1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1990, 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37#include <sys/cdefs.h>
38#include "opt_hwpmc_hooks.h"
39#include "opt_sched.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/cpuset.h>
44#include <sys/kernel.h>
45#include <sys/ktr.h>
46#include <sys/lock.h>
47#include <sys/kthread.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/resourcevar.h>
51#include <sys/sched.h>
52#include <sys/sdt.h>
53#include <sys/smp.h>
54#include <sys/sysctl.h>
55#include <sys/sx.h>
56#include <sys/turnstile.h>
57#include <sys/umtxvar.h>
58#include <machine/pcb.h>
59#include <machine/smp.h>
60
61#ifdef HWPMC_HOOKS
62#include <sys/pmckern.h>
63#endif
64
65#ifdef KDTRACE_HOOKS
66#include <sys/dtrace_bsd.h>
67int __read_mostly		dtrace_vtime_active;
68dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
69#endif
70
71/*
72 * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
73 * the range 100-256 Hz (approximately).
74 */
75#define	ESTCPULIM(e) \
76    min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
77    RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
78#ifdef SMP
79#define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
80#else
81#define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
82#endif
83#define	NICE_WEIGHT		1	/* Priorities per nice level. */
84
85#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
86
87/*
88 * The schedulable entity that runs a context.
89 * This is  an extension to the thread structure and is tailored to
90 * the requirements of this scheduler.
91 * All fields are protected by the scheduler lock.
92 */
93struct td_sched {
94	fixpt_t		ts_pctcpu;	/* %cpu during p_swtime. */
95	u_int		ts_estcpu;	/* Estimated cpu utilization. */
96	int		ts_cpticks;	/* Ticks of cpu time. */
97	int		ts_slptime;	/* Seconds !RUNNING. */
98	int		ts_slice;	/* Remaining part of time slice. */
99	int		ts_flags;
100	struct runq	*ts_runq;	/* runq the thread is currently on */
101#ifdef KTR
102	char		ts_name[TS_NAME_LEN];
103#endif
104};
105
106/* flags kept in td_flags */
107#define TDF_DIDRUN	TDF_SCHED0	/* thread actually ran. */
108#define TDF_BOUND	TDF_SCHED1	/* Bound to one CPU. */
109#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
110
111/* flags kept in ts_flags */
112#define	TSF_AFFINITY	0x0001		/* Has a non-"full" CPU set. */
113
114#define SKE_RUNQ_PCPU(ts)						\
115    ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
116
117#define	THREAD_CAN_SCHED(td, cpu)	\
118    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
119
120_Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
121    sizeof(struct thread0_storage),
122    "increase struct thread0_storage.t0st_sched size");
123
124static struct mtx sched_lock;
125
126static int	realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
127static int	sched_tdcnt;	/* Total runnable threads in the system. */
128static int	sched_slice = 12; /* Thread run time before rescheduling. */
129
130static void	setup_runqs(void);
131static void	schedcpu(void);
132static void	schedcpu_thread(void);
133static void	sched_priority(struct thread *td, u_char prio);
134static void	sched_setup(void *dummy);
135static void	maybe_resched(struct thread *td);
136static void	updatepri(struct thread *td);
137static void	resetpriority(struct thread *td);
138static void	resetpriority_thread(struct thread *td);
139#ifdef SMP
140static int	sched_pickcpu(struct thread *td);
141static int	forward_wakeup(int cpunum);
142static void	kick_other_cpu(int pri, int cpuid);
143#endif
144
145static struct kproc_desc sched_kp = {
146        "schedcpu",
147        schedcpu_thread,
148        NULL
149};
150SYSINIT(schedcpu, SI_SUB_LAST, SI_ORDER_FIRST, kproc_start,
151    &sched_kp);
152SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
153
154static void sched_initticks(void *dummy);
155SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
156    NULL);
157
158/*
159 * Global run queue.
160 */
161static struct runq runq;
162
163#ifdef SMP
164/*
165 * Per-CPU run queues
166 */
167static struct runq runq_pcpu[MAXCPU];
168long runq_length[MAXCPU];
169
170static cpuset_t idle_cpus_mask;
171#endif
172
173struct pcpuidlestat {
174	u_int idlecalls;
175	u_int oldidlecalls;
176};
177DPCPU_DEFINE_STATIC(struct pcpuidlestat, idlestat);
178
179static void
180setup_runqs(void)
181{
182#ifdef SMP
183	int i;
184
185	for (i = 0; i < MAXCPU; ++i)
186		runq_init(&runq_pcpu[i]);
187#endif
188
189	runq_init(&runq);
190}
191
192static int
193sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
194{
195	int error, new_val, period;
196
197	period = 1000000 / realstathz;
198	new_val = period * sched_slice;
199	error = sysctl_handle_int(oidp, &new_val, 0, req);
200	if (error != 0 || req->newptr == NULL)
201		return (error);
202	if (new_val <= 0)
203		return (EINVAL);
204	sched_slice = imax(1, (new_val + period / 2) / period);
205	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
206	    realstathz);
207	return (0);
208}
209
210SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
211    "Scheduler");
212
213SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
214    "Scheduler name");
215SYSCTL_PROC(_kern_sched, OID_AUTO, quantum,
216    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
217    sysctl_kern_quantum, "I",
218    "Quantum for timeshare threads in microseconds");
219SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
220    "Quantum for timeshare threads in stathz ticks");
221#ifdef SMP
222/* Enable forwarding of wakeups to all other cpus */
223static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup,
224    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
225    "Kernel SMP");
226
227static int runq_fuzz = 1;
228SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
229
230static int forward_wakeup_enabled = 1;
231SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
232	   &forward_wakeup_enabled, 0,
233	   "Forwarding of wakeup to idle CPUs");
234
235static int forward_wakeups_requested = 0;
236SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
237	   &forward_wakeups_requested, 0,
238	   "Requests for Forwarding of wakeup to idle CPUs");
239
240static int forward_wakeups_delivered = 0;
241SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
242	   &forward_wakeups_delivered, 0,
243	   "Completed Forwarding of wakeup to idle CPUs");
244
245static int forward_wakeup_use_mask = 1;
246SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
247	   &forward_wakeup_use_mask, 0,
248	   "Use the mask of idle cpus");
249
250static int forward_wakeup_use_loop = 0;
251SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
252	   &forward_wakeup_use_loop, 0,
253	   "Use a loop to find idle cpus");
254
255#endif
256#if 0
257static int sched_followon = 0;
258SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
259	   &sched_followon, 0,
260	   "allow threads to share a quantum");
261#endif
262
263SDT_PROVIDER_DEFINE(sched);
264
265SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
266    "struct proc *", "uint8_t");
267SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
268    "struct proc *", "void *");
269SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
270    "struct proc *", "void *", "int");
271SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
272    "struct proc *", "uint8_t", "struct thread *");
273SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
274SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
275    "struct proc *");
276SDT_PROBE_DEFINE(sched, , , on__cpu);
277SDT_PROBE_DEFINE(sched, , , remain__cpu);
278SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
279    "struct proc *");
280
281static __inline void
282sched_load_add(void)
283{
284
285	sched_tdcnt++;
286	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
287	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
288}
289
290static __inline void
291sched_load_rem(void)
292{
293
294	sched_tdcnt--;
295	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
296	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
297}
298/*
299 * Arrange to reschedule if necessary, taking the priorities and
300 * schedulers into account.
301 */
302static void
303maybe_resched(struct thread *td)
304{
305
306	THREAD_LOCK_ASSERT(td, MA_OWNED);
307	if (td->td_priority < curthread->td_priority)
308		ast_sched_locked(curthread, TDA_SCHED);
309}
310
311/*
312 * This function is called when a thread is about to be put on run queue
313 * because it has been made runnable or its priority has been adjusted.  It
314 * determines if the new thread should preempt the current thread.  If so,
315 * it sets td_owepreempt to request a preemption.
316 */
317int
318maybe_preempt(struct thread *td)
319{
320#ifdef PREEMPTION
321	struct thread *ctd;
322	int cpri, pri;
323
324	/*
325	 * The new thread should not preempt the current thread if any of the
326	 * following conditions are true:
327	 *
328	 *  - The kernel is in the throes of crashing (panicstr).
329	 *  - The current thread has a higher (numerically lower) or
330	 *    equivalent priority.  Note that this prevents curthread from
331	 *    trying to preempt to itself.
332	 *  - The current thread has an inhibitor set or is in the process of
333	 *    exiting.  In this case, the current thread is about to switch
334	 *    out anyways, so there's no point in preempting.  If we did,
335	 *    the current thread would not be properly resumed as well, so
336	 *    just avoid that whole landmine.
337	 *  - If the new thread's priority is not a realtime priority and
338	 *    the current thread's priority is not an idle priority and
339	 *    FULL_PREEMPTION is disabled.
340	 *
341	 * If all of these conditions are false, but the current thread is in
342	 * a nested critical section, then we have to defer the preemption
343	 * until we exit the critical section.  Otherwise, switch immediately
344	 * to the new thread.
345	 */
346	ctd = curthread;
347	THREAD_LOCK_ASSERT(td, MA_OWNED);
348	KASSERT((td->td_inhibitors == 0),
349			("maybe_preempt: trying to run inhibited thread"));
350	pri = td->td_priority;
351	cpri = ctd->td_priority;
352	if (KERNEL_PANICKED() || pri >= cpri /* || dumping */ ||
353	    TD_IS_INHIBITED(ctd))
354		return (0);
355#ifndef FULL_PREEMPTION
356	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
357		return (0);
358#endif
359
360	CTR0(KTR_PROC, "maybe_preempt: scheduling preemption");
361	ctd->td_owepreempt = 1;
362	return (1);
363#else
364	return (0);
365#endif
366}
367
368/*
369 * Constants for digital decay and forget:
370 *	90% of (ts_estcpu) usage in 5 * loadav time
371 *	95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
372 *          Note that, as ps(1) mentions, this can let percentages
373 *          total over 100% (I've seen 137.9% for 3 processes).
374 *
375 * Note that schedclock() updates ts_estcpu and p_cpticks asynchronously.
376 *
377 * We wish to decay away 90% of ts_estcpu in (5 * loadavg) seconds.
378 * That is, the system wants to compute a value of decay such
379 * that the following for loop:
380 * 	for (i = 0; i < (5 * loadavg); i++)
381 * 		ts_estcpu *= decay;
382 * will compute
383 * 	ts_estcpu *= 0.1;
384 * for all values of loadavg:
385 *
386 * Mathematically this loop can be expressed by saying:
387 * 	decay ** (5 * loadavg) ~= .1
388 *
389 * The system computes decay as:
390 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
391 *
392 * We wish to prove that the system's computation of decay
393 * will always fulfill the equation:
394 * 	decay ** (5 * loadavg) ~= .1
395 *
396 * If we compute b as:
397 * 	b = 2 * loadavg
398 * then
399 * 	decay = b / (b + 1)
400 *
401 * We now need to prove two things:
402 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
403 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
404 *
405 * Facts:
406 *         For x close to zero, exp(x) =~ 1 + x, since
407 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
408 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
409 *         For x close to zero, ln(1+x) =~ x, since
410 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
411 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
412 *         ln(.1) =~ -2.30
413 *
414 * Proof of (1):
415 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
416 *	solving for factor,
417 *      ln(factor) =~ (-2.30/5*loadav), or
418 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
419 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
420 *
421 * Proof of (2):
422 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
423 *	solving for power,
424 *      power*ln(b/(b+1)) =~ -2.30, or
425 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
426 *
427 * Actual power values for the implemented algorithm are as follows:
428 *      loadav: 1       2       3       4
429 *      power:  5.68    10.32   14.94   19.55
430 */
431
432/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
433#define	loadfactor(loadav)	(2 * (loadav))
434#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
435
436/* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
437static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
438SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0,
439    "Decay factor used for updating %CPU");
440
441/*
442 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
443 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
444 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
445 *
446 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
447 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
448 *
449 * If you don't want to bother with the faster/more-accurate formula, you
450 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
451 * (more general) method of calculating the %age of CPU used by a process.
452 */
453#define	CCPU_SHIFT	11
454
455/*
456 * Recompute process priorities, every hz ticks.
457 * MP-safe, called without the Giant mutex.
458 */
459/* ARGSUSED */
460static void
461schedcpu(void)
462{
463	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
464	struct thread *td;
465	struct proc *p;
466	struct td_sched *ts;
467	int awake;
468
469	sx_slock(&allproc_lock);
470	FOREACH_PROC_IN_SYSTEM(p) {
471		PROC_LOCK(p);
472		if (p->p_state == PRS_NEW) {
473			PROC_UNLOCK(p);
474			continue;
475		}
476		FOREACH_THREAD_IN_PROC(p, td) {
477			awake = 0;
478			ts = td_get_sched(td);
479			thread_lock(td);
480			/*
481			 * Increment sleep time (if sleeping).  We
482			 * ignore overflow, as above.
483			 */
484			/*
485			 * The td_sched slptimes are not touched in wakeup
486			 * because the thread may not HAVE everything in
487			 * memory? XXX I think this is out of date.
488			 */
489			if (TD_ON_RUNQ(td)) {
490				awake = 1;
491				td->td_flags &= ~TDF_DIDRUN;
492			} else if (TD_IS_RUNNING(td)) {
493				awake = 1;
494				/* Do not clear TDF_DIDRUN */
495			} else if (td->td_flags & TDF_DIDRUN) {
496				awake = 1;
497				td->td_flags &= ~TDF_DIDRUN;
498			}
499
500			/*
501			 * ts_pctcpu is only for ps and ttyinfo().
502			 */
503			ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
504			/*
505			 * If the td_sched has been idle the entire second,
506			 * stop recalculating its priority until
507			 * it wakes up.
508			 */
509			if (ts->ts_cpticks != 0) {
510#if	(FSHIFT >= CCPU_SHIFT)
511				ts->ts_pctcpu += (realstathz == 100)
512				    ? ((fixpt_t) ts->ts_cpticks) <<
513				    (FSHIFT - CCPU_SHIFT) :
514				    100 * (((fixpt_t) ts->ts_cpticks)
515				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
516#else
517				ts->ts_pctcpu += ((FSCALE - ccpu) *
518				    (ts->ts_cpticks *
519				    FSCALE / realstathz)) >> FSHIFT;
520#endif
521				ts->ts_cpticks = 0;
522			}
523			/*
524			 * If there are ANY running threads in this process,
525			 * then don't count it as sleeping.
526			 * XXX: this is broken.
527			 */
528			if (awake) {
529				if (ts->ts_slptime > 1) {
530					/*
531					 * In an ideal world, this should not
532					 * happen, because whoever woke us
533					 * up from the long sleep should have
534					 * unwound the slptime and reset our
535					 * priority before we run at the stale
536					 * priority.  Should KASSERT at some
537					 * point when all the cases are fixed.
538					 */
539					updatepri(td);
540				}
541				ts->ts_slptime = 0;
542			} else
543				ts->ts_slptime++;
544			if (ts->ts_slptime > 1) {
545				thread_unlock(td);
546				continue;
547			}
548			ts->ts_estcpu = decay_cpu(loadfac, ts->ts_estcpu);
549		      	resetpriority(td);
550			resetpriority_thread(td);
551			thread_unlock(td);
552		}
553		PROC_UNLOCK(p);
554	}
555	sx_sunlock(&allproc_lock);
556}
557
558/*
559 * Main loop for a kthread that executes schedcpu once a second.
560 */
561static void
562schedcpu_thread(void)
563{
564
565	for (;;) {
566		schedcpu();
567		pause("-", hz);
568	}
569}
570
571/*
572 * Recalculate the priority of a process after it has slept for a while.
573 * For all load averages >= 1 and max ts_estcpu of 255, sleeping for at
574 * least six times the loadfactor will decay ts_estcpu to zero.
575 */
576static void
577updatepri(struct thread *td)
578{
579	struct td_sched *ts;
580	fixpt_t loadfac;
581	unsigned int newcpu;
582
583	ts = td_get_sched(td);
584	loadfac = loadfactor(averunnable.ldavg[0]);
585	if (ts->ts_slptime > 5 * loadfac)
586		ts->ts_estcpu = 0;
587	else {
588		newcpu = ts->ts_estcpu;
589		ts->ts_slptime--;	/* was incremented in schedcpu() */
590		while (newcpu && --ts->ts_slptime)
591			newcpu = decay_cpu(loadfac, newcpu);
592		ts->ts_estcpu = newcpu;
593	}
594}
595
596/*
597 * Compute the priority of a process when running in user mode.
598 * Arrange to reschedule if the resulting priority is better
599 * than that of the current process.
600 */
601static void
602resetpriority(struct thread *td)
603{
604	u_int newpriority;
605
606	if (td->td_pri_class != PRI_TIMESHARE)
607		return;
608	newpriority = PUSER +
609	    td_get_sched(td)->ts_estcpu / INVERSE_ESTCPU_WEIGHT +
610	    NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
611	newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
612	    PRI_MAX_TIMESHARE);
613	sched_user_prio(td, newpriority);
614}
615
616/*
617 * Update the thread's priority when the associated process's user
618 * priority changes.
619 */
620static void
621resetpriority_thread(struct thread *td)
622{
623
624	/* Only change threads with a time sharing user priority. */
625	if (td->td_priority < PRI_MIN_TIMESHARE ||
626	    td->td_priority > PRI_MAX_TIMESHARE)
627		return;
628
629	/* XXX the whole needresched thing is broken, but not silly. */
630	maybe_resched(td);
631
632	sched_prio(td, td->td_user_pri);
633}
634
635/* ARGSUSED */
636static void
637sched_setup(void *dummy)
638{
639
640	setup_runqs();
641
642	/* Account for thread0. */
643	sched_load_add();
644}
645
646/*
647 * This routine determines time constants after stathz and hz are setup.
648 */
649static void
650sched_initticks(void *dummy)
651{
652
653	realstathz = stathz ? stathz : hz;
654	sched_slice = realstathz / 10;	/* ~100ms */
655	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
656	    realstathz);
657}
658
659/* External interfaces start here */
660
661/*
662 * Very early in the boot some setup of scheduler-specific
663 * parts of proc0 and of some scheduler resources needs to be done.
664 * Called from:
665 *  proc0_init()
666 */
667void
668schedinit(void)
669{
670
671	/*
672	 * Set up the scheduler specific parts of thread0.
673	 */
674	thread0.td_lock = &sched_lock;
675	td_get_sched(&thread0)->ts_slice = sched_slice;
676	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN);
677}
678
679void
680schedinit_ap(void)
681{
682
683	/* Nothing needed. */
684}
685
686int
687sched_runnable(void)
688{
689#ifdef SMP
690	return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
691#else
692	return runq_check(&runq);
693#endif
694}
695
696int
697sched_rr_interval(void)
698{
699
700	/* Convert sched_slice from stathz to hz. */
701	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
702}
703
704SCHED_STAT_DEFINE(ithread_demotions, "Interrupt thread priority demotions");
705SCHED_STAT_DEFINE(ithread_preemptions,
706    "Interrupt thread preemptions due to time-sharing");
707
708/*
709 * We adjust the priority of the current process.  The priority of a
710 * process gets worse as it accumulates CPU time.  The cpu usage
711 * estimator (ts_estcpu) is increased here.  resetpriority() will
712 * compute a different priority each time ts_estcpu increases by
713 * INVERSE_ESTCPU_WEIGHT (until PRI_MAX_TIMESHARE is reached).  The
714 * cpu usage estimator ramps up quite quickly when the process is
715 * running (linearly), and decays away exponentially, at a rate which
716 * is proportionally slower when the system is busy.  The basic
717 * principle is that the system will 90% forget that the process used
718 * a lot of CPU time in 5 * loadav seconds.  This causes the system to
719 * favor processes which haven't run much recently, and to round-robin
720 * among other processes.
721 */
722static void
723sched_clock_tick(struct thread *td)
724{
725	struct pcpuidlestat *stat;
726	struct td_sched *ts;
727
728	THREAD_LOCK_ASSERT(td, MA_OWNED);
729	ts = td_get_sched(td);
730
731	ts->ts_cpticks++;
732	ts->ts_estcpu = ESTCPULIM(ts->ts_estcpu + 1);
733	if ((ts->ts_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
734		resetpriority(td);
735		resetpriority_thread(td);
736	}
737
738	/*
739	 * Force a context switch if the current thread has used up a full
740	 * time slice (default is 100ms).
741	 */
742	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
743		ts->ts_slice = sched_slice;
744
745		/*
746		 * If an ithread uses a full quantum, demote its
747		 * priority and preempt it.
748		 */
749		if (PRI_BASE(td->td_pri_class) == PRI_ITHD) {
750			SCHED_STAT_INC(ithread_preemptions);
751			td->td_owepreempt = 1;
752			if (td->td_base_pri + RQ_PPQ < PRI_MAX_ITHD) {
753				SCHED_STAT_INC(ithread_demotions);
754				sched_prio(td, td->td_base_pri + RQ_PPQ);
755			}
756		} else {
757			td->td_flags |= TDF_SLICEEND;
758			ast_sched_locked(td, TDA_SCHED);
759		}
760	}
761
762	stat = DPCPU_PTR(idlestat);
763	stat->oldidlecalls = stat->idlecalls;
764	stat->idlecalls = 0;
765}
766
767void
768sched_clock(struct thread *td, int cnt)
769{
770
771	for ( ; cnt > 0; cnt--)
772		sched_clock_tick(td);
773}
774
775/*
776 * Charge child's scheduling CPU usage to parent.
777 */
778void
779sched_exit(struct proc *p, struct thread *td)
780{
781
782	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
783	    "prio:%d", td->td_priority);
784
785	PROC_LOCK_ASSERT(p, MA_OWNED);
786	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
787}
788
789void
790sched_exit_thread(struct thread *td, struct thread *child)
791{
792
793	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
794	    "prio:%d", child->td_priority);
795	thread_lock(td);
796	td_get_sched(td)->ts_estcpu = ESTCPULIM(td_get_sched(td)->ts_estcpu +
797	    td_get_sched(child)->ts_estcpu);
798	thread_unlock(td);
799	thread_lock(child);
800	if ((child->td_flags & TDF_NOLOAD) == 0)
801		sched_load_rem();
802	thread_unlock(child);
803}
804
805void
806sched_fork(struct thread *td, struct thread *childtd)
807{
808	sched_fork_thread(td, childtd);
809}
810
811void
812sched_fork_thread(struct thread *td, struct thread *childtd)
813{
814	struct td_sched *ts, *tsc;
815
816	childtd->td_oncpu = NOCPU;
817	childtd->td_lastcpu = NOCPU;
818	childtd->td_lock = &sched_lock;
819	childtd->td_cpuset = cpuset_ref(td->td_cpuset);
820	childtd->td_domain.dr_policy = td->td_cpuset->cs_domain;
821	childtd->td_priority = childtd->td_base_pri;
822	ts = td_get_sched(childtd);
823	bzero(ts, sizeof(*ts));
824	tsc = td_get_sched(td);
825	ts->ts_estcpu = tsc->ts_estcpu;
826	ts->ts_flags |= (tsc->ts_flags & TSF_AFFINITY);
827	ts->ts_slice = 1;
828}
829
830void
831sched_nice(struct proc *p, int nice)
832{
833	struct thread *td;
834
835	PROC_LOCK_ASSERT(p, MA_OWNED);
836	p->p_nice = nice;
837	FOREACH_THREAD_IN_PROC(p, td) {
838		thread_lock(td);
839		resetpriority(td);
840		resetpriority_thread(td);
841		thread_unlock(td);
842	}
843}
844
845void
846sched_class(struct thread *td, int class)
847{
848	THREAD_LOCK_ASSERT(td, MA_OWNED);
849	td->td_pri_class = class;
850}
851
852/*
853 * Adjust the priority of a thread.
854 */
855static void
856sched_priority(struct thread *td, u_char prio)
857{
858
859	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
860	    "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
861	    sched_tdname(curthread));
862	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
863	if (td != curthread && prio > td->td_priority) {
864		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
865		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
866		    prio, KTR_ATTR_LINKED, sched_tdname(td));
867		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
868		    curthread);
869	}
870	THREAD_LOCK_ASSERT(td, MA_OWNED);
871	if (td->td_priority == prio)
872		return;
873	td->td_priority = prio;
874	if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
875		sched_rem(td);
876		sched_add(td, SRQ_BORING | SRQ_HOLDTD);
877	}
878}
879
880/*
881 * Update a thread's priority when it is lent another thread's
882 * priority.
883 */
884void
885sched_lend_prio(struct thread *td, u_char prio)
886{
887
888	td->td_flags |= TDF_BORROWING;
889	sched_priority(td, prio);
890}
891
892/*
893 * Restore a thread's priority when priority propagation is
894 * over.  The prio argument is the minimum priority the thread
895 * needs to have to satisfy other possible priority lending
896 * requests.  If the thread's regulary priority is less
897 * important than prio the thread will keep a priority boost
898 * of prio.
899 */
900void
901sched_unlend_prio(struct thread *td, u_char prio)
902{
903	u_char base_pri;
904
905	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
906	    td->td_base_pri <= PRI_MAX_TIMESHARE)
907		base_pri = td->td_user_pri;
908	else
909		base_pri = td->td_base_pri;
910	if (prio >= base_pri) {
911		td->td_flags &= ~TDF_BORROWING;
912		sched_prio(td, base_pri);
913	} else
914		sched_lend_prio(td, prio);
915}
916
917void
918sched_prio(struct thread *td, u_char prio)
919{
920	u_char oldprio;
921
922	/* First, update the base priority. */
923	td->td_base_pri = prio;
924
925	/*
926	 * If the thread is borrowing another thread's priority, don't ever
927	 * lower the priority.
928	 */
929	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
930		return;
931
932	/* Change the real priority. */
933	oldprio = td->td_priority;
934	sched_priority(td, prio);
935
936	/*
937	 * If the thread is on a turnstile, then let the turnstile update
938	 * its state.
939	 */
940	if (TD_ON_LOCK(td) && oldprio != prio)
941		turnstile_adjust(td, oldprio);
942}
943
944void
945sched_ithread_prio(struct thread *td, u_char prio)
946{
947	THREAD_LOCK_ASSERT(td, MA_OWNED);
948	MPASS(td->td_pri_class == PRI_ITHD);
949	td->td_base_ithread_pri = prio;
950	sched_prio(td, prio);
951}
952
953void
954sched_user_prio(struct thread *td, u_char prio)
955{
956
957	THREAD_LOCK_ASSERT(td, MA_OWNED);
958	td->td_base_user_pri = prio;
959	if (td->td_lend_user_pri <= prio)
960		return;
961	td->td_user_pri = prio;
962}
963
964void
965sched_lend_user_prio(struct thread *td, u_char prio)
966{
967
968	THREAD_LOCK_ASSERT(td, MA_OWNED);
969	td->td_lend_user_pri = prio;
970	td->td_user_pri = min(prio, td->td_base_user_pri);
971	if (td->td_priority > td->td_user_pri)
972		sched_prio(td, td->td_user_pri);
973	else if (td->td_priority != td->td_user_pri)
974		ast_sched_locked(td, TDA_SCHED);
975}
976
977/*
978 * Like the above but first check if there is anything to do.
979 */
980void
981sched_lend_user_prio_cond(struct thread *td, u_char prio)
982{
983
984	if (td->td_lend_user_pri == prio)
985		return;
986
987	thread_lock(td);
988	sched_lend_user_prio(td, prio);
989	thread_unlock(td);
990}
991
992void
993sched_sleep(struct thread *td, int pri)
994{
995
996	THREAD_LOCK_ASSERT(td, MA_OWNED);
997	td->td_slptick = ticks;
998	td_get_sched(td)->ts_slptime = 0;
999	if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
1000		sched_prio(td, pri);
1001	if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
1002		td->td_flags |= TDF_CANSWAP;
1003}
1004
1005void
1006sched_switch(struct thread *td, int flags)
1007{
1008	struct thread *newtd;
1009	struct mtx *tmtx;
1010	int preempted;
1011
1012	tmtx = &sched_lock;
1013
1014	THREAD_LOCK_ASSERT(td, MA_OWNED);
1015
1016	td->td_lastcpu = td->td_oncpu;
1017	preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
1018	    (flags & SW_PREEMPT) != 0;
1019	td->td_flags &= ~TDF_SLICEEND;
1020	ast_unsched_locked(td, TDA_SCHED);
1021	td->td_owepreempt = 0;
1022	td->td_oncpu = NOCPU;
1023
1024	/*
1025	 * At the last moment, if this thread is still marked RUNNING,
1026	 * then put it back on the run queue as it has not been suspended
1027	 * or stopped or any thing else similar.  We never put the idle
1028	 * threads on the run queue, however.
1029	 */
1030	if (td->td_flags & TDF_IDLETD) {
1031		TD_SET_CAN_RUN(td);
1032#ifdef SMP
1033		CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
1034#endif
1035	} else {
1036		if (TD_IS_RUNNING(td)) {
1037			/* Put us back on the run queue. */
1038			sched_add(td, SRQ_HOLDTD | SRQ_OURSELF | SRQ_YIELDING |
1039			    (preempted ? SRQ_PREEMPTED : 0));
1040		}
1041	}
1042
1043	/*
1044	 * Switch to the sched lock to fix things up and pick
1045	 * a new thread.  Block the td_lock in order to avoid
1046	 * breaking the critical path.
1047	 */
1048	if (td->td_lock != &sched_lock) {
1049		mtx_lock_spin(&sched_lock);
1050		tmtx = thread_lock_block(td);
1051		mtx_unlock_spin(tmtx);
1052	}
1053
1054	if ((td->td_flags & TDF_NOLOAD) == 0)
1055		sched_load_rem();
1056
1057	newtd = choosethread();
1058	MPASS(newtd->td_lock == &sched_lock);
1059
1060#if (KTR_COMPILE & KTR_SCHED) != 0
1061	if (TD_IS_IDLETHREAD(td))
1062		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
1063		    "prio:%d", td->td_priority);
1064	else
1065		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
1066		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
1067		    "lockname:\"%s\"", td->td_lockname);
1068#endif
1069
1070	if (td != newtd) {
1071#ifdef	HWPMC_HOOKS
1072		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1073			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1074#endif
1075
1076		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
1077
1078                /* I feel sleepy */
1079		lock_profile_release_lock(&sched_lock.lock_object, true);
1080#ifdef KDTRACE_HOOKS
1081		/*
1082		 * If DTrace has set the active vtime enum to anything
1083		 * other than INACTIVE (0), then it should have set the
1084		 * function to call.
1085		 */
1086		if (dtrace_vtime_active)
1087			(*dtrace_vtime_switch_func)(newtd);
1088#endif
1089
1090		cpu_switch(td, newtd, tmtx);
1091		lock_profile_obtain_lock_success(&sched_lock.lock_object, true,
1092		    0, 0, __FILE__, __LINE__);
1093		/*
1094		 * Where am I?  What year is it?
1095		 * We are in the same thread that went to sleep above,
1096		 * but any amount of time may have passed. All our context
1097		 * will still be available as will local variables.
1098		 * PCPU values however may have changed as we may have
1099		 * changed CPU so don't trust cached values of them.
1100		 * New threads will go to fork_exit() instead of here
1101		 * so if you change things here you may need to change
1102		 * things there too.
1103		 *
1104		 * If the thread above was exiting it will never wake
1105		 * up again here, so either it has saved everything it
1106		 * needed to, or the thread_wait() or wait() will
1107		 * need to reap it.
1108		 */
1109
1110		SDT_PROBE0(sched, , , on__cpu);
1111#ifdef	HWPMC_HOOKS
1112		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1113			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1114#endif
1115	} else {
1116		td->td_lock = &sched_lock;
1117		SDT_PROBE0(sched, , , remain__cpu);
1118	}
1119
1120	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
1121	    "prio:%d", td->td_priority);
1122
1123#ifdef SMP
1124	if (td->td_flags & TDF_IDLETD)
1125		CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
1126#endif
1127	sched_lock.mtx_lock = (uintptr_t)td;
1128	td->td_oncpu = PCPU_GET(cpuid);
1129	spinlock_enter();
1130	mtx_unlock_spin(&sched_lock);
1131}
1132
1133void
1134sched_wakeup(struct thread *td, int srqflags)
1135{
1136	struct td_sched *ts;
1137
1138	THREAD_LOCK_ASSERT(td, MA_OWNED);
1139	ts = td_get_sched(td);
1140	td->td_flags &= ~TDF_CANSWAP;
1141	if (ts->ts_slptime > 1) {
1142		updatepri(td);
1143		resetpriority(td);
1144	}
1145	td->td_slptick = 0;
1146	ts->ts_slptime = 0;
1147	ts->ts_slice = sched_slice;
1148
1149	/*
1150	 * When resuming an idle ithread, restore its base ithread
1151	 * priority.
1152	 */
1153	if (PRI_BASE(td->td_pri_class) == PRI_ITHD &&
1154	    td->td_base_pri != td->td_base_ithread_pri)
1155		sched_prio(td, td->td_base_ithread_pri);
1156
1157	sched_add(td, srqflags);
1158}
1159
1160#ifdef SMP
1161static int
1162forward_wakeup(int cpunum)
1163{
1164	struct pcpu *pc;
1165	cpuset_t dontuse, map, map2;
1166	u_int id, me;
1167	int iscpuset;
1168
1169	mtx_assert(&sched_lock, MA_OWNED);
1170
1171	CTR0(KTR_RUNQ, "forward_wakeup()");
1172
1173	if ((!forward_wakeup_enabled) ||
1174	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
1175		return (0);
1176	if (!smp_started || KERNEL_PANICKED())
1177		return (0);
1178
1179	forward_wakeups_requested++;
1180
1181	/*
1182	 * Check the idle mask we received against what we calculated
1183	 * before in the old version.
1184	 */
1185	me = PCPU_GET(cpuid);
1186
1187	/* Don't bother if we should be doing it ourself. */
1188	if (CPU_ISSET(me, &idle_cpus_mask) &&
1189	    (cpunum == NOCPU || me == cpunum))
1190		return (0);
1191
1192	CPU_SETOF(me, &dontuse);
1193	CPU_OR(&dontuse, &dontuse, &stopped_cpus);
1194	CPU_OR(&dontuse, &dontuse, &hlt_cpus_mask);
1195	CPU_ZERO(&map2);
1196	if (forward_wakeup_use_loop) {
1197		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1198			id = pc->pc_cpuid;
1199			if (!CPU_ISSET(id, &dontuse) &&
1200			    pc->pc_curthread == pc->pc_idlethread) {
1201				CPU_SET(id, &map2);
1202			}
1203		}
1204	}
1205
1206	if (forward_wakeup_use_mask) {
1207		map = idle_cpus_mask;
1208		CPU_ANDNOT(&map, &map, &dontuse);
1209
1210		/* If they are both on, compare and use loop if different. */
1211		if (forward_wakeup_use_loop) {
1212			if (CPU_CMP(&map, &map2)) {
1213				printf("map != map2, loop method preferred\n");
1214				map = map2;
1215			}
1216		}
1217	} else {
1218		map = map2;
1219	}
1220
1221	/* If we only allow a specific CPU, then mask off all the others. */
1222	if (cpunum != NOCPU) {
1223		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
1224		iscpuset = CPU_ISSET(cpunum, &map);
1225		if (iscpuset == 0)
1226			CPU_ZERO(&map);
1227		else
1228			CPU_SETOF(cpunum, &map);
1229	}
1230	if (!CPU_EMPTY(&map)) {
1231		forward_wakeups_delivered++;
1232		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1233			id = pc->pc_cpuid;
1234			if (!CPU_ISSET(id, &map))
1235				continue;
1236			if (cpu_idle_wakeup(pc->pc_cpuid))
1237				CPU_CLR(id, &map);
1238		}
1239		if (!CPU_EMPTY(&map))
1240			ipi_selected(map, IPI_AST);
1241		return (1);
1242	}
1243	if (cpunum == NOCPU)
1244		printf("forward_wakeup: Idle processor not found\n");
1245	return (0);
1246}
1247
1248static void
1249kick_other_cpu(int pri, int cpuid)
1250{
1251	struct pcpu *pcpu;
1252	int cpri;
1253
1254	pcpu = pcpu_find(cpuid);
1255	if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
1256		forward_wakeups_delivered++;
1257		if (!cpu_idle_wakeup(cpuid))
1258			ipi_cpu(cpuid, IPI_AST);
1259		return;
1260	}
1261
1262	cpri = pcpu->pc_curthread->td_priority;
1263	if (pri >= cpri)
1264		return;
1265
1266#if defined(IPI_PREEMPTION) && defined(PREEMPTION)
1267#if !defined(FULL_PREEMPTION)
1268	if (pri <= PRI_MAX_ITHD)
1269#endif /* ! FULL_PREEMPTION */
1270	{
1271		ipi_cpu(cpuid, IPI_PREEMPT);
1272		return;
1273	}
1274#endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
1275
1276	if (pcpu->pc_curthread->td_lock == &sched_lock) {
1277		ast_sched_locked(pcpu->pc_curthread, TDA_SCHED);
1278		ipi_cpu(cpuid, IPI_AST);
1279	}
1280}
1281#endif /* SMP */
1282
1283#ifdef SMP
1284static int
1285sched_pickcpu(struct thread *td)
1286{
1287	int best, cpu;
1288
1289	mtx_assert(&sched_lock, MA_OWNED);
1290
1291	if (td->td_lastcpu != NOCPU && THREAD_CAN_SCHED(td, td->td_lastcpu))
1292		best = td->td_lastcpu;
1293	else
1294		best = NOCPU;
1295	CPU_FOREACH(cpu) {
1296		if (!THREAD_CAN_SCHED(td, cpu))
1297			continue;
1298
1299		if (best == NOCPU)
1300			best = cpu;
1301		else if (runq_length[cpu] < runq_length[best])
1302			best = cpu;
1303	}
1304	KASSERT(best != NOCPU, ("no valid CPUs"));
1305
1306	return (best);
1307}
1308#endif
1309
1310void
1311sched_add(struct thread *td, int flags)
1312#ifdef SMP
1313{
1314	cpuset_t tidlemsk;
1315	struct td_sched *ts;
1316	u_int cpu, cpuid;
1317	int forwarded = 0;
1318	int single_cpu = 0;
1319
1320	ts = td_get_sched(td);
1321	THREAD_LOCK_ASSERT(td, MA_OWNED);
1322	KASSERT((td->td_inhibitors == 0),
1323	    ("sched_add: trying to run inhibited thread"));
1324	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1325	    ("sched_add: bad thread state"));
1326	KASSERT(td->td_flags & TDF_INMEM,
1327	    ("sched_add: thread swapped out"));
1328
1329	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1330	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1331	    sched_tdname(curthread));
1332	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1333	    KTR_ATTR_LINKED, sched_tdname(td));
1334	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1335	    flags & SRQ_PREEMPTED);
1336
1337	/*
1338	 * Now that the thread is moving to the run-queue, set the lock
1339	 * to the scheduler's lock.
1340	 */
1341	if (td->td_lock != &sched_lock) {
1342		mtx_lock_spin(&sched_lock);
1343		if ((flags & SRQ_HOLD) != 0)
1344			td->td_lock = &sched_lock;
1345		else
1346			thread_lock_set(td, &sched_lock);
1347	}
1348	TD_SET_RUNQ(td);
1349
1350	/*
1351	 * If SMP is started and the thread is pinned or otherwise limited to
1352	 * a specific set of CPUs, queue the thread to a per-CPU run queue.
1353	 * Otherwise, queue the thread to the global run queue.
1354	 *
1355	 * If SMP has not yet been started we must use the global run queue
1356	 * as per-CPU state may not be initialized yet and we may crash if we
1357	 * try to access the per-CPU run queues.
1358	 */
1359	if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
1360	    ts->ts_flags & TSF_AFFINITY)) {
1361		if (td->td_pinned != 0)
1362			cpu = td->td_lastcpu;
1363		else if (td->td_flags & TDF_BOUND) {
1364			/* Find CPU from bound runq. */
1365			KASSERT(SKE_RUNQ_PCPU(ts),
1366			    ("sched_add: bound td_sched not on cpu runq"));
1367			cpu = ts->ts_runq - &runq_pcpu[0];
1368		} else
1369			/* Find a valid CPU for our cpuset */
1370			cpu = sched_pickcpu(td);
1371		ts->ts_runq = &runq_pcpu[cpu];
1372		single_cpu = 1;
1373		CTR3(KTR_RUNQ,
1374		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
1375		    cpu);
1376	} else {
1377		CTR2(KTR_RUNQ,
1378		    "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
1379		    td);
1380		cpu = NOCPU;
1381		ts->ts_runq = &runq;
1382	}
1383
1384	if ((td->td_flags & TDF_NOLOAD) == 0)
1385		sched_load_add();
1386	runq_add(ts->ts_runq, td, flags);
1387	if (cpu != NOCPU)
1388		runq_length[cpu]++;
1389
1390	cpuid = PCPU_GET(cpuid);
1391	if (single_cpu && cpu != cpuid) {
1392	        kick_other_cpu(td->td_priority, cpu);
1393	} else {
1394		if (!single_cpu) {
1395			tidlemsk = idle_cpus_mask;
1396			CPU_ANDNOT(&tidlemsk, &tidlemsk, &hlt_cpus_mask);
1397			CPU_CLR(cpuid, &tidlemsk);
1398
1399			if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
1400			    ((flags & SRQ_INTR) == 0) &&
1401			    !CPU_EMPTY(&tidlemsk))
1402				forwarded = forward_wakeup(cpu);
1403		}
1404
1405		if (!forwarded) {
1406			if (!maybe_preempt(td))
1407				maybe_resched(td);
1408		}
1409	}
1410	if ((flags & SRQ_HOLDTD) == 0)
1411		thread_unlock(td);
1412}
1413#else /* SMP */
1414{
1415	struct td_sched *ts;
1416
1417	ts = td_get_sched(td);
1418	THREAD_LOCK_ASSERT(td, MA_OWNED);
1419	KASSERT((td->td_inhibitors == 0),
1420	    ("sched_add: trying to run inhibited thread"));
1421	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1422	    ("sched_add: bad thread state"));
1423	KASSERT(td->td_flags & TDF_INMEM,
1424	    ("sched_add: thread swapped out"));
1425	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1426	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1427	    sched_tdname(curthread));
1428	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1429	    KTR_ATTR_LINKED, sched_tdname(td));
1430	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1431	    flags & SRQ_PREEMPTED);
1432
1433	/*
1434	 * Now that the thread is moving to the run-queue, set the lock
1435	 * to the scheduler's lock.
1436	 */
1437	if (td->td_lock != &sched_lock) {
1438		mtx_lock_spin(&sched_lock);
1439		if ((flags & SRQ_HOLD) != 0)
1440			td->td_lock = &sched_lock;
1441		else
1442			thread_lock_set(td, &sched_lock);
1443	}
1444	TD_SET_RUNQ(td);
1445	CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
1446	ts->ts_runq = &runq;
1447
1448	if ((td->td_flags & TDF_NOLOAD) == 0)
1449		sched_load_add();
1450	runq_add(ts->ts_runq, td, flags);
1451	if (!maybe_preempt(td))
1452		maybe_resched(td);
1453	if ((flags & SRQ_HOLDTD) == 0)
1454		thread_unlock(td);
1455}
1456#endif /* SMP */
1457
1458void
1459sched_rem(struct thread *td)
1460{
1461	struct td_sched *ts;
1462
1463	ts = td_get_sched(td);
1464	KASSERT(td->td_flags & TDF_INMEM,
1465	    ("sched_rem: thread swapped out"));
1466	KASSERT(TD_ON_RUNQ(td),
1467	    ("sched_rem: thread not on run queue"));
1468	mtx_assert(&sched_lock, MA_OWNED);
1469	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
1470	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1471	    sched_tdname(curthread));
1472	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
1473
1474	if ((td->td_flags & TDF_NOLOAD) == 0)
1475		sched_load_rem();
1476#ifdef SMP
1477	if (ts->ts_runq != &runq)
1478		runq_length[ts->ts_runq - runq_pcpu]--;
1479#endif
1480	runq_remove(ts->ts_runq, td);
1481	TD_SET_CAN_RUN(td);
1482}
1483
1484/*
1485 * Select threads to run.  Note that running threads still consume a
1486 * slot.
1487 */
1488struct thread *
1489sched_choose(void)
1490{
1491	struct thread *td;
1492	struct runq *rq;
1493
1494	mtx_assert(&sched_lock,  MA_OWNED);
1495#ifdef SMP
1496	struct thread *tdcpu;
1497
1498	rq = &runq;
1499	td = runq_choose_fuzz(&runq, runq_fuzz);
1500	tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
1501
1502	if (td == NULL ||
1503	    (tdcpu != NULL &&
1504	     tdcpu->td_priority < td->td_priority)) {
1505		CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
1506		     PCPU_GET(cpuid));
1507		td = tdcpu;
1508		rq = &runq_pcpu[PCPU_GET(cpuid)];
1509	} else {
1510		CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
1511	}
1512
1513#else
1514	rq = &runq;
1515	td = runq_choose(&runq);
1516#endif
1517
1518	if (td) {
1519#ifdef SMP
1520		if (td == tdcpu)
1521			runq_length[PCPU_GET(cpuid)]--;
1522#endif
1523		runq_remove(rq, td);
1524		td->td_flags |= TDF_DIDRUN;
1525
1526		KASSERT(td->td_flags & TDF_INMEM,
1527		    ("sched_choose: thread swapped out"));
1528		return (td);
1529	}
1530	return (PCPU_GET(idlethread));
1531}
1532
1533void
1534sched_preempt(struct thread *td)
1535{
1536	int flags;
1537
1538	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
1539	if (td->td_critnest > 1) {
1540		td->td_owepreempt = 1;
1541	} else {
1542		thread_lock(td);
1543		flags = SW_INVOL | SW_PREEMPT;
1544		flags |= TD_IS_IDLETHREAD(td) ? SWT_REMOTEWAKEIDLE :
1545		    SWT_REMOTEPREEMPT;
1546		mi_switch(flags);
1547	}
1548}
1549
1550void
1551sched_userret_slowpath(struct thread *td)
1552{
1553
1554	thread_lock(td);
1555	td->td_priority = td->td_user_pri;
1556	td->td_base_pri = td->td_user_pri;
1557	thread_unlock(td);
1558}
1559
1560void
1561sched_bind(struct thread *td, int cpu)
1562{
1563#ifdef SMP
1564	struct td_sched *ts = td_get_sched(td);
1565#endif
1566
1567	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
1568	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
1569
1570	td->td_flags |= TDF_BOUND;
1571#ifdef SMP
1572	ts->ts_runq = &runq_pcpu[cpu];
1573	if (PCPU_GET(cpuid) == cpu)
1574		return;
1575
1576	mi_switch(SW_VOL | SWT_BIND);
1577	thread_lock(td);
1578#endif
1579}
1580
1581void
1582sched_unbind(struct thread* td)
1583{
1584	THREAD_LOCK_ASSERT(td, MA_OWNED);
1585	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
1586	td->td_flags &= ~TDF_BOUND;
1587}
1588
1589int
1590sched_is_bound(struct thread *td)
1591{
1592	THREAD_LOCK_ASSERT(td, MA_OWNED);
1593	return (td->td_flags & TDF_BOUND);
1594}
1595
1596void
1597sched_relinquish(struct thread *td)
1598{
1599	thread_lock(td);
1600	mi_switch(SW_VOL | SWT_RELINQUISH);
1601}
1602
1603int
1604sched_load(void)
1605{
1606	return (sched_tdcnt);
1607}
1608
1609int
1610sched_sizeof_proc(void)
1611{
1612	return (sizeof(struct proc));
1613}
1614
1615int
1616sched_sizeof_thread(void)
1617{
1618	return (sizeof(struct thread) + sizeof(struct td_sched));
1619}
1620
1621fixpt_t
1622sched_pctcpu(struct thread *td)
1623{
1624	struct td_sched *ts;
1625
1626	THREAD_LOCK_ASSERT(td, MA_OWNED);
1627	ts = td_get_sched(td);
1628	return (ts->ts_pctcpu);
1629}
1630
1631#ifdef RACCT
1632/*
1633 * Calculates the contribution to the thread cpu usage for the latest
1634 * (unfinished) second.
1635 */
1636fixpt_t
1637sched_pctcpu_delta(struct thread *td)
1638{
1639	struct td_sched *ts;
1640	fixpt_t delta;
1641	int realstathz;
1642
1643	THREAD_LOCK_ASSERT(td, MA_OWNED);
1644	ts = td_get_sched(td);
1645	delta = 0;
1646	realstathz = stathz ? stathz : hz;
1647	if (ts->ts_cpticks != 0) {
1648#if	(FSHIFT >= CCPU_SHIFT)
1649		delta = (realstathz == 100)
1650		    ? ((fixpt_t) ts->ts_cpticks) <<
1651		    (FSHIFT - CCPU_SHIFT) :
1652		    100 * (((fixpt_t) ts->ts_cpticks)
1653		    << (FSHIFT - CCPU_SHIFT)) / realstathz;
1654#else
1655		delta = ((FSCALE - ccpu) *
1656		    (ts->ts_cpticks *
1657		    FSCALE / realstathz)) >> FSHIFT;
1658#endif
1659	}
1660
1661	return (delta);
1662}
1663#endif
1664
1665u_int
1666sched_estcpu(struct thread *td)
1667{
1668
1669	return (td_get_sched(td)->ts_estcpu);
1670}
1671
1672/*
1673 * The actual idle process.
1674 */
1675void
1676sched_idletd(void *dummy)
1677{
1678	struct pcpuidlestat *stat;
1679
1680	THREAD_NO_SLEEPING();
1681	stat = DPCPU_PTR(idlestat);
1682	for (;;) {
1683		mtx_assert(&Giant, MA_NOTOWNED);
1684
1685		while (sched_runnable() == 0) {
1686			cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
1687			stat->idlecalls++;
1688		}
1689
1690		mtx_lock_spin(&sched_lock);
1691		mi_switch(SW_VOL | SWT_IDLE);
1692	}
1693}
1694
1695static void
1696sched_throw_tail(struct thread *td)
1697{
1698
1699	mtx_assert(&sched_lock, MA_OWNED);
1700	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
1701	cpu_throw(td, choosethread());	/* doesn't return */
1702}
1703
1704/*
1705 * A CPU is entering for the first time.
1706 */
1707void
1708sched_ap_entry(void)
1709{
1710
1711	/*
1712	 * Correct spinlock nesting.  The idle thread context that we are
1713	 * borrowing was created so that it would start out with a single
1714	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
1715	 * explicitly acquired locks in this function, the nesting count
1716	 * is now 2 rather than 1.  Since we are nested, calling
1717	 * spinlock_exit() will simply adjust the counts without allowing
1718	 * spin lock using code to interrupt us.
1719	 */
1720	mtx_lock_spin(&sched_lock);
1721	spinlock_exit();
1722	PCPU_SET(switchtime, cpu_ticks());
1723	PCPU_SET(switchticks, ticks);
1724
1725	sched_throw_tail(NULL);
1726}
1727
1728/*
1729 * A thread is exiting.
1730 */
1731void
1732sched_throw(struct thread *td)
1733{
1734
1735	MPASS(td != NULL);
1736	MPASS(td->td_lock == &sched_lock);
1737
1738	lock_profile_release_lock(&sched_lock.lock_object, true);
1739	td->td_lastcpu = td->td_oncpu;
1740	td->td_oncpu = NOCPU;
1741
1742	sched_throw_tail(td);
1743}
1744
1745void
1746sched_fork_exit(struct thread *td)
1747{
1748
1749	/*
1750	 * Finish setting up thread glue so that it begins execution in a
1751	 * non-nested critical section with sched_lock held but not recursed.
1752	 */
1753	td->td_oncpu = PCPU_GET(cpuid);
1754	sched_lock.mtx_lock = (uintptr_t)td;
1755	lock_profile_obtain_lock_success(&sched_lock.lock_object, true,
1756	    0, 0, __FILE__, __LINE__);
1757	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
1758
1759	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
1760	    "prio:%d", td->td_priority);
1761	SDT_PROBE0(sched, , , on__cpu);
1762}
1763
1764char *
1765sched_tdname(struct thread *td)
1766{
1767#ifdef KTR
1768	struct td_sched *ts;
1769
1770	ts = td_get_sched(td);
1771	if (ts->ts_name[0] == '\0')
1772		snprintf(ts->ts_name, sizeof(ts->ts_name),
1773		    "%s tid %d", td->td_name, td->td_tid);
1774	return (ts->ts_name);
1775#else
1776	return (td->td_name);
1777#endif
1778}
1779
1780#ifdef KTR
1781void
1782sched_clear_tdname(struct thread *td)
1783{
1784	struct td_sched *ts;
1785
1786	ts = td_get_sched(td);
1787	ts->ts_name[0] = '\0';
1788}
1789#endif
1790
1791void
1792sched_affinity(struct thread *td)
1793{
1794#ifdef SMP
1795	struct td_sched *ts;
1796	int cpu;
1797
1798	THREAD_LOCK_ASSERT(td, MA_OWNED);
1799
1800	/*
1801	 * Set the TSF_AFFINITY flag if there is at least one CPU this
1802	 * thread can't run on.
1803	 */
1804	ts = td_get_sched(td);
1805	ts->ts_flags &= ~TSF_AFFINITY;
1806	CPU_FOREACH(cpu) {
1807		if (!THREAD_CAN_SCHED(td, cpu)) {
1808			ts->ts_flags |= TSF_AFFINITY;
1809			break;
1810		}
1811	}
1812
1813	/*
1814	 * If this thread can run on all CPUs, nothing else to do.
1815	 */
1816	if (!(ts->ts_flags & TSF_AFFINITY))
1817		return;
1818
1819	/* Pinned threads and bound threads should be left alone. */
1820	if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
1821		return;
1822
1823	switch (TD_GET_STATE(td)) {
1824	case TDS_RUNQ:
1825		/*
1826		 * If we are on a per-CPU runqueue that is in the set,
1827		 * then nothing needs to be done.
1828		 */
1829		if (ts->ts_runq != &runq &&
1830		    THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
1831			return;
1832
1833		/* Put this thread on a valid per-CPU runqueue. */
1834		sched_rem(td);
1835		sched_add(td, SRQ_HOLDTD | SRQ_BORING);
1836		break;
1837	case TDS_RUNNING:
1838		/*
1839		 * See if our current CPU is in the set.  If not, force a
1840		 * context switch.
1841		 */
1842		if (THREAD_CAN_SCHED(td, td->td_oncpu))
1843			return;
1844
1845		ast_sched_locked(td, TDA_SCHED);
1846		if (td != curthread)
1847			ipi_cpu(cpu, IPI_AST);
1848		break;
1849	default:
1850		break;
1851	}
1852#endif
1853}
1854