdef TEST_DRIVER
74/* stub for testing */
75#define utc_offset() 0
76#endif
77
78#define DAY	(24 * 60 * 60)	/* Length of day in seconds */
79#define YEAR	365		/* Length of normal year */
80#define LYC	(4 * YEAR + 1)	/* Length of 4 year leap-year cycle */
81#define T1980	(10 * 365 + 2)	/* Days from 1970 to 1980 */
82#define T2108	(138 * 365 + 33) /* Days from 1970 to 2108 */
83
84/* End of month is N days from start of (normal) year */
85#define JAN	31
86#define FEB	(JAN + 28)
87#define MAR	(FEB + 31)
88#define APR	(MAR + 30)
89#define MAY	(APR + 31)
90#define JUN	(MAY + 30)
91#define JUL	(JUN + 31)
92#define AUG	(JUL + 31)
93#define SEP	(AUG + 30)
94#define OCT	(SEP + 31)
95#define NOV	(OCT + 30)
96#define DEC	(NOV + 31)
97
98/* Table of months in a 4 year leap-year cycle */
99
100#define ENC(y,m)	(((y) << 9) | ((m) << 5))
101
102static const struct {
103	uint16_t	days;	/* month start in days relative to cycle */
104	uint16_t	coded;	/* encoded year + month information */
105} mtab[48] = {
106	{   0 + 0 * YEAR,     ENC(0, 1)  },
107
108	{ JAN + 0 * YEAR,     ENC(0, 2)  }, { FEB + 0 * YEAR + 1, ENC(0, 3)  },
109	{ MAR + 0 * YEAR + 1, ENC(0, 4)  }, { APR + 0 * YEAR + 1, ENC(0, 5)  },
110	{ MAY + 0 * YEAR + 1, ENC(0, 6)  }, { JUN + 0 * YEAR + 1, ENC(0, 7)  },
111	{ JUL + 0 * YEAR + 1, ENC(0, 8)  }, { AUG + 0 * YEAR + 1, ENC(0, 9)  },
112	{ SEP + 0 * YEAR + 1, ENC(0, 10) }, { OCT + 0 * YEAR + 1, ENC(0, 11) },
113	{ NOV + 0 * YEAR + 1, ENC(0, 12) }, { DEC + 0 * YEAR + 1, ENC(1, 1)  },
114
115	{ JAN + 1 * YEAR + 1, ENC(1, 2)  }, { FEB + 1 * YEAR + 1, ENC(1, 3)  },
116	{ MAR + 1 * YEAR + 1, ENC(1, 4)  }, { APR + 1 * YEAR + 1, ENC(1, 5)  },
117	{ MAY + 1 * YEAR + 1, ENC(1, 6)  }, { JUN + 1 * YEAR + 1, ENC(1, 7)  },
118	{ JUL + 1 * YEAR + 1, ENC(1, 8)  }, { AUG + 1 * YEAR + 1, ENC(1, 9)  },
119	{ SEP + 1 * YEAR + 1, ENC(1, 10) }, { OCT + 1 * YEAR + 1, ENC(1, 11) },
120	{ NOV + 1 * YEAR + 1, ENC(1, 12) }, { DEC + 1 * YEAR + 1, ENC(2, 1)  },
121
122	{ JAN + 2 * YEAR + 1, ENC(2, 2)  }, { FEB + 2 * YEAR + 1, ENC(2, 3)  },
123	{ MAR + 2 * YEAR + 1, ENC(2, 4)  }, { APR + 2 * YEAR + 1, ENC(2, 5)  },
124	{ MAY + 2 * YEAR + 1, ENC(2, 6)  }, { JUN + 2 * YEAR + 1, ENC(2, 7)  },
125	{ JUL + 2 * YEAR + 1, ENC(2, 8)  }, { AUG + 2 * YEAR + 1, ENC(2, 9)  },
126	{ SEP + 2 * YEAR + 1, ENC(2, 10) }, { OCT + 2 * YEAR + 1, ENC(2, 11) },
127	{ NOV + 2 * YEAR + 1, ENC(2, 12) }, { DEC + 2 * YEAR + 1, ENC(3, 1)  },
128
129	{ JAN + 3 * YEAR + 1, ENC(3, 2)  }, { FEB + 3 * YEAR + 1, ENC(3, 3)  },
130	{ MAR + 3 * YEAR + 1, ENC(3, 4)  }, { APR + 3 * YEAR + 1, ENC(3, 5)  },
131	{ MAY + 3 * YEAR + 1, ENC(3, 6)  }, { JUN + 3 * YEAR + 1, ENC(3, 7)  },
132	{ JUL + 3 * YEAR + 1, ENC(3, 8)  }, { AUG + 3 * YEAR + 1, ENC(3, 9)  },
133	{ SEP + 3 * YEAR + 1, ENC(3, 10) }, { OCT + 3 * YEAR + 1, ENC(3, 11) },
134	{ NOV + 3 * YEAR + 1, ENC(3, 12) }
135};
136
137void
138timespec2fattime(const struct timespec *tsp, int utc, uint16_t *ddp,
139    uint16_t *dtp, uint8_t *dhp)
140{
141	time_t t1;
142	unsigned t2, l, m;
143
144	t1 = tsp->tv_sec;
145	if (!utc)
146		t1 -= utc_offset();
147
148	if (dhp != NULL)
149		*dhp = (tsp->tv_sec & 1) * 100 + tsp->tv_nsec / 10000000;
150	if (dtp != NULL) {
151		*dtp = (t1 / 2) % 30;
152		*dtp |= ((t1 / 60) % 60) << 5;
153		*dtp |= ((t1 / 3600) % 24) << 11;
154	}
155	if (ddp != NULL) {
156		t2 = t1 / DAY;
157		if (t2 < T1980) {
158			/* Impossible date, truncate to 1980-01-01 */
159			*ddp = 0x0021;
160		} else {
161			t2 -= T1980;
162
163			/* 2100 is not a leap year */
164			if (t2 >= ((2100 - 1980) / 4 * LYC + FEB))
165				t2++;
166
167			/* Account for full leapyear cycles */
168			l = t2 / LYC;
169			*ddp = (l * 4) << 9;
170			t2 -= l * LYC;
171
172			/* Find approximate table entry */
173			m = t2 / 32;
174
175			/* Find correct table entry */
176			while (m < 47 && mtab[m + 1].days <= t2)
177				m++;
178
179			/* Get year + month from the table */
180			*ddp += mtab[m].coded;
181
182			/* And apply the day in the month */
183			t2 -= mtab[m].days - 1;
184			*ddp |= t2;
185		}
186	}
187}
188
189/*
190 * Table indexed by the bottom two bits of year + four bits of the month
191 * from the FAT timestamp, returning number of days into 4 year long
192 * leap-year cycle
193 */
194
195#define DCOD(m, y, l)	((m) + YEAR * (y) + (l))
196static const uint16_t daytab[64] = {
197	0, 		 DCOD(  0, 0, 0), DCOD(JAN, 0, 0), DCOD(FEB, 0, 1),
198	DCOD(MAR, 0, 1), DCOD(APR, 0, 1), DCOD(MAY, 0, 1), DCOD(JUN, 0, 1),
199	DCOD(JUL, 0, 1), DCOD(AUG, 0, 1), DCOD(SEP, 0, 1), DCOD(OCT, 0, 1),
200	DCOD(NOV, 0, 1), DCOD(DEC, 0, 1), 0,               0,
201	0, 		 DCOD(  0, 1, 1), DCOD(JAN, 1, 1), DCOD(FEB, 1, 1),
202	DCOD(MAR, 1, 1), DCOD(APR, 1, 1), DCOD(MAY, 1, 1), DCOD(JUN, 1, 1),
203	DCOD(JUL, 1, 1), DCOD(AUG, 1, 1), DCOD(SEP, 1, 1), DCOD(OCT, 1, 1),
204	DCOD(NOV, 1, 1), DCOD(DEC, 1, 1), 0,               0,
205	0,		 DCOD(  0, 2, 1), DCOD(JAN, 2, 1), DCOD(FEB, 2, 1),
206	DCOD(MAR, 2, 1), DCOD(APR, 2, 1), DCOD(MAY, 2, 1), DCOD(JUN, 2, 1),
207	DCOD(JUL, 2, 1), DCOD(AUG, 2, 1), DCOD(SEP, 2, 1), DCOD(OCT, 2, 1),
208	DCOD(NOV, 2, 1), DCOD(DEC, 2, 1), 0,               0,
209	0,		 DCOD(  0, 3, 1), DCOD(JAN, 3, 1), DCOD(FEB, 3, 1),
210	DCOD(MAR, 3, 1), DCOD(APR, 3, 1), DCOD(MAY, 3, 1), DCOD(JUN, 3, 1),
211	DCOD(JUL, 3, 1), DCOD(AUG, 3, 1), DCOD(SEP, 3, 1), DCOD(OCT, 3, 1),
212	DCOD(NOV, 3, 1), DCOD(DEC, 3, 1), 0,               0
213};
214
215void
216fattime2timespec(unsigned dd, unsigned dt, unsigned dh, int utc,
217    struct timespec *tsp)
218{
219	unsigned day;
220
221	/* Unpack time fields */
222	tsp->tv_sec = (dt & 0x1f) << 1;
223	tsp->tv_sec += ((dt & 0x7e0) >> 5) * 60;
224	tsp->tv_sec += ((dt & 0xf800) >> 11) * 3600;
225	tsp->tv_sec += dh / 100;
226	tsp->tv_nsec = (dh % 100) * 10000000;
227
228	/* Day of month */
229	day = (dd & 0x1f) - 1;
230
231	/* Full leap-year cycles */
232	day += LYC * ((dd >> 11) & 0x1f);
233
234	/* Month offset from leap-year cycle */
235	day += daytab[(dd >> 5) & 0x3f];
236
237	/* 2100 is not a leap year */
238	if (day >= ((2100 - 1980) / 4 * LYC + FEB))
239		day--;
240
241	/* Align with time_t epoch */
242	day += T1980;
243
244	tsp->tv_sec += (time_t) DAY * day;
245	if (!utc)
246		tsp->tv_sec += utc_offset();
247}
248
249#ifdef TEST_DRIVER
250
251#include <stdio.h>
252#include <unistd.h>
253#include <stdlib.h>
254
255int
256main(int argc __unused, char **argv __unused)
257{
258	int i;
259	struct timespec ts;
260	struct tm tm;
261	double a;
262	uint16_t d, t;
263	uint8_t p;
264	char buf[100];
265
266	for (i = 0; i < 10000; i++) {
267		do {
268			/*
269			 * 32-bits gets us to 2106-02-07 06:28:15, but we
270			 * need to get to the end of 2107.  So, we generate
271			 * a 36-bit second count to get us way past 2106.
272			 */
273			ts.tv_sec = ((time_t) arc4random() << 4) ^ arc4random();
274		} while ((ts.tv_sec < T1980 * 86400) || (ts.tv_sec >= T2108 * 86400ull));
275
276		ts.tv_nsec = random() % 1000000000;
277
278		printf("%10jd.%03ld -- ", (intmax_t) ts.tv_sec, ts.tv_nsec / 1000000);
279
280		gmtime_r(&ts.tv_sec, &tm);
281		strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
282		printf("%s -- ", buf);
283
284		a = ts.tv_sec + ts.tv_nsec * 1e-9;
285		d = t = p = 0;
286		timespec2fattime(&ts, 1, &d, &t, &p);
287		printf("%04x %04x %02x -- ", d, t, p);
288		printf("%3d %02d %02d %02d %02d %02d -- ",
289		    ((d >> 9)  & 0x7f) + 1980,
290		    (d >> 5)  & 0x0f,
291		    (d >> 0)  & 0x1f,
292		    (t >> 11) & 0x1f,
293		    (t >> 5)  & 0x3f,
294		    ((t >> 0)  & 0x1f) * 2);
295
296		ts.tv_sec = ts.tv_nsec = 0;
297		fattime2timespec(d, t, p, 1, &ts);
298		printf("%10jd.%03ld == ", (intmax_t) ts.tv_sec, ts.tv_nsec / 1000000);
299		gmtime_r(&ts.tv_sec, &tm);
300		strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
301		printf("%s -- ", buf);
302		a -= ts.tv_sec + ts.tv_nsec * 1e-9;
303		printf("%.3f", a);
304		printf("\n");
305	}
306	return (0);
307}
308
309#endif /* TEST_DRIVER */
310