1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1990, 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37#include <sys/cdefs.h>
38#include "opt_ktrace.h"
39#include "opt_sched.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/blockcount.h>
44#include <sys/condvar.h>
45#include <sys/kdb.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/ktrace.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/sdt.h>
55#include <sys/signalvar.h>
56#include <sys/sleepqueue.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/vmmeter.h>
62#ifdef KTRACE
63#include <sys/uio.h>
64#endif
65#ifdef EPOCH_TRACE
66#include <sys/epoch.h>
67#endif
68
69#include <machine/cpu.h>
70
71static void synch_setup(void *dummy);
72SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
73    NULL);
74
75int	hogticks;
76static const char pause_wchan[MAXCPU];
77
78static struct callout loadav_callout;
79
80struct loadavg averunnable =
81	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
82/*
83 * Constants for averages over 1, 5, and 15 minutes
84 * when sampling at 5 second intervals.
85 */
86static uint64_t cexp[3] = {
87	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
88	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
89	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
90};
91
92/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
93SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE,
94    "Fixed-point scale factor used for calculating load average values");
95
96static void	loadav(void *arg);
97
98SDT_PROVIDER_DECLARE(sched);
99SDT_PROBE_DEFINE(sched, , , preempt);
100
101static void
102sleepinit(void *unused)
103{
104
105	hogticks = (hz / 10) * 2;	/* Default only. */
106	init_sleepqueues();
107}
108
109/*
110 * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
111 * it is available.
112 */
113SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, NULL);
114
115/*
116 * General sleep call.  Suspends the current thread until a wakeup is
117 * performed on the specified identifier.  The thread will then be made
118 * runnable with the specified priority.  Sleeps at most sbt units of time
119 * (0 means no timeout).  If pri includes the PCATCH flag, let signals
120 * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
121 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
122 * signal becomes pending, ERESTART is returned if the current system
123 * call should be restarted if possible, and EINTR is returned if the system
124 * call should be interrupted by the signal (return EINTR).
125 *
126 * The lock argument is unlocked before the caller is suspended, and
127 * re-locked before _sleep() returns.  If priority includes the PDROP
128 * flag the lock is not re-locked before returning.
129 */
130int
131_sleep(const void *ident, struct lock_object *lock, int priority,
132    const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
133{
134	struct thread *td __ktrace_used;
135	struct lock_class *class;
136	uintptr_t lock_state;
137	int catch, pri, rval, sleepq_flags;
138	WITNESS_SAVE_DECL(lock_witness);
139
140	TSENTER();
141	td = curthread;
142#ifdef KTRACE
143	if (KTRPOINT(td, KTR_CSW))
144		ktrcsw(1, 0, wmesg);
145#endif
146	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
147	    "Sleeping on \"%s\"", wmesg);
148	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL ||
149	    (priority & PNOLOCK) != 0,
150	    ("sleeping without a lock"));
151	KASSERT(ident != NULL, ("_sleep: NULL ident"));
152	KASSERT(TD_IS_RUNNING(td), ("_sleep: curthread not running"));
153	if (priority & PDROP)
154		KASSERT(lock != NULL && lock != &Giant.lock_object,
155		    ("PDROP requires a non-Giant lock"));
156	if (lock != NULL)
157		class = LOCK_CLASS(lock);
158	else
159		class = NULL;
160
161	if (SCHEDULER_STOPPED()) {
162		if (lock != NULL && priority & PDROP)
163			class->lc_unlock(lock);
164		return (0);
165	}
166	catch = priority & PCATCH;
167	pri = priority & PRIMASK;
168
169	KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));
170
171	if ((uintptr_t)ident >= (uintptr_t)&pause_wchan[0] &&
172	    (uintptr_t)ident <= (uintptr_t)&pause_wchan[MAXCPU - 1])
173		sleepq_flags = SLEEPQ_PAUSE;
174	else
175		sleepq_flags = SLEEPQ_SLEEP;
176	if (catch)
177		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
178
179	sleepq_lock(ident);
180	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
181	    td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);
182
183	if (lock == &Giant.lock_object)
184		mtx_assert(&Giant, MA_OWNED);
185	DROP_GIANT();
186	if (lock != NULL && lock != &Giant.lock_object &&
187	    !(class->lc_flags & LC_SLEEPABLE)) {
188		KASSERT(!(class->lc_flags & LC_SPINLOCK),
189		    ("spin locks can only use msleep_spin"));
190		WITNESS_SAVE(lock, lock_witness);
191		lock_state = class->lc_unlock(lock);
192	} else
193		/* GCC needs to follow the Yellow Brick Road */
194		lock_state = -1;
195
196	/*
197	 * We put ourselves on the sleep queue and start our timeout
198	 * before calling thread_suspend_check, as we could stop there,
199	 * and a wakeup or a SIGCONT (or both) could occur while we were
200	 * stopped without resuming us.  Thus, we must be ready for sleep
201	 * when cursig() is called.  If the wakeup happens while we're
202	 * stopped, then td will no longer be on a sleep queue upon
203	 * return from cursig().
204	 */
205	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
206	if (sbt != 0)
207		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
208	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
209		sleepq_release(ident);
210		WITNESS_SAVE(lock, lock_witness);
211		lock_state = class->lc_unlock(lock);
212		sleepq_lock(ident);
213	}
214	if (sbt != 0 && catch)
215		rval = sleepq_timedwait_sig(ident, pri);
216	else if (sbt != 0)
217		rval = sleepq_timedwait(ident, pri);
218	else if (catch)
219		rval = sleepq_wait_sig(ident, pri);
220	else {
221		sleepq_wait(ident, pri);
222		rval = 0;
223	}
224#ifdef KTRACE
225	if (KTRPOINT(td, KTR_CSW))
226		ktrcsw(0, 0, wmesg);
227#endif
228	PICKUP_GIANT();
229	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
230		class->lc_lock(lock, lock_state);
231		WITNESS_RESTORE(lock, lock_witness);
232	}
233	TSEXIT();
234	return (rval);
235}
236
237int
238msleep_spin_sbt(const void *ident, struct mtx *mtx, const char *wmesg,
239    sbintime_t sbt, sbintime_t pr, int flags)
240{
241	struct thread *td __ktrace_used;
242	int rval;
243	WITNESS_SAVE_DECL(mtx);
244
245	td = curthread;
246	KASSERT(mtx != NULL, ("sleeping without a mutex"));
247	KASSERT(ident != NULL, ("msleep_spin_sbt: NULL ident"));
248	KASSERT(TD_IS_RUNNING(td), ("msleep_spin_sbt: curthread not running"));
249
250	if (SCHEDULER_STOPPED())
251		return (0);
252
253	sleepq_lock(ident);
254	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
255	    td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);
256
257	DROP_GIANT();
258	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
259	WITNESS_SAVE(&mtx->lock_object, mtx);
260	mtx_unlock_spin(mtx);
261
262	/*
263	 * We put ourselves on the sleep queue and start our timeout.
264	 */
265	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
266	if (sbt != 0)
267		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
268
269	/*
270	 * Can't call ktrace with any spin locks held so it can lock the
271	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
272	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
273	 * we handle those requests.  This is safe since we have placed our
274	 * thread on the sleep queue already.
275	 */
276#ifdef KTRACE
277	if (KTRPOINT(td, KTR_CSW)) {
278		sleepq_release(ident);
279		ktrcsw(1, 0, wmesg);
280		sleepq_lock(ident);
281	}
282#endif
283#ifdef WITNESS
284	sleepq_release(ident);
285	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
286	    wmesg);
287	sleepq_lock(ident);
288#endif
289	if (sbt != 0)
290		rval = sleepq_timedwait(ident, 0);
291	else {
292		sleepq_wait(ident, 0);
293		rval = 0;
294	}
295#ifdef KTRACE
296	if (KTRPOINT(td, KTR_CSW))
297		ktrcsw(0, 0, wmesg);
298#endif
299	PICKUP_GIANT();
300	mtx_lock_spin(mtx);
301	WITNESS_RESTORE(&mtx->lock_object, mtx);
302	return (rval);
303}
304
305/*
306 * pause_sbt() delays the calling thread by the given signed binary
307 * time. During cold bootup, pause_sbt() uses the DELAY() function
308 * instead of the _sleep() function to do the waiting. The "sbt"
309 * argument must be greater than or equal to zero. A "sbt" value of
310 * zero is equivalent to a "sbt" value of one tick.
311 */
312int
313pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
314{
315	KASSERT(sbt >= 0, ("pause_sbt: timeout must be >= 0"));
316
317	/* silently convert invalid timeouts */
318	if (sbt == 0)
319		sbt = tick_sbt;
320
321	if ((cold && curthread == &thread0) || kdb_active ||
322	    SCHEDULER_STOPPED()) {
323		/*
324		 * We delay one second at a time to avoid overflowing the
325		 * system specific DELAY() function(s):
326		 */
327		while (sbt >= SBT_1S) {
328			DELAY(1000000);
329			sbt -= SBT_1S;
330		}
331		/* Do the delay remainder, if any */
332		sbt = howmany(sbt, SBT_1US);
333		if (sbt > 0)
334			DELAY(sbt);
335		return (EWOULDBLOCK);
336	}
337	return (_sleep(&pause_wchan[curcpu], NULL,
338	    (flags & C_CATCH) ? PCATCH : 0, wmesg, sbt, pr, flags));
339}
340
341/*
342 * Make all threads sleeping on the specified identifier runnable.
343 */
344void
345wakeup(const void *ident)
346{
347	int wakeup_swapper;
348
349	sleepq_lock(ident);
350	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
351	sleepq_release(ident);
352	if (wakeup_swapper) {
353		KASSERT(ident != &proc0,
354		    ("wakeup and wakeup_swapper and proc0"));
355		kick_proc0();
356	}
357}
358
359/*
360 * Make a thread sleeping on the specified identifier runnable.
361 * May wake more than one thread if a target thread is currently
362 * swapped out.
363 */
364void
365wakeup_one(const void *ident)
366{
367	int wakeup_swapper;
368
369	sleepq_lock(ident);
370	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_DROP, 0, 0);
371	if (wakeup_swapper)
372		kick_proc0();
373}
374
375void
376wakeup_any(const void *ident)
377{
378	int wakeup_swapper;
379
380	sleepq_lock(ident);
381	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_UNFAIR |
382	    SLEEPQ_DROP, 0, 0);
383	if (wakeup_swapper)
384		kick_proc0();
385}
386
387/*
388 * Signal sleeping waiters after the counter has reached zero.
389 */
390void
391_blockcount_wakeup(blockcount_t *bc, u_int old)
392{
393
394	KASSERT(_BLOCKCOUNT_WAITERS(old),
395	    ("%s: no waiters on %p", __func__, bc));
396
397	if (atomic_cmpset_int(&bc->__count, _BLOCKCOUNT_WAITERS_FLAG, 0))
398		wakeup(bc);
399}
400
401/*
402 * Wait for a wakeup or a signal.  This does not guarantee that the count is
403 * still zero on return.  Callers wanting a precise answer should use
404 * blockcount_wait() with an interlock.
405 *
406 * If there is no work to wait for, return 0.  If the sleep was interrupted by a
407 * signal, return EINTR or ERESTART, and return EAGAIN otherwise.
408 */
409int
410_blockcount_sleep(blockcount_t *bc, struct lock_object *lock, const char *wmesg,
411    int prio)
412{
413	void *wchan;
414	uintptr_t lock_state;
415	u_int old;
416	int ret;
417	bool catch, drop;
418
419	KASSERT(lock != &Giant.lock_object,
420	    ("%s: cannot use Giant as the interlock", __func__));
421
422	catch = (prio & PCATCH) != 0;
423	drop = (prio & PDROP) != 0;
424	prio &= PRIMASK;
425
426	/*
427	 * Synchronize with the fence in blockcount_release().  If we end up
428	 * waiting, the sleepqueue lock acquisition will provide the required
429	 * side effects.
430	 *
431	 * If there is no work to wait for, but waiters are present, try to put
432	 * ourselves to sleep to avoid jumping ahead.
433	 */
434	if (atomic_load_acq_int(&bc->__count) == 0) {
435		if (lock != NULL && drop)
436			LOCK_CLASS(lock)->lc_unlock(lock);
437		return (0);
438	}
439	lock_state = 0;
440	wchan = bc;
441	sleepq_lock(wchan);
442	DROP_GIANT();
443	if (lock != NULL)
444		lock_state = LOCK_CLASS(lock)->lc_unlock(lock);
445	old = blockcount_read(bc);
446	ret = 0;
447	do {
448		if (_BLOCKCOUNT_COUNT(old) == 0) {
449			sleepq_release(wchan);
450			goto out;
451		}
452		if (_BLOCKCOUNT_WAITERS(old))
453			break;
454	} while (!atomic_fcmpset_int(&bc->__count, &old,
455	    old | _BLOCKCOUNT_WAITERS_FLAG));
456	sleepq_add(wchan, NULL, wmesg, catch ? SLEEPQ_INTERRUPTIBLE : 0, 0);
457	if (catch)
458		ret = sleepq_wait_sig(wchan, prio);
459	else
460		sleepq_wait(wchan, prio);
461	if (ret == 0)
462		ret = EAGAIN;
463
464out:
465	PICKUP_GIANT();
466	if (lock != NULL && !drop)
467		LOCK_CLASS(lock)->lc_lock(lock, lock_state);
468
469	return (ret);
470}
471
472static void
473kdb_switch(void)
474{
475	thread_unlock(curthread);
476	kdb_backtrace();
477	kdb_reenter();
478	panic("%s: did not reenter debugger", __func__);
479}
480
481/*
482 * mi_switch(9): The machine-independent parts of context switching.
483 *
484 * The thread lock is required on entry and is no longer held on return.
485 */
486void
487mi_switch(int flags)
488{
489	uint64_t runtime, new_switchtime;
490	struct thread *td;
491
492	td = curthread;			/* XXX */
493	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
494	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
495#ifdef INVARIANTS
496	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
497		mtx_assert(&Giant, MA_NOTOWNED);
498#endif
499	/* thread_lock() performs spinlock_enter(). */
500	KASSERT(td->td_critnest == 1 || KERNEL_PANICKED(),
501	    ("mi_switch: switch in a critical section"));
502	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
503	    ("mi_switch: switch must be voluntary or involuntary"));
504	KASSERT((flags & SW_TYPE_MASK) != 0,
505	    ("mi_switch: a switch reason (type) must be specified"));
506	KASSERT((flags & SW_TYPE_MASK) < SWT_COUNT,
507	    ("mi_switch: invalid switch reason %d", (flags & SW_TYPE_MASK)));
508
509	/*
510	 * Don't perform context switches from the debugger.
511	 */
512	if (kdb_active)
513		kdb_switch();
514	if (SCHEDULER_STOPPED())
515		return;
516	if (flags & SW_VOL) {
517		td->td_ru.ru_nvcsw++;
518		td->td_swvoltick = ticks;
519	} else {
520		td->td_ru.ru_nivcsw++;
521		td->td_swinvoltick = ticks;
522	}
523#ifdef SCHED_STATS
524	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
525#endif
526	/*
527	 * Compute the amount of time during which the current
528	 * thread was running, and add that to its total so far.
529	 */
530	new_switchtime = cpu_ticks();
531	runtime = new_switchtime - PCPU_GET(switchtime);
532	td->td_runtime += runtime;
533	td->td_incruntime += runtime;
534	PCPU_SET(switchtime, new_switchtime);
535	td->td_generation++;	/* bump preempt-detect counter */
536	VM_CNT_INC(v_swtch);
537	PCPU_SET(switchticks, ticks);
538	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
539	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
540#ifdef KDTRACE_HOOKS
541	if (SDT_PROBES_ENABLED() &&
542	    ((flags & SW_PREEMPT) != 0 || ((flags & SW_INVOL) != 0 &&
543	    (flags & SW_TYPE_MASK) == SWT_NEEDRESCHED)))
544		SDT_PROBE0(sched, , , preempt);
545#endif
546	sched_switch(td, flags);
547	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
548	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
549
550	/*
551	 * If the last thread was exiting, finish cleaning it up.
552	 */
553	if ((td = PCPU_GET(deadthread))) {
554		PCPU_SET(deadthread, NULL);
555		thread_stash(td);
556	}
557	spinlock_exit();
558}
559
560/*
561 * Change thread state to be runnable, placing it on the run queue if
562 * it is in memory.  If it is swapped out, return true so our caller
563 * will know to awaken the swapper.
564 *
565 * Requires the thread lock on entry, drops on exit.
566 */
567int
568setrunnable(struct thread *td, int srqflags)
569{
570	int swapin;
571
572	THREAD_LOCK_ASSERT(td, MA_OWNED);
573	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
574	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
575
576	swapin = 0;
577	switch (TD_GET_STATE(td)) {
578	case TDS_RUNNING:
579	case TDS_RUNQ:
580		break;
581	case TDS_CAN_RUN:
582		KASSERT((td->td_flags & TDF_INMEM) != 0,
583		    ("setrunnable: td %p not in mem, flags 0x%X inhibit 0x%X",
584		    td, td->td_flags, td->td_inhibitors));
585		/* unlocks thread lock according to flags */
586		sched_wakeup(td, srqflags);
587		return (0);
588	case TDS_INHIBITED:
589		/*
590		 * If we are only inhibited because we are swapped out
591		 * arrange to swap in this process.
592		 */
593		if (td->td_inhibitors == TDI_SWAPPED &&
594		    (td->td_flags & TDF_SWAPINREQ) == 0) {
595			td->td_flags |= TDF_SWAPINREQ;
596			swapin = 1;
597		}
598		break;
599	default:
600		panic("setrunnable: state 0x%x", TD_GET_STATE(td));
601	}
602	if ((srqflags & (SRQ_HOLD | SRQ_HOLDTD)) == 0)
603		thread_unlock(td);
604
605	return (swapin);
606}
607
608/*
609 * Compute a tenex style load average of a quantity on
610 * 1, 5 and 15 minute intervals.
611 */
612static void
613loadav(void *arg)
614{
615	int i;
616	uint64_t nrun;
617	struct loadavg *avg;
618
619	nrun = (uint64_t)sched_load();
620	avg = &averunnable;
621
622	for (i = 0; i < 3; i++)
623		avg->ldavg[i] = (cexp[i] * (uint64_t)avg->ldavg[i] +
624		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
625
626	/*
627	 * Schedule the next update to occur after 5 seconds, but add a
628	 * random variation to avoid synchronisation with processes that
629	 * run at regular intervals.
630	 */
631	callout_reset_sbt(&loadav_callout,
632	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
633	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
634}
635
636static void
637ast_scheduler(struct thread *td, int tda __unused)
638{
639#ifdef KTRACE
640	if (KTRPOINT(td, KTR_CSW))
641		ktrcsw(1, 1, __func__);
642#endif
643	thread_lock(td);
644	sched_prio(td, td->td_user_pri);
645	mi_switch(SW_INVOL | SWT_NEEDRESCHED);
646#ifdef KTRACE
647	if (KTRPOINT(td, KTR_CSW))
648		ktrcsw(0, 1, __func__);
649#endif
650}
651
652static void
653synch_setup(void *dummy __unused)
654{
655	callout_init(&loadav_callout, 1);
656	ast_register(TDA_SCHED, ASTR_ASTF_REQUIRED, 0, ast_scheduler);
657
658	/* Kick off timeout driven events by calling first time. */
659	loadav(NULL);
660}
661
662bool
663should_yield(void)
664{
665
666	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
667}
668
669void
670maybe_yield(void)
671{
672
673	if (should_yield())
674		kern_yield(PRI_USER);
675}
676
677void
678kern_yield(int prio)
679{
680	struct thread *td;
681
682	td = curthread;
683	DROP_GIANT();
684	thread_lock(td);
685	if (prio == PRI_USER)
686		prio = td->td_user_pri;
687	if (prio >= 0)
688		sched_prio(td, prio);
689	mi_switch(SW_VOL | SWT_RELINQUISH);
690	PICKUP_GIANT();
691}
692
693/*
694 * General purpose yield system call.
695 */
696int
697sys_yield(struct thread *td, struct yield_args *uap)
698{
699
700	thread_lock(td);
701	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
702		sched_prio(td, PRI_MAX_TIMESHARE);
703	mi_switch(SW_VOL | SWT_RELINQUISH);
704	td->td_retval[0] = 0;
705	return (0);
706}
707
708int
709sys_sched_getcpu(struct thread *td, struct sched_getcpu_args *uap)
710{
711	td->td_retval[0] = td->td_oncpu;
712	return (0);
713}
714