1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2015, 2016 The FreeBSD Foundation
5 * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
6 * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
7 * All rights reserved.
8 *
9 * Portions of this software were developed by Konstantin Belousov
10 * under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice unmodified, this list of conditions, and the following
17 *    disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35#include "opt_umtx_profiling.h"
36
37#include <sys/param.h>
38#include <sys/kernel.h>
39#include <sys/fcntl.h>
40#include <sys/file.h>
41#include <sys/filedesc.h>
42#include <sys/limits.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mman.h>
46#include <sys/mutex.h>
47#include <sys/priv.h>
48#include <sys/proc.h>
49#include <sys/resource.h>
50#include <sys/resourcevar.h>
51#include <sys/rwlock.h>
52#include <sys/sbuf.h>
53#include <sys/sched.h>
54#include <sys/smp.h>
55#include <sys/sysctl.h>
56#include <sys/systm.h>
57#include <sys/sysproto.h>
58#include <sys/syscallsubr.h>
59#include <sys/taskqueue.h>
60#include <sys/time.h>
61#include <sys/eventhandler.h>
62#include <sys/umtx.h>
63#include <sys/umtxvar.h>
64
65#include <security/mac/mac_framework.h>
66
67#include <vm/vm.h>
68#include <vm/vm_param.h>
69#include <vm/pmap.h>
70#include <vm/uma.h>
71#include <vm/vm_map.h>
72#include <vm/vm_object.h>
73
74#include <machine/atomic.h>
75#include <machine/cpu.h>
76
77#include <compat/freebsd32/freebsd32.h>
78#ifdef COMPAT_FREEBSD32
79#include <compat/freebsd32/freebsd32_proto.h>
80#endif
81
82#define _UMUTEX_TRY		1
83#define _UMUTEX_WAIT		2
84
85#ifdef UMTX_PROFILING
86#define	UPROF_PERC_BIGGER(w, f, sw, sf)					\
87	(((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
88#endif
89
90#define	UMTXQ_LOCKED_ASSERT(uc)		mtx_assert(&(uc)->uc_lock, MA_OWNED)
91#ifdef INVARIANTS
92#define	UMTXQ_ASSERT_LOCKED_BUSY(key) do {				\
93	struct umtxq_chain *uc;						\
94									\
95	uc = umtxq_getchain(key);					\
96	mtx_assert(&uc->uc_lock, MA_OWNED);				\
97	KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));		\
98} while (0)
99#else
100#define	UMTXQ_ASSERT_LOCKED_BUSY(key) do {} while (0)
101#endif
102
103/*
104 * Don't propagate time-sharing priority, there is a security reason,
105 * a user can simply introduce PI-mutex, let thread A lock the mutex,
106 * and let another thread B block on the mutex, because B is
107 * sleeping, its priority will be boosted, this causes A's priority to
108 * be boosted via priority propagating too and will never be lowered even
109 * if it is using 100%CPU, this is unfair to other processes.
110 */
111
112#define UPRI(td)	(((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
113			  (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
114			 PRI_MAX_TIMESHARE : (td)->td_user_pri)
115
116#define	GOLDEN_RATIO_PRIME	2654404609U
117#ifndef	UMTX_CHAINS
118#define	UMTX_CHAINS		512
119#endif
120#define	UMTX_SHIFTS		(__WORD_BIT - 9)
121
122#define	GET_SHARE(flags)	\
123    (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
124
125#define BUSY_SPINS		200
126
127struct umtx_copyops {
128	int	(*copyin_timeout)(const void *uaddr, struct timespec *tsp);
129	int	(*copyin_umtx_time)(const void *uaddr, size_t size,
130	    struct _umtx_time *tp);
131	int	(*copyin_robust_lists)(const void *uaddr, size_t size,
132	    struct umtx_robust_lists_params *rbp);
133	int	(*copyout_timeout)(void *uaddr, size_t size,
134	    struct timespec *tsp);
135	const size_t	timespec_sz;
136	const size_t	umtx_time_sz;
137	const bool	compat32;
138};
139
140_Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
141_Static_assert(__offsetof(struct umutex, m_spare[0]) ==
142    __offsetof(struct umutex32, m_spare[0]), "m_spare32");
143
144int umtx_shm_vnobj_persistent = 0;
145SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
146    &umtx_shm_vnobj_persistent, 0,
147    "False forces destruction of umtx attached to file, on last close");
148static int umtx_max_rb = 1000;
149SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
150    &umtx_max_rb, 0,
151    "Maximum number of robust mutexes allowed for each thread");
152
153static uma_zone_t		umtx_pi_zone;
154static struct umtxq_chain	umtxq_chains[2][UMTX_CHAINS];
155static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
156static int			umtx_pi_allocated;
157
158static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
159    "umtx debug");
160SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
161    &umtx_pi_allocated, 0, "Allocated umtx_pi");
162static int umtx_verbose_rb = 1;
163SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
164    &umtx_verbose_rb, 0,
165    "");
166
167#ifdef UMTX_PROFILING
168static long max_length;
169SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
170static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
171    "umtx chain stats");
172#endif
173
174static inline void umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
175    const struct _umtx_time *umtxtime);
176
177static void umtx_shm_init(void);
178static void umtxq_sysinit(void *);
179static void umtxq_hash(struct umtx_key *key);
180static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
181    bool rb);
182static void umtx_thread_cleanup(struct thread *td);
183SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
184
185#define umtxq_signal(key, nwake)	umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
186
187static struct mtx umtx_lock;
188
189#ifdef UMTX_PROFILING
190static void
191umtx_init_profiling(void)
192{
193	struct sysctl_oid *chain_oid;
194	char chain_name[10];
195	int i;
196
197	for (i = 0; i < UMTX_CHAINS; ++i) {
198		snprintf(chain_name, sizeof(chain_name), "%d", i);
199		chain_oid = SYSCTL_ADD_NODE(NULL,
200		    SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
201		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
202		    "umtx hash stats");
203		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
204		    "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
205		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
206		    "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
207	}
208}
209
210static int
211sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
212{
213	char buf[512];
214	struct sbuf sb;
215	struct umtxq_chain *uc;
216	u_int fract, i, j, tot, whole;
217	u_int sf0, sf1, sf2, sf3, sf4;
218	u_int si0, si1, si2, si3, si4;
219	u_int sw0, sw1, sw2, sw3, sw4;
220
221	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
222	for (i = 0; i < 2; i++) {
223		tot = 0;
224		for (j = 0; j < UMTX_CHAINS; ++j) {
225			uc = &umtxq_chains[i][j];
226			mtx_lock(&uc->uc_lock);
227			tot += uc->max_length;
228			mtx_unlock(&uc->uc_lock);
229		}
230		if (tot == 0)
231			sbuf_printf(&sb, "%u) Empty ", i);
232		else {
233			sf0 = sf1 = sf2 = sf3 = sf4 = 0;
234			si0 = si1 = si2 = si3 = si4 = 0;
235			sw0 = sw1 = sw2 = sw3 = sw4 = 0;
236			for (j = 0; j < UMTX_CHAINS; j++) {
237				uc = &umtxq_chains[i][j];
238				mtx_lock(&uc->uc_lock);
239				whole = uc->max_length * 100;
240				mtx_unlock(&uc->uc_lock);
241				fract = (whole % tot) * 100;
242				if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
243					sf0 = fract;
244					si0 = j;
245					sw0 = whole;
246				} else if (UPROF_PERC_BIGGER(whole, fract, sw1,
247				    sf1)) {
248					sf1 = fract;
249					si1 = j;
250					sw1 = whole;
251				} else if (UPROF_PERC_BIGGER(whole, fract, sw2,
252				    sf2)) {
253					sf2 = fract;
254					si2 = j;
255					sw2 = whole;
256				} else if (UPROF_PERC_BIGGER(whole, fract, sw3,
257				    sf3)) {
258					sf3 = fract;
259					si3 = j;
260					sw3 = whole;
261				} else if (UPROF_PERC_BIGGER(whole, fract, sw4,
262				    sf4)) {
263					sf4 = fract;
264					si4 = j;
265					sw4 = whole;
266				}
267			}
268			sbuf_printf(&sb, "queue %u:\n", i);
269			sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
270			    sf0 / tot, si0);
271			sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
272			    sf1 / tot, si1);
273			sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
274			    sf2 / tot, si2);
275			sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
276			    sf3 / tot, si3);
277			sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
278			    sf4 / tot, si4);
279		}
280	}
281	sbuf_trim(&sb);
282	sbuf_finish(&sb);
283	sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
284	sbuf_delete(&sb);
285	return (0);
286}
287
288static int
289sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
290{
291	struct umtxq_chain *uc;
292	u_int i, j;
293	int clear, error;
294
295	clear = 0;
296	error = sysctl_handle_int(oidp, &clear, 0, req);
297	if (error != 0 || req->newptr == NULL)
298		return (error);
299
300	if (clear != 0) {
301		for (i = 0; i < 2; ++i) {
302			for (j = 0; j < UMTX_CHAINS; ++j) {
303				uc = &umtxq_chains[i][j];
304				mtx_lock(&uc->uc_lock);
305				uc->length = 0;
306				uc->max_length = 0;
307				mtx_unlock(&uc->uc_lock);
308			}
309		}
310	}
311	return (0);
312}
313
314SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
315    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
316    sysctl_debug_umtx_chains_clear, "I",
317    "Clear umtx chains statistics");
318SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
319    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
320    sysctl_debug_umtx_chains_peaks, "A",
321    "Highest peaks in chains max length");
322#endif
323
324static void
325umtxq_sysinit(void *arg __unused)
326{
327	int i, j;
328
329	umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
330		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
331	for (i = 0; i < 2; ++i) {
332		for (j = 0; j < UMTX_CHAINS; ++j) {
333			mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
334				 MTX_DEF | MTX_DUPOK);
335			LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
336			LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
337			LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
338			TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
339			umtxq_chains[i][j].uc_busy = 0;
340			umtxq_chains[i][j].uc_waiters = 0;
341#ifdef UMTX_PROFILING
342			umtxq_chains[i][j].length = 0;
343			umtxq_chains[i][j].max_length = 0;
344#endif
345		}
346	}
347#ifdef UMTX_PROFILING
348	umtx_init_profiling();
349#endif
350	mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
351	umtx_shm_init();
352}
353
354struct umtx_q *
355umtxq_alloc(void)
356{
357	struct umtx_q *uq;
358
359	uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
360	uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
361	    M_WAITOK | M_ZERO);
362	TAILQ_INIT(&uq->uq_spare_queue->head);
363	TAILQ_INIT(&uq->uq_pi_contested);
364	uq->uq_inherited_pri = PRI_MAX;
365	return (uq);
366}
367
368void
369umtxq_free(struct umtx_q *uq)
370{
371
372	MPASS(uq->uq_spare_queue != NULL);
373	free(uq->uq_spare_queue, M_UMTX);
374	free(uq, M_UMTX);
375}
376
377static inline void
378umtxq_hash(struct umtx_key *key)
379{
380	unsigned n;
381
382	n = (uintptr_t)key->info.both.a + key->info.both.b;
383	key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
384}
385
386struct umtxq_chain *
387umtxq_getchain(struct umtx_key *key)
388{
389
390	if (key->type <= TYPE_SEM)
391		return (&umtxq_chains[1][key->hash]);
392	return (&umtxq_chains[0][key->hash]);
393}
394
395/*
396 * Set chain to busy state when following operation
397 * may be blocked (kernel mutex can not be used).
398 */
399void
400umtxq_busy(struct umtx_key *key)
401{
402	struct umtxq_chain *uc;
403
404	uc = umtxq_getchain(key);
405	mtx_assert(&uc->uc_lock, MA_OWNED);
406	if (uc->uc_busy) {
407#ifdef SMP
408		if (smp_cpus > 1) {
409			int count = BUSY_SPINS;
410			if (count > 0) {
411				umtxq_unlock(key);
412				while (uc->uc_busy && --count > 0)
413					cpu_spinwait();
414				umtxq_lock(key);
415			}
416		}
417#endif
418		while (uc->uc_busy) {
419			uc->uc_waiters++;
420			msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
421			uc->uc_waiters--;
422		}
423	}
424	uc->uc_busy = 1;
425}
426
427/*
428 * Unbusy a chain.
429 */
430void
431umtxq_unbusy(struct umtx_key *key)
432{
433	struct umtxq_chain *uc;
434
435	uc = umtxq_getchain(key);
436	mtx_assert(&uc->uc_lock, MA_OWNED);
437	KASSERT(uc->uc_busy != 0, ("not busy"));
438	uc->uc_busy = 0;
439	if (uc->uc_waiters)
440		wakeup_one(uc);
441}
442
443void
444umtxq_unbusy_unlocked(struct umtx_key *key)
445{
446
447	umtxq_lock(key);
448	umtxq_unbusy(key);
449	umtxq_unlock(key);
450}
451
452static struct umtxq_queue *
453umtxq_queue_lookup(struct umtx_key *key, int q)
454{
455	struct umtxq_queue *uh;
456	struct umtxq_chain *uc;
457
458	uc = umtxq_getchain(key);
459	UMTXQ_LOCKED_ASSERT(uc);
460	LIST_FOREACH(uh, &uc->uc_queue[q], link) {
461		if (umtx_key_match(&uh->key, key))
462			return (uh);
463	}
464
465	return (NULL);
466}
467
468void
469umtxq_insert_queue(struct umtx_q *uq, int q)
470{
471	struct umtxq_queue *uh;
472	struct umtxq_chain *uc;
473
474	uc = umtxq_getchain(&uq->uq_key);
475	UMTXQ_LOCKED_ASSERT(uc);
476	KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
477	uh = umtxq_queue_lookup(&uq->uq_key, q);
478	if (uh != NULL) {
479		LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
480	} else {
481		uh = uq->uq_spare_queue;
482		uh->key = uq->uq_key;
483		LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
484#ifdef UMTX_PROFILING
485		uc->length++;
486		if (uc->length > uc->max_length) {
487			uc->max_length = uc->length;
488			if (uc->max_length > max_length)
489				max_length = uc->max_length;
490		}
491#endif
492	}
493	uq->uq_spare_queue = NULL;
494
495	TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
496	uh->length++;
497	uq->uq_flags |= UQF_UMTXQ;
498	uq->uq_cur_queue = uh;
499	return;
500}
501
502void
503umtxq_remove_queue(struct umtx_q *uq, int q)
504{
505	struct umtxq_chain *uc;
506	struct umtxq_queue *uh;
507
508	uc = umtxq_getchain(&uq->uq_key);
509	UMTXQ_LOCKED_ASSERT(uc);
510	if (uq->uq_flags & UQF_UMTXQ) {
511		uh = uq->uq_cur_queue;
512		TAILQ_REMOVE(&uh->head, uq, uq_link);
513		uh->length--;
514		uq->uq_flags &= ~UQF_UMTXQ;
515		if (TAILQ_EMPTY(&uh->head)) {
516			KASSERT(uh->length == 0,
517			    ("inconsistent umtxq_queue length"));
518#ifdef UMTX_PROFILING
519			uc->length--;
520#endif
521			LIST_REMOVE(uh, link);
522		} else {
523			uh = LIST_FIRST(&uc->uc_spare_queue);
524			KASSERT(uh != NULL, ("uc_spare_queue is empty"));
525			LIST_REMOVE(uh, link);
526		}
527		uq->uq_spare_queue = uh;
528		uq->uq_cur_queue = NULL;
529	}
530}
531
532/*
533 * Check if there are multiple waiters
534 */
535int
536umtxq_count(struct umtx_key *key)
537{
538	struct umtxq_queue *uh;
539
540	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
541	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
542	if (uh != NULL)
543		return (uh->length);
544	return (0);
545}
546
547/*
548 * Check if there are multiple PI waiters and returns first
549 * waiter.
550 */
551static int
552umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
553{
554	struct umtxq_queue *uh;
555
556	*first = NULL;
557	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
558	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
559	if (uh != NULL) {
560		*first = TAILQ_FIRST(&uh->head);
561		return (uh->length);
562	}
563	return (0);
564}
565
566/*
567 * Wake up threads waiting on an userland object by a bit mask.
568 */
569int
570umtxq_signal_mask(struct umtx_key *key, int n_wake, u_int bitset)
571{
572	struct umtxq_queue *uh;
573	struct umtx_q *uq, *uq_temp;
574	int ret;
575
576	ret = 0;
577	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
578	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
579	if (uh == NULL)
580		return (0);
581	TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
582		if ((uq->uq_bitset & bitset) == 0)
583			continue;
584		umtxq_remove_queue(uq, UMTX_SHARED_QUEUE);
585		wakeup_one(uq);
586		if (++ret >= n_wake)
587			break;
588	}
589	return (ret);
590}
591
592/*
593 * Wake up threads waiting on an userland object.
594 */
595
596static int
597umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
598{
599	struct umtxq_queue *uh;
600	struct umtx_q *uq;
601	int ret;
602
603	ret = 0;
604	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
605	uh = umtxq_queue_lookup(key, q);
606	if (uh != NULL) {
607		while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
608			umtxq_remove_queue(uq, q);
609			wakeup(uq);
610			if (++ret >= n_wake)
611				return (ret);
612		}
613	}
614	return (ret);
615}
616
617/*
618 * Wake up specified thread.
619 */
620static inline void
621umtxq_signal_thread(struct umtx_q *uq)
622{
623
624	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
625	umtxq_remove(uq);
626	wakeup(uq);
627}
628
629/*
630 * Wake up a maximum of n_wake threads that are waiting on an userland
631 * object identified by key. The remaining threads are removed from queue
632 * identified by key and added to the queue identified by key2 (requeued).
633 * The n_requeue specifies an upper limit on the number of threads that
634 * are requeued to the second queue.
635 */
636int
637umtxq_requeue(struct umtx_key *key, int n_wake, struct umtx_key *key2,
638    int n_requeue)
639{
640	struct umtxq_queue *uh;
641	struct umtx_q *uq, *uq_temp;
642	int ret;
643
644	ret = 0;
645	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
646	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key2));
647	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
648	if (uh == NULL)
649		return (0);
650	TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
651		if (++ret <= n_wake) {
652			umtxq_remove(uq);
653			wakeup_one(uq);
654		} else {
655			umtxq_remove(uq);
656			uq->uq_key = *key2;
657			umtxq_insert(uq);
658			if (ret - n_wake == n_requeue)
659				break;
660		}
661	}
662	return (ret);
663}
664
665static inline int
666tstohz(const struct timespec *tsp)
667{
668	struct timeval tv;
669
670	TIMESPEC_TO_TIMEVAL(&tv, tsp);
671	return tvtohz(&tv);
672}
673
674void
675umtx_abs_timeout_init(struct umtx_abs_timeout *timo, int clockid,
676    int absolute, const struct timespec *timeout)
677{
678
679	timo->clockid = clockid;
680	if (!absolute) {
681		timo->is_abs_real = false;
682		kern_clock_gettime(curthread, timo->clockid, &timo->cur);
683		timespecadd(&timo->cur, timeout, &timo->end);
684	} else {
685		timo->end = *timeout;
686		timo->is_abs_real = clockid == CLOCK_REALTIME ||
687		    clockid == CLOCK_REALTIME_FAST ||
688		    clockid == CLOCK_REALTIME_PRECISE ||
689		    clockid == CLOCK_SECOND;
690	}
691}
692
693static void
694umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
695    const struct _umtx_time *umtxtime)
696{
697
698	umtx_abs_timeout_init(timo, umtxtime->_clockid,
699	    (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
700}
701
702static void
703umtx_abs_timeout_enforce_min(sbintime_t *sbt)
704{
705	sbintime_t when, mint;
706
707	mint = curproc->p_umtx_min_timeout;
708	if (__predict_false(mint != 0)) {
709		when = sbinuptime() + mint;
710		if (*sbt < when)
711			*sbt = when;
712	}
713}
714
715static int
716umtx_abs_timeout_getsbt(struct umtx_abs_timeout *timo, sbintime_t *sbt,
717    int *flags)
718{
719	struct bintime bt, bbt;
720	struct timespec tts;
721	sbintime_t rem;
722
723	switch (timo->clockid) {
724
725	/* Clocks that can be converted into absolute time. */
726	case CLOCK_REALTIME:
727	case CLOCK_REALTIME_PRECISE:
728	case CLOCK_REALTIME_FAST:
729	case CLOCK_MONOTONIC:
730	case CLOCK_MONOTONIC_PRECISE:
731	case CLOCK_MONOTONIC_FAST:
732	case CLOCK_UPTIME:
733	case CLOCK_UPTIME_PRECISE:
734	case CLOCK_UPTIME_FAST:
735	case CLOCK_SECOND:
736		timespec2bintime(&timo->end, &bt);
737		switch (timo->clockid) {
738		case CLOCK_REALTIME:
739		case CLOCK_REALTIME_PRECISE:
740		case CLOCK_REALTIME_FAST:
741		case CLOCK_SECOND:
742			getboottimebin(&bbt);
743			bintime_sub(&bt, &bbt);
744			break;
745		}
746		if (bt.sec < 0)
747			return (ETIMEDOUT);
748		if (bt.sec >= (SBT_MAX >> 32)) {
749			*sbt = 0;
750			*flags = 0;
751			return (0);
752		}
753		*sbt = bttosbt(bt);
754		umtx_abs_timeout_enforce_min(sbt);
755
756		/*
757		 * Check if the absolute time should be aligned to
758		 * avoid firing multiple timer events in non-periodic
759		 * timer mode.
760		 */
761		switch (timo->clockid) {
762		case CLOCK_REALTIME_FAST:
763		case CLOCK_MONOTONIC_FAST:
764		case CLOCK_UPTIME_FAST:
765			rem = *sbt % tc_tick_sbt;
766			if (__predict_true(rem != 0))
767				*sbt += tc_tick_sbt - rem;
768			break;
769		case CLOCK_SECOND:
770			rem = *sbt % SBT_1S;
771			if (__predict_true(rem != 0))
772				*sbt += SBT_1S - rem;
773			break;
774		}
775		*flags = C_ABSOLUTE;
776		return (0);
777
778	/* Clocks that has to be periodically polled. */
779	case CLOCK_VIRTUAL:
780	case CLOCK_PROF:
781	case CLOCK_THREAD_CPUTIME_ID:
782	case CLOCK_PROCESS_CPUTIME_ID:
783	default:
784		kern_clock_gettime(curthread, timo->clockid, &timo->cur);
785		if (timespeccmp(&timo->end, &timo->cur, <=))
786			return (ETIMEDOUT);
787		timespecsub(&timo->end, &timo->cur, &tts);
788		*sbt = tick_sbt * tstohz(&tts);
789		*flags = C_HARDCLOCK;
790		return (0);
791	}
792}
793
794static uint32_t
795umtx_unlock_val(uint32_t flags, bool rb)
796{
797
798	if (rb)
799		return (UMUTEX_RB_OWNERDEAD);
800	else if ((flags & UMUTEX_NONCONSISTENT) != 0)
801		return (UMUTEX_RB_NOTRECOV);
802	else
803		return (UMUTEX_UNOWNED);
804
805}
806
807/*
808 * Put thread into sleep state, before sleeping, check if
809 * thread was removed from umtx queue.
810 */
811int
812umtxq_sleep(struct umtx_q *uq, const char *wmesg,
813    struct umtx_abs_timeout *timo)
814{
815	struct umtxq_chain *uc;
816	sbintime_t sbt = 0;
817	int error, flags = 0;
818
819	uc = umtxq_getchain(&uq->uq_key);
820	UMTXQ_LOCKED_ASSERT(uc);
821	for (;;) {
822		if (!(uq->uq_flags & UQF_UMTXQ)) {
823			error = 0;
824			break;
825		}
826		if (timo != NULL) {
827			if (timo->is_abs_real)
828				curthread->td_rtcgen =
829				    atomic_load_acq_int(&rtc_generation);
830			error = umtx_abs_timeout_getsbt(timo, &sbt, &flags);
831			if (error != 0)
832				break;
833		}
834		error = msleep_sbt(uq, &uc->uc_lock, PCATCH | PDROP, wmesg,
835		    sbt, 0, flags);
836		uc = umtxq_getchain(&uq->uq_key);
837		mtx_lock(&uc->uc_lock);
838		if (error == EINTR || error == ERESTART)
839			break;
840		if (error == EWOULDBLOCK && (flags & C_ABSOLUTE) != 0) {
841			error = ETIMEDOUT;
842			break;
843		}
844	}
845
846	curthread->td_rtcgen = 0;
847	return (error);
848}
849
850/*
851 * Convert userspace address into unique logical address.
852 */
853int
854umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
855{
856	struct thread *td = curthread;
857	vm_map_t map;
858	vm_map_entry_t entry;
859	vm_pindex_t pindex;
860	vm_prot_t prot;
861	boolean_t wired;
862
863	key->type = type;
864	if (share == THREAD_SHARE) {
865		key->shared = 0;
866		key->info.private.vs = td->td_proc->p_vmspace;
867		key->info.private.addr = (uintptr_t)addr;
868	} else {
869		MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
870		map = &td->td_proc->p_vmspace->vm_map;
871		if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
872		    &entry, &key->info.shared.object, &pindex, &prot,
873		    &wired) != KERN_SUCCESS) {
874			return (EFAULT);
875		}
876
877		if ((share == PROCESS_SHARE) ||
878		    (share == AUTO_SHARE &&
879		     VM_INHERIT_SHARE == entry->inheritance)) {
880			key->shared = 1;
881			key->info.shared.offset = (vm_offset_t)addr -
882			    entry->start + entry->offset;
883			vm_object_reference(key->info.shared.object);
884		} else {
885			key->shared = 0;
886			key->info.private.vs = td->td_proc->p_vmspace;
887			key->info.private.addr = (uintptr_t)addr;
888		}
889		vm_map_lookup_done(map, entry);
890	}
891
892	umtxq_hash(key);
893	return (0);
894}
895
896/*
897 * Release key.
898 */
899void
900umtx_key_release(struct umtx_key *key)
901{
902	if (key->shared)
903		vm_object_deallocate(key->info.shared.object);
904}
905
906#ifdef COMPAT_FREEBSD10
907/*
908 * Lock a umtx object.
909 */
910static int
911do_lock_umtx(struct thread *td, struct umtx *umtx, u_long id,
912    const struct timespec *timeout)
913{
914	struct umtx_abs_timeout timo;
915	struct umtx_q *uq;
916	u_long owner;
917	u_long old;
918	int error = 0;
919
920	uq = td->td_umtxq;
921	if (timeout != NULL)
922		umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
923
924	/*
925	 * Care must be exercised when dealing with umtx structure. It
926	 * can fault on any access.
927	 */
928	for (;;) {
929		/*
930		 * Try the uncontested case.  This should be done in userland.
931		 */
932		owner = casuword(&umtx->u_owner, UMTX_UNOWNED, id);
933
934		/* The acquire succeeded. */
935		if (owner == UMTX_UNOWNED)
936			return (0);
937
938		/* The address was invalid. */
939		if (owner == -1)
940			return (EFAULT);
941
942		/* If no one owns it but it is contested try to acquire it. */
943		if (owner == UMTX_CONTESTED) {
944			owner = casuword(&umtx->u_owner,
945			    UMTX_CONTESTED, id | UMTX_CONTESTED);
946
947			if (owner == UMTX_CONTESTED)
948				return (0);
949
950			/* The address was invalid. */
951			if (owner == -1)
952				return (EFAULT);
953
954			error = thread_check_susp(td, false);
955			if (error != 0)
956				break;
957
958			/* If this failed the lock has changed, restart. */
959			continue;
960		}
961
962		/*
963		 * If we caught a signal, we have retried and now
964		 * exit immediately.
965		 */
966		if (error != 0)
967			break;
968
969		if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK,
970			AUTO_SHARE, &uq->uq_key)) != 0)
971			return (error);
972
973		umtxq_lock(&uq->uq_key);
974		umtxq_busy(&uq->uq_key);
975		umtxq_insert(uq);
976		umtxq_unbusy(&uq->uq_key);
977		umtxq_unlock(&uq->uq_key);
978
979		/*
980		 * Set the contested bit so that a release in user space
981		 * knows to use the system call for unlock.  If this fails
982		 * either some one else has acquired the lock or it has been
983		 * released.
984		 */
985		old = casuword(&umtx->u_owner, owner, owner | UMTX_CONTESTED);
986
987		/* The address was invalid. */
988		if (old == -1) {
989			umtxq_lock(&uq->uq_key);
990			umtxq_remove(uq);
991			umtxq_unlock(&uq->uq_key);
992			umtx_key_release(&uq->uq_key);
993			return (EFAULT);
994		}
995
996		/*
997		 * We set the contested bit, sleep. Otherwise the lock changed
998		 * and we need to retry or we lost a race to the thread
999		 * unlocking the umtx.
1000		 */
1001		umtxq_lock(&uq->uq_key);
1002		if (old == owner)
1003			error = umtxq_sleep(uq, "umtx", timeout == NULL ? NULL :
1004			    &timo);
1005		umtxq_remove(uq);
1006		umtxq_unlock(&uq->uq_key);
1007		umtx_key_release(&uq->uq_key);
1008
1009		if (error == 0)
1010			error = thread_check_susp(td, false);
1011	}
1012
1013	if (timeout == NULL) {
1014		/* Mutex locking is restarted if it is interrupted. */
1015		if (error == EINTR)
1016			error = ERESTART;
1017	} else {
1018		/* Timed-locking is not restarted. */
1019		if (error == ERESTART)
1020			error = EINTR;
1021	}
1022	return (error);
1023}
1024
1025/*
1026 * Unlock a umtx object.
1027 */
1028static int
1029do_unlock_umtx(struct thread *td, struct umtx *umtx, u_long id)
1030{
1031	struct umtx_key key;
1032	u_long owner;
1033	u_long old;
1034	int error;
1035	int count;
1036
1037	/*
1038	 * Make sure we own this mtx.
1039	 */
1040	owner = fuword(__DEVOLATILE(u_long *, &umtx->u_owner));
1041	if (owner == -1)
1042		return (EFAULT);
1043
1044	if ((owner & ~UMTX_CONTESTED) != id)
1045		return (EPERM);
1046
1047	/* This should be done in userland */
1048	if ((owner & UMTX_CONTESTED) == 0) {
1049		old = casuword(&umtx->u_owner, owner, UMTX_UNOWNED);
1050		if (old == -1)
1051			return (EFAULT);
1052		if (old == owner)
1053			return (0);
1054		owner = old;
1055	}
1056
1057	/* We should only ever be in here for contested locks */
1058	if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1059	    &key)) != 0)
1060		return (error);
1061
1062	umtxq_lock(&key);
1063	umtxq_busy(&key);
1064	count = umtxq_count(&key);
1065	umtxq_unlock(&key);
1066
1067	/*
1068	 * When unlocking the umtx, it must be marked as unowned if
1069	 * there is zero or one thread only waiting for it.
1070	 * Otherwise, it must be marked as contested.
1071	 */
1072	old = casuword(&umtx->u_owner, owner,
1073	    count <= 1 ? UMTX_UNOWNED : UMTX_CONTESTED);
1074	umtxq_lock(&key);
1075	umtxq_signal(&key,1);
1076	umtxq_unbusy(&key);
1077	umtxq_unlock(&key);
1078	umtx_key_release(&key);
1079	if (old == -1)
1080		return (EFAULT);
1081	if (old != owner)
1082		return (EINVAL);
1083	return (0);
1084}
1085
1086#ifdef COMPAT_FREEBSD32
1087
1088/*
1089 * Lock a umtx object.
1090 */
1091static int
1092do_lock_umtx32(struct thread *td, uint32_t *m, uint32_t id,
1093	const struct timespec *timeout)
1094{
1095	struct umtx_abs_timeout timo;
1096	struct umtx_q *uq;
1097	uint32_t owner;
1098	uint32_t old;
1099	int error = 0;
1100
1101	uq = td->td_umtxq;
1102
1103	if (timeout != NULL)
1104		umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
1105
1106	/*
1107	 * Care must be exercised when dealing with umtx structure. It
1108	 * can fault on any access.
1109	 */
1110	for (;;) {
1111		/*
1112		 * Try the uncontested case.  This should be done in userland.
1113		 */
1114		owner = casuword32(m, UMUTEX_UNOWNED, id);
1115
1116		/* The acquire succeeded. */
1117		if (owner == UMUTEX_UNOWNED)
1118			return (0);
1119
1120		/* The address was invalid. */
1121		if (owner == -1)
1122			return (EFAULT);
1123
1124		/* If no one owns it but it is contested try to acquire it. */
1125		if (owner == UMUTEX_CONTESTED) {
1126			owner = casuword32(m,
1127			    UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
1128			if (owner == UMUTEX_CONTESTED)
1129				return (0);
1130
1131			/* The address was invalid. */
1132			if (owner == -1)
1133				return (EFAULT);
1134
1135			error = thread_check_susp(td, false);
1136			if (error != 0)
1137				break;
1138
1139			/* If this failed the lock has changed, restart. */
1140			continue;
1141		}
1142
1143		/*
1144		 * If we caught a signal, we have retried and now
1145		 * exit immediately.
1146		 */
1147		if (error != 0)
1148			return (error);
1149
1150		if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK,
1151			AUTO_SHARE, &uq->uq_key)) != 0)
1152			return (error);
1153
1154		umtxq_lock(&uq->uq_key);
1155		umtxq_busy(&uq->uq_key);
1156		umtxq_insert(uq);
1157		umtxq_unbusy(&uq->uq_key);
1158		umtxq_unlock(&uq->uq_key);
1159
1160		/*
1161		 * Set the contested bit so that a release in user space
1162		 * knows to use the system call for unlock.  If this fails
1163		 * either some one else has acquired the lock or it has been
1164		 * released.
1165		 */
1166		old = casuword32(m, owner, owner | UMUTEX_CONTESTED);
1167
1168		/* The address was invalid. */
1169		if (old == -1) {
1170			umtxq_lock(&uq->uq_key);
1171			umtxq_remove(uq);
1172			umtxq_unlock(&uq->uq_key);
1173			umtx_key_release(&uq->uq_key);
1174			return (EFAULT);
1175		}
1176
1177		/*
1178		 * We set the contested bit, sleep. Otherwise the lock changed
1179		 * and we need to retry or we lost a race to the thread
1180		 * unlocking the umtx.
1181		 */
1182		umtxq_lock(&uq->uq_key);
1183		if (old == owner)
1184			error = umtxq_sleep(uq, "umtx", timeout == NULL ?
1185			    NULL : &timo);
1186		umtxq_remove(uq);
1187		umtxq_unlock(&uq->uq_key);
1188		umtx_key_release(&uq->uq_key);
1189
1190		if (error == 0)
1191			error = thread_check_susp(td, false);
1192	}
1193
1194	if (timeout == NULL) {
1195		/* Mutex locking is restarted if it is interrupted. */
1196		if (error == EINTR)
1197			error = ERESTART;
1198	} else {
1199		/* Timed-locking is not restarted. */
1200		if (error == ERESTART)
1201			error = EINTR;
1202	}
1203	return (error);
1204}
1205
1206/*
1207 * Unlock a umtx object.
1208 */
1209static int
1210do_unlock_umtx32(struct thread *td, uint32_t *m, uint32_t id)
1211{
1212	struct umtx_key key;
1213	uint32_t owner;
1214	uint32_t old;
1215	int error;
1216	int count;
1217
1218	/*
1219	 * Make sure we own this mtx.
1220	 */
1221	owner = fuword32(m);
1222	if (owner == -1)
1223		return (EFAULT);
1224
1225	if ((owner & ~UMUTEX_CONTESTED) != id)
1226		return (EPERM);
1227
1228	/* This should be done in userland */
1229	if ((owner & UMUTEX_CONTESTED) == 0) {
1230		old = casuword32(m, owner, UMUTEX_UNOWNED);
1231		if (old == -1)
1232			return (EFAULT);
1233		if (old == owner)
1234			return (0);
1235		owner = old;
1236	}
1237
1238	/* We should only ever be in here for contested locks */
1239	if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1240		&key)) != 0)
1241		return (error);
1242
1243	umtxq_lock(&key);
1244	umtxq_busy(&key);
1245	count = umtxq_count(&key);
1246	umtxq_unlock(&key);
1247
1248	/*
1249	 * When unlocking the umtx, it must be marked as unowned if
1250	 * there is zero or one thread only waiting for it.
1251	 * Otherwise, it must be marked as contested.
1252	 */
1253	old = casuword32(m, owner,
1254		count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
1255	umtxq_lock(&key);
1256	umtxq_signal(&key,1);
1257	umtxq_unbusy(&key);
1258	umtxq_unlock(&key);
1259	umtx_key_release(&key);
1260	if (old == -1)
1261		return (EFAULT);
1262	if (old != owner)
1263		return (EINVAL);
1264	return (0);
1265}
1266#endif	/* COMPAT_FREEBSD32 */
1267#endif	/* COMPAT_FREEBSD10 */
1268
1269/*
1270 * Fetch and compare value, sleep on the address if value is not changed.
1271 */
1272static int
1273do_wait(struct thread *td, void *addr, u_long id,
1274    struct _umtx_time *timeout, int compat32, int is_private)
1275{
1276	struct umtx_abs_timeout timo;
1277	struct umtx_q *uq;
1278	u_long tmp;
1279	uint32_t tmp32;
1280	int error = 0;
1281
1282	uq = td->td_umtxq;
1283	if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
1284	    is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
1285		return (error);
1286
1287	if (timeout != NULL)
1288		umtx_abs_timeout_init2(&timo, timeout);
1289
1290	umtxq_lock(&uq->uq_key);
1291	umtxq_insert(uq);
1292	umtxq_unlock(&uq->uq_key);
1293	if (compat32 == 0) {
1294		error = fueword(addr, &tmp);
1295		if (error != 0)
1296			error = EFAULT;
1297	} else {
1298		error = fueword32(addr, &tmp32);
1299		if (error == 0)
1300			tmp = tmp32;
1301		else
1302			error = EFAULT;
1303	}
1304	umtxq_lock(&uq->uq_key);
1305	if (error == 0) {
1306		if (tmp == id)
1307			error = umtxq_sleep(uq, "uwait", timeout == NULL ?
1308			    NULL : &timo);
1309		if ((uq->uq_flags & UQF_UMTXQ) == 0)
1310			error = 0;
1311		else
1312			umtxq_remove(uq);
1313	} else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
1314		umtxq_remove(uq);
1315	}
1316	umtxq_unlock(&uq->uq_key);
1317	umtx_key_release(&uq->uq_key);
1318	if (error == ERESTART)
1319		error = EINTR;
1320	return (error);
1321}
1322
1323/*
1324 * Wake up threads sleeping on the specified address.
1325 */
1326int
1327kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
1328{
1329	struct umtx_key key;
1330	int ret;
1331
1332	if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
1333	    is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
1334		return (ret);
1335	umtxq_lock(&key);
1336	umtxq_signal(&key, n_wake);
1337	umtxq_unlock(&key);
1338	umtx_key_release(&key);
1339	return (0);
1340}
1341
1342/*
1343 * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
1344 */
1345static int
1346do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
1347    struct _umtx_time *timeout, int mode)
1348{
1349	struct umtx_abs_timeout timo;
1350	struct umtx_q *uq;
1351	uint32_t owner, old, id;
1352	int error, rv;
1353
1354	id = td->td_tid;
1355	uq = td->td_umtxq;
1356	error = 0;
1357	if (timeout != NULL)
1358		umtx_abs_timeout_init2(&timo, timeout);
1359
1360	/*
1361	 * Care must be exercised when dealing with umtx structure. It
1362	 * can fault on any access.
1363	 */
1364	for (;;) {
1365		rv = fueword32(&m->m_owner, &owner);
1366		if (rv == -1)
1367			return (EFAULT);
1368		if (mode == _UMUTEX_WAIT) {
1369			if (owner == UMUTEX_UNOWNED ||
1370			    owner == UMUTEX_CONTESTED ||
1371			    owner == UMUTEX_RB_OWNERDEAD ||
1372			    owner == UMUTEX_RB_NOTRECOV)
1373				return (0);
1374		} else {
1375			/*
1376			 * Robust mutex terminated.  Kernel duty is to
1377			 * return EOWNERDEAD to the userspace.  The
1378			 * umutex.m_flags UMUTEX_NONCONSISTENT is set
1379			 * by the common userspace code.
1380			 */
1381			if (owner == UMUTEX_RB_OWNERDEAD) {
1382				rv = casueword32(&m->m_owner,
1383				    UMUTEX_RB_OWNERDEAD, &owner,
1384				    id | UMUTEX_CONTESTED);
1385				if (rv == -1)
1386					return (EFAULT);
1387				if (rv == 0) {
1388					MPASS(owner == UMUTEX_RB_OWNERDEAD);
1389					return (EOWNERDEAD); /* success */
1390				}
1391				MPASS(rv == 1);
1392				rv = thread_check_susp(td, false);
1393				if (rv != 0)
1394					return (rv);
1395				continue;
1396			}
1397			if (owner == UMUTEX_RB_NOTRECOV)
1398				return (ENOTRECOVERABLE);
1399
1400			/*
1401			 * Try the uncontested case.  This should be
1402			 * done in userland.
1403			 */
1404			rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1405			    &owner, id);
1406			/* The address was invalid. */
1407			if (rv == -1)
1408				return (EFAULT);
1409
1410			/* The acquire succeeded. */
1411			if (rv == 0) {
1412				MPASS(owner == UMUTEX_UNOWNED);
1413				return (0);
1414			}
1415
1416			/*
1417			 * If no one owns it but it is contested try
1418			 * to acquire it.
1419			 */
1420			MPASS(rv == 1);
1421			if (owner == UMUTEX_CONTESTED) {
1422				rv = casueword32(&m->m_owner,
1423				    UMUTEX_CONTESTED, &owner,
1424				    id | UMUTEX_CONTESTED);
1425				/* The address was invalid. */
1426				if (rv == -1)
1427					return (EFAULT);
1428				if (rv == 0) {
1429					MPASS(owner == UMUTEX_CONTESTED);
1430					return (0);
1431				}
1432				if (rv == 1) {
1433					rv = thread_check_susp(td, false);
1434					if (rv != 0)
1435						return (rv);
1436				}
1437
1438				/*
1439				 * If this failed the lock has
1440				 * changed, restart.
1441				 */
1442				continue;
1443			}
1444
1445			/* rv == 1 but not contested, likely store failure */
1446			rv = thread_check_susp(td, false);
1447			if (rv != 0)
1448				return (rv);
1449		}
1450
1451		if (mode == _UMUTEX_TRY)
1452			return (EBUSY);
1453
1454		/*
1455		 * If we caught a signal, we have retried and now
1456		 * exit immediately.
1457		 */
1458		if (error != 0)
1459			return (error);
1460
1461		if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1462		    GET_SHARE(flags), &uq->uq_key)) != 0)
1463			return (error);
1464
1465		umtxq_lock(&uq->uq_key);
1466		umtxq_busy(&uq->uq_key);
1467		umtxq_insert(uq);
1468		umtxq_unlock(&uq->uq_key);
1469
1470		/*
1471		 * Set the contested bit so that a release in user space
1472		 * knows to use the system call for unlock.  If this fails
1473		 * either some one else has acquired the lock or it has been
1474		 * released.
1475		 */
1476		rv = casueword32(&m->m_owner, owner, &old,
1477		    owner | UMUTEX_CONTESTED);
1478
1479		/* The address was invalid or casueword failed to store. */
1480		if (rv == -1 || rv == 1) {
1481			umtxq_lock(&uq->uq_key);
1482			umtxq_remove(uq);
1483			umtxq_unbusy(&uq->uq_key);
1484			umtxq_unlock(&uq->uq_key);
1485			umtx_key_release(&uq->uq_key);
1486			if (rv == -1)
1487				return (EFAULT);
1488			if (rv == 1) {
1489				rv = thread_check_susp(td, false);
1490				if (rv != 0)
1491					return (rv);
1492			}
1493			continue;
1494		}
1495
1496		/*
1497		 * We set the contested bit, sleep. Otherwise the lock changed
1498		 * and we need to retry or we lost a race to the thread
1499		 * unlocking the umtx.
1500		 */
1501		umtxq_lock(&uq->uq_key);
1502		umtxq_unbusy(&uq->uq_key);
1503		MPASS(old == owner);
1504		error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1505		    NULL : &timo);
1506		umtxq_remove(uq);
1507		umtxq_unlock(&uq->uq_key);
1508		umtx_key_release(&uq->uq_key);
1509
1510		if (error == 0)
1511			error = thread_check_susp(td, false);
1512	}
1513
1514	return (0);
1515}
1516
1517/*
1518 * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1519 */
1520static int
1521do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1522{
1523	struct umtx_key key;
1524	uint32_t owner, old, id, newlock;
1525	int error, count;
1526
1527	id = td->td_tid;
1528
1529again:
1530	/*
1531	 * Make sure we own this mtx.
1532	 */
1533	error = fueword32(&m->m_owner, &owner);
1534	if (error == -1)
1535		return (EFAULT);
1536
1537	if ((owner & ~UMUTEX_CONTESTED) != id)
1538		return (EPERM);
1539
1540	newlock = umtx_unlock_val(flags, rb);
1541	if ((owner & UMUTEX_CONTESTED) == 0) {
1542		error = casueword32(&m->m_owner, owner, &old, newlock);
1543		if (error == -1)
1544			return (EFAULT);
1545		if (error == 1) {
1546			error = thread_check_susp(td, false);
1547			if (error != 0)
1548				return (error);
1549			goto again;
1550		}
1551		MPASS(old == owner);
1552		return (0);
1553	}
1554
1555	/* We should only ever be in here for contested locks */
1556	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1557	    &key)) != 0)
1558		return (error);
1559
1560	umtxq_lock(&key);
1561	umtxq_busy(&key);
1562	count = umtxq_count(&key);
1563	umtxq_unlock(&key);
1564
1565	/*
1566	 * When unlocking the umtx, it must be marked as unowned if
1567	 * there is zero or one thread only waiting for it.
1568	 * Otherwise, it must be marked as contested.
1569	 */
1570	if (count > 1)
1571		newlock |= UMUTEX_CONTESTED;
1572	error = casueword32(&m->m_owner, owner, &old, newlock);
1573	umtxq_lock(&key);
1574	umtxq_signal(&key, 1);
1575	umtxq_unbusy(&key);
1576	umtxq_unlock(&key);
1577	umtx_key_release(&key);
1578	if (error == -1)
1579		return (EFAULT);
1580	if (error == 1) {
1581		if (old != owner)
1582			return (EINVAL);
1583		error = thread_check_susp(td, false);
1584		if (error != 0)
1585			return (error);
1586		goto again;
1587	}
1588	return (0);
1589}
1590
1591/*
1592 * Check if the mutex is available and wake up a waiter,
1593 * only for simple mutex.
1594 */
1595static int
1596do_wake_umutex(struct thread *td, struct umutex *m)
1597{
1598	struct umtx_key key;
1599	uint32_t owner;
1600	uint32_t flags;
1601	int error;
1602	int count;
1603
1604again:
1605	error = fueword32(&m->m_owner, &owner);
1606	if (error == -1)
1607		return (EFAULT);
1608
1609	if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1610	    owner != UMUTEX_RB_NOTRECOV)
1611		return (0);
1612
1613	error = fueword32(&m->m_flags, &flags);
1614	if (error == -1)
1615		return (EFAULT);
1616
1617	/* We should only ever be in here for contested locks */
1618	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1619	    &key)) != 0)
1620		return (error);
1621
1622	umtxq_lock(&key);
1623	umtxq_busy(&key);
1624	count = umtxq_count(&key);
1625	umtxq_unlock(&key);
1626
1627	if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1628	    owner != UMUTEX_RB_NOTRECOV) {
1629		error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1630		    UMUTEX_UNOWNED);
1631		if (error == -1) {
1632			error = EFAULT;
1633		} else if (error == 1) {
1634			umtxq_lock(&key);
1635			umtxq_unbusy(&key);
1636			umtxq_unlock(&key);
1637			umtx_key_release(&key);
1638			error = thread_check_susp(td, false);
1639			if (error != 0)
1640				return (error);
1641			goto again;
1642		}
1643	}
1644
1645	umtxq_lock(&key);
1646	if (error == 0 && count != 0) {
1647		MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
1648		    owner == UMUTEX_RB_OWNERDEAD ||
1649		    owner == UMUTEX_RB_NOTRECOV);
1650		umtxq_signal(&key, 1);
1651	}
1652	umtxq_unbusy(&key);
1653	umtxq_unlock(&key);
1654	umtx_key_release(&key);
1655	return (error);
1656}
1657
1658/*
1659 * Check if the mutex has waiters and tries to fix contention bit.
1660 */
1661static int
1662do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1663{
1664	struct umtx_key key;
1665	uint32_t owner, old;
1666	int type;
1667	int error;
1668	int count;
1669
1670	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1671	    UMUTEX_ROBUST)) {
1672	case 0:
1673	case UMUTEX_ROBUST:
1674		type = TYPE_NORMAL_UMUTEX;
1675		break;
1676	case UMUTEX_PRIO_INHERIT:
1677		type = TYPE_PI_UMUTEX;
1678		break;
1679	case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1680		type = TYPE_PI_ROBUST_UMUTEX;
1681		break;
1682	case UMUTEX_PRIO_PROTECT:
1683		type = TYPE_PP_UMUTEX;
1684		break;
1685	case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1686		type = TYPE_PP_ROBUST_UMUTEX;
1687		break;
1688	default:
1689		return (EINVAL);
1690	}
1691	if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1692		return (error);
1693
1694	owner = 0;
1695	umtxq_lock(&key);
1696	umtxq_busy(&key);
1697	count = umtxq_count(&key);
1698	umtxq_unlock(&key);
1699
1700	error = fueword32(&m->m_owner, &owner);
1701	if (error == -1)
1702		error = EFAULT;
1703
1704	/*
1705	 * Only repair contention bit if there is a waiter, this means
1706	 * the mutex is still being referenced by userland code,
1707	 * otherwise don't update any memory.
1708	 */
1709	while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
1710	    (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
1711		error = casueword32(&m->m_owner, owner, &old,
1712		    owner | UMUTEX_CONTESTED);
1713		if (error == -1) {
1714			error = EFAULT;
1715			break;
1716		}
1717		if (error == 0) {
1718			MPASS(old == owner);
1719			break;
1720		}
1721		owner = old;
1722		error = thread_check_susp(td, false);
1723	}
1724
1725	umtxq_lock(&key);
1726	if (error == EFAULT) {
1727		umtxq_signal(&key, INT_MAX);
1728	} else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1729	    owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1730		umtxq_signal(&key, 1);
1731	umtxq_unbusy(&key);
1732	umtxq_unlock(&key);
1733	umtx_key_release(&key);
1734	return (error);
1735}
1736
1737struct umtx_pi *
1738umtx_pi_alloc(int flags)
1739{
1740	struct umtx_pi *pi;
1741
1742	pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1743	TAILQ_INIT(&pi->pi_blocked);
1744	atomic_add_int(&umtx_pi_allocated, 1);
1745	return (pi);
1746}
1747
1748void
1749umtx_pi_free(struct umtx_pi *pi)
1750{
1751	uma_zfree(umtx_pi_zone, pi);
1752	atomic_add_int(&umtx_pi_allocated, -1);
1753}
1754
1755/*
1756 * Adjust the thread's position on a pi_state after its priority has been
1757 * changed.
1758 */
1759static int
1760umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1761{
1762	struct umtx_q *uq, *uq1, *uq2;
1763	struct thread *td1;
1764
1765	mtx_assert(&umtx_lock, MA_OWNED);
1766	if (pi == NULL)
1767		return (0);
1768
1769	uq = td->td_umtxq;
1770
1771	/*
1772	 * Check if the thread needs to be moved on the blocked chain.
1773	 * It needs to be moved if either its priority is lower than
1774	 * the previous thread or higher than the next thread.
1775	 */
1776	uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1777	uq2 = TAILQ_NEXT(uq, uq_lockq);
1778	if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1779	    (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1780		/*
1781		 * Remove thread from blocked chain and determine where
1782		 * it should be moved to.
1783		 */
1784		TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1785		TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1786			td1 = uq1->uq_thread;
1787			MPASS(td1->td_proc->p_magic == P_MAGIC);
1788			if (UPRI(td1) > UPRI(td))
1789				break;
1790		}
1791
1792		if (uq1 == NULL)
1793			TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1794		else
1795			TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1796	}
1797	return (1);
1798}
1799
1800static struct umtx_pi *
1801umtx_pi_next(struct umtx_pi *pi)
1802{
1803	struct umtx_q *uq_owner;
1804
1805	if (pi->pi_owner == NULL)
1806		return (NULL);
1807	uq_owner = pi->pi_owner->td_umtxq;
1808	if (uq_owner == NULL)
1809		return (NULL);
1810	return (uq_owner->uq_pi_blocked);
1811}
1812
1813/*
1814 * Floyd's Cycle-Finding Algorithm.
1815 */
1816static bool
1817umtx_pi_check_loop(struct umtx_pi *pi)
1818{
1819	struct umtx_pi *pi1;	/* fast iterator */
1820
1821	mtx_assert(&umtx_lock, MA_OWNED);
1822	if (pi == NULL)
1823		return (false);
1824	pi1 = pi;
1825	for (;;) {
1826		pi = umtx_pi_next(pi);
1827		if (pi == NULL)
1828			break;
1829		pi1 = umtx_pi_next(pi1);
1830		if (pi1 == NULL)
1831			break;
1832		pi1 = umtx_pi_next(pi1);
1833		if (pi1 == NULL)
1834			break;
1835		if (pi == pi1)
1836			return (true);
1837	}
1838	return (false);
1839}
1840
1841/*
1842 * Propagate priority when a thread is blocked on POSIX
1843 * PI mutex.
1844 */
1845static void
1846umtx_propagate_priority(struct thread *td)
1847{
1848	struct umtx_q *uq;
1849	struct umtx_pi *pi;
1850	int pri;
1851
1852	mtx_assert(&umtx_lock, MA_OWNED);
1853	pri = UPRI(td);
1854	uq = td->td_umtxq;
1855	pi = uq->uq_pi_blocked;
1856	if (pi == NULL)
1857		return;
1858	if (umtx_pi_check_loop(pi))
1859		return;
1860
1861	for (;;) {
1862		td = pi->pi_owner;
1863		if (td == NULL || td == curthread)
1864			return;
1865
1866		MPASS(td->td_proc != NULL);
1867		MPASS(td->td_proc->p_magic == P_MAGIC);
1868
1869		thread_lock(td);
1870		if (td->td_lend_user_pri > pri)
1871			sched_lend_user_prio(td, pri);
1872		else {
1873			thread_unlock(td);
1874			break;
1875		}
1876		thread_unlock(td);
1877
1878		/*
1879		 * Pick up the lock that td is blocked on.
1880		 */
1881		uq = td->td_umtxq;
1882		pi = uq->uq_pi_blocked;
1883		if (pi == NULL)
1884			break;
1885		/* Resort td on the list if needed. */
1886		umtx_pi_adjust_thread(pi, td);
1887	}
1888}
1889
1890/*
1891 * Unpropagate priority for a PI mutex when a thread blocked on
1892 * it is interrupted by signal or resumed by others.
1893 */
1894static void
1895umtx_repropagate_priority(struct umtx_pi *pi)
1896{
1897	struct umtx_q *uq, *uq_owner;
1898	struct umtx_pi *pi2;
1899	int pri;
1900
1901	mtx_assert(&umtx_lock, MA_OWNED);
1902
1903	if (umtx_pi_check_loop(pi))
1904		return;
1905	while (pi != NULL && pi->pi_owner != NULL) {
1906		pri = PRI_MAX;
1907		uq_owner = pi->pi_owner->td_umtxq;
1908
1909		TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1910			uq = TAILQ_FIRST(&pi2->pi_blocked);
1911			if (uq != NULL) {
1912				if (pri > UPRI(uq->uq_thread))
1913					pri = UPRI(uq->uq_thread);
1914			}
1915		}
1916
1917		if (pri > uq_owner->uq_inherited_pri)
1918			pri = uq_owner->uq_inherited_pri;
1919		thread_lock(pi->pi_owner);
1920		sched_lend_user_prio(pi->pi_owner, pri);
1921		thread_unlock(pi->pi_owner);
1922		if ((pi = uq_owner->uq_pi_blocked) != NULL)
1923			umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1924	}
1925}
1926
1927/*
1928 * Insert a PI mutex into owned list.
1929 */
1930static void
1931umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1932{
1933	struct umtx_q *uq_owner;
1934
1935	uq_owner = owner->td_umtxq;
1936	mtx_assert(&umtx_lock, MA_OWNED);
1937	MPASS(pi->pi_owner == NULL);
1938	pi->pi_owner = owner;
1939	TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1940}
1941
1942/*
1943 * Disown a PI mutex, and remove it from the owned list.
1944 */
1945static void
1946umtx_pi_disown(struct umtx_pi *pi)
1947{
1948
1949	mtx_assert(&umtx_lock, MA_OWNED);
1950	TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1951	pi->pi_owner = NULL;
1952}
1953
1954/*
1955 * Claim ownership of a PI mutex.
1956 */
1957int
1958umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1959{
1960	struct umtx_q *uq;
1961	int pri;
1962
1963	mtx_lock(&umtx_lock);
1964	if (pi->pi_owner == owner) {
1965		mtx_unlock(&umtx_lock);
1966		return (0);
1967	}
1968
1969	if (pi->pi_owner != NULL) {
1970		/*
1971		 * userland may have already messed the mutex, sigh.
1972		 */
1973		mtx_unlock(&umtx_lock);
1974		return (EPERM);
1975	}
1976	umtx_pi_setowner(pi, owner);
1977	uq = TAILQ_FIRST(&pi->pi_blocked);
1978	if (uq != NULL) {
1979		pri = UPRI(uq->uq_thread);
1980		thread_lock(owner);
1981		if (pri < UPRI(owner))
1982			sched_lend_user_prio(owner, pri);
1983		thread_unlock(owner);
1984	}
1985	mtx_unlock(&umtx_lock);
1986	return (0);
1987}
1988
1989/*
1990 * Adjust a thread's order position in its blocked PI mutex,
1991 * this may result new priority propagating process.
1992 */
1993void
1994umtx_pi_adjust(struct thread *td, u_char oldpri)
1995{
1996	struct umtx_q *uq;
1997	struct umtx_pi *pi;
1998
1999	uq = td->td_umtxq;
2000	mtx_lock(&umtx_lock);
2001	/*
2002	 * Pick up the lock that td is blocked on.
2003	 */
2004	pi = uq->uq_pi_blocked;
2005	if (pi != NULL) {
2006		umtx_pi_adjust_thread(pi, td);
2007		umtx_repropagate_priority(pi);
2008	}
2009	mtx_unlock(&umtx_lock);
2010}
2011
2012/*
2013 * Sleep on a PI mutex.
2014 */
2015int
2016umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
2017    const char *wmesg, struct umtx_abs_timeout *timo, bool shared)
2018{
2019	struct thread *td, *td1;
2020	struct umtx_q *uq1;
2021	int error, pri;
2022#ifdef INVARIANTS
2023	struct umtxq_chain *uc;
2024
2025	uc = umtxq_getchain(&pi->pi_key);
2026#endif
2027	error = 0;
2028	td = uq->uq_thread;
2029	KASSERT(td == curthread, ("inconsistent uq_thread"));
2030	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
2031	KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
2032	umtxq_insert(uq);
2033	mtx_lock(&umtx_lock);
2034	if (pi->pi_owner == NULL) {
2035		mtx_unlock(&umtx_lock);
2036		td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
2037		mtx_lock(&umtx_lock);
2038		if (td1 != NULL) {
2039			if (pi->pi_owner == NULL)
2040				umtx_pi_setowner(pi, td1);
2041			PROC_UNLOCK(td1->td_proc);
2042		}
2043	}
2044
2045	TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
2046		pri = UPRI(uq1->uq_thread);
2047		if (pri > UPRI(td))
2048			break;
2049	}
2050
2051	if (uq1 != NULL)
2052		TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
2053	else
2054		TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
2055
2056	uq->uq_pi_blocked = pi;
2057	thread_lock(td);
2058	td->td_flags |= TDF_UPIBLOCKED;
2059	thread_unlock(td);
2060	umtx_propagate_priority(td);
2061	mtx_unlock(&umtx_lock);
2062	umtxq_unbusy(&uq->uq_key);
2063
2064	error = umtxq_sleep(uq, wmesg, timo);
2065	umtxq_remove(uq);
2066
2067	mtx_lock(&umtx_lock);
2068	uq->uq_pi_blocked = NULL;
2069	thread_lock(td);
2070	td->td_flags &= ~TDF_UPIBLOCKED;
2071	thread_unlock(td);
2072	TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
2073	umtx_repropagate_priority(pi);
2074	mtx_unlock(&umtx_lock);
2075	umtxq_unlock(&uq->uq_key);
2076
2077	return (error);
2078}
2079
2080/*
2081 * Add reference count for a PI mutex.
2082 */
2083void
2084umtx_pi_ref(struct umtx_pi *pi)
2085{
2086
2087	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
2088	pi->pi_refcount++;
2089}
2090
2091/*
2092 * Decrease reference count for a PI mutex, if the counter
2093 * is decreased to zero, its memory space is freed.
2094 */
2095void
2096umtx_pi_unref(struct umtx_pi *pi)
2097{
2098	struct umtxq_chain *uc;
2099
2100	uc = umtxq_getchain(&pi->pi_key);
2101	UMTXQ_LOCKED_ASSERT(uc);
2102	KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
2103	if (--pi->pi_refcount == 0) {
2104		mtx_lock(&umtx_lock);
2105		if (pi->pi_owner != NULL)
2106			umtx_pi_disown(pi);
2107		KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
2108			("blocked queue not empty"));
2109		mtx_unlock(&umtx_lock);
2110		TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
2111		umtx_pi_free(pi);
2112	}
2113}
2114
2115/*
2116 * Find a PI mutex in hash table.
2117 */
2118struct umtx_pi *
2119umtx_pi_lookup(struct umtx_key *key)
2120{
2121	struct umtxq_chain *uc;
2122	struct umtx_pi *pi;
2123
2124	uc = umtxq_getchain(key);
2125	UMTXQ_LOCKED_ASSERT(uc);
2126
2127	TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
2128		if (umtx_key_match(&pi->pi_key, key)) {
2129			return (pi);
2130		}
2131	}
2132	return (NULL);
2133}
2134
2135/*
2136 * Insert a PI mutex into hash table.
2137 */
2138void
2139umtx_pi_insert(struct umtx_pi *pi)
2140{
2141	struct umtxq_chain *uc;
2142
2143	uc = umtxq_getchain(&pi->pi_key);
2144	UMTXQ_LOCKED_ASSERT(uc);
2145	TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
2146}
2147
2148/*
2149 * Drop a PI mutex and wakeup a top waiter.
2150 */
2151int
2152umtx_pi_drop(struct thread *td, struct umtx_key *key, bool rb, int *count)
2153{
2154	struct umtx_q *uq_first, *uq_first2, *uq_me;
2155	struct umtx_pi *pi, *pi2;
2156	int pri;
2157
2158	UMTXQ_ASSERT_LOCKED_BUSY(key);
2159	*count = umtxq_count_pi(key, &uq_first);
2160	if (uq_first != NULL) {
2161		mtx_lock(&umtx_lock);
2162		pi = uq_first->uq_pi_blocked;
2163		KASSERT(pi != NULL, ("pi == NULL?"));
2164		if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
2165			mtx_unlock(&umtx_lock);
2166			/* userland messed the mutex */
2167			return (EPERM);
2168		}
2169		uq_me = td->td_umtxq;
2170		if (pi->pi_owner == td)
2171			umtx_pi_disown(pi);
2172		/* get highest priority thread which is still sleeping. */
2173		uq_first = TAILQ_FIRST(&pi->pi_blocked);
2174		while (uq_first != NULL &&
2175		    (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2176			uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2177		}
2178		pri = PRI_MAX;
2179		TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2180			uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2181			if (uq_first2 != NULL) {
2182				if (pri > UPRI(uq_first2->uq_thread))
2183					pri = UPRI(uq_first2->uq_thread);
2184			}
2185		}
2186		thread_lock(td);
2187		sched_lend_user_prio(td, pri);
2188		thread_unlock(td);
2189		mtx_unlock(&umtx_lock);
2190		if (uq_first)
2191			umtxq_signal_thread(uq_first);
2192	} else {
2193		pi = umtx_pi_lookup(key);
2194		/*
2195		 * A umtx_pi can exist if a signal or timeout removed the
2196		 * last waiter from the umtxq, but there is still
2197		 * a thread in do_lock_pi() holding the umtx_pi.
2198		 */
2199		if (pi != NULL) {
2200			/*
2201			 * The umtx_pi can be unowned, such as when a thread
2202			 * has just entered do_lock_pi(), allocated the
2203			 * umtx_pi, and unlocked the umtxq.
2204			 * If the current thread owns it, it must disown it.
2205			 */
2206			mtx_lock(&umtx_lock);
2207			if (pi->pi_owner == td)
2208				umtx_pi_disown(pi);
2209			mtx_unlock(&umtx_lock);
2210		}
2211	}
2212	return (0);
2213}
2214
2215/*
2216 * Lock a PI mutex.
2217 */
2218static int
2219do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
2220    struct _umtx_time *timeout, int try)
2221{
2222	struct umtx_abs_timeout timo;
2223	struct umtx_q *uq;
2224	struct umtx_pi *pi, *new_pi;
2225	uint32_t id, old_owner, owner, old;
2226	int error, rv;
2227
2228	id = td->td_tid;
2229	uq = td->td_umtxq;
2230
2231	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2232	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2233	    &uq->uq_key)) != 0)
2234		return (error);
2235
2236	if (timeout != NULL)
2237		umtx_abs_timeout_init2(&timo, timeout);
2238
2239	umtxq_lock(&uq->uq_key);
2240	pi = umtx_pi_lookup(&uq->uq_key);
2241	if (pi == NULL) {
2242		new_pi = umtx_pi_alloc(M_NOWAIT);
2243		if (new_pi == NULL) {
2244			umtxq_unlock(&uq->uq_key);
2245			new_pi = umtx_pi_alloc(M_WAITOK);
2246			umtxq_lock(&uq->uq_key);
2247			pi = umtx_pi_lookup(&uq->uq_key);
2248			if (pi != NULL) {
2249				umtx_pi_free(new_pi);
2250				new_pi = NULL;
2251			}
2252		}
2253		if (new_pi != NULL) {
2254			new_pi->pi_key = uq->uq_key;
2255			umtx_pi_insert(new_pi);
2256			pi = new_pi;
2257		}
2258	}
2259	umtx_pi_ref(pi);
2260	umtxq_unlock(&uq->uq_key);
2261
2262	/*
2263	 * Care must be exercised when dealing with umtx structure.  It
2264	 * can fault on any access.
2265	 */
2266	for (;;) {
2267		/*
2268		 * Try the uncontested case.  This should be done in userland.
2269		 */
2270		rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
2271		/* The address was invalid. */
2272		if (rv == -1) {
2273			error = EFAULT;
2274			break;
2275		}
2276		/* The acquire succeeded. */
2277		if (rv == 0) {
2278			MPASS(owner == UMUTEX_UNOWNED);
2279			error = 0;
2280			break;
2281		}
2282
2283		if (owner == UMUTEX_RB_NOTRECOV) {
2284			error = ENOTRECOVERABLE;
2285			break;
2286		}
2287
2288		/*
2289		 * Nobody owns it, but the acquire failed. This can happen
2290		 * with ll/sc atomics.
2291		 */
2292		if (owner == UMUTEX_UNOWNED) {
2293			error = thread_check_susp(td, true);
2294			if (error != 0)
2295				break;
2296			continue;
2297		}
2298
2299		/*
2300		 * Avoid overwriting a possible error from sleep due
2301		 * to the pending signal with suspension check result.
2302		 */
2303		if (error == 0) {
2304			error = thread_check_susp(td, true);
2305			if (error != 0)
2306				break;
2307		}
2308
2309		/* If no one owns it but it is contested try to acquire it. */
2310		if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
2311			old_owner = owner;
2312			rv = casueword32(&m->m_owner, owner, &owner,
2313			    id | UMUTEX_CONTESTED);
2314			/* The address was invalid. */
2315			if (rv == -1) {
2316				error = EFAULT;
2317				break;
2318			}
2319			if (rv == 1) {
2320				if (error == 0) {
2321					error = thread_check_susp(td, true);
2322					if (error != 0)
2323						break;
2324				}
2325
2326				/*
2327				 * If this failed the lock could
2328				 * changed, restart.
2329				 */
2330				continue;
2331			}
2332
2333			MPASS(rv == 0);
2334			MPASS(owner == old_owner);
2335			umtxq_lock(&uq->uq_key);
2336			umtxq_busy(&uq->uq_key);
2337			error = umtx_pi_claim(pi, td);
2338			umtxq_unbusy(&uq->uq_key);
2339			umtxq_unlock(&uq->uq_key);
2340			if (error != 0) {
2341				/*
2342				 * Since we're going to return an
2343				 * error, restore the m_owner to its
2344				 * previous, unowned state to avoid
2345				 * compounding the problem.
2346				 */
2347				(void)casuword32(&m->m_owner,
2348				    id | UMUTEX_CONTESTED, old_owner);
2349			}
2350			if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
2351				error = EOWNERDEAD;
2352			break;
2353		}
2354
2355		if ((owner & ~UMUTEX_CONTESTED) == id) {
2356			error = EDEADLK;
2357			break;
2358		}
2359
2360		if (try != 0) {
2361			error = EBUSY;
2362			break;
2363		}
2364
2365		/*
2366		 * If we caught a signal, we have retried and now
2367		 * exit immediately.
2368		 */
2369		if (error != 0)
2370			break;
2371
2372		umtxq_lock(&uq->uq_key);
2373		umtxq_busy(&uq->uq_key);
2374		umtxq_unlock(&uq->uq_key);
2375
2376		/*
2377		 * Set the contested bit so that a release in user space
2378		 * knows to use the system call for unlock.  If this fails
2379		 * either some one else has acquired the lock or it has been
2380		 * released.
2381		 */
2382		rv = casueword32(&m->m_owner, owner, &old, owner |
2383		    UMUTEX_CONTESTED);
2384
2385		/* The address was invalid. */
2386		if (rv == -1) {
2387			umtxq_unbusy_unlocked(&uq->uq_key);
2388			error = EFAULT;
2389			break;
2390		}
2391		if (rv == 1) {
2392			umtxq_unbusy_unlocked(&uq->uq_key);
2393			error = thread_check_susp(td, true);
2394			if (error != 0)
2395				break;
2396
2397			/*
2398			 * The lock changed and we need to retry or we
2399			 * lost a race to the thread unlocking the
2400			 * umtx.  Note that the UMUTEX_RB_OWNERDEAD
2401			 * value for owner is impossible there.
2402			 */
2403			continue;
2404		}
2405
2406		umtxq_lock(&uq->uq_key);
2407
2408		/* We set the contested bit, sleep. */
2409		MPASS(old == owner);
2410		error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
2411		    "umtxpi", timeout == NULL ? NULL : &timo,
2412		    (flags & USYNC_PROCESS_SHARED) != 0);
2413		if (error != 0)
2414			continue;
2415
2416		error = thread_check_susp(td, false);
2417		if (error != 0)
2418			break;
2419	}
2420
2421	umtxq_lock(&uq->uq_key);
2422	umtx_pi_unref(pi);
2423	umtxq_unlock(&uq->uq_key);
2424
2425	umtx_key_release(&uq->uq_key);
2426	return (error);
2427}
2428
2429/*
2430 * Unlock a PI mutex.
2431 */
2432static int
2433do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2434{
2435	struct umtx_key key;
2436	uint32_t id, new_owner, old, owner;
2437	int count, error;
2438
2439	id = td->td_tid;
2440
2441usrloop:
2442	/*
2443	 * Make sure we own this mtx.
2444	 */
2445	error = fueword32(&m->m_owner, &owner);
2446	if (error == -1)
2447		return (EFAULT);
2448
2449	if ((owner & ~UMUTEX_CONTESTED) != id)
2450		return (EPERM);
2451
2452	new_owner = umtx_unlock_val(flags, rb);
2453
2454	/* This should be done in userland */
2455	if ((owner & UMUTEX_CONTESTED) == 0) {
2456		error = casueword32(&m->m_owner, owner, &old, new_owner);
2457		if (error == -1)
2458			return (EFAULT);
2459		if (error == 1) {
2460			error = thread_check_susp(td, true);
2461			if (error != 0)
2462				return (error);
2463			goto usrloop;
2464		}
2465		if (old == owner)
2466			return (0);
2467		owner = old;
2468	}
2469
2470	/* We should only ever be in here for contested locks */
2471	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2472	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2473	    &key)) != 0)
2474		return (error);
2475
2476	umtxq_lock(&key);
2477	umtxq_busy(&key);
2478	error = umtx_pi_drop(td, &key, rb, &count);
2479	if (error != 0) {
2480		umtxq_unbusy(&key);
2481		umtxq_unlock(&key);
2482		umtx_key_release(&key);
2483		/* userland messed the mutex */
2484		return (error);
2485	}
2486	umtxq_unlock(&key);
2487
2488	/*
2489	 * When unlocking the umtx, it must be marked as unowned if
2490	 * there is zero or one thread only waiting for it.
2491	 * Otherwise, it must be marked as contested.
2492	 */
2493
2494	if (count > 1)
2495		new_owner |= UMUTEX_CONTESTED;
2496again:
2497	error = casueword32(&m->m_owner, owner, &old, new_owner);
2498	if (error == 1) {
2499		error = thread_check_susp(td, false);
2500		if (error == 0)
2501			goto again;
2502	}
2503	umtxq_unbusy_unlocked(&key);
2504	umtx_key_release(&key);
2505	if (error == -1)
2506		return (EFAULT);
2507	if (error == 0 && old != owner)
2508		return (EINVAL);
2509	return (error);
2510}
2511
2512/*
2513 * Lock a PP mutex.
2514 */
2515static int
2516do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2517    struct _umtx_time *timeout, int try)
2518{
2519	struct umtx_abs_timeout timo;
2520	struct umtx_q *uq, *uq2;
2521	struct umtx_pi *pi;
2522	uint32_t ceiling;
2523	uint32_t owner, id;
2524	int error, pri, old_inherited_pri, new_pri, rv;
2525	bool su;
2526
2527	id = td->td_tid;
2528	uq = td->td_umtxq;
2529	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2530	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2531	    &uq->uq_key)) != 0)
2532		return (error);
2533
2534	if (timeout != NULL)
2535		umtx_abs_timeout_init2(&timo, timeout);
2536
2537	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2538	for (;;) {
2539		old_inherited_pri = uq->uq_inherited_pri;
2540		umtxq_lock(&uq->uq_key);
2541		umtxq_busy(&uq->uq_key);
2542		umtxq_unlock(&uq->uq_key);
2543
2544		rv = fueword32(&m->m_ceilings[0], &ceiling);
2545		if (rv == -1) {
2546			error = EFAULT;
2547			goto out;
2548		}
2549		ceiling = RTP_PRIO_MAX - ceiling;
2550		if (ceiling > RTP_PRIO_MAX) {
2551			error = EINVAL;
2552			goto out;
2553		}
2554		new_pri = PRI_MIN_REALTIME + ceiling;
2555
2556		if (td->td_base_user_pri < new_pri) {
2557			error = EINVAL;
2558			goto out;
2559		}
2560		if (su) {
2561			mtx_lock(&umtx_lock);
2562			if (new_pri < uq->uq_inherited_pri) {
2563				uq->uq_inherited_pri = new_pri;
2564				thread_lock(td);
2565				if (new_pri < UPRI(td))
2566					sched_lend_user_prio(td, new_pri);
2567				thread_unlock(td);
2568			}
2569			mtx_unlock(&umtx_lock);
2570		}
2571
2572		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2573		    id | UMUTEX_CONTESTED);
2574		/* The address was invalid. */
2575		if (rv == -1) {
2576			error = EFAULT;
2577			break;
2578		}
2579		if (rv == 0) {
2580			MPASS(owner == UMUTEX_CONTESTED);
2581			error = 0;
2582			break;
2583		}
2584		/* rv == 1 */
2585		if (owner == UMUTEX_RB_OWNERDEAD) {
2586			rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2587			    &owner, id | UMUTEX_CONTESTED);
2588			if (rv == -1) {
2589				error = EFAULT;
2590				break;
2591			}
2592			if (rv == 0) {
2593				MPASS(owner == UMUTEX_RB_OWNERDEAD);
2594				error = EOWNERDEAD; /* success */
2595				break;
2596			}
2597
2598			/*
2599			 *  rv == 1, only check for suspension if we
2600			 *  did not already catched a signal.  If we
2601			 *  get an error from the check, the same
2602			 *  condition is checked by the umtxq_sleep()
2603			 *  call below, so we should obliterate the
2604			 *  error to not skip the last loop iteration.
2605			 */
2606			if (error == 0) {
2607				error = thread_check_susp(td, false);
2608				if (error == 0) {
2609					if (try != 0)
2610						error = EBUSY;
2611					else
2612						continue;
2613				}
2614				error = 0;
2615			}
2616		} else if (owner == UMUTEX_RB_NOTRECOV) {
2617			error = ENOTRECOVERABLE;
2618		}
2619
2620		if (try != 0)
2621			error = EBUSY;
2622
2623		/*
2624		 * If we caught a signal, we have retried and now
2625		 * exit immediately.
2626		 */
2627		if (error != 0)
2628			break;
2629
2630		umtxq_lock(&uq->uq_key);
2631		umtxq_insert(uq);
2632		umtxq_unbusy(&uq->uq_key);
2633		error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2634		    NULL : &timo);
2635		umtxq_remove(uq);
2636		umtxq_unlock(&uq->uq_key);
2637
2638		mtx_lock(&umtx_lock);
2639		uq->uq_inherited_pri = old_inherited_pri;
2640		pri = PRI_MAX;
2641		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2642			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2643			if (uq2 != NULL) {
2644				if (pri > UPRI(uq2->uq_thread))
2645					pri = UPRI(uq2->uq_thread);
2646			}
2647		}
2648		if (pri > uq->uq_inherited_pri)
2649			pri = uq->uq_inherited_pri;
2650		thread_lock(td);
2651		sched_lend_user_prio(td, pri);
2652		thread_unlock(td);
2653		mtx_unlock(&umtx_lock);
2654	}
2655
2656	if (error != 0 && error != EOWNERDEAD) {
2657		mtx_lock(&umtx_lock);
2658		uq->uq_inherited_pri = old_inherited_pri;
2659		pri = PRI_MAX;
2660		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2661			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2662			if (uq2 != NULL) {
2663				if (pri > UPRI(uq2->uq_thread))
2664					pri = UPRI(uq2->uq_thread);
2665			}
2666		}
2667		if (pri > uq->uq_inherited_pri)
2668			pri = uq->uq_inherited_pri;
2669		thread_lock(td);
2670		sched_lend_user_prio(td, pri);
2671		thread_unlock(td);
2672		mtx_unlock(&umtx_lock);
2673	}
2674
2675out:
2676	umtxq_unbusy_unlocked(&uq->uq_key);
2677	umtx_key_release(&uq->uq_key);
2678	return (error);
2679}
2680
2681/*
2682 * Unlock a PP mutex.
2683 */
2684static int
2685do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2686{
2687	struct umtx_key key;
2688	struct umtx_q *uq, *uq2;
2689	struct umtx_pi *pi;
2690	uint32_t id, owner, rceiling;
2691	int error, pri, new_inherited_pri;
2692	bool su;
2693
2694	id = td->td_tid;
2695	uq = td->td_umtxq;
2696	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2697
2698	/*
2699	 * Make sure we own this mtx.
2700	 */
2701	error = fueword32(&m->m_owner, &owner);
2702	if (error == -1)
2703		return (EFAULT);
2704
2705	if ((owner & ~UMUTEX_CONTESTED) != id)
2706		return (EPERM);
2707
2708	error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2709	if (error != 0)
2710		return (error);
2711
2712	if (rceiling == -1)
2713		new_inherited_pri = PRI_MAX;
2714	else {
2715		rceiling = RTP_PRIO_MAX - rceiling;
2716		if (rceiling > RTP_PRIO_MAX)
2717			return (EINVAL);
2718		new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2719	}
2720
2721	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2722	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2723	    &key)) != 0)
2724		return (error);
2725	umtxq_lock(&key);
2726	umtxq_busy(&key);
2727	umtxq_unlock(&key);
2728	/*
2729	 * For priority protected mutex, always set unlocked state
2730	 * to UMUTEX_CONTESTED, so that userland always enters kernel
2731	 * to lock the mutex, it is necessary because thread priority
2732	 * has to be adjusted for such mutex.
2733	 */
2734	error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2735	    UMUTEX_CONTESTED);
2736
2737	umtxq_lock(&key);
2738	if (error == 0)
2739		umtxq_signal(&key, 1);
2740	umtxq_unbusy(&key);
2741	umtxq_unlock(&key);
2742
2743	if (error == -1)
2744		error = EFAULT;
2745	else {
2746		mtx_lock(&umtx_lock);
2747		if (su || new_inherited_pri == PRI_MAX)
2748			uq->uq_inherited_pri = new_inherited_pri;
2749		pri = PRI_MAX;
2750		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2751			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2752			if (uq2 != NULL) {
2753				if (pri > UPRI(uq2->uq_thread))
2754					pri = UPRI(uq2->uq_thread);
2755			}
2756		}
2757		if (pri > uq->uq_inherited_pri)
2758			pri = uq->uq_inherited_pri;
2759		thread_lock(td);
2760		sched_lend_user_prio(td, pri);
2761		thread_unlock(td);
2762		mtx_unlock(&umtx_lock);
2763	}
2764	umtx_key_release(&key);
2765	return (error);
2766}
2767
2768static int
2769do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2770    uint32_t *old_ceiling)
2771{
2772	struct umtx_q *uq;
2773	uint32_t flags, id, owner, save_ceiling;
2774	int error, rv, rv1;
2775
2776	error = fueword32(&m->m_flags, &flags);
2777	if (error == -1)
2778		return (EFAULT);
2779	if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2780		return (EINVAL);
2781	if (ceiling > RTP_PRIO_MAX)
2782		return (EINVAL);
2783	id = td->td_tid;
2784	uq = td->td_umtxq;
2785	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2786	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2787	    &uq->uq_key)) != 0)
2788		return (error);
2789	for (;;) {
2790		umtxq_lock(&uq->uq_key);
2791		umtxq_busy(&uq->uq_key);
2792		umtxq_unlock(&uq->uq_key);
2793
2794		rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2795		if (rv == -1) {
2796			error = EFAULT;
2797			break;
2798		}
2799
2800		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2801		    id | UMUTEX_CONTESTED);
2802		if (rv == -1) {
2803			error = EFAULT;
2804			break;
2805		}
2806
2807		if (rv == 0) {
2808			MPASS(owner == UMUTEX_CONTESTED);
2809			rv = suword32(&m->m_ceilings[0], ceiling);
2810			rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2811			error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2812			break;
2813		}
2814
2815		if ((owner & ~UMUTEX_CONTESTED) == id) {
2816			rv = suword32(&m->m_ceilings[0], ceiling);
2817			error = rv == 0 ? 0 : EFAULT;
2818			break;
2819		}
2820
2821		if (owner == UMUTEX_RB_OWNERDEAD) {
2822			error = EOWNERDEAD;
2823			break;
2824		} else if (owner == UMUTEX_RB_NOTRECOV) {
2825			error = ENOTRECOVERABLE;
2826			break;
2827		}
2828
2829		/*
2830		 * If we caught a signal, we have retried and now
2831		 * exit immediately.
2832		 */
2833		if (error != 0)
2834			break;
2835
2836		/*
2837		 * We set the contested bit, sleep. Otherwise the lock changed
2838		 * and we need to retry or we lost a race to the thread
2839		 * unlocking the umtx.
2840		 */
2841		umtxq_lock(&uq->uq_key);
2842		umtxq_insert(uq);
2843		umtxq_unbusy(&uq->uq_key);
2844		error = umtxq_sleep(uq, "umtxpp", NULL);
2845		umtxq_remove(uq);
2846		umtxq_unlock(&uq->uq_key);
2847	}
2848	umtxq_lock(&uq->uq_key);
2849	if (error == 0)
2850		umtxq_signal(&uq->uq_key, INT_MAX);
2851	umtxq_unbusy(&uq->uq_key);
2852	umtxq_unlock(&uq->uq_key);
2853	umtx_key_release(&uq->uq_key);
2854	if (error == 0 && old_ceiling != NULL) {
2855		rv = suword32(old_ceiling, save_ceiling);
2856		error = rv == 0 ? 0 : EFAULT;
2857	}
2858	return (error);
2859}
2860
2861/*
2862 * Lock a userland POSIX mutex.
2863 */
2864static int
2865do_lock_umutex(struct thread *td, struct umutex *m,
2866    struct _umtx_time *timeout, int mode)
2867{
2868	uint32_t flags;
2869	int error;
2870
2871	error = fueword32(&m->m_flags, &flags);
2872	if (error == -1)
2873		return (EFAULT);
2874
2875	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2876	case 0:
2877		error = do_lock_normal(td, m, flags, timeout, mode);
2878		break;
2879	case UMUTEX_PRIO_INHERIT:
2880		error = do_lock_pi(td, m, flags, timeout, mode);
2881		break;
2882	case UMUTEX_PRIO_PROTECT:
2883		error = do_lock_pp(td, m, flags, timeout, mode);
2884		break;
2885	default:
2886		return (EINVAL);
2887	}
2888	if (timeout == NULL) {
2889		if (error == EINTR && mode != _UMUTEX_WAIT)
2890			error = ERESTART;
2891	} else {
2892		/* Timed-locking is not restarted. */
2893		if (error == ERESTART)
2894			error = EINTR;
2895	}
2896	return (error);
2897}
2898
2899/*
2900 * Unlock a userland POSIX mutex.
2901 */
2902static int
2903do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2904{
2905	uint32_t flags;
2906	int error;
2907
2908	error = fueword32(&m->m_flags, &flags);
2909	if (error == -1)
2910		return (EFAULT);
2911
2912	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2913	case 0:
2914		return (do_unlock_normal(td, m, flags, rb));
2915	case UMUTEX_PRIO_INHERIT:
2916		return (do_unlock_pi(td, m, flags, rb));
2917	case UMUTEX_PRIO_PROTECT:
2918		return (do_unlock_pp(td, m, flags, rb));
2919	}
2920
2921	return (EINVAL);
2922}
2923
2924static int
2925do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2926    struct timespec *timeout, u_long wflags)
2927{
2928	struct umtx_abs_timeout timo;
2929	struct umtx_q *uq;
2930	uint32_t flags, clockid, hasw;
2931	int error;
2932
2933	uq = td->td_umtxq;
2934	error = fueword32(&cv->c_flags, &flags);
2935	if (error == -1)
2936		return (EFAULT);
2937	error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2938	if (error != 0)
2939		return (error);
2940
2941	if ((wflags & CVWAIT_CLOCKID) != 0) {
2942		error = fueword32(&cv->c_clockid, &clockid);
2943		if (error == -1) {
2944			umtx_key_release(&uq->uq_key);
2945			return (EFAULT);
2946		}
2947		if (clockid < CLOCK_REALTIME ||
2948		    clockid >= CLOCK_THREAD_CPUTIME_ID) {
2949			/* hmm, only HW clock id will work. */
2950			umtx_key_release(&uq->uq_key);
2951			return (EINVAL);
2952		}
2953	} else {
2954		clockid = CLOCK_REALTIME;
2955	}
2956
2957	umtxq_lock(&uq->uq_key);
2958	umtxq_busy(&uq->uq_key);
2959	umtxq_insert(uq);
2960	umtxq_unlock(&uq->uq_key);
2961
2962	/*
2963	 * Set c_has_waiters to 1 before releasing user mutex, also
2964	 * don't modify cache line when unnecessary.
2965	 */
2966	error = fueword32(&cv->c_has_waiters, &hasw);
2967	if (error == 0 && hasw == 0)
2968		error = suword32(&cv->c_has_waiters, 1);
2969	if (error != 0) {
2970		umtxq_lock(&uq->uq_key);
2971		umtxq_remove(uq);
2972		umtxq_unbusy(&uq->uq_key);
2973		error = EFAULT;
2974		goto out;
2975	}
2976
2977	umtxq_unbusy_unlocked(&uq->uq_key);
2978
2979	error = do_unlock_umutex(td, m, false);
2980
2981	if (timeout != NULL)
2982		umtx_abs_timeout_init(&timo, clockid,
2983		    (wflags & CVWAIT_ABSTIME) != 0, timeout);
2984
2985	umtxq_lock(&uq->uq_key);
2986	if (error == 0) {
2987		error = umtxq_sleep(uq, "ucond", timeout == NULL ?
2988		    NULL : &timo);
2989	}
2990
2991	if ((uq->uq_flags & UQF_UMTXQ) == 0)
2992		error = 0;
2993	else {
2994		/*
2995		 * This must be timeout,interrupted by signal or
2996		 * surprious wakeup, clear c_has_waiter flag when
2997		 * necessary.
2998		 */
2999		umtxq_busy(&uq->uq_key);
3000		if ((uq->uq_flags & UQF_UMTXQ) != 0) {
3001			int oldlen = uq->uq_cur_queue->length;
3002			umtxq_remove(uq);
3003			if (oldlen == 1) {
3004				umtxq_unlock(&uq->uq_key);
3005				if (suword32(&cv->c_has_waiters, 0) != 0 &&
3006				    error == 0)
3007					error = EFAULT;
3008				umtxq_lock(&uq->uq_key);
3009			}
3010		}
3011		umtxq_unbusy(&uq->uq_key);
3012		if (error == ERESTART)
3013			error = EINTR;
3014	}
3015out:
3016	umtxq_unlock(&uq->uq_key);
3017	umtx_key_release(&uq->uq_key);
3018	return (error);
3019}
3020
3021/*
3022 * Signal a userland condition variable.
3023 */
3024static int
3025do_cv_signal(struct thread *td, struct ucond *cv)
3026{
3027	struct umtx_key key;
3028	int error, cnt, nwake;
3029	uint32_t flags;
3030
3031	error = fueword32(&cv->c_flags, &flags);
3032	if (error == -1)
3033		return (EFAULT);
3034	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
3035		return (error);
3036	umtxq_lock(&key);
3037	umtxq_busy(&key);
3038	cnt = umtxq_count(&key);
3039	nwake = umtxq_signal(&key, 1);
3040	if (cnt <= nwake) {
3041		umtxq_unlock(&key);
3042		error = suword32(&cv->c_has_waiters, 0);
3043		if (error == -1)
3044			error = EFAULT;
3045		umtxq_lock(&key);
3046	}
3047	umtxq_unbusy(&key);
3048	umtxq_unlock(&key);
3049	umtx_key_release(&key);
3050	return (error);
3051}
3052
3053static int
3054do_cv_broadcast(struct thread *td, struct ucond *cv)
3055{
3056	struct umtx_key key;
3057	int error;
3058	uint32_t flags;
3059
3060	error = fueword32(&cv->c_flags, &flags);
3061	if (error == -1)
3062		return (EFAULT);
3063	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
3064		return (error);
3065
3066	umtxq_lock(&key);
3067	umtxq_busy(&key);
3068	umtxq_signal(&key, INT_MAX);
3069	umtxq_unlock(&key);
3070
3071	error = suword32(&cv->c_has_waiters, 0);
3072	if (error == -1)
3073		error = EFAULT;
3074
3075	umtxq_unbusy_unlocked(&key);
3076
3077	umtx_key_release(&key);
3078	return (error);
3079}
3080
3081static int
3082do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
3083    struct _umtx_time *timeout)
3084{
3085	struct umtx_abs_timeout timo;
3086	struct umtx_q *uq;
3087	uint32_t flags, wrflags;
3088	int32_t state, oldstate;
3089	int32_t blocked_readers;
3090	int error, error1, rv;
3091
3092	uq = td->td_umtxq;
3093	error = fueword32(&rwlock->rw_flags, &flags);
3094	if (error == -1)
3095		return (EFAULT);
3096	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3097	if (error != 0)
3098		return (error);
3099
3100	if (timeout != NULL)
3101		umtx_abs_timeout_init2(&timo, timeout);
3102
3103	wrflags = URWLOCK_WRITE_OWNER;
3104	if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
3105		wrflags |= URWLOCK_WRITE_WAITERS;
3106
3107	for (;;) {
3108		rv = fueword32(&rwlock->rw_state, &state);
3109		if (rv == -1) {
3110			umtx_key_release(&uq->uq_key);
3111			return (EFAULT);
3112		}
3113
3114		/* try to lock it */
3115		while (!(state & wrflags)) {
3116			if (__predict_false(URWLOCK_READER_COUNT(state) ==
3117			    URWLOCK_MAX_READERS)) {
3118				umtx_key_release(&uq->uq_key);
3119				return (EAGAIN);
3120			}
3121			rv = casueword32(&rwlock->rw_state, state,
3122			    &oldstate, state + 1);
3123			if (rv == -1) {
3124				umtx_key_release(&uq->uq_key);
3125				return (EFAULT);
3126			}
3127			if (rv == 0) {
3128				MPASS(oldstate == state);
3129				umtx_key_release(&uq->uq_key);
3130				return (0);
3131			}
3132			error = thread_check_susp(td, true);
3133			if (error != 0)
3134				break;
3135			state = oldstate;
3136		}
3137
3138		if (error)
3139			break;
3140
3141		/* grab monitor lock */
3142		umtxq_lock(&uq->uq_key);
3143		umtxq_busy(&uq->uq_key);
3144		umtxq_unlock(&uq->uq_key);
3145
3146		/*
3147		 * re-read the state, in case it changed between the try-lock above
3148		 * and the check below
3149		 */
3150		rv = fueword32(&rwlock->rw_state, &state);
3151		if (rv == -1)
3152			error = EFAULT;
3153
3154		/* set read contention bit */
3155		while (error == 0 && (state & wrflags) &&
3156		    !(state & URWLOCK_READ_WAITERS)) {
3157			rv = casueword32(&rwlock->rw_state, state,
3158			    &oldstate, state | URWLOCK_READ_WAITERS);
3159			if (rv == -1) {
3160				error = EFAULT;
3161				break;
3162			}
3163			if (rv == 0) {
3164				MPASS(oldstate == state);
3165				goto sleep;
3166			}
3167			state = oldstate;
3168			error = thread_check_susp(td, false);
3169			if (error != 0)
3170				break;
3171		}
3172		if (error != 0) {
3173			umtxq_unbusy_unlocked(&uq->uq_key);
3174			break;
3175		}
3176
3177		/* state is changed while setting flags, restart */
3178		if (!(state & wrflags)) {
3179			umtxq_unbusy_unlocked(&uq->uq_key);
3180			error = thread_check_susp(td, true);
3181			if (error != 0)
3182				break;
3183			continue;
3184		}
3185
3186sleep:
3187		/*
3188		 * Contention bit is set, before sleeping, increase
3189		 * read waiter count.
3190		 */
3191		rv = fueword32(&rwlock->rw_blocked_readers,
3192		    &blocked_readers);
3193		if (rv == 0)
3194			rv = suword32(&rwlock->rw_blocked_readers,
3195			    blocked_readers + 1);
3196		if (rv == -1) {
3197			umtxq_unbusy_unlocked(&uq->uq_key);
3198			error = EFAULT;
3199			break;
3200		}
3201
3202		while (state & wrflags) {
3203			umtxq_lock(&uq->uq_key);
3204			umtxq_insert(uq);
3205			umtxq_unbusy(&uq->uq_key);
3206
3207			error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
3208			    NULL : &timo);
3209
3210			umtxq_busy(&uq->uq_key);
3211			umtxq_remove(uq);
3212			umtxq_unlock(&uq->uq_key);
3213			if (error)
3214				break;
3215			rv = fueword32(&rwlock->rw_state, &state);
3216			if (rv == -1) {
3217				error = EFAULT;
3218				break;
3219			}
3220		}
3221
3222		/* decrease read waiter count, and may clear read contention bit */
3223		rv = fueword32(&rwlock->rw_blocked_readers,
3224		    &blocked_readers);
3225		if (rv == 0)
3226			rv = suword32(&rwlock->rw_blocked_readers,
3227			    blocked_readers - 1);
3228		if (rv == -1) {
3229			umtxq_unbusy_unlocked(&uq->uq_key);
3230			error = EFAULT;
3231			break;
3232		}
3233		if (blocked_readers == 1) {
3234			rv = fueword32(&rwlock->rw_state, &state);
3235			if (rv == -1) {
3236				umtxq_unbusy_unlocked(&uq->uq_key);
3237				error = EFAULT;
3238				break;
3239			}
3240			for (;;) {
3241				rv = casueword32(&rwlock->rw_state, state,
3242				    &oldstate, state & ~URWLOCK_READ_WAITERS);
3243				if (rv == -1) {
3244					error = EFAULT;
3245					break;
3246				}
3247				if (rv == 0) {
3248					MPASS(oldstate == state);
3249					break;
3250				}
3251				state = oldstate;
3252				error1 = thread_check_susp(td, false);
3253				if (error1 != 0) {
3254					if (error == 0)
3255						error = error1;
3256					break;
3257				}
3258			}
3259		}
3260
3261		umtxq_unbusy_unlocked(&uq->uq_key);
3262		if (error != 0)
3263			break;
3264	}
3265	umtx_key_release(&uq->uq_key);
3266	if (error == ERESTART)
3267		error = EINTR;
3268	return (error);
3269}
3270
3271static int
3272do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
3273{
3274	struct umtx_abs_timeout timo;
3275	struct umtx_q *uq;
3276	uint32_t flags;
3277	int32_t state, oldstate;
3278	int32_t blocked_writers;
3279	int32_t blocked_readers;
3280	int error, error1, rv;
3281
3282	uq = td->td_umtxq;
3283	error = fueword32(&rwlock->rw_flags, &flags);
3284	if (error == -1)
3285		return (EFAULT);
3286	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3287	if (error != 0)
3288		return (error);
3289
3290	if (timeout != NULL)
3291		umtx_abs_timeout_init2(&timo, timeout);
3292
3293	blocked_readers = 0;
3294	for (;;) {
3295		rv = fueword32(&rwlock->rw_state, &state);
3296		if (rv == -1) {
3297			umtx_key_release(&uq->uq_key);
3298			return (EFAULT);
3299		}
3300		while ((state & URWLOCK_WRITE_OWNER) == 0 &&
3301		    URWLOCK_READER_COUNT(state) == 0) {
3302			rv = casueword32(&rwlock->rw_state, state,
3303			    &oldstate, state | URWLOCK_WRITE_OWNER);
3304			if (rv == -1) {
3305				umtx_key_release(&uq->uq_key);
3306				return (EFAULT);
3307			}
3308			if (rv == 0) {
3309				MPASS(oldstate == state);
3310				umtx_key_release(&uq->uq_key);
3311				return (0);
3312			}
3313			state = oldstate;
3314			error = thread_check_susp(td, true);
3315			if (error != 0)
3316				break;
3317		}
3318
3319		if (error) {
3320			if ((state & (URWLOCK_WRITE_OWNER |
3321			    URWLOCK_WRITE_WAITERS)) == 0 &&
3322			    blocked_readers != 0) {
3323				umtxq_lock(&uq->uq_key);
3324				umtxq_busy(&uq->uq_key);
3325				umtxq_signal_queue(&uq->uq_key, INT_MAX,
3326				    UMTX_SHARED_QUEUE);
3327				umtxq_unbusy(&uq->uq_key);
3328				umtxq_unlock(&uq->uq_key);
3329			}
3330
3331			break;
3332		}
3333
3334		/* grab monitor lock */
3335		umtxq_lock(&uq->uq_key);
3336		umtxq_busy(&uq->uq_key);
3337		umtxq_unlock(&uq->uq_key);
3338
3339		/*
3340		 * Re-read the state, in case it changed between the
3341		 * try-lock above and the check below.
3342		 */
3343		rv = fueword32(&rwlock->rw_state, &state);
3344		if (rv == -1)
3345			error = EFAULT;
3346
3347		while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
3348		    URWLOCK_READER_COUNT(state) != 0) &&
3349		    (state & URWLOCK_WRITE_WAITERS) == 0) {
3350			rv = casueword32(&rwlock->rw_state, state,
3351			    &oldstate, state | URWLOCK_WRITE_WAITERS);
3352			if (rv == -1) {
3353				error = EFAULT;
3354				break;
3355			}
3356			if (rv == 0) {
3357				MPASS(oldstate == state);
3358				goto sleep;
3359			}
3360			state = oldstate;
3361			error = thread_check_susp(td, false);
3362			if (error != 0)
3363				break;
3364		}
3365		if (error != 0) {
3366			umtxq_unbusy_unlocked(&uq->uq_key);
3367			break;
3368		}
3369
3370		if ((state & URWLOCK_WRITE_OWNER) == 0 &&
3371		    URWLOCK_READER_COUNT(state) == 0) {
3372			umtxq_unbusy_unlocked(&uq->uq_key);
3373			error = thread_check_susp(td, false);
3374			if (error != 0)
3375				break;
3376			continue;
3377		}
3378sleep:
3379		rv = fueword32(&rwlock->rw_blocked_writers,
3380		    &blocked_writers);
3381		if (rv == 0)
3382			rv = suword32(&rwlock->rw_blocked_writers,
3383			    blocked_writers + 1);
3384		if (rv == -1) {
3385			umtxq_unbusy_unlocked(&uq->uq_key);
3386			error = EFAULT;
3387			break;
3388		}
3389
3390		while ((state & URWLOCK_WRITE_OWNER) ||
3391		    URWLOCK_READER_COUNT(state) != 0) {
3392			umtxq_lock(&uq->uq_key);
3393			umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3394			umtxq_unbusy(&uq->uq_key);
3395
3396			error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
3397			    NULL : &timo);
3398
3399			umtxq_busy(&uq->uq_key);
3400			umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3401			umtxq_unlock(&uq->uq_key);
3402			if (error)
3403				break;
3404			rv = fueword32(&rwlock->rw_state, &state);
3405			if (rv == -1) {
3406				error = EFAULT;
3407				break;
3408			}
3409		}
3410
3411		rv = fueword32(&rwlock->rw_blocked_writers,
3412		    &blocked_writers);
3413		if (rv == 0)
3414			rv = suword32(&rwlock->rw_blocked_writers,
3415			    blocked_writers - 1);
3416		if (rv == -1) {
3417			umtxq_unbusy_unlocked(&uq->uq_key);
3418			error = EFAULT;
3419			break;
3420		}
3421		if (blocked_writers == 1) {
3422			rv = fueword32(&rwlock->rw_state, &state);
3423			if (rv == -1) {
3424				umtxq_unbusy_unlocked(&uq->uq_key);
3425				error = EFAULT;
3426				break;
3427			}
3428			for (;;) {
3429				rv = casueword32(&rwlock->rw_state, state,
3430				    &oldstate, state & ~URWLOCK_WRITE_WAITERS);
3431				if (rv == -1) {
3432					error = EFAULT;
3433					break;
3434				}
3435				if (rv == 0) {
3436					MPASS(oldstate == state);
3437					break;
3438				}
3439				state = oldstate;
3440				error1 = thread_check_susp(td, false);
3441				/*
3442				 * We are leaving the URWLOCK_WRITE_WAITERS
3443				 * behind, but this should not harm the
3444				 * correctness.
3445				 */
3446				if (error1 != 0) {
3447					if (error == 0)
3448						error = error1;
3449					break;
3450				}
3451			}
3452			rv = fueword32(&rwlock->rw_blocked_readers,
3453			    &blocked_readers);
3454			if (rv == -1) {
3455				umtxq_unbusy_unlocked(&uq->uq_key);
3456				error = EFAULT;
3457				break;
3458			}
3459		} else
3460			blocked_readers = 0;
3461
3462		umtxq_unbusy_unlocked(&uq->uq_key);
3463	}
3464
3465	umtx_key_release(&uq->uq_key);
3466	if (error == ERESTART)
3467		error = EINTR;
3468	return (error);
3469}
3470
3471static int
3472do_rw_unlock(struct thread *td, struct urwlock *rwlock)
3473{
3474	struct umtx_q *uq;
3475	uint32_t flags;
3476	int32_t state, oldstate;
3477	int error, rv, q, count;
3478
3479	uq = td->td_umtxq;
3480	error = fueword32(&rwlock->rw_flags, &flags);
3481	if (error == -1)
3482		return (EFAULT);
3483	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3484	if (error != 0)
3485		return (error);
3486
3487	error = fueword32(&rwlock->rw_state, &state);
3488	if (error == -1) {
3489		error = EFAULT;
3490		goto out;
3491	}
3492	if (state & URWLOCK_WRITE_OWNER) {
3493		for (;;) {
3494			rv = casueword32(&rwlock->rw_state, state,
3495			    &oldstate, state & ~URWLOCK_WRITE_OWNER);
3496			if (rv == -1) {
3497				error = EFAULT;
3498				goto out;
3499			}
3500			if (rv == 1) {
3501				state = oldstate;
3502				if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3503					error = EPERM;
3504					goto out;
3505				}
3506				error = thread_check_susp(td, true);
3507				if (error != 0)
3508					goto out;
3509			} else
3510				break;
3511		}
3512	} else if (URWLOCK_READER_COUNT(state) != 0) {
3513		for (;;) {
3514			rv = casueword32(&rwlock->rw_state, state,
3515			    &oldstate, state - 1);
3516			if (rv == -1) {
3517				error = EFAULT;
3518				goto out;
3519			}
3520			if (rv == 1) {
3521				state = oldstate;
3522				if (URWLOCK_READER_COUNT(oldstate) == 0) {
3523					error = EPERM;
3524					goto out;
3525				}
3526				error = thread_check_susp(td, true);
3527				if (error != 0)
3528					goto out;
3529			} else
3530				break;
3531		}
3532	} else {
3533		error = EPERM;
3534		goto out;
3535	}
3536
3537	count = 0;
3538
3539	if (!(flags & URWLOCK_PREFER_READER)) {
3540		if (state & URWLOCK_WRITE_WAITERS) {
3541			count = 1;
3542			q = UMTX_EXCLUSIVE_QUEUE;
3543		} else if (state & URWLOCK_READ_WAITERS) {
3544			count = INT_MAX;
3545			q = UMTX_SHARED_QUEUE;
3546		}
3547	} else {
3548		if (state & URWLOCK_READ_WAITERS) {
3549			count = INT_MAX;
3550			q = UMTX_SHARED_QUEUE;
3551		} else if (state & URWLOCK_WRITE_WAITERS) {
3552			count = 1;
3553			q = UMTX_EXCLUSIVE_QUEUE;
3554		}
3555	}
3556
3557	if (count) {
3558		umtxq_lock(&uq->uq_key);
3559		umtxq_busy(&uq->uq_key);
3560		umtxq_signal_queue(&uq->uq_key, count, q);
3561		umtxq_unbusy(&uq->uq_key);
3562		umtxq_unlock(&uq->uq_key);
3563	}
3564out:
3565	umtx_key_release(&uq->uq_key);
3566	return (error);
3567}
3568
3569#if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3570static int
3571do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3572{
3573	struct umtx_abs_timeout timo;
3574	struct umtx_q *uq;
3575	uint32_t flags, count, count1;
3576	int error, rv, rv1;
3577
3578	uq = td->td_umtxq;
3579	error = fueword32(&sem->_flags, &flags);
3580	if (error == -1)
3581		return (EFAULT);
3582	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3583	if (error != 0)
3584		return (error);
3585
3586	if (timeout != NULL)
3587		umtx_abs_timeout_init2(&timo, timeout);
3588
3589again:
3590	umtxq_lock(&uq->uq_key);
3591	umtxq_busy(&uq->uq_key);
3592	umtxq_insert(uq);
3593	umtxq_unlock(&uq->uq_key);
3594	rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3595	if (rv != -1)
3596		rv1 = fueword32(&sem->_count, &count);
3597	if (rv == -1 || rv1 == -1 || count != 0 || (rv == 1 && count1 == 0)) {
3598		if (rv == 0)
3599			rv = suword32(&sem->_has_waiters, 0);
3600		umtxq_lock(&uq->uq_key);
3601		umtxq_unbusy(&uq->uq_key);
3602		umtxq_remove(uq);
3603		umtxq_unlock(&uq->uq_key);
3604		if (rv == -1 || rv1 == -1) {
3605			error = EFAULT;
3606			goto out;
3607		}
3608		if (count != 0) {
3609			error = 0;
3610			goto out;
3611		}
3612		MPASS(rv == 1 && count1 == 0);
3613		rv = thread_check_susp(td, true);
3614		if (rv == 0)
3615			goto again;
3616		error = rv;
3617		goto out;
3618	}
3619	umtxq_lock(&uq->uq_key);
3620	umtxq_unbusy(&uq->uq_key);
3621
3622	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3623
3624	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3625		error = 0;
3626	else {
3627		umtxq_remove(uq);
3628		/* A relative timeout cannot be restarted. */
3629		if (error == ERESTART && timeout != NULL &&
3630		    (timeout->_flags & UMTX_ABSTIME) == 0)
3631			error = EINTR;
3632	}
3633	umtxq_unlock(&uq->uq_key);
3634out:
3635	umtx_key_release(&uq->uq_key);
3636	return (error);
3637}
3638
3639/*
3640 * Signal a userland semaphore.
3641 */
3642static int
3643do_sem_wake(struct thread *td, struct _usem *sem)
3644{
3645	struct umtx_key key;
3646	int error, cnt;
3647	uint32_t flags;
3648
3649	error = fueword32(&sem->_flags, &flags);
3650	if (error == -1)
3651		return (EFAULT);
3652	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3653		return (error);
3654	umtxq_lock(&key);
3655	umtxq_busy(&key);
3656	cnt = umtxq_count(&key);
3657	if (cnt > 0) {
3658		/*
3659		 * Check if count is greater than 0, this means the memory is
3660		 * still being referenced by user code, so we can safely
3661		 * update _has_waiters flag.
3662		 */
3663		if (cnt == 1) {
3664			umtxq_unlock(&key);
3665			error = suword32(&sem->_has_waiters, 0);
3666			umtxq_lock(&key);
3667			if (error == -1)
3668				error = EFAULT;
3669		}
3670		umtxq_signal(&key, 1);
3671	}
3672	umtxq_unbusy(&key);
3673	umtxq_unlock(&key);
3674	umtx_key_release(&key);
3675	return (error);
3676}
3677#endif
3678
3679static int
3680do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3681{
3682	struct umtx_abs_timeout timo;
3683	struct umtx_q *uq;
3684	uint32_t count, flags;
3685	int error, rv;
3686
3687	uq = td->td_umtxq;
3688	flags = fuword32(&sem->_flags);
3689	if (timeout != NULL)
3690		umtx_abs_timeout_init2(&timo, timeout);
3691
3692again:
3693	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3694	if (error != 0)
3695		return (error);
3696	umtxq_lock(&uq->uq_key);
3697	umtxq_busy(&uq->uq_key);
3698	umtxq_insert(uq);
3699	umtxq_unlock(&uq->uq_key);
3700	rv = fueword32(&sem->_count, &count);
3701	if (rv == -1) {
3702		umtxq_lock(&uq->uq_key);
3703		umtxq_unbusy(&uq->uq_key);
3704		umtxq_remove(uq);
3705		umtxq_unlock(&uq->uq_key);
3706		umtx_key_release(&uq->uq_key);
3707		return (EFAULT);
3708	}
3709	for (;;) {
3710		if (USEM_COUNT(count) != 0) {
3711			umtxq_lock(&uq->uq_key);
3712			umtxq_unbusy(&uq->uq_key);
3713			umtxq_remove(uq);
3714			umtxq_unlock(&uq->uq_key);
3715			umtx_key_release(&uq->uq_key);
3716			return (0);
3717		}
3718		if (count == USEM_HAS_WAITERS)
3719			break;
3720		rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3721		if (rv == 0)
3722			break;
3723		umtxq_lock(&uq->uq_key);
3724		umtxq_unbusy(&uq->uq_key);
3725		umtxq_remove(uq);
3726		umtxq_unlock(&uq->uq_key);
3727		umtx_key_release(&uq->uq_key);
3728		if (rv == -1)
3729			return (EFAULT);
3730		rv = thread_check_susp(td, true);
3731		if (rv != 0)
3732			return (rv);
3733		goto again;
3734	}
3735	umtxq_lock(&uq->uq_key);
3736	umtxq_unbusy(&uq->uq_key);
3737
3738	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3739
3740	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3741		error = 0;
3742	else {
3743		umtxq_remove(uq);
3744		if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
3745			/* A relative timeout cannot be restarted. */
3746			if (error == ERESTART)
3747				error = EINTR;
3748			if (error == EINTR) {
3749				kern_clock_gettime(curthread, timo.clockid,
3750				    &timo.cur);
3751				timespecsub(&timo.end, &timo.cur,
3752				    &timeout->_timeout);
3753			}
3754		}
3755	}
3756	umtxq_unlock(&uq->uq_key);
3757	umtx_key_release(&uq->uq_key);
3758	return (error);
3759}
3760
3761/*
3762 * Signal a userland semaphore.
3763 */
3764static int
3765do_sem2_wake(struct thread *td, struct _usem2 *sem)
3766{
3767	struct umtx_key key;
3768	int error, cnt, rv;
3769	uint32_t count, flags;
3770
3771	rv = fueword32(&sem->_flags, &flags);
3772	if (rv == -1)
3773		return (EFAULT);
3774	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3775		return (error);
3776	umtxq_lock(&key);
3777	umtxq_busy(&key);
3778	cnt = umtxq_count(&key);
3779	if (cnt > 0) {
3780		/*
3781		 * If this was the last sleeping thread, clear the waiters
3782		 * flag in _count.
3783		 */
3784		if (cnt == 1) {
3785			umtxq_unlock(&key);
3786			rv = fueword32(&sem->_count, &count);
3787			while (rv != -1 && count & USEM_HAS_WAITERS) {
3788				rv = casueword32(&sem->_count, count, &count,
3789				    count & ~USEM_HAS_WAITERS);
3790				if (rv == 1) {
3791					rv = thread_check_susp(td, true);
3792					if (rv != 0)
3793						break;
3794				}
3795			}
3796			if (rv == -1)
3797				error = EFAULT;
3798			else if (rv > 0) {
3799				error = rv;
3800			}
3801			umtxq_lock(&key);
3802		}
3803
3804		umtxq_signal(&key, 1);
3805	}
3806	umtxq_unbusy(&key);
3807	umtxq_unlock(&key);
3808	umtx_key_release(&key);
3809	return (error);
3810}
3811
3812#ifdef COMPAT_FREEBSD10
3813int
3814freebsd10__umtx_lock(struct thread *td, struct freebsd10__umtx_lock_args *uap)
3815{
3816	return (do_lock_umtx(td, uap->umtx, td->td_tid, 0));
3817}
3818
3819int
3820freebsd10__umtx_unlock(struct thread *td,
3821    struct freebsd10__umtx_unlock_args *uap)
3822{
3823	return (do_unlock_umtx(td, uap->umtx, td->td_tid));
3824}
3825#endif
3826
3827inline int
3828umtx_copyin_timeout(const void *uaddr, struct timespec *tsp)
3829{
3830	int error;
3831
3832	error = copyin(uaddr, tsp, sizeof(*tsp));
3833	if (error == 0) {
3834		if (!timespecvalid_interval(tsp))
3835			error = EINVAL;
3836	}
3837	return (error);
3838}
3839
3840static inline int
3841umtx_copyin_umtx_time(const void *uaddr, size_t size, struct _umtx_time *tp)
3842{
3843	int error;
3844
3845	if (size <= sizeof(tp->_timeout)) {
3846		tp->_clockid = CLOCK_REALTIME;
3847		tp->_flags = 0;
3848		error = copyin(uaddr, &tp->_timeout, sizeof(tp->_timeout));
3849	} else
3850		error = copyin(uaddr, tp, sizeof(*tp));
3851	if (error != 0)
3852		return (error);
3853	if (!timespecvalid_interval(&tp->_timeout))
3854		return (EINVAL);
3855	return (0);
3856}
3857
3858static int
3859umtx_copyin_robust_lists(const void *uaddr, size_t size,
3860    struct umtx_robust_lists_params *rb)
3861{
3862
3863	if (size > sizeof(*rb))
3864		return (EINVAL);
3865	return (copyin(uaddr, rb, size));
3866}
3867
3868static int
3869umtx_copyout_timeout(void *uaddr, size_t sz, struct timespec *tsp)
3870{
3871
3872	/*
3873	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
3874	 * and we're only called if sz >= sizeof(timespec) as supplied in the
3875	 * copyops.
3876	 */
3877	KASSERT(sz >= sizeof(*tsp),
3878	    ("umtx_copyops specifies incorrect sizes"));
3879
3880	return (copyout(tsp, uaddr, sizeof(*tsp)));
3881}
3882
3883#ifdef COMPAT_FREEBSD10
3884static int
3885__umtx_op_lock_umtx(struct thread *td, struct _umtx_op_args *uap,
3886    const struct umtx_copyops *ops)
3887{
3888	struct timespec *ts, timeout;
3889	int error;
3890
3891	/* Allow a null timespec (wait forever). */
3892	if (uap->uaddr2 == NULL)
3893		ts = NULL;
3894	else {
3895		error = ops->copyin_timeout(uap->uaddr2, &timeout);
3896		if (error != 0)
3897			return (error);
3898		ts = &timeout;
3899	}
3900#ifdef COMPAT_FREEBSD32
3901	if (ops->compat32)
3902		return (do_lock_umtx32(td, uap->obj, uap->val, ts));
3903#endif
3904	return (do_lock_umtx(td, uap->obj, uap->val, ts));
3905}
3906
3907static int
3908__umtx_op_unlock_umtx(struct thread *td, struct _umtx_op_args *uap,
3909    const struct umtx_copyops *ops)
3910{
3911#ifdef COMPAT_FREEBSD32
3912	if (ops->compat32)
3913		return (do_unlock_umtx32(td, uap->obj, uap->val));
3914#endif
3915	return (do_unlock_umtx(td, uap->obj, uap->val));
3916}
3917#endif	/* COMPAT_FREEBSD10 */
3918
3919#if !defined(COMPAT_FREEBSD10)
3920static int
3921__umtx_op_unimpl(struct thread *td __unused, struct _umtx_op_args *uap __unused,
3922    const struct umtx_copyops *ops __unused)
3923{
3924	return (EOPNOTSUPP);
3925}
3926#endif	/* COMPAT_FREEBSD10 */
3927
3928static int
3929__umtx_op_wait(struct thread *td, struct _umtx_op_args *uap,
3930    const struct umtx_copyops *ops)
3931{
3932	struct _umtx_time timeout, *tm_p;
3933	int error;
3934
3935	if (uap->uaddr2 == NULL)
3936		tm_p = NULL;
3937	else {
3938		error = ops->copyin_umtx_time(
3939		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3940		if (error != 0)
3941			return (error);
3942		tm_p = &timeout;
3943	}
3944	return (do_wait(td, uap->obj, uap->val, tm_p, ops->compat32, 0));
3945}
3946
3947static int
3948__umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap,
3949    const struct umtx_copyops *ops)
3950{
3951	struct _umtx_time timeout, *tm_p;
3952	int error;
3953
3954	if (uap->uaddr2 == NULL)
3955		tm_p = NULL;
3956	else {
3957		error = ops->copyin_umtx_time(
3958		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3959		if (error != 0)
3960			return (error);
3961		tm_p = &timeout;
3962	}
3963	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3964}
3965
3966static int
3967__umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap,
3968    const struct umtx_copyops *ops)
3969{
3970	struct _umtx_time *tm_p, timeout;
3971	int error;
3972
3973	if (uap->uaddr2 == NULL)
3974		tm_p = NULL;
3975	else {
3976		error = ops->copyin_umtx_time(
3977		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3978		if (error != 0)
3979			return (error);
3980		tm_p = &timeout;
3981	}
3982	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3983}
3984
3985static int
3986__umtx_op_wake(struct thread *td, struct _umtx_op_args *uap,
3987    const struct umtx_copyops *ops __unused)
3988{
3989
3990	return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3991}
3992
3993#define BATCH_SIZE	128
3994static int
3995__umtx_op_nwake_private_native(struct thread *td, struct _umtx_op_args *uap)
3996{
3997	char *uaddrs[BATCH_SIZE], **upp;
3998	int count, error, i, pos, tocopy;
3999
4000	upp = (char **)uap->obj;
4001	error = 0;
4002	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
4003	    pos += tocopy) {
4004		tocopy = MIN(count, BATCH_SIZE);
4005		error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
4006		if (error != 0)
4007			break;
4008		for (i = 0; i < tocopy; ++i) {
4009			kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
4010		}
4011		maybe_yield();
4012	}
4013	return (error);
4014}
4015
4016static int
4017__umtx_op_nwake_private_compat32(struct thread *td, struct _umtx_op_args *uap)
4018{
4019	uint32_t uaddrs[BATCH_SIZE], *upp;
4020	int count, error, i, pos, tocopy;
4021
4022	upp = (uint32_t *)uap->obj;
4023	error = 0;
4024	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
4025	    pos += tocopy) {
4026		tocopy = MIN(count, BATCH_SIZE);
4027		error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
4028		if (error != 0)
4029			break;
4030		for (i = 0; i < tocopy; ++i) {
4031			kern_umtx_wake(td, (void *)(uintptr_t)uaddrs[i],
4032			    INT_MAX, 1);
4033		}
4034		maybe_yield();
4035	}
4036	return (error);
4037}
4038
4039static int
4040__umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap,
4041    const struct umtx_copyops *ops)
4042{
4043
4044	if (ops->compat32)
4045		return (__umtx_op_nwake_private_compat32(td, uap));
4046	return (__umtx_op_nwake_private_native(td, uap));
4047}
4048
4049static int
4050__umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap,
4051    const struct umtx_copyops *ops __unused)
4052{
4053
4054	return (kern_umtx_wake(td, uap->obj, uap->val, 1));
4055}
4056
4057static int
4058__umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap,
4059   const struct umtx_copyops *ops)
4060{
4061	struct _umtx_time *tm_p, timeout;
4062	int error;
4063
4064	/* Allow a null timespec (wait forever). */
4065	if (uap->uaddr2 == NULL)
4066		tm_p = NULL;
4067	else {
4068		error = ops->copyin_umtx_time(
4069		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4070		if (error != 0)
4071			return (error);
4072		tm_p = &timeout;
4073	}
4074	return (do_lock_umutex(td, uap->obj, tm_p, 0));
4075}
4076
4077static int
4078__umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap,
4079    const struct umtx_copyops *ops __unused)
4080{
4081
4082	return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
4083}
4084
4085static int
4086__umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap,
4087    const struct umtx_copyops *ops)
4088{
4089	struct _umtx_time *tm_p, timeout;
4090	int error;
4091
4092	/* Allow a null timespec (wait forever). */
4093	if (uap->uaddr2 == NULL)
4094		tm_p = NULL;
4095	else {
4096		error = ops->copyin_umtx_time(
4097		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4098		if (error != 0)
4099			return (error);
4100		tm_p = &timeout;
4101	}
4102	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
4103}
4104
4105static int
4106__umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap,
4107    const struct umtx_copyops *ops __unused)
4108{
4109
4110	return (do_wake_umutex(td, uap->obj));
4111}
4112
4113static int
4114__umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap,
4115    const struct umtx_copyops *ops __unused)
4116{
4117
4118	return (do_unlock_umutex(td, uap->obj, false));
4119}
4120
4121static int
4122__umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap,
4123    const struct umtx_copyops *ops __unused)
4124{
4125
4126	return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
4127}
4128
4129static int
4130__umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap,
4131    const struct umtx_copyops *ops)
4132{
4133	struct timespec *ts, timeout;
4134	int error;
4135
4136	/* Allow a null timespec (wait forever). */
4137	if (uap->uaddr2 == NULL)
4138		ts = NULL;
4139	else {
4140		error = ops->copyin_timeout(uap->uaddr2, &timeout);
4141		if (error != 0)
4142			return (error);
4143		ts = &timeout;
4144	}
4145	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
4146}
4147
4148static int
4149__umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap,
4150    const struct umtx_copyops *ops __unused)
4151{
4152
4153	return (do_cv_signal(td, uap->obj));
4154}
4155
4156static int
4157__umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap,
4158    const struct umtx_copyops *ops __unused)
4159{
4160
4161	return (do_cv_broadcast(td, uap->obj));
4162}
4163
4164static int
4165__umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap,
4166    const struct umtx_copyops *ops)
4167{
4168	struct _umtx_time timeout;
4169	int error;
4170
4171	/* Allow a null timespec (wait forever). */
4172	if (uap->uaddr2 == NULL) {
4173		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
4174	} else {
4175		error = ops->copyin_umtx_time(uap->uaddr2,
4176		   (size_t)uap->uaddr1, &timeout);
4177		if (error != 0)
4178			return (error);
4179		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
4180	}
4181	return (error);
4182}
4183
4184static int
4185__umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap,
4186    const struct umtx_copyops *ops)
4187{
4188	struct _umtx_time timeout;
4189	int error;
4190
4191	/* Allow a null timespec (wait forever). */
4192	if (uap->uaddr2 == NULL) {
4193		error = do_rw_wrlock(td, uap->obj, 0);
4194	} else {
4195		error = ops->copyin_umtx_time(uap->uaddr2,
4196		   (size_t)uap->uaddr1, &timeout);
4197		if (error != 0)
4198			return (error);
4199
4200		error = do_rw_wrlock(td, uap->obj, &timeout);
4201	}
4202	return (error);
4203}
4204
4205static int
4206__umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap,
4207    const struct umtx_copyops *ops __unused)
4208{
4209
4210	return (do_rw_unlock(td, uap->obj));
4211}
4212
4213#if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4214static int
4215__umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap,
4216    const struct umtx_copyops *ops)
4217{
4218	struct _umtx_time *tm_p, timeout;
4219	int error;
4220
4221	/* Allow a null timespec (wait forever). */
4222	if (uap->uaddr2 == NULL)
4223		tm_p = NULL;
4224	else {
4225		error = ops->copyin_umtx_time(
4226		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4227		if (error != 0)
4228			return (error);
4229		tm_p = &timeout;
4230	}
4231	return (do_sem_wait(td, uap->obj, tm_p));
4232}
4233
4234static int
4235__umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap,
4236    const struct umtx_copyops *ops __unused)
4237{
4238
4239	return (do_sem_wake(td, uap->obj));
4240}
4241#endif
4242
4243static int
4244__umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap,
4245    const struct umtx_copyops *ops __unused)
4246{
4247
4248	return (do_wake2_umutex(td, uap->obj, uap->val));
4249}
4250
4251static int
4252__umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap,
4253    const struct umtx_copyops *ops)
4254{
4255	struct _umtx_time *tm_p, timeout;
4256	size_t uasize;
4257	int error;
4258
4259	/* Allow a null timespec (wait forever). */
4260	if (uap->uaddr2 == NULL) {
4261		uasize = 0;
4262		tm_p = NULL;
4263	} else {
4264		uasize = (size_t)uap->uaddr1;
4265		error = ops->copyin_umtx_time(uap->uaddr2, uasize, &timeout);
4266		if (error != 0)
4267			return (error);
4268		tm_p = &timeout;
4269	}
4270	error = do_sem2_wait(td, uap->obj, tm_p);
4271	if (error == EINTR && uap->uaddr2 != NULL &&
4272	    (timeout._flags & UMTX_ABSTIME) == 0 &&
4273	    uasize >= ops->umtx_time_sz + ops->timespec_sz) {
4274		error = ops->copyout_timeout(
4275		    (void *)((uintptr_t)uap->uaddr2 + ops->umtx_time_sz),
4276		    uasize - ops->umtx_time_sz, &timeout._timeout);
4277		if (error == 0) {
4278			error = EINTR;
4279		}
4280	}
4281
4282	return (error);
4283}
4284
4285static int
4286__umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap,
4287    const struct umtx_copyops *ops __unused)
4288{
4289
4290	return (do_sem2_wake(td, uap->obj));
4291}
4292
4293#define	USHM_OBJ_UMTX(o)						\
4294    ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
4295
4296#define	USHMF_REG_LINKED	0x0001
4297#define	USHMF_OBJ_LINKED	0x0002
4298struct umtx_shm_reg {
4299	TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
4300	LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
4301	struct umtx_key		ushm_key;
4302	struct ucred		*ushm_cred;
4303	struct shmfd		*ushm_obj;
4304	u_int			ushm_refcnt;
4305	u_int			ushm_flags;
4306};
4307
4308LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
4309TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
4310
4311static uma_zone_t umtx_shm_reg_zone;
4312static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
4313static struct mtx umtx_shm_lock;
4314static struct umtx_shm_reg_head umtx_shm_reg_delfree =
4315    TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
4316
4317static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
4318
4319static void
4320umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
4321{
4322	struct umtx_shm_reg_head d;
4323	struct umtx_shm_reg *reg, *reg1;
4324
4325	TAILQ_INIT(&d);
4326	mtx_lock(&umtx_shm_lock);
4327	TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
4328	mtx_unlock(&umtx_shm_lock);
4329	TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
4330		TAILQ_REMOVE(&d, reg, ushm_reg_link);
4331		umtx_shm_free_reg(reg);
4332	}
4333}
4334
4335static struct task umtx_shm_reg_delfree_task =
4336    TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
4337
4338static struct umtx_shm_reg *
4339umtx_shm_find_reg_locked(const struct umtx_key *key)
4340{
4341	struct umtx_shm_reg *reg;
4342	struct umtx_shm_reg_head *reg_head;
4343
4344	KASSERT(key->shared, ("umtx_p_find_rg: private key"));
4345	mtx_assert(&umtx_shm_lock, MA_OWNED);
4346	reg_head = &umtx_shm_registry[key->hash];
4347	TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
4348		KASSERT(reg->ushm_key.shared,
4349		    ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
4350		if (reg->ushm_key.info.shared.object ==
4351		    key->info.shared.object &&
4352		    reg->ushm_key.info.shared.offset ==
4353		    key->info.shared.offset) {
4354			KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
4355			KASSERT(reg->ushm_refcnt > 0,
4356			    ("reg %p refcnt 0 onlist", reg));
4357			KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
4358			    ("reg %p not linked", reg));
4359			reg->ushm_refcnt++;
4360			return (reg);
4361		}
4362	}
4363	return (NULL);
4364}
4365
4366static struct umtx_shm_reg *
4367umtx_shm_find_reg(const struct umtx_key *key)
4368{
4369	struct umtx_shm_reg *reg;
4370
4371	mtx_lock(&umtx_shm_lock);
4372	reg = umtx_shm_find_reg_locked(key);
4373	mtx_unlock(&umtx_shm_lock);
4374	return (reg);
4375}
4376
4377static void
4378umtx_shm_free_reg(struct umtx_shm_reg *reg)
4379{
4380
4381	chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
4382	crfree(reg->ushm_cred);
4383	shm_drop(reg->ushm_obj);
4384	uma_zfree(umtx_shm_reg_zone, reg);
4385}
4386
4387static bool
4388umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
4389{
4390	bool res;
4391
4392	mtx_assert(&umtx_shm_lock, MA_OWNED);
4393	KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
4394	reg->ushm_refcnt--;
4395	res = reg->ushm_refcnt == 0;
4396	if (res || force) {
4397		if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
4398			TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
4399			    reg, ushm_reg_link);
4400			reg->ushm_flags &= ~USHMF_REG_LINKED;
4401		}
4402		if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
4403			LIST_REMOVE(reg, ushm_obj_link);
4404			reg->ushm_flags &= ~USHMF_OBJ_LINKED;
4405		}
4406	}
4407	return (res);
4408}
4409
4410static void
4411umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
4412{
4413	vm_object_t object;
4414	bool dofree;
4415
4416	if (force) {
4417		object = reg->ushm_obj->shm_object;
4418		VM_OBJECT_WLOCK(object);
4419		vm_object_set_flag(object, OBJ_UMTXDEAD);
4420		VM_OBJECT_WUNLOCK(object);
4421	}
4422	mtx_lock(&umtx_shm_lock);
4423	dofree = umtx_shm_unref_reg_locked(reg, force);
4424	mtx_unlock(&umtx_shm_lock);
4425	if (dofree)
4426		umtx_shm_free_reg(reg);
4427}
4428
4429void
4430umtx_shm_object_init(vm_object_t object)
4431{
4432
4433	LIST_INIT(USHM_OBJ_UMTX(object));
4434}
4435
4436void
4437umtx_shm_object_terminated(vm_object_t object)
4438{
4439	struct umtx_shm_reg *reg, *reg1;
4440	bool dofree;
4441
4442	if (LIST_EMPTY(USHM_OBJ_UMTX(object)))
4443		return;
4444
4445	dofree = false;
4446	mtx_lock(&umtx_shm_lock);
4447	LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
4448		if (umtx_shm_unref_reg_locked(reg, true)) {
4449			TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
4450			    ushm_reg_link);
4451			dofree = true;
4452		}
4453	}
4454	mtx_unlock(&umtx_shm_lock);
4455	if (dofree)
4456		taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
4457}
4458
4459static int
4460umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
4461    struct umtx_shm_reg **res)
4462{
4463	struct umtx_shm_reg *reg, *reg1;
4464	struct ucred *cred;
4465	int error;
4466
4467	reg = umtx_shm_find_reg(key);
4468	if (reg != NULL) {
4469		*res = reg;
4470		return (0);
4471	}
4472	cred = td->td_ucred;
4473	if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
4474		return (ENOMEM);
4475	reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
4476	reg->ushm_refcnt = 1;
4477	bcopy(key, &reg->ushm_key, sizeof(*key));
4478	reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR, false);
4479	reg->ushm_cred = crhold(cred);
4480	error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
4481	if (error != 0) {
4482		umtx_shm_free_reg(reg);
4483		return (error);
4484	}
4485	mtx_lock(&umtx_shm_lock);
4486	reg1 = umtx_shm_find_reg_locked(key);
4487	if (reg1 != NULL) {
4488		mtx_unlock(&umtx_shm_lock);
4489		umtx_shm_free_reg(reg);
4490		*res = reg1;
4491		return (0);
4492	}
4493	reg->ushm_refcnt++;
4494	TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
4495	LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
4496	    ushm_obj_link);
4497	reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
4498	mtx_unlock(&umtx_shm_lock);
4499	*res = reg;
4500	return (0);
4501}
4502
4503static int
4504umtx_shm_alive(struct thread *td, void *addr)
4505{
4506	vm_map_t map;
4507	vm_map_entry_t entry;
4508	vm_object_t object;
4509	vm_pindex_t pindex;
4510	vm_prot_t prot;
4511	int res, ret;
4512	boolean_t wired;
4513
4514	map = &td->td_proc->p_vmspace->vm_map;
4515	res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
4516	    &object, &pindex, &prot, &wired);
4517	if (res != KERN_SUCCESS)
4518		return (EFAULT);
4519	if (object == NULL)
4520		ret = EINVAL;
4521	else
4522		ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
4523	vm_map_lookup_done(map, entry);
4524	return (ret);
4525}
4526
4527static void
4528umtx_shm_init(void)
4529{
4530	int i;
4531
4532	umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
4533	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
4534	mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
4535	for (i = 0; i < nitems(umtx_shm_registry); i++)
4536		TAILQ_INIT(&umtx_shm_registry[i]);
4537}
4538
4539static int
4540umtx_shm(struct thread *td, void *addr, u_int flags)
4541{
4542	struct umtx_key key;
4543	struct umtx_shm_reg *reg;
4544	struct file *fp;
4545	int error, fd;
4546
4547	if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
4548	    UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
4549		return (EINVAL);
4550	if ((flags & UMTX_SHM_ALIVE) != 0)
4551		return (umtx_shm_alive(td, addr));
4552	error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
4553	if (error != 0)
4554		return (error);
4555	KASSERT(key.shared == 1, ("non-shared key"));
4556	if ((flags & UMTX_SHM_CREAT) != 0) {
4557		error = umtx_shm_create_reg(td, &key, &reg);
4558	} else {
4559		reg = umtx_shm_find_reg(&key);
4560		if (reg == NULL)
4561			error = ESRCH;
4562	}
4563	umtx_key_release(&key);
4564	if (error != 0)
4565		return (error);
4566	KASSERT(reg != NULL, ("no reg"));
4567	if ((flags & UMTX_SHM_DESTROY) != 0) {
4568		umtx_shm_unref_reg(reg, true);
4569	} else {
4570#if 0
4571#ifdef MAC
4572		error = mac_posixshm_check_open(td->td_ucred,
4573		    reg->ushm_obj, FFLAGS(O_RDWR));
4574		if (error == 0)
4575#endif
4576			error = shm_access(reg->ushm_obj, td->td_ucred,
4577			    FFLAGS(O_RDWR));
4578		if (error == 0)
4579#endif
4580			error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
4581		if (error == 0) {
4582			shm_hold(reg->ushm_obj);
4583			finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
4584			    &shm_ops);
4585			td->td_retval[0] = fd;
4586			fdrop(fp, td);
4587		}
4588	}
4589	umtx_shm_unref_reg(reg, false);
4590	return (error);
4591}
4592
4593static int
4594__umtx_op_shm(struct thread *td, struct _umtx_op_args *uap,
4595    const struct umtx_copyops *ops __unused)
4596{
4597
4598	return (umtx_shm(td, uap->uaddr1, uap->val));
4599}
4600
4601static int
4602__umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap,
4603    const struct umtx_copyops *ops)
4604{
4605	struct umtx_robust_lists_params rb;
4606	int error;
4607
4608	if (ops->compat32) {
4609		if ((td->td_pflags2 & TDP2_COMPAT32RB) == 0 &&
4610		    (td->td_rb_list != 0 || td->td_rbp_list != 0 ||
4611		    td->td_rb_inact != 0))
4612			return (EBUSY);
4613	} else if ((td->td_pflags2 & TDP2_COMPAT32RB) != 0) {
4614		return (EBUSY);
4615	}
4616
4617	bzero(&rb, sizeof(rb));
4618	error = ops->copyin_robust_lists(uap->uaddr1, uap->val, &rb);
4619	if (error != 0)
4620		return (error);
4621
4622	if (ops->compat32)
4623		td->td_pflags2 |= TDP2_COMPAT32RB;
4624
4625	td->td_rb_list = rb.robust_list_offset;
4626	td->td_rbp_list = rb.robust_priv_list_offset;
4627	td->td_rb_inact = rb.robust_inact_offset;
4628	return (0);
4629}
4630
4631static int
4632__umtx_op_get_min_timeout(struct thread *td, struct _umtx_op_args *uap,
4633    const struct umtx_copyops *ops)
4634{
4635	long val;
4636	int error, val1;
4637
4638	val = sbttons(td->td_proc->p_umtx_min_timeout);
4639	if (ops->compat32) {
4640		val1 = (int)val;
4641		error = copyout(&val1, uap->uaddr1, sizeof(val1));
4642	} else {
4643		error = copyout(&val, uap->uaddr1, sizeof(val));
4644	}
4645	return (error);
4646}
4647
4648static int
4649__umtx_op_set_min_timeout(struct thread *td, struct _umtx_op_args *uap,
4650    const struct umtx_copyops *ops)
4651{
4652	if (uap->val < 0)
4653		return (EINVAL);
4654	td->td_proc->p_umtx_min_timeout = nstosbt(uap->val);
4655	return (0);
4656}
4657
4658#if defined(__i386__) || defined(__amd64__)
4659/*
4660 * Provide the standard 32-bit definitions for x86, since native/compat32 use a
4661 * 32-bit time_t there.  Other architectures just need the i386 definitions
4662 * along with their standard compat32.
4663 */
4664struct timespecx32 {
4665	int64_t			tv_sec;
4666	int32_t			tv_nsec;
4667};
4668
4669struct umtx_timex32 {
4670	struct	timespecx32	_timeout;
4671	uint32_t		_flags;
4672	uint32_t		_clockid;
4673};
4674
4675#ifndef __i386__
4676#define	timespeci386	timespec32
4677#define	umtx_timei386	umtx_time32
4678#endif
4679#else /* !__i386__ && !__amd64__ */
4680/* 32-bit architectures can emulate i386, so define these almost everywhere. */
4681struct timespeci386 {
4682	int32_t			tv_sec;
4683	int32_t			tv_nsec;
4684};
4685
4686struct umtx_timei386 {
4687	struct	timespeci386	_timeout;
4688	uint32_t		_flags;
4689	uint32_t		_clockid;
4690};
4691
4692#if defined(__LP64__)
4693#define	timespecx32	timespec32
4694#define	umtx_timex32	umtx_time32
4695#endif
4696#endif
4697
4698static int
4699umtx_copyin_robust_lists32(const void *uaddr, size_t size,
4700    struct umtx_robust_lists_params *rbp)
4701{
4702	struct umtx_robust_lists_params_compat32 rb32;
4703	int error;
4704
4705	if (size > sizeof(rb32))
4706		return (EINVAL);
4707	bzero(&rb32, sizeof(rb32));
4708	error = copyin(uaddr, &rb32, size);
4709	if (error != 0)
4710		return (error);
4711	CP(rb32, *rbp, robust_list_offset);
4712	CP(rb32, *rbp, robust_priv_list_offset);
4713	CP(rb32, *rbp, robust_inact_offset);
4714	return (0);
4715}
4716
4717#ifndef __i386__
4718static inline int
4719umtx_copyin_timeouti386(const void *uaddr, struct timespec *tsp)
4720{
4721	struct timespeci386 ts32;
4722	int error;
4723
4724	error = copyin(uaddr, &ts32, sizeof(ts32));
4725	if (error == 0) {
4726		if (!timespecvalid_interval(&ts32))
4727			error = EINVAL;
4728		else {
4729			CP(ts32, *tsp, tv_sec);
4730			CP(ts32, *tsp, tv_nsec);
4731		}
4732	}
4733	return (error);
4734}
4735
4736static inline int
4737umtx_copyin_umtx_timei386(const void *uaddr, size_t size, struct _umtx_time *tp)
4738{
4739	struct umtx_timei386 t32;
4740	int error;
4741
4742	t32._clockid = CLOCK_REALTIME;
4743	t32._flags   = 0;
4744	if (size <= sizeof(t32._timeout))
4745		error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4746	else
4747		error = copyin(uaddr, &t32, sizeof(t32));
4748	if (error != 0)
4749		return (error);
4750	if (!timespecvalid_interval(&t32._timeout))
4751		return (EINVAL);
4752	TS_CP(t32, *tp, _timeout);
4753	CP(t32, *tp, _flags);
4754	CP(t32, *tp, _clockid);
4755	return (0);
4756}
4757
4758static int
4759umtx_copyout_timeouti386(void *uaddr, size_t sz, struct timespec *tsp)
4760{
4761	struct timespeci386 remain32 = {
4762		.tv_sec = tsp->tv_sec,
4763		.tv_nsec = tsp->tv_nsec,
4764	};
4765
4766	/*
4767	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4768	 * and we're only called if sz >= sizeof(timespec) as supplied in the
4769	 * copyops.
4770	 */
4771	KASSERT(sz >= sizeof(remain32),
4772	    ("umtx_copyops specifies incorrect sizes"));
4773
4774	return (copyout(&remain32, uaddr, sizeof(remain32)));
4775}
4776#endif /* !__i386__ */
4777
4778#if defined(__i386__) || defined(__LP64__)
4779static inline int
4780umtx_copyin_timeoutx32(const void *uaddr, struct timespec *tsp)
4781{
4782	struct timespecx32 ts32;
4783	int error;
4784
4785	error = copyin(uaddr, &ts32, sizeof(ts32));
4786	if (error == 0) {
4787		if (!timespecvalid_interval(&ts32))
4788			error = EINVAL;
4789		else {
4790			CP(ts32, *tsp, tv_sec);
4791			CP(ts32, *tsp, tv_nsec);
4792		}
4793	}
4794	return (error);
4795}
4796
4797static inline int
4798umtx_copyin_umtx_timex32(const void *uaddr, size_t size, struct _umtx_time *tp)
4799{
4800	struct umtx_timex32 t32;
4801	int error;
4802
4803	t32._clockid = CLOCK_REALTIME;
4804	t32._flags   = 0;
4805	if (size <= sizeof(t32._timeout))
4806		error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4807	else
4808		error = copyin(uaddr, &t32, sizeof(t32));
4809	if (error != 0)
4810		return (error);
4811	if (!timespecvalid_interval(&t32._timeout))
4812		return (EINVAL);
4813	TS_CP(t32, *tp, _timeout);
4814	CP(t32, *tp, _flags);
4815	CP(t32, *tp, _clockid);
4816	return (0);
4817}
4818
4819static int
4820umtx_copyout_timeoutx32(void *uaddr, size_t sz, struct timespec *tsp)
4821{
4822	struct timespecx32 remain32 = {
4823		.tv_sec = tsp->tv_sec,
4824		.tv_nsec = tsp->tv_nsec,
4825	};
4826
4827	/*
4828	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4829	 * and we're only called if sz >= sizeof(timespec) as supplied in the
4830	 * copyops.
4831	 */
4832	KASSERT(sz >= sizeof(remain32),
4833	    ("umtx_copyops specifies incorrect sizes"));
4834
4835	return (copyout(&remain32, uaddr, sizeof(remain32)));
4836}
4837#endif /* __i386__ || __LP64__ */
4838
4839typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap,
4840    const struct umtx_copyops *umtx_ops);
4841
4842static const _umtx_op_func op_table[] = {
4843#ifdef COMPAT_FREEBSD10
4844	[UMTX_OP_LOCK]		= __umtx_op_lock_umtx,
4845	[UMTX_OP_UNLOCK]	= __umtx_op_unlock_umtx,
4846#else
4847	[UMTX_OP_LOCK]		= __umtx_op_unimpl,
4848	[UMTX_OP_UNLOCK]	= __umtx_op_unimpl,
4849#endif
4850	[UMTX_OP_WAIT]		= __umtx_op_wait,
4851	[UMTX_OP_WAKE]		= __umtx_op_wake,
4852	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
4853	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex,
4854	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
4855	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
4856	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait,
4857	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
4858	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
4859	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_uint,
4860	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock,
4861	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock,
4862	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
4863	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
4864	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
4865	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex,
4866	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
4867#if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4868	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait,
4869	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
4870#else
4871	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
4872	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
4873#endif
4874	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private,
4875	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
4876	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait,
4877	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
4878	[UMTX_OP_SHM]		= __umtx_op_shm,
4879	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists,
4880	[UMTX_OP_GET_MIN_TIMEOUT] = __umtx_op_get_min_timeout,
4881	[UMTX_OP_SET_MIN_TIMEOUT] = __umtx_op_set_min_timeout,
4882};
4883
4884static const struct umtx_copyops umtx_native_ops = {
4885	.copyin_timeout = umtx_copyin_timeout,
4886	.copyin_umtx_time = umtx_copyin_umtx_time,
4887	.copyin_robust_lists = umtx_copyin_robust_lists,
4888	.copyout_timeout = umtx_copyout_timeout,
4889	.timespec_sz = sizeof(struct timespec),
4890	.umtx_time_sz = sizeof(struct _umtx_time),
4891};
4892
4893#ifndef __i386__
4894static const struct umtx_copyops umtx_native_opsi386 = {
4895	.copyin_timeout = umtx_copyin_timeouti386,
4896	.copyin_umtx_time = umtx_copyin_umtx_timei386,
4897	.copyin_robust_lists = umtx_copyin_robust_lists32,
4898	.copyout_timeout = umtx_copyout_timeouti386,
4899	.timespec_sz = sizeof(struct timespeci386),
4900	.umtx_time_sz = sizeof(struct umtx_timei386),
4901	.compat32 = true,
4902};
4903#endif
4904
4905#if defined(__i386__) || defined(__LP64__)
4906/* i386 can emulate other 32-bit archs, too! */
4907static const struct umtx_copyops umtx_native_opsx32 = {
4908	.copyin_timeout = umtx_copyin_timeoutx32,
4909	.copyin_umtx_time = umtx_copyin_umtx_timex32,
4910	.copyin_robust_lists = umtx_copyin_robust_lists32,
4911	.copyout_timeout = umtx_copyout_timeoutx32,
4912	.timespec_sz = sizeof(struct timespecx32),
4913	.umtx_time_sz = sizeof(struct umtx_timex32),
4914	.compat32 = true,
4915};
4916
4917#ifdef COMPAT_FREEBSD32
4918#ifdef __amd64__
4919#define	umtx_native_ops32	umtx_native_opsi386
4920#else
4921#define	umtx_native_ops32	umtx_native_opsx32
4922#endif
4923#endif /* COMPAT_FREEBSD32 */
4924#endif /* __i386__ || __LP64__ */
4925
4926#define	UMTX_OP__FLAGS	(UMTX_OP__32BIT | UMTX_OP__I386)
4927
4928static int
4929kern__umtx_op(struct thread *td, void *obj, int op, unsigned long val,
4930    void *uaddr1, void *uaddr2, const struct umtx_copyops *ops)
4931{
4932	struct _umtx_op_args uap = {
4933		.obj = obj,
4934		.op = op & ~UMTX_OP__FLAGS,
4935		.val = val,
4936		.uaddr1 = uaddr1,
4937		.uaddr2 = uaddr2
4938	};
4939
4940	if ((uap.op >= nitems(op_table)))
4941		return (EINVAL);
4942	return ((*op_table[uap.op])(td, &uap, ops));
4943}
4944
4945int
4946sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
4947{
4948	static const struct umtx_copyops *umtx_ops;
4949
4950	umtx_ops = &umtx_native_ops;
4951#ifdef __LP64__
4952	if ((uap->op & (UMTX_OP__32BIT | UMTX_OP__I386)) != 0) {
4953		if ((uap->op & UMTX_OP__I386) != 0)
4954			umtx_ops = &umtx_native_opsi386;
4955		else
4956			umtx_ops = &umtx_native_opsx32;
4957	}
4958#elif !defined(__i386__)
4959	/* We consider UMTX_OP__32BIT a nop on !i386 ILP32. */
4960	if ((uap->op & UMTX_OP__I386) != 0)
4961		umtx_ops = &umtx_native_opsi386;
4962#else
4963	/* Likewise, UMTX_OP__I386 is a nop on i386. */
4964	if ((uap->op & UMTX_OP__32BIT) != 0)
4965		umtx_ops = &umtx_native_opsx32;
4966#endif
4967	return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
4968	    uap->uaddr2, umtx_ops));
4969}
4970
4971#ifdef COMPAT_FREEBSD32
4972#ifdef COMPAT_FREEBSD10
4973int
4974freebsd10_freebsd32__umtx_lock(struct thread *td,
4975    struct freebsd10_freebsd32__umtx_lock_args *uap)
4976{
4977	return (do_lock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid, NULL));
4978}
4979
4980int
4981freebsd10_freebsd32__umtx_unlock(struct thread *td,
4982    struct freebsd10_freebsd32__umtx_unlock_args *uap)
4983{
4984	return (do_unlock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid));
4985}
4986#endif /* COMPAT_FREEBSD10 */
4987
4988int
4989freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
4990{
4991
4992	return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
4993	    uap->uaddr2, &umtx_native_ops32));
4994}
4995#endif /* COMPAT_FREEBSD32 */
4996
4997void
4998umtx_thread_init(struct thread *td)
4999{
5000
5001	td->td_umtxq = umtxq_alloc();
5002	td->td_umtxq->uq_thread = td;
5003}
5004
5005void
5006umtx_thread_fini(struct thread *td)
5007{
5008
5009	umtxq_free(td->td_umtxq);
5010}
5011
5012/*
5013 * It will be called when new thread is created, e.g fork().
5014 */
5015void
5016umtx_thread_alloc(struct thread *td)
5017{
5018	struct umtx_q *uq;
5019
5020	uq = td->td_umtxq;
5021	uq->uq_inherited_pri = PRI_MAX;
5022
5023	KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
5024	KASSERT(uq->uq_thread == td, ("uq_thread != td"));
5025	KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
5026	KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
5027}
5028
5029/*
5030 * exec() hook.
5031 *
5032 * Clear robust lists for all process' threads, not delaying the
5033 * cleanup to thread exit, since the relevant address space is
5034 * destroyed right now.
5035 */
5036void
5037umtx_exec(struct proc *p)
5038{
5039	struct thread *td;
5040
5041	KASSERT(p == curproc, ("need curproc"));
5042	KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
5043	    (p->p_flag & P_STOPPED_SINGLE) != 0,
5044	    ("curproc must be single-threaded"));
5045	/*
5046	 * There is no need to lock the list as only this thread can be
5047	 * running.
5048	 */
5049	FOREACH_THREAD_IN_PROC(p, td) {
5050		KASSERT(td == curthread ||
5051		    ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
5052		    ("running thread %p %p", p, td));
5053		umtx_thread_cleanup(td);
5054		td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
5055	}
5056
5057	p->p_umtx_min_timeout = 0;
5058}
5059
5060/*
5061 * thread exit hook.
5062 */
5063void
5064umtx_thread_exit(struct thread *td)
5065{
5066
5067	umtx_thread_cleanup(td);
5068}
5069
5070static int
5071umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res, bool compat32)
5072{
5073	u_long res1;
5074	uint32_t res32;
5075	int error;
5076
5077	if (compat32) {
5078		error = fueword32((void *)ptr, &res32);
5079		if (error == 0)
5080			res1 = res32;
5081	} else {
5082		error = fueword((void *)ptr, &res1);
5083	}
5084	if (error == 0)
5085		*res = res1;
5086	else
5087		error = EFAULT;
5088	return (error);
5089}
5090
5091static void
5092umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list,
5093    bool compat32)
5094{
5095	struct umutex32 m32;
5096
5097	if (compat32) {
5098		memcpy(&m32, m, sizeof(m32));
5099		*rb_list = m32.m_rb_lnk;
5100	} else {
5101		*rb_list = m->m_rb_lnk;
5102	}
5103}
5104
5105static int
5106umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact,
5107    bool compat32)
5108{
5109	struct umutex m;
5110	int error;
5111
5112	KASSERT(td->td_proc == curproc, ("need current vmspace"));
5113	error = copyin((void *)rbp, &m, sizeof(m));
5114	if (error != 0)
5115		return (error);
5116	if (rb_list != NULL)
5117		umtx_read_rb_list(td, &m, rb_list, compat32);
5118	if ((m.m_flags & UMUTEX_ROBUST) == 0)
5119		return (EINVAL);
5120	if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
5121		/* inact is cleared after unlock, allow the inconsistency */
5122		return (inact ? 0 : EINVAL);
5123	return (do_unlock_umutex(td, (struct umutex *)rbp, true));
5124}
5125
5126static void
5127umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
5128    const char *name, bool compat32)
5129{
5130	int error, i;
5131	uintptr_t rbp;
5132	bool inact;
5133
5134	if (rb_list == 0)
5135		return;
5136	error = umtx_read_uptr(td, rb_list, &rbp, compat32);
5137	for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
5138		if (rbp == *rb_inact) {
5139			inact = true;
5140			*rb_inact = 0;
5141		} else
5142			inact = false;
5143		error = umtx_handle_rb(td, rbp, &rbp, inact, compat32);
5144	}
5145	if (i == umtx_max_rb && umtx_verbose_rb) {
5146		uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
5147		    td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
5148	}
5149	if (error != 0 && umtx_verbose_rb) {
5150		uprintf("comm %s pid %d: handling %srb error %d\n",
5151		    td->td_proc->p_comm, td->td_proc->p_pid, name, error);
5152	}
5153}
5154
5155/*
5156 * Clean up umtx data.
5157 */
5158static void
5159umtx_thread_cleanup(struct thread *td)
5160{
5161	struct umtx_q *uq;
5162	struct umtx_pi *pi;
5163	uintptr_t rb_inact;
5164	bool compat32;
5165
5166	/*
5167	 * Disown pi mutexes.
5168	 */
5169	uq = td->td_umtxq;
5170	if (uq != NULL) {
5171		if (uq->uq_inherited_pri != PRI_MAX ||
5172		    !TAILQ_EMPTY(&uq->uq_pi_contested)) {
5173			mtx_lock(&umtx_lock);
5174			uq->uq_inherited_pri = PRI_MAX;
5175			while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
5176				pi->pi_owner = NULL;
5177				TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
5178			}
5179			mtx_unlock(&umtx_lock);
5180		}
5181		sched_lend_user_prio_cond(td, PRI_MAX);
5182	}
5183
5184	compat32 = (td->td_pflags2 & TDP2_COMPAT32RB) != 0;
5185	td->td_pflags2 &= ~TDP2_COMPAT32RB;
5186
5187	if (td->td_rb_inact == 0 && td->td_rb_list == 0 && td->td_rbp_list == 0)
5188		return;
5189
5190	/*
5191	 * Handle terminated robust mutexes.  Must be done after
5192	 * robust pi disown, otherwise unlock could see unowned
5193	 * entries.
5194	 */
5195	rb_inact = td->td_rb_inact;
5196	if (rb_inact != 0)
5197		(void)umtx_read_uptr(td, rb_inact, &rb_inact, compat32);
5198	umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "", compat32);
5199	umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ", compat32);
5200	if (rb_inact != 0)
5201		(void)umtx_handle_rb(td, rb_inact, NULL, true, compat32);
5202}
5203