1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5 *  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice(s), this list of conditions and the following disclaimer as
12 *    the first lines of this file unmodified other than the possible
13 *    addition of one or more copyright notices.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice(s), this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28 * DAMAGE.
29 */
30
31#include "opt_witness.h"
32#include "opt_hwpmc_hooks.h"
33
34#include <sys/systm.h>
35#include <sys/asan.h>
36#include <sys/kernel.h>
37#include <sys/lock.h>
38#include <sys/msan.h>
39#include <sys/mutex.h>
40#include <sys/proc.h>
41#include <sys/bitstring.h>
42#include <sys/epoch.h>
43#include <sys/rangelock.h>
44#include <sys/resourcevar.h>
45#include <sys/sdt.h>
46#include <sys/smp.h>
47#include <sys/sched.h>
48#include <sys/sleepqueue.h>
49#include <sys/selinfo.h>
50#include <sys/syscallsubr.h>
51#include <sys/dtrace_bsd.h>
52#include <sys/sysent.h>
53#include <sys/turnstile.h>
54#include <sys/taskqueue.h>
55#include <sys/ktr.h>
56#include <sys/rwlock.h>
57#include <sys/umtxvar.h>
58#include <sys/vmmeter.h>
59#include <sys/cpuset.h>
60#ifdef	HWPMC_HOOKS
61#include <sys/pmckern.h>
62#endif
63#include <sys/priv.h>
64
65#include <security/audit/audit.h>
66
67#include <vm/pmap.h>
68#include <vm/vm.h>
69#include <vm/vm_extern.h>
70#include <vm/uma.h>
71#include <vm/vm_phys.h>
72#include <sys/eventhandler.h>
73
74/*
75 * Asserts below verify the stability of struct thread and struct proc
76 * layout, as exposed by KBI to modules.  On head, the KBI is allowed
77 * to drift, change to the structures must be accompanied by the
78 * assert update.
79 *
80 * On the stable branches after KBI freeze, conditions must not be
81 * violated.  Typically new fields are moved to the end of the
82 * structures.
83 */
84#ifdef __amd64__
85_Static_assert(offsetof(struct thread, td_flags) == 0x108,
86    "struct thread KBI td_flags");
87_Static_assert(offsetof(struct thread, td_pflags) == 0x114,
88    "struct thread KBI td_pflags");
89_Static_assert(offsetof(struct thread, td_frame) == 0x4b8,
90    "struct thread KBI td_frame");
91_Static_assert(offsetof(struct thread, td_emuldata) == 0x6c0,
92    "struct thread KBI td_emuldata");
93_Static_assert(offsetof(struct proc, p_flag) == 0xb8,
94    "struct proc KBI p_flag");
95_Static_assert(offsetof(struct proc, p_pid) == 0xc4,
96    "struct proc KBI p_pid");
97_Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
98    "struct proc KBI p_filemon");
99_Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
100    "struct proc KBI p_comm");
101_Static_assert(offsetof(struct proc, p_emuldata) == 0x4d0,
102    "struct proc KBI p_emuldata");
103#endif
104#ifdef __i386__
105_Static_assert(offsetof(struct thread, td_flags) == 0x9c,
106    "struct thread KBI td_flags");
107_Static_assert(offsetof(struct thread, td_pflags) == 0xa8,
108    "struct thread KBI td_pflags");
109_Static_assert(offsetof(struct thread, td_frame) == 0x318,
110    "struct thread KBI td_frame");
111_Static_assert(offsetof(struct thread, td_emuldata) == 0x35c,
112    "struct thread KBI td_emuldata");
113_Static_assert(offsetof(struct proc, p_flag) == 0x6c,
114    "struct proc KBI p_flag");
115_Static_assert(offsetof(struct proc, p_pid) == 0x78,
116    "struct proc KBI p_pid");
117_Static_assert(offsetof(struct proc, p_filemon) == 0x270,
118    "struct proc KBI p_filemon");
119_Static_assert(offsetof(struct proc, p_comm) == 0x284,
120    "struct proc KBI p_comm");
121_Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
122    "struct proc KBI p_emuldata");
123#endif
124
125SDT_PROVIDER_DECLARE(proc);
126SDT_PROBE_DEFINE(proc, , , lwp__exit);
127
128/*
129 * thread related storage.
130 */
131static uma_zone_t thread_zone;
132
133struct thread_domain_data {
134	struct thread	*tdd_zombies;
135	int		tdd_reapticks;
136} __aligned(CACHE_LINE_SIZE);
137
138static struct thread_domain_data thread_domain_data[MAXMEMDOM];
139
140static struct task	thread_reap_task;
141static struct callout  	thread_reap_callout;
142
143static void thread_zombie(struct thread *);
144static void thread_reap(void);
145static void thread_reap_all(void);
146static void thread_reap_task_cb(void *, int);
147static void thread_reap_callout_cb(void *);
148static int thread_unsuspend_one(struct thread *td, struct proc *p,
149    bool boundary);
150static void thread_free_batched(struct thread *td);
151
152static __exclusive_cache_line struct mtx tid_lock;
153static bitstr_t *tid_bitmap;
154
155static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
156
157static int maxthread;
158SYSCTL_INT(_kern, OID_AUTO, maxthread, CTLFLAG_RDTUN,
159    &maxthread, 0, "Maximum number of threads");
160
161static __exclusive_cache_line int nthreads;
162
163static LIST_HEAD(tidhashhead, thread) *tidhashtbl;
164static u_long	tidhash;
165static u_long	tidhashlock;
166static struct	rwlock *tidhashtbl_lock;
167#define	TIDHASH(tid)		(&tidhashtbl[(tid) & tidhash])
168#define	TIDHASHLOCK(tid)	(&tidhashtbl_lock[(tid) & tidhashlock])
169
170EVENTHANDLER_LIST_DEFINE(thread_ctor);
171EVENTHANDLER_LIST_DEFINE(thread_dtor);
172EVENTHANDLER_LIST_DEFINE(thread_init);
173EVENTHANDLER_LIST_DEFINE(thread_fini);
174
175static bool
176thread_count_inc_try(void)
177{
178	int nthreads_new;
179
180	nthreads_new = atomic_fetchadd_int(&nthreads, 1) + 1;
181	if (nthreads_new >= maxthread - 100) {
182		if (priv_check_cred(curthread->td_ucred, PRIV_MAXPROC) != 0 ||
183		    nthreads_new >= maxthread) {
184			atomic_subtract_int(&nthreads, 1);
185			return (false);
186		}
187	}
188	return (true);
189}
190
191static bool
192thread_count_inc(void)
193{
194	static struct timeval lastfail;
195	static int curfail;
196
197	thread_reap();
198	if (thread_count_inc_try()) {
199		return (true);
200	}
201
202	thread_reap_all();
203	if (thread_count_inc_try()) {
204		return (true);
205	}
206
207	if (ppsratecheck(&lastfail, &curfail, 1)) {
208		printf("maxthread limit exceeded by uid %u "
209		    "(pid %d); consider increasing kern.maxthread\n",
210		    curthread->td_ucred->cr_ruid, curproc->p_pid);
211	}
212	return (false);
213}
214
215static void
216thread_count_sub(int n)
217{
218
219	atomic_subtract_int(&nthreads, n);
220}
221
222static void
223thread_count_dec(void)
224{
225
226	thread_count_sub(1);
227}
228
229static lwpid_t
230tid_alloc(void)
231{
232	static lwpid_t trytid;
233	lwpid_t tid;
234
235	mtx_lock(&tid_lock);
236	/*
237	 * It is an invariant that the bitmap is big enough to hold maxthread
238	 * IDs. If we got to this point there has to be at least one free.
239	 */
240	if (trytid >= maxthread)
241		trytid = 0;
242	bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
243	if (tid == -1) {
244		KASSERT(trytid != 0, ("unexpectedly ran out of IDs"));
245		trytid = 0;
246		bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
247		KASSERT(tid != -1, ("unexpectedly ran out of IDs"));
248	}
249	bit_set(tid_bitmap, tid);
250	trytid = tid + 1;
251	mtx_unlock(&tid_lock);
252	return (tid + NO_PID);
253}
254
255static void
256tid_free_locked(lwpid_t rtid)
257{
258	lwpid_t tid;
259
260	mtx_assert(&tid_lock, MA_OWNED);
261	KASSERT(rtid >= NO_PID,
262	    ("%s: invalid tid %d\n", __func__, rtid));
263	tid = rtid - NO_PID;
264	KASSERT(bit_test(tid_bitmap, tid) != 0,
265	    ("thread ID %d not allocated\n", rtid));
266	bit_clear(tid_bitmap, tid);
267}
268
269static void
270tid_free(lwpid_t rtid)
271{
272
273	mtx_lock(&tid_lock);
274	tid_free_locked(rtid);
275	mtx_unlock(&tid_lock);
276}
277
278static void
279tid_free_batch(lwpid_t *batch, int n)
280{
281	int i;
282
283	mtx_lock(&tid_lock);
284	for (i = 0; i < n; i++) {
285		tid_free_locked(batch[i]);
286	}
287	mtx_unlock(&tid_lock);
288}
289
290/*
291 * Batching for thread reapping.
292 */
293struct tidbatch {
294	lwpid_t tab[16];
295	int n;
296};
297
298static void
299tidbatch_prep(struct tidbatch *tb)
300{
301
302	tb->n = 0;
303}
304
305static void
306tidbatch_add(struct tidbatch *tb, struct thread *td)
307{
308
309	KASSERT(tb->n < nitems(tb->tab),
310	    ("%s: count too high %d", __func__, tb->n));
311	tb->tab[tb->n] = td->td_tid;
312	tb->n++;
313}
314
315static void
316tidbatch_process(struct tidbatch *tb)
317{
318
319	KASSERT(tb->n <= nitems(tb->tab),
320	    ("%s: count too high %d", __func__, tb->n));
321	if (tb->n == nitems(tb->tab)) {
322		tid_free_batch(tb->tab, tb->n);
323		tb->n = 0;
324	}
325}
326
327static void
328tidbatch_final(struct tidbatch *tb)
329{
330
331	KASSERT(tb->n <= nitems(tb->tab),
332	    ("%s: count too high %d", __func__, tb->n));
333	if (tb->n != 0) {
334		tid_free_batch(tb->tab, tb->n);
335	}
336}
337
338/*
339 * Batching thread count free, for consistency
340 */
341struct tdcountbatch {
342	int n;
343};
344
345static void
346tdcountbatch_prep(struct tdcountbatch *tb)
347{
348
349	tb->n = 0;
350}
351
352static void
353tdcountbatch_add(struct tdcountbatch *tb, struct thread *td __unused)
354{
355
356	tb->n++;
357}
358
359static void
360tdcountbatch_process(struct tdcountbatch *tb)
361{
362
363	if (tb->n == 32) {
364		thread_count_sub(tb->n);
365		tb->n = 0;
366	}
367}
368
369static void
370tdcountbatch_final(struct tdcountbatch *tb)
371{
372
373	if (tb->n != 0) {
374		thread_count_sub(tb->n);
375	}
376}
377
378/*
379 * Prepare a thread for use.
380 */
381static int
382thread_ctor(void *mem, int size, void *arg, int flags)
383{
384	struct thread	*td;
385
386	td = (struct thread *)mem;
387	TD_SET_STATE(td, TDS_INACTIVE);
388	td->td_lastcpu = td->td_oncpu = NOCPU;
389
390	/*
391	 * Note that td_critnest begins life as 1 because the thread is not
392	 * running and is thereby implicitly waiting to be on the receiving
393	 * end of a context switch.
394	 */
395	td->td_critnest = 1;
396	td->td_lend_user_pri = PRI_MAX;
397#ifdef AUDIT
398	audit_thread_alloc(td);
399#endif
400#ifdef KDTRACE_HOOKS
401	kdtrace_thread_ctor(td);
402#endif
403	umtx_thread_alloc(td);
404	MPASS(td->td_sel == NULL);
405	return (0);
406}
407
408/*
409 * Reclaim a thread after use.
410 */
411static void
412thread_dtor(void *mem, int size, void *arg)
413{
414	struct thread *td;
415
416	td = (struct thread *)mem;
417
418#ifdef INVARIANTS
419	/* Verify that this thread is in a safe state to free. */
420	switch (TD_GET_STATE(td)) {
421	case TDS_INHIBITED:
422	case TDS_RUNNING:
423	case TDS_CAN_RUN:
424	case TDS_RUNQ:
425		/*
426		 * We must never unlink a thread that is in one of
427		 * these states, because it is currently active.
428		 */
429		panic("bad state for thread unlinking");
430		/* NOTREACHED */
431	case TDS_INACTIVE:
432		break;
433	default:
434		panic("bad thread state");
435		/* NOTREACHED */
436	}
437#endif
438#ifdef AUDIT
439	audit_thread_free(td);
440#endif
441#ifdef KDTRACE_HOOKS
442	kdtrace_thread_dtor(td);
443#endif
444	/* Free all OSD associated to this thread. */
445	osd_thread_exit(td);
446	ast_kclear(td);
447	seltdfini(td);
448}
449
450/*
451 * Initialize type-stable parts of a thread (when newly created).
452 */
453static int
454thread_init(void *mem, int size, int flags)
455{
456	struct thread *td;
457
458	td = (struct thread *)mem;
459
460	td->td_allocdomain = vm_phys_domain(vtophys(td));
461	td->td_sleepqueue = sleepq_alloc();
462	td->td_turnstile = turnstile_alloc();
463	td->td_rlqe = NULL;
464	EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
465	umtx_thread_init(td);
466	td->td_kstack = 0;
467	td->td_sel = NULL;
468	return (0);
469}
470
471/*
472 * Tear down type-stable parts of a thread (just before being discarded).
473 */
474static void
475thread_fini(void *mem, int size)
476{
477	struct thread *td;
478
479	td = (struct thread *)mem;
480	EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
481	rlqentry_free(td->td_rlqe);
482	turnstile_free(td->td_turnstile);
483	sleepq_free(td->td_sleepqueue);
484	umtx_thread_fini(td);
485	MPASS(td->td_sel == NULL);
486}
487
488/*
489 * For a newly created process,
490 * link up all the structures and its initial threads etc.
491 * called from:
492 * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
493 * proc_dtor() (should go away)
494 * proc_init()
495 */
496void
497proc_linkup0(struct proc *p, struct thread *td)
498{
499	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
500	proc_linkup(p, td);
501}
502
503void
504proc_linkup(struct proc *p, struct thread *td)
505{
506
507	sigqueue_init(&p->p_sigqueue, p);
508	p->p_ksi = ksiginfo_alloc(M_WAITOK);
509	if (p->p_ksi != NULL) {
510		/* XXX p_ksi may be null if ksiginfo zone is not ready */
511		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
512	}
513	LIST_INIT(&p->p_mqnotifier);
514	p->p_numthreads = 0;
515	thread_link(td, p);
516}
517
518static void
519ast_suspend(struct thread *td, int tda __unused)
520{
521	struct proc *p;
522
523	p = td->td_proc;
524	/*
525	 * We need to check to see if we have to exit or wait due to a
526	 * single threading requirement or some other STOP condition.
527	 */
528	PROC_LOCK(p);
529	thread_suspend_check(0);
530	PROC_UNLOCK(p);
531}
532
533extern int max_threads_per_proc;
534
535/*
536 * Initialize global thread allocation resources.
537 */
538void
539threadinit(void)
540{
541	u_long i;
542	lwpid_t tid0;
543
544	/*
545	 * Place an upper limit on threads which can be allocated.
546	 *
547	 * Note that other factors may make the de facto limit much lower.
548	 *
549	 * Platform limits are somewhat arbitrary but deemed "more than good
550	 * enough" for the foreseable future.
551	 */
552	if (maxthread == 0) {
553#ifdef _LP64
554		maxthread = MIN(maxproc * max_threads_per_proc, 1000000);
555#else
556		maxthread = MIN(maxproc * max_threads_per_proc, 100000);
557#endif
558	}
559
560	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
561	tid_bitmap = bit_alloc(maxthread, M_TIDHASH, M_WAITOK);
562	/*
563	 * Handle thread0.
564	 */
565	thread_count_inc();
566	tid0 = tid_alloc();
567	if (tid0 != THREAD0_TID)
568		panic("tid0 %d != %d\n", tid0, THREAD0_TID);
569
570	/*
571	 * Thread structures are specially aligned so that (at least) the
572	 * 5 lower bits of a pointer to 'struct thead' must be 0.  These bits
573	 * are used by synchronization primitives to store flags in pointers to
574	 * such structures.
575	 */
576	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
577	    thread_ctor, thread_dtor, thread_init, thread_fini,
578	    UMA_ALIGN_CACHE_AND_MASK(32 - 1), UMA_ZONE_NOFREE);
579	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
580	tidhashlock = (tidhash + 1) / 64;
581	if (tidhashlock > 0)
582		tidhashlock--;
583	tidhashtbl_lock = malloc(sizeof(*tidhashtbl_lock) * (tidhashlock + 1),
584	    M_TIDHASH, M_WAITOK | M_ZERO);
585	for (i = 0; i < tidhashlock + 1; i++)
586		rw_init(&tidhashtbl_lock[i], "tidhash");
587
588	TASK_INIT(&thread_reap_task, 0, thread_reap_task_cb, NULL);
589	callout_init(&thread_reap_callout, 1);
590	callout_reset(&thread_reap_callout, 5 * hz,
591	    thread_reap_callout_cb, NULL);
592	ast_register(TDA_SUSPEND, ASTR_ASTF_REQUIRED, 0, ast_suspend);
593}
594
595/*
596 * Place an unused thread on the zombie list.
597 */
598void
599thread_zombie(struct thread *td)
600{
601	struct thread_domain_data *tdd;
602	struct thread *ztd;
603
604	tdd = &thread_domain_data[td->td_allocdomain];
605	ztd = atomic_load_ptr(&tdd->tdd_zombies);
606	for (;;) {
607		td->td_zombie = ztd;
608		if (atomic_fcmpset_rel_ptr((uintptr_t *)&tdd->tdd_zombies,
609		    (uintptr_t *)&ztd, (uintptr_t)td))
610			break;
611		continue;
612	}
613}
614
615/*
616 * Release a thread that has exited after cpu_throw().
617 */
618void
619thread_stash(struct thread *td)
620{
621	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
622	thread_zombie(td);
623}
624
625/*
626 * Reap zombies from passed domain.
627 */
628static void
629thread_reap_domain(struct thread_domain_data *tdd)
630{
631	struct thread *itd, *ntd;
632	struct tidbatch tidbatch;
633	struct credbatch credbatch;
634	struct limbatch limbatch;
635	struct tdcountbatch tdcountbatch;
636
637	/*
638	 * Reading upfront is pessimal if followed by concurrent atomic_swap,
639	 * but most of the time the list is empty.
640	 */
641	if (tdd->tdd_zombies == NULL)
642		return;
643
644	itd = (struct thread *)atomic_swap_ptr((uintptr_t *)&tdd->tdd_zombies,
645	    (uintptr_t)NULL);
646	if (itd == NULL)
647		return;
648
649	/*
650	 * Multiple CPUs can get here, the race is fine as ticks is only
651	 * advisory.
652	 */
653	tdd->tdd_reapticks = ticks;
654
655	tidbatch_prep(&tidbatch);
656	credbatch_prep(&credbatch);
657	limbatch_prep(&limbatch);
658	tdcountbatch_prep(&tdcountbatch);
659
660	while (itd != NULL) {
661		ntd = itd->td_zombie;
662		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, itd);
663
664		tidbatch_add(&tidbatch, itd);
665		credbatch_add(&credbatch, itd);
666		limbatch_add(&limbatch, itd);
667		tdcountbatch_add(&tdcountbatch, itd);
668
669		thread_free_batched(itd);
670
671		tidbatch_process(&tidbatch);
672		credbatch_process(&credbatch);
673		limbatch_process(&limbatch);
674		tdcountbatch_process(&tdcountbatch);
675
676		itd = ntd;
677	}
678
679	tidbatch_final(&tidbatch);
680	credbatch_final(&credbatch);
681	limbatch_final(&limbatch);
682	tdcountbatch_final(&tdcountbatch);
683}
684
685/*
686 * Reap zombies from all domains.
687 */
688static void
689thread_reap_all(void)
690{
691	struct thread_domain_data *tdd;
692	int i, domain;
693
694	domain = PCPU_GET(domain);
695	for (i = 0; i < vm_ndomains; i++) {
696		tdd = &thread_domain_data[(i + domain) % vm_ndomains];
697		thread_reap_domain(tdd);
698	}
699}
700
701/*
702 * Reap zombies from local domain.
703 */
704static void
705thread_reap(void)
706{
707	struct thread_domain_data *tdd;
708	int domain;
709
710	domain = PCPU_GET(domain);
711	tdd = &thread_domain_data[domain];
712
713	thread_reap_domain(tdd);
714}
715
716static void
717thread_reap_task_cb(void *arg __unused, int pending __unused)
718{
719
720	thread_reap_all();
721}
722
723static void
724thread_reap_callout_cb(void *arg __unused)
725{
726	struct thread_domain_data *tdd;
727	int i, cticks, lticks;
728	bool wantreap;
729
730	wantreap = false;
731	cticks = atomic_load_int(&ticks);
732	for (i = 0; i < vm_ndomains; i++) {
733		tdd = &thread_domain_data[i];
734		lticks = tdd->tdd_reapticks;
735		if (tdd->tdd_zombies != NULL &&
736		    (u_int)(cticks - lticks) > 5 * hz) {
737			wantreap = true;
738			break;
739		}
740	}
741
742	if (wantreap)
743		taskqueue_enqueue(taskqueue_thread, &thread_reap_task);
744	callout_reset(&thread_reap_callout, 5 * hz,
745	    thread_reap_callout_cb, NULL);
746}
747
748/*
749 * Calling this function guarantees that any thread that exited before
750 * the call is reaped when the function returns.  By 'exited' we mean
751 * a thread removed from the process linkage with thread_unlink().
752 * Practically this means that caller must lock/unlock corresponding
753 * process lock before the call, to synchronize with thread_exit().
754 */
755void
756thread_reap_barrier(void)
757{
758	struct task *t;
759
760	/*
761	 * First do context switches to each CPU to ensure that all
762	 * PCPU pc_deadthreads are moved to zombie list.
763	 */
764	quiesce_all_cpus("", PDROP);
765
766	/*
767	 * Second, fire the task in the same thread as normal
768	 * thread_reap() is done, to serialize reaping.
769	 */
770	t = malloc(sizeof(*t), M_TEMP, M_WAITOK);
771	TASK_INIT(t, 0, thread_reap_task_cb, t);
772	taskqueue_enqueue(taskqueue_thread, t);
773	taskqueue_drain(taskqueue_thread, t);
774	free(t, M_TEMP);
775}
776
777/*
778 * Allocate a thread.
779 */
780struct thread *
781thread_alloc(int pages)
782{
783	struct thread *td;
784	lwpid_t tid;
785
786	if (!thread_count_inc()) {
787		return (NULL);
788	}
789
790	tid = tid_alloc();
791	td = uma_zalloc(thread_zone, M_WAITOK);
792	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
793	if (!vm_thread_new(td, pages)) {
794		uma_zfree(thread_zone, td);
795		tid_free(tid);
796		thread_count_dec();
797		return (NULL);
798	}
799	td->td_tid = tid;
800	bzero(&td->td_sa.args, sizeof(td->td_sa.args));
801	kasan_thread_alloc(td);
802	kmsan_thread_alloc(td);
803	cpu_thread_alloc(td);
804	EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
805	return (td);
806}
807
808int
809thread_recycle(struct thread *td, int pages)
810{
811	if (td->td_kstack == 0 || td->td_kstack_pages != pages) {
812		if (td->td_kstack != 0)
813			vm_thread_dispose(td);
814		if (!vm_thread_new(td, pages))
815			return (ENOMEM);
816		cpu_thread_alloc(td);
817	}
818	kasan_thread_alloc(td);
819	kmsan_thread_alloc(td);
820	return (0);
821}
822
823/*
824 * Deallocate a thread.
825 */
826static void
827thread_free_batched(struct thread *td)
828{
829
830	lock_profile_thread_exit(td);
831	if (td->td_cpuset)
832		cpuset_rel(td->td_cpuset);
833	td->td_cpuset = NULL;
834	cpu_thread_free(td);
835	if (td->td_kstack != 0)
836		vm_thread_dispose(td);
837	callout_drain(&td->td_slpcallout);
838	/*
839	 * Freeing handled by the caller.
840	 */
841	td->td_tid = -1;
842	kmsan_thread_free(td);
843	uma_zfree(thread_zone, td);
844}
845
846void
847thread_free(struct thread *td)
848{
849	lwpid_t tid;
850
851	EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
852	tid = td->td_tid;
853	thread_free_batched(td);
854	tid_free(tid);
855	thread_count_dec();
856}
857
858void
859thread_cow_get_proc(struct thread *newtd, struct proc *p)
860{
861
862	PROC_LOCK_ASSERT(p, MA_OWNED);
863	newtd->td_realucred = crcowget(p->p_ucred);
864	newtd->td_ucred = newtd->td_realucred;
865	newtd->td_limit = lim_hold(p->p_limit);
866	newtd->td_cowgen = p->p_cowgen;
867}
868
869void
870thread_cow_get(struct thread *newtd, struct thread *td)
871{
872
873	MPASS(td->td_realucred == td->td_ucred);
874	newtd->td_realucred = crcowget(td->td_realucred);
875	newtd->td_ucred = newtd->td_realucred;
876	newtd->td_limit = lim_hold(td->td_limit);
877	newtd->td_cowgen = td->td_cowgen;
878}
879
880void
881thread_cow_free(struct thread *td)
882{
883
884	if (td->td_realucred != NULL)
885		crcowfree(td);
886	if (td->td_limit != NULL)
887		lim_free(td->td_limit);
888}
889
890void
891thread_cow_update(struct thread *td)
892{
893	struct proc *p;
894	struct ucred *oldcred;
895	struct plimit *oldlimit;
896
897	p = td->td_proc;
898	PROC_LOCK(p);
899	oldcred = crcowsync();
900	oldlimit = lim_cowsync();
901	td->td_cowgen = p->p_cowgen;
902	PROC_UNLOCK(p);
903	if (oldcred != NULL)
904		crfree(oldcred);
905	if (oldlimit != NULL)
906		lim_free(oldlimit);
907}
908
909void
910thread_cow_synced(struct thread *td)
911{
912	struct proc *p;
913
914	p = td->td_proc;
915	PROC_LOCK_ASSERT(p, MA_OWNED);
916	MPASS(td->td_cowgen != p->p_cowgen);
917	MPASS(td->td_ucred == p->p_ucred);
918	MPASS(td->td_limit == p->p_limit);
919	td->td_cowgen = p->p_cowgen;
920}
921
922/*
923 * Discard the current thread and exit from its context.
924 * Always called with scheduler locked.
925 *
926 * Because we can't free a thread while we're operating under its context,
927 * push the current thread into our CPU's deadthread holder. This means
928 * we needn't worry about someone else grabbing our context before we
929 * do a cpu_throw().
930 */
931void
932thread_exit(void)
933{
934	uint64_t runtime, new_switchtime;
935	struct thread *td;
936	struct thread *td2;
937	struct proc *p;
938	int wakeup_swapper;
939
940	td = curthread;
941	p = td->td_proc;
942
943	PROC_SLOCK_ASSERT(p, MA_OWNED);
944	mtx_assert(&Giant, MA_NOTOWNED);
945
946	PROC_LOCK_ASSERT(p, MA_OWNED);
947	KASSERT(p != NULL, ("thread exiting without a process"));
948	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
949	    (long)p->p_pid, td->td_name);
950	SDT_PROBE0(proc, , , lwp__exit);
951	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
952	MPASS(td->td_realucred == td->td_ucred);
953
954	/*
955	 * drop FPU & debug register state storage, or any other
956	 * architecture specific resources that
957	 * would not be on a new untouched process.
958	 */
959	cpu_thread_exit(td);
960
961	/*
962	 * The last thread is left attached to the process
963	 * So that the whole bundle gets recycled. Skip
964	 * all this stuff if we never had threads.
965	 * EXIT clears all sign of other threads when
966	 * it goes to single threading, so the last thread always
967	 * takes the short path.
968	 */
969	if (p->p_flag & P_HADTHREADS) {
970		if (p->p_numthreads > 1) {
971			atomic_add_int(&td->td_proc->p_exitthreads, 1);
972			thread_unlink(td);
973			td2 = FIRST_THREAD_IN_PROC(p);
974			sched_exit_thread(td2, td);
975
976			/*
977			 * The test below is NOT true if we are the
978			 * sole exiting thread. P_STOPPED_SINGLE is unset
979			 * in exit1() after it is the only survivor.
980			 */
981			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
982				if (p->p_numthreads == p->p_suspcount) {
983					thread_lock(p->p_singlethread);
984					wakeup_swapper = thread_unsuspend_one(
985						p->p_singlethread, p, false);
986					if (wakeup_swapper)
987						kick_proc0();
988				}
989			}
990
991			PCPU_SET(deadthread, td);
992		} else {
993			/*
994			 * The last thread is exiting.. but not through exit()
995			 */
996			panic ("thread_exit: Last thread exiting on its own");
997		}
998	}
999#ifdef	HWPMC_HOOKS
1000	/*
1001	 * If this thread is part of a process that is being tracked by hwpmc(4),
1002	 * inform the module of the thread's impending exit.
1003	 */
1004	if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
1005		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1006		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
1007	} else if (PMC_SYSTEM_SAMPLING_ACTIVE())
1008		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
1009#endif
1010	PROC_UNLOCK(p);
1011	PROC_STATLOCK(p);
1012	thread_lock(td);
1013	PROC_SUNLOCK(p);
1014
1015	/* Do the same timestamp bookkeeping that mi_switch() would do. */
1016	new_switchtime = cpu_ticks();
1017	runtime = new_switchtime - PCPU_GET(switchtime);
1018	td->td_runtime += runtime;
1019	td->td_incruntime += runtime;
1020	PCPU_SET(switchtime, new_switchtime);
1021	PCPU_SET(switchticks, ticks);
1022	VM_CNT_INC(v_swtch);
1023
1024	/* Save our resource usage in our process. */
1025	td->td_ru.ru_nvcsw++;
1026	ruxagg_locked(p, td);
1027	rucollect(&p->p_ru, &td->td_ru);
1028	PROC_STATUNLOCK(p);
1029
1030	TD_SET_STATE(td, TDS_INACTIVE);
1031#ifdef WITNESS
1032	witness_thread_exit(td);
1033#endif
1034	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
1035	sched_throw(td);
1036	panic("I'm a teapot!");
1037	/* NOTREACHED */
1038}
1039
1040/*
1041 * Do any thread specific cleanups that may be needed in wait()
1042 * called with Giant, proc and schedlock not held.
1043 */
1044void
1045thread_wait(struct proc *p)
1046{
1047	struct thread *td;
1048
1049	mtx_assert(&Giant, MA_NOTOWNED);
1050	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
1051	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
1052	td = FIRST_THREAD_IN_PROC(p);
1053	/* Lock the last thread so we spin until it exits cpu_throw(). */
1054	thread_lock(td);
1055	thread_unlock(td);
1056	lock_profile_thread_exit(td);
1057	cpuset_rel(td->td_cpuset);
1058	td->td_cpuset = NULL;
1059	cpu_thread_clean(td);
1060	thread_cow_free(td);
1061	callout_drain(&td->td_slpcallout);
1062	thread_reap();	/* check for zombie threads etc. */
1063}
1064
1065/*
1066 * Link a thread to a process.
1067 * set up anything that needs to be initialized for it to
1068 * be used by the process.
1069 */
1070void
1071thread_link(struct thread *td, struct proc *p)
1072{
1073
1074	/*
1075	 * XXX This can't be enabled because it's called for proc0 before
1076	 * its lock has been created.
1077	 * PROC_LOCK_ASSERT(p, MA_OWNED);
1078	 */
1079	TD_SET_STATE(td, TDS_INACTIVE);
1080	td->td_proc     = p;
1081	td->td_flags    = TDF_INMEM;
1082
1083	LIST_INIT(&td->td_contested);
1084	LIST_INIT(&td->td_lprof[0]);
1085	LIST_INIT(&td->td_lprof[1]);
1086#ifdef EPOCH_TRACE
1087	SLIST_INIT(&td->td_epochs);
1088#endif
1089	sigqueue_init(&td->td_sigqueue, p);
1090	callout_init(&td->td_slpcallout, 1);
1091	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
1092	p->p_numthreads++;
1093}
1094
1095/*
1096 * Called from:
1097 *  thread_exit()
1098 */
1099void
1100thread_unlink(struct thread *td)
1101{
1102	struct proc *p = td->td_proc;
1103
1104	PROC_LOCK_ASSERT(p, MA_OWNED);
1105#ifdef EPOCH_TRACE
1106	MPASS(SLIST_EMPTY(&td->td_epochs));
1107#endif
1108
1109	TAILQ_REMOVE(&p->p_threads, td, td_plist);
1110	p->p_numthreads--;
1111	/* could clear a few other things here */
1112	/* Must  NOT clear links to proc! */
1113}
1114
1115static int
1116calc_remaining(struct proc *p, int mode)
1117{
1118	int remaining;
1119
1120	PROC_LOCK_ASSERT(p, MA_OWNED);
1121	PROC_SLOCK_ASSERT(p, MA_OWNED);
1122	if (mode == SINGLE_EXIT)
1123		remaining = p->p_numthreads;
1124	else if (mode == SINGLE_BOUNDARY)
1125		remaining = p->p_numthreads - p->p_boundary_count;
1126	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
1127		remaining = p->p_numthreads - p->p_suspcount;
1128	else
1129		panic("calc_remaining: wrong mode %d", mode);
1130	return (remaining);
1131}
1132
1133static int
1134remain_for_mode(int mode)
1135{
1136
1137	return (mode == SINGLE_ALLPROC ? 0 : 1);
1138}
1139
1140static int
1141weed_inhib(int mode, struct thread *td2, struct proc *p)
1142{
1143	int wakeup_swapper;
1144
1145	PROC_LOCK_ASSERT(p, MA_OWNED);
1146	PROC_SLOCK_ASSERT(p, MA_OWNED);
1147	THREAD_LOCK_ASSERT(td2, MA_OWNED);
1148
1149	wakeup_swapper = 0;
1150
1151	/*
1152	 * Since the thread lock is dropped by the scheduler we have
1153	 * to retry to check for races.
1154	 */
1155restart:
1156	switch (mode) {
1157	case SINGLE_EXIT:
1158		if (TD_IS_SUSPENDED(td2)) {
1159			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
1160			thread_lock(td2);
1161			goto restart;
1162		}
1163		if (TD_CAN_ABORT(td2)) {
1164			wakeup_swapper |= sleepq_abort(td2, EINTR);
1165			return (wakeup_swapper);
1166		}
1167		break;
1168	case SINGLE_BOUNDARY:
1169	case SINGLE_NO_EXIT:
1170		if (TD_IS_SUSPENDED(td2) &&
1171		    (td2->td_flags & TDF_BOUNDARY) == 0) {
1172			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1173			thread_lock(td2);
1174			goto restart;
1175		}
1176		if (TD_CAN_ABORT(td2)) {
1177			wakeup_swapper |= sleepq_abort(td2, ERESTART);
1178			return (wakeup_swapper);
1179		}
1180		break;
1181	case SINGLE_ALLPROC:
1182		/*
1183		 * ALLPROC suspend tries to avoid spurious EINTR for
1184		 * threads sleeping interruptable, by suspending the
1185		 * thread directly, similarly to sig_suspend_threads().
1186		 * Since such sleep is not neccessary performed at the user
1187		 * boundary, TDF_ALLPROCSUSP is used to avoid immediate
1188		 * un-suspend.
1189		 */
1190		if (TD_IS_SUSPENDED(td2) &&
1191		    (td2->td_flags & TDF_ALLPROCSUSP) == 0) {
1192			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1193			thread_lock(td2);
1194			goto restart;
1195		}
1196		if (TD_CAN_ABORT(td2)) {
1197			td2->td_flags |= TDF_ALLPROCSUSP;
1198			wakeup_swapper |= sleepq_abort(td2, ERESTART);
1199			return (wakeup_swapper);
1200		}
1201		break;
1202	default:
1203		break;
1204	}
1205	thread_unlock(td2);
1206	return (wakeup_swapper);
1207}
1208
1209/*
1210 * Enforce single-threading.
1211 *
1212 * Returns 1 if the caller must abort (another thread is waiting to
1213 * exit the process or similar). Process is locked!
1214 * Returns 0 when you are successfully the only thread running.
1215 * A process has successfully single threaded in the suspend mode when
1216 * There are no threads in user mode. Threads in the kernel must be
1217 * allowed to continue until they get to the user boundary. They may even
1218 * copy out their return values and data before suspending. They may however be
1219 * accelerated in reaching the user boundary as we will wake up
1220 * any sleeping threads that are interruptable. (PCATCH).
1221 */
1222int
1223thread_single(struct proc *p, int mode)
1224{
1225	struct thread *td;
1226	struct thread *td2;
1227	int remaining, wakeup_swapper;
1228
1229	td = curthread;
1230	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1231	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1232	    ("invalid mode %d", mode));
1233	/*
1234	 * If allowing non-ALLPROC singlethreading for non-curproc
1235	 * callers, calc_remaining() and remain_for_mode() should be
1236	 * adjusted to also account for td->td_proc != p.  For now
1237	 * this is not implemented because it is not used.
1238	 */
1239	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
1240	    (mode != SINGLE_ALLPROC && td->td_proc == p),
1241	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
1242	mtx_assert(&Giant, MA_NOTOWNED);
1243	PROC_LOCK_ASSERT(p, MA_OWNED);
1244
1245	/*
1246	 * Is someone already single threading?
1247	 * Or may be singlethreading is not needed at all.
1248	 */
1249	if (mode == SINGLE_ALLPROC) {
1250		while ((p->p_flag & P_STOPPED_SINGLE) != 0) {
1251			if ((p->p_flag2 & P2_WEXIT) != 0)
1252				return (1);
1253			msleep(&p->p_flag, &p->p_mtx, PCATCH, "thrsgl", 0);
1254		}
1255		if ((p->p_flag & (P_STOPPED_SIG | P_TRACED)) != 0 ||
1256		    (p->p_flag2 & P2_WEXIT) != 0)
1257			return (1);
1258	} else if ((p->p_flag & P_HADTHREADS) == 0)
1259		return (0);
1260	if (p->p_singlethread != NULL && p->p_singlethread != td)
1261		return (1);
1262
1263	if (mode == SINGLE_EXIT) {
1264		p->p_flag |= P_SINGLE_EXIT;
1265		p->p_flag &= ~P_SINGLE_BOUNDARY;
1266	} else {
1267		p->p_flag &= ~P_SINGLE_EXIT;
1268		if (mode == SINGLE_BOUNDARY)
1269			p->p_flag |= P_SINGLE_BOUNDARY;
1270		else
1271			p->p_flag &= ~P_SINGLE_BOUNDARY;
1272	}
1273	if (mode == SINGLE_ALLPROC)
1274		p->p_flag |= P_TOTAL_STOP;
1275	p->p_flag |= P_STOPPED_SINGLE;
1276	PROC_SLOCK(p);
1277	p->p_singlethread = td;
1278	remaining = calc_remaining(p, mode);
1279	while (remaining != remain_for_mode(mode)) {
1280		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
1281			goto stopme;
1282		wakeup_swapper = 0;
1283		FOREACH_THREAD_IN_PROC(p, td2) {
1284			if (td2 == td)
1285				continue;
1286			thread_lock(td2);
1287			ast_sched_locked(td2, TDA_SUSPEND);
1288			if (TD_IS_INHIBITED(td2)) {
1289				wakeup_swapper |= weed_inhib(mode, td2, p);
1290#ifdef SMP
1291			} else if (TD_IS_RUNNING(td2)) {
1292				forward_signal(td2);
1293				thread_unlock(td2);
1294#endif
1295			} else
1296				thread_unlock(td2);
1297		}
1298		if (wakeup_swapper)
1299			kick_proc0();
1300		remaining = calc_remaining(p, mode);
1301
1302		/*
1303		 * Maybe we suspended some threads.. was it enough?
1304		 */
1305		if (remaining == remain_for_mode(mode))
1306			break;
1307
1308stopme:
1309		/*
1310		 * Wake us up when everyone else has suspended.
1311		 * In the mean time we suspend as well.
1312		 */
1313		thread_suspend_switch(td, p);
1314		remaining = calc_remaining(p, mode);
1315	}
1316	if (mode == SINGLE_EXIT) {
1317		/*
1318		 * Convert the process to an unthreaded process.  The
1319		 * SINGLE_EXIT is called by exit1() or execve(), in
1320		 * both cases other threads must be retired.
1321		 */
1322		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
1323		p->p_singlethread = NULL;
1324		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
1325
1326		/*
1327		 * Wait for any remaining threads to exit cpu_throw().
1328		 */
1329		while (p->p_exitthreads != 0) {
1330			PROC_SUNLOCK(p);
1331			PROC_UNLOCK(p);
1332			sched_relinquish(td);
1333			PROC_LOCK(p);
1334			PROC_SLOCK(p);
1335		}
1336	} else if (mode == SINGLE_BOUNDARY) {
1337		/*
1338		 * Wait until all suspended threads are removed from
1339		 * the processors.  The thread_suspend_check()
1340		 * increments p_boundary_count while it is still
1341		 * running, which makes it possible for the execve()
1342		 * to destroy vmspace while our other threads are
1343		 * still using the address space.
1344		 *
1345		 * We lock the thread, which is only allowed to
1346		 * succeed after context switch code finished using
1347		 * the address space.
1348		 */
1349		FOREACH_THREAD_IN_PROC(p, td2) {
1350			if (td2 == td)
1351				continue;
1352			thread_lock(td2);
1353			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
1354			    ("td %p not on boundary", td2));
1355			KASSERT(TD_IS_SUSPENDED(td2),
1356			    ("td %p is not suspended", td2));
1357			thread_unlock(td2);
1358		}
1359	}
1360	PROC_SUNLOCK(p);
1361	return (0);
1362}
1363
1364bool
1365thread_suspend_check_needed(void)
1366{
1367	struct proc *p;
1368	struct thread *td;
1369
1370	td = curthread;
1371	p = td->td_proc;
1372	PROC_LOCK_ASSERT(p, MA_OWNED);
1373	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
1374	    (td->td_dbgflags & TDB_SUSPEND) != 0));
1375}
1376
1377/*
1378 * Called in from locations that can safely check to see
1379 * whether we have to suspend or at least throttle for a
1380 * single-thread event (e.g. fork).
1381 *
1382 * Such locations include userret().
1383 * If the "return_instead" argument is non zero, the thread must be able to
1384 * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1385 *
1386 * The 'return_instead' argument tells the function if it may do a
1387 * thread_exit() or suspend, or whether the caller must abort and back
1388 * out instead.
1389 *
1390 * If the thread that set the single_threading request has set the
1391 * P_SINGLE_EXIT bit in the process flags then this call will never return
1392 * if 'return_instead' is false, but will exit.
1393 *
1394 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1395 *---------------+--------------------+---------------------
1396 *       0       | returns 0          |   returns 0 or 1
1397 *               | when ST ends       |   immediately
1398 *---------------+--------------------+---------------------
1399 *       1       | thread exits       |   returns 1
1400 *               |                    |  immediately
1401 * 0 = thread_exit() or suspension ok,
1402 * other = return error instead of stopping the thread.
1403 *
1404 * While a full suspension is under effect, even a single threading
1405 * thread would be suspended if it made this call (but it shouldn't).
1406 * This call should only be made from places where
1407 * thread_exit() would be safe as that may be the outcome unless
1408 * return_instead is set.
1409 */
1410int
1411thread_suspend_check(int return_instead)
1412{
1413	struct thread *td;
1414	struct proc *p;
1415	int wakeup_swapper;
1416
1417	td = curthread;
1418	p = td->td_proc;
1419	mtx_assert(&Giant, MA_NOTOWNED);
1420	PROC_LOCK_ASSERT(p, MA_OWNED);
1421	while (thread_suspend_check_needed()) {
1422		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1423			KASSERT(p->p_singlethread != NULL,
1424			    ("singlethread not set"));
1425			/*
1426			 * The only suspension in action is a
1427			 * single-threading. Single threader need not stop.
1428			 * It is safe to access p->p_singlethread unlocked
1429			 * because it can only be set to our address by us.
1430			 */
1431			if (p->p_singlethread == td)
1432				return (0);	/* Exempt from stopping. */
1433		}
1434		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
1435			return (EINTR);
1436
1437		/* Should we goto user boundary if we didn't come from there? */
1438		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1439		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
1440			return (ERESTART);
1441
1442		/*
1443		 * Ignore suspend requests if they are deferred.
1444		 */
1445		if ((td->td_flags & TDF_SBDRY) != 0) {
1446			KASSERT(return_instead,
1447			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
1448			KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1449			    (TDF_SEINTR | TDF_SERESTART),
1450			    ("both TDF_SEINTR and TDF_SERESTART"));
1451			return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1452		}
1453
1454		/*
1455		 * If the process is waiting for us to exit,
1456		 * this thread should just suicide.
1457		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1458		 */
1459		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1460			PROC_UNLOCK(p);
1461
1462			/*
1463			 * Allow Linux emulation layer to do some work
1464			 * before thread suicide.
1465			 */
1466			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1467				(p->p_sysent->sv_thread_detach)(td);
1468			umtx_thread_exit(td);
1469			kern_thr_exit(td);
1470			panic("stopped thread did not exit");
1471		}
1472
1473		PROC_SLOCK(p);
1474		thread_stopped(p);
1475		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1476			if (p->p_numthreads == p->p_suspcount + 1) {
1477				thread_lock(p->p_singlethread);
1478				wakeup_swapper = thread_unsuspend_one(
1479				    p->p_singlethread, p, false);
1480				if (wakeup_swapper)
1481					kick_proc0();
1482			}
1483		}
1484		PROC_UNLOCK(p);
1485		thread_lock(td);
1486		/*
1487		 * When a thread suspends, it just
1488		 * gets taken off all queues.
1489		 */
1490		thread_suspend_one(td);
1491		if (return_instead == 0) {
1492			p->p_boundary_count++;
1493			td->td_flags |= TDF_BOUNDARY;
1494		}
1495		PROC_SUNLOCK(p);
1496		mi_switch(SW_INVOL | SWT_SUSPEND);
1497		PROC_LOCK(p);
1498	}
1499	return (0);
1500}
1501
1502/*
1503 * Check for possible stops and suspensions while executing a
1504 * casueword or similar transiently failing operation.
1505 *
1506 * The sleep argument controls whether the function can handle a stop
1507 * request itself or it should return ERESTART and the request is
1508 * proceed at the kernel/user boundary in ast.
1509 *
1510 * Typically, when retrying due to casueword(9) failure (rv == 1), we
1511 * should handle the stop requests there, with exception of cases when
1512 * the thread owns a kernel resource, for instance busied the umtx
1513 * key, or when functions return immediately if thread_check_susp()
1514 * returned non-zero.  On the other hand, retrying the whole lock
1515 * operation, we better not stop there but delegate the handling to
1516 * ast.
1517 *
1518 * If the request is for thread termination P_SINGLE_EXIT, we cannot
1519 * handle it at all, and simply return EINTR.
1520 */
1521int
1522thread_check_susp(struct thread *td, bool sleep)
1523{
1524	struct proc *p;
1525	int error;
1526
1527	/*
1528	 * The check for TDA_SUSPEND is racy, but it is enough to
1529	 * eventually break the lockstep loop.
1530	 */
1531	if (!td_ast_pending(td, TDA_SUSPEND))
1532		return (0);
1533	error = 0;
1534	p = td->td_proc;
1535	PROC_LOCK(p);
1536	if (p->p_flag & P_SINGLE_EXIT)
1537		error = EINTR;
1538	else if (P_SHOULDSTOP(p) ||
1539	    ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
1540		error = sleep ? thread_suspend_check(0) : ERESTART;
1541	PROC_UNLOCK(p);
1542	return (error);
1543}
1544
1545void
1546thread_suspend_switch(struct thread *td, struct proc *p)
1547{
1548
1549	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1550	PROC_LOCK_ASSERT(p, MA_OWNED);
1551	PROC_SLOCK_ASSERT(p, MA_OWNED);
1552	/*
1553	 * We implement thread_suspend_one in stages here to avoid
1554	 * dropping the proc lock while the thread lock is owned.
1555	 */
1556	if (p == td->td_proc) {
1557		thread_stopped(p);
1558		p->p_suspcount++;
1559	}
1560	PROC_UNLOCK(p);
1561	thread_lock(td);
1562	ast_unsched_locked(td, TDA_SUSPEND);
1563	TD_SET_SUSPENDED(td);
1564	sched_sleep(td, 0);
1565	PROC_SUNLOCK(p);
1566	DROP_GIANT();
1567	mi_switch(SW_VOL | SWT_SUSPEND);
1568	PICKUP_GIANT();
1569	PROC_LOCK(p);
1570	PROC_SLOCK(p);
1571}
1572
1573void
1574thread_suspend_one(struct thread *td)
1575{
1576	struct proc *p;
1577
1578	p = td->td_proc;
1579	PROC_SLOCK_ASSERT(p, MA_OWNED);
1580	THREAD_LOCK_ASSERT(td, MA_OWNED);
1581	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1582	p->p_suspcount++;
1583	ast_unsched_locked(td, TDA_SUSPEND);
1584	TD_SET_SUSPENDED(td);
1585	sched_sleep(td, 0);
1586}
1587
1588static int
1589thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1590{
1591
1592	THREAD_LOCK_ASSERT(td, MA_OWNED);
1593	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1594	TD_CLR_SUSPENDED(td);
1595	td->td_flags &= ~TDF_ALLPROCSUSP;
1596	if (td->td_proc == p) {
1597		PROC_SLOCK_ASSERT(p, MA_OWNED);
1598		p->p_suspcount--;
1599		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1600			td->td_flags &= ~TDF_BOUNDARY;
1601			p->p_boundary_count--;
1602		}
1603	}
1604	return (setrunnable(td, 0));
1605}
1606
1607void
1608thread_run_flash(struct thread *td)
1609{
1610	struct proc *p;
1611
1612	p = td->td_proc;
1613	PROC_LOCK_ASSERT(p, MA_OWNED);
1614
1615	if (TD_ON_SLEEPQ(td))
1616		sleepq_remove_nested(td);
1617	else
1618		thread_lock(td);
1619
1620	THREAD_LOCK_ASSERT(td, MA_OWNED);
1621	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1622
1623	TD_CLR_SUSPENDED(td);
1624	PROC_SLOCK(p);
1625	MPASS(p->p_suspcount > 0);
1626	p->p_suspcount--;
1627	PROC_SUNLOCK(p);
1628	if (setrunnable(td, 0))
1629		kick_proc0();
1630}
1631
1632/*
1633 * Allow all threads blocked by single threading to continue running.
1634 */
1635void
1636thread_unsuspend(struct proc *p)
1637{
1638	struct thread *td;
1639	int wakeup_swapper;
1640
1641	PROC_LOCK_ASSERT(p, MA_OWNED);
1642	PROC_SLOCK_ASSERT(p, MA_OWNED);
1643	wakeup_swapper = 0;
1644	if (!P_SHOULDSTOP(p)) {
1645                FOREACH_THREAD_IN_PROC(p, td) {
1646			thread_lock(td);
1647			if (TD_IS_SUSPENDED(td))
1648				wakeup_swapper |= thread_unsuspend_one(td, p,
1649				    true);
1650			else
1651				thread_unlock(td);
1652		}
1653	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1654	    p->p_numthreads == p->p_suspcount) {
1655		/*
1656		 * Stopping everything also did the job for the single
1657		 * threading request. Now we've downgraded to single-threaded,
1658		 * let it continue.
1659		 */
1660		if (p->p_singlethread->td_proc == p) {
1661			thread_lock(p->p_singlethread);
1662			wakeup_swapper = thread_unsuspend_one(
1663			    p->p_singlethread, p, false);
1664		}
1665	}
1666	if (wakeup_swapper)
1667		kick_proc0();
1668}
1669
1670/*
1671 * End the single threading mode..
1672 */
1673void
1674thread_single_end(struct proc *p, int mode)
1675{
1676	struct thread *td;
1677	int wakeup_swapper;
1678
1679	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1680	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1681	    ("invalid mode %d", mode));
1682	PROC_LOCK_ASSERT(p, MA_OWNED);
1683	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1684	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1685	    ("mode %d does not match P_TOTAL_STOP", mode));
1686	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1687	    ("thread_single_end from other thread %p %p",
1688	    curthread, p->p_singlethread));
1689	KASSERT(mode != SINGLE_BOUNDARY ||
1690	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1691	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1692	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1693	    P_TOTAL_STOP);
1694	PROC_SLOCK(p);
1695	p->p_singlethread = NULL;
1696	wakeup_swapper = 0;
1697	/*
1698	 * If there are other threads they may now run,
1699	 * unless of course there is a blanket 'stop order'
1700	 * on the process. The single threader must be allowed
1701	 * to continue however as this is a bad place to stop.
1702	 */
1703	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1704                FOREACH_THREAD_IN_PROC(p, td) {
1705			thread_lock(td);
1706			if (TD_IS_SUSPENDED(td)) {
1707				wakeup_swapper |= thread_unsuspend_one(td, p,
1708				    true);
1709			} else
1710				thread_unlock(td);
1711		}
1712	}
1713	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1714	    ("inconsistent boundary count %d", p->p_boundary_count));
1715	PROC_SUNLOCK(p);
1716	if (wakeup_swapper)
1717		kick_proc0();
1718	wakeup(&p->p_flag);
1719}
1720
1721/*
1722 * Locate a thread by number and return with proc lock held.
1723 *
1724 * thread exit establishes proc -> tidhash lock ordering, but lookup
1725 * takes tidhash first and needs to return locked proc.
1726 *
1727 * The problem is worked around by relying on type-safety of both
1728 * structures and doing the work in 2 steps:
1729 * - tidhash-locked lookup which saves both thread and proc pointers
1730 * - proc-locked verification that the found thread still matches
1731 */
1732static bool
1733tdfind_hash(lwpid_t tid, pid_t pid, struct proc **pp, struct thread **tdp)
1734{
1735#define RUN_THRESH	16
1736	struct proc *p;
1737	struct thread *td;
1738	int run;
1739	bool locked;
1740
1741	run = 0;
1742	rw_rlock(TIDHASHLOCK(tid));
1743	locked = true;
1744	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1745		if (td->td_tid != tid) {
1746			run++;
1747			continue;
1748		}
1749		p = td->td_proc;
1750		if (pid != -1 && p->p_pid != pid) {
1751			td = NULL;
1752			break;
1753		}
1754		if (run > RUN_THRESH) {
1755			if (rw_try_upgrade(TIDHASHLOCK(tid))) {
1756				LIST_REMOVE(td, td_hash);
1757				LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1758					td, td_hash);
1759				rw_wunlock(TIDHASHLOCK(tid));
1760				locked = false;
1761				break;
1762			}
1763		}
1764		break;
1765	}
1766	if (locked)
1767		rw_runlock(TIDHASHLOCK(tid));
1768	if (td == NULL)
1769		return (false);
1770	*pp = p;
1771	*tdp = td;
1772	return (true);
1773}
1774
1775struct thread *
1776tdfind(lwpid_t tid, pid_t pid)
1777{
1778	struct proc *p;
1779	struct thread *td;
1780
1781	td = curthread;
1782	if (td->td_tid == tid) {
1783		if (pid != -1 && td->td_proc->p_pid != pid)
1784			return (NULL);
1785		PROC_LOCK(td->td_proc);
1786		return (td);
1787	}
1788
1789	for (;;) {
1790		if (!tdfind_hash(tid, pid, &p, &td))
1791			return (NULL);
1792		PROC_LOCK(p);
1793		if (td->td_tid != tid) {
1794			PROC_UNLOCK(p);
1795			continue;
1796		}
1797		if (td->td_proc != p) {
1798			PROC_UNLOCK(p);
1799			continue;
1800		}
1801		if (p->p_state == PRS_NEW) {
1802			PROC_UNLOCK(p);
1803			return (NULL);
1804		}
1805		return (td);
1806	}
1807}
1808
1809void
1810tidhash_add(struct thread *td)
1811{
1812	rw_wlock(TIDHASHLOCK(td->td_tid));
1813	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1814	rw_wunlock(TIDHASHLOCK(td->td_tid));
1815}
1816
1817void
1818tidhash_remove(struct thread *td)
1819{
1820
1821	rw_wlock(TIDHASHLOCK(td->td_tid));
1822	LIST_REMOVE(td, td_hash);
1823	rw_wunlock(TIDHASHLOCK(td->td_tid));
1824}
1825