1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 *	The Regents of the University of California.
6 * Copyright (c) 2005 Robert N. M. Watson
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35#include "opt_ktrace.h"
36
37#include <sys/param.h>
38#include <sys/capsicum.h>
39#include <sys/systm.h>
40#include <sys/fcntl.h>
41#include <sys/kernel.h>
42#include <sys/kthread.h>
43#include <sys/lock.h>
44#include <sys/mutex.h>
45#include <sys/malloc.h>
46#include <sys/mount.h>
47#include <sys/namei.h>
48#include <sys/priv.h>
49#include <sys/proc.h>
50#include <sys/resourcevar.h>
51#include <sys/unistd.h>
52#include <sys/vnode.h>
53#include <sys/socket.h>
54#include <sys/stat.h>
55#include <sys/ktrace.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysent.h>
59#include <sys/syslog.h>
60#include <sys/sysproto.h>
61
62#include <security/mac/mac_framework.h>
63
64/*
65 * The ktrace facility allows the tracing of certain key events in user space
66 * processes, such as system calls, signal delivery, context switches, and
67 * user generated events using utrace(2).  It works by streaming event
68 * records and data to a vnode associated with the process using the
69 * ktrace(2) system call.  In general, records can be written directly from
70 * the context that generates the event.  One important exception to this is
71 * during a context switch, where sleeping is not permitted.  To handle this
72 * case, trace events are generated using in-kernel ktr_request records, and
73 * then delivered to disk at a convenient moment -- either immediately, the
74 * next traceable event, at system call return, or at process exit.
75 *
76 * When dealing with multiple threads or processes writing to the same event
77 * log, ordering guarantees are weak: specifically, if an event has multiple
78 * records (i.e., system call enter and return), they may be interlaced with
79 * records from another event.  Process and thread ID information is provided
80 * in the record, and user applications can de-interlace events if required.
81 */
82
83static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
84
85#ifdef KTRACE
86
87FEATURE(ktrace, "Kernel support for system-call tracing");
88
89#ifndef KTRACE_REQUEST_POOL
90#define	KTRACE_REQUEST_POOL	100
91#endif
92
93struct ktr_request {
94	struct	ktr_header ktr_header;
95	void	*ktr_buffer;
96	union {
97		struct	ktr_proc_ctor ktr_proc_ctor;
98		struct	ktr_cap_fail ktr_cap_fail;
99		struct	ktr_syscall ktr_syscall;
100		struct	ktr_sysret ktr_sysret;
101		struct	ktr_genio ktr_genio;
102		struct	ktr_psig ktr_psig;
103		struct	ktr_csw ktr_csw;
104		struct	ktr_fault ktr_fault;
105		struct	ktr_faultend ktr_faultend;
106		struct  ktr_struct_array ktr_struct_array;
107	} ktr_data;
108	STAILQ_ENTRY(ktr_request) ktr_list;
109};
110
111static const int data_lengths[] = {
112	[KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
113	[KTR_SYSRET] = sizeof(struct ktr_sysret),
114	[KTR_NAMEI] = 0,
115	[KTR_GENIO] = sizeof(struct ktr_genio),
116	[KTR_PSIG] = sizeof(struct ktr_psig),
117	[KTR_CSW] = sizeof(struct ktr_csw),
118	[KTR_USER] = 0,
119	[KTR_STRUCT] = 0,
120	[KTR_SYSCTL] = 0,
121	[KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
122	[KTR_PROCDTOR] = 0,
123	[KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
124	[KTR_FAULT] = sizeof(struct ktr_fault),
125	[KTR_FAULTEND] = sizeof(struct ktr_faultend),
126	[KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array),
127};
128
129static STAILQ_HEAD(, ktr_request) ktr_free;
130
131static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
132    "KTRACE options");
133
134static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
135TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
136
137u_int ktr_geniosize = PAGE_SIZE;
138SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
139    0, "Maximum size of genio event payload");
140
141/*
142 * Allow to not to send signal to traced process, in which context the
143 * ktr record is written.  The limit is applied from the process that
144 * set up ktrace, so killing the traced process is not completely fair.
145 */
146int ktr_filesize_limit_signal = 0;
147SYSCTL_INT(_kern_ktrace, OID_AUTO, filesize_limit_signal, CTLFLAG_RWTUN,
148    &ktr_filesize_limit_signal, 0,
149    "Send SIGXFSZ to the traced process when the log size limit is exceeded");
150
151static int print_message = 1;
152static struct mtx ktrace_mtx;
153static struct sx ktrace_sx;
154
155struct ktr_io_params {
156	struct vnode	*vp;
157	struct ucred	*cr;
158	off_t		lim;
159	u_int		refs;
160};
161
162static void ktrace_init(void *dummy);
163static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
164static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
165static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
166static struct ktr_request *ktr_getrequest(int type);
167static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
168static struct ktr_io_params *ktr_freeproc(struct proc *p);
169static void ktr_freerequest(struct ktr_request *req);
170static void ktr_freerequest_locked(struct ktr_request *req);
171static void ktr_writerequest(struct thread *td, struct ktr_request *req);
172static int ktrcanset(struct thread *,struct proc *);
173static int ktrsetchildren(struct thread *, struct proc *, int, int,
174    struct ktr_io_params *);
175static int ktrops(struct thread *, struct proc *, int, int,
176    struct ktr_io_params *);
177static void ktrprocctor_entered(struct thread *, struct proc *);
178
179/*
180 * ktrace itself generates events, such as context switches, which we do not
181 * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
182 * whether or not it is in a region where tracing of events should be
183 * suppressed.
184 */
185static void
186ktrace_enter(struct thread *td)
187{
188
189	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
190	td->td_pflags |= TDP_INKTRACE;
191}
192
193static void
194ktrace_exit(struct thread *td)
195{
196
197	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
198	td->td_pflags &= ~TDP_INKTRACE;
199}
200
201static void
202ktrace_assert(struct thread *td)
203{
204
205	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
206}
207
208static void
209ast_ktrace(struct thread *td, int tda __unused)
210{
211	KTRUSERRET(td);
212}
213
214static void
215ktrace_init(void *dummy)
216{
217	struct ktr_request *req;
218	int i;
219
220	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
221	sx_init(&ktrace_sx, "ktrace_sx");
222	STAILQ_INIT(&ktr_free);
223	for (i = 0; i < ktr_requestpool; i++) {
224		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK |
225		    M_ZERO);
226		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
227	}
228	ast_register(TDA_KTRACE, ASTR_ASTF_REQUIRED, 0, ast_ktrace);
229}
230SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
231
232static int
233sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
234{
235	struct thread *td;
236	u_int newsize, oldsize, wantsize;
237	int error;
238
239	/* Handle easy read-only case first to avoid warnings from GCC. */
240	if (!req->newptr) {
241		oldsize = ktr_requestpool;
242		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
243	}
244
245	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
246	if (error)
247		return (error);
248	td = curthread;
249	ktrace_enter(td);
250	oldsize = ktr_requestpool;
251	newsize = ktrace_resize_pool(oldsize, wantsize);
252	ktrace_exit(td);
253	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
254	if (error)
255		return (error);
256	if (wantsize > oldsize && newsize < wantsize)
257		return (ENOSPC);
258	return (0);
259}
260SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool,
261    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0,
262    sysctl_kern_ktrace_request_pool, "IU",
263    "Pool buffer size for ktrace(1)");
264
265static u_int
266ktrace_resize_pool(u_int oldsize, u_int newsize)
267{
268	STAILQ_HEAD(, ktr_request) ktr_new;
269	struct ktr_request *req;
270	int bound;
271
272	print_message = 1;
273	bound = newsize - oldsize;
274	if (bound == 0)
275		return (ktr_requestpool);
276	if (bound < 0) {
277		mtx_lock(&ktrace_mtx);
278		/* Shrink pool down to newsize if possible. */
279		while (bound++ < 0) {
280			req = STAILQ_FIRST(&ktr_free);
281			if (req == NULL)
282				break;
283			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
284			ktr_requestpool--;
285			free(req, M_KTRACE);
286		}
287	} else {
288		/* Grow pool up to newsize. */
289		STAILQ_INIT(&ktr_new);
290		while (bound-- > 0) {
291			req = malloc(sizeof(struct ktr_request), M_KTRACE,
292			    M_WAITOK | M_ZERO);
293			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
294		}
295		mtx_lock(&ktrace_mtx);
296		STAILQ_CONCAT(&ktr_free, &ktr_new);
297		ktr_requestpool += (newsize - oldsize);
298	}
299	mtx_unlock(&ktrace_mtx);
300	return (ktr_requestpool);
301}
302
303/* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
304CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
305    (sizeof((struct thread *)NULL)->td_name));
306
307static struct ktr_request *
308ktr_getrequest_entered(struct thread *td, int type)
309{
310	struct ktr_request *req;
311	struct proc *p = td->td_proc;
312	int pm;
313
314	mtx_lock(&ktrace_mtx);
315	if (!KTRCHECK(td, type)) {
316		mtx_unlock(&ktrace_mtx);
317		return (NULL);
318	}
319	req = STAILQ_FIRST(&ktr_free);
320	if (req != NULL) {
321		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
322		req->ktr_header.ktr_type = type;
323		if (p->p_traceflag & KTRFAC_DROP) {
324			req->ktr_header.ktr_type |= KTR_DROP;
325			p->p_traceflag &= ~KTRFAC_DROP;
326		}
327		mtx_unlock(&ktrace_mtx);
328		nanotime(&req->ktr_header.ktr_time);
329		req->ktr_header.ktr_type |= KTR_VERSIONED;
330		req->ktr_header.ktr_pid = p->p_pid;
331		req->ktr_header.ktr_tid = td->td_tid;
332		req->ktr_header.ktr_cpu = PCPU_GET(cpuid);
333		req->ktr_header.ktr_version = KTR_VERSION1;
334		bcopy(td->td_name, req->ktr_header.ktr_comm,
335		    sizeof(req->ktr_header.ktr_comm));
336		req->ktr_buffer = NULL;
337		req->ktr_header.ktr_len = 0;
338	} else {
339		p->p_traceflag |= KTRFAC_DROP;
340		pm = print_message;
341		print_message = 0;
342		mtx_unlock(&ktrace_mtx);
343		if (pm)
344			printf("Out of ktrace request objects.\n");
345	}
346	return (req);
347}
348
349static struct ktr_request *
350ktr_getrequest(int type)
351{
352	struct thread *td = curthread;
353	struct ktr_request *req;
354
355	ktrace_enter(td);
356	req = ktr_getrequest_entered(td, type);
357	if (req == NULL)
358		ktrace_exit(td);
359
360	return (req);
361}
362
363/*
364 * Some trace generation environments don't permit direct access to VFS,
365 * such as during a context switch where sleeping is not allowed.  Under these
366 * circumstances, queue a request to the thread to be written asynchronously
367 * later.
368 */
369static void
370ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
371{
372
373	mtx_lock(&ktrace_mtx);
374	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
375	mtx_unlock(&ktrace_mtx);
376	ast_sched(td, TDA_KTRACE);
377}
378
379/*
380 * Drain any pending ktrace records from the per-thread queue to disk.  This
381 * is used both internally before committing other records, and also on
382 * system call return.  We drain all the ones we can find at the time when
383 * drain is requested, but don't keep draining after that as those events
384 * may be approximately "after" the current event.
385 */
386static void
387ktr_drain(struct thread *td)
388{
389	struct ktr_request *queued_req;
390	STAILQ_HEAD(, ktr_request) local_queue;
391
392	ktrace_assert(td);
393	sx_assert(&ktrace_sx, SX_XLOCKED);
394
395	STAILQ_INIT(&local_queue);
396
397	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
398		mtx_lock(&ktrace_mtx);
399		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
400		mtx_unlock(&ktrace_mtx);
401
402		while ((queued_req = STAILQ_FIRST(&local_queue))) {
403			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
404			ktr_writerequest(td, queued_req);
405			ktr_freerequest(queued_req);
406		}
407	}
408}
409
410/*
411 * Submit a trace record for immediate commit to disk -- to be used only
412 * where entering VFS is OK.  First drain any pending records that may have
413 * been cached in the thread.
414 */
415static void
416ktr_submitrequest(struct thread *td, struct ktr_request *req)
417{
418
419	ktrace_assert(td);
420
421	sx_xlock(&ktrace_sx);
422	ktr_drain(td);
423	ktr_writerequest(td, req);
424	ktr_freerequest(req);
425	sx_xunlock(&ktrace_sx);
426	ktrace_exit(td);
427}
428
429static void
430ktr_freerequest(struct ktr_request *req)
431{
432
433	mtx_lock(&ktrace_mtx);
434	ktr_freerequest_locked(req);
435	mtx_unlock(&ktrace_mtx);
436}
437
438static void
439ktr_freerequest_locked(struct ktr_request *req)
440{
441
442	mtx_assert(&ktrace_mtx, MA_OWNED);
443	if (req->ktr_buffer != NULL)
444		free(req->ktr_buffer, M_KTRACE);
445	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
446}
447
448static void
449ktr_io_params_ref(struct ktr_io_params *kiop)
450{
451	mtx_assert(&ktrace_mtx, MA_OWNED);
452	kiop->refs++;
453}
454
455static struct ktr_io_params *
456ktr_io_params_rele(struct ktr_io_params *kiop)
457{
458	mtx_assert(&ktrace_mtx, MA_OWNED);
459	if (kiop == NULL)
460		return (NULL);
461	KASSERT(kiop->refs > 0, ("kiop ref == 0 %p", kiop));
462	return (--(kiop->refs) == 0 ? kiop : NULL);
463}
464
465void
466ktr_io_params_free(struct ktr_io_params *kiop)
467{
468	if (kiop == NULL)
469		return;
470
471	MPASS(kiop->refs == 0);
472	vn_close(kiop->vp, FWRITE, kiop->cr, curthread);
473	crfree(kiop->cr);
474	free(kiop, M_KTRACE);
475}
476
477static struct ktr_io_params *
478ktr_io_params_alloc(struct thread *td, struct vnode *vp)
479{
480	struct ktr_io_params *res;
481
482	res = malloc(sizeof(struct ktr_io_params), M_KTRACE, M_WAITOK);
483	res->vp = vp;
484	res->cr = crhold(td->td_ucred);
485	res->lim = lim_cur(td, RLIMIT_FSIZE);
486	res->refs = 1;
487	return (res);
488}
489
490/*
491 * Disable tracing for a process and release all associated resources.
492 * The caller is responsible for releasing a reference on the returned
493 * vnode and credentials.
494 */
495static struct ktr_io_params *
496ktr_freeproc(struct proc *p)
497{
498	struct ktr_io_params *kiop;
499	struct ktr_request *req;
500
501	PROC_LOCK_ASSERT(p, MA_OWNED);
502	mtx_assert(&ktrace_mtx, MA_OWNED);
503	kiop = ktr_io_params_rele(p->p_ktrioparms);
504	p->p_ktrioparms = NULL;
505	p->p_traceflag = 0;
506	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
507		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
508		ktr_freerequest_locked(req);
509	}
510	return (kiop);
511}
512
513struct vnode *
514ktr_get_tracevp(struct proc *p, bool ref)
515{
516	struct vnode *vp;
517
518	PROC_LOCK_ASSERT(p, MA_OWNED);
519
520	if (p->p_ktrioparms != NULL) {
521		vp = p->p_ktrioparms->vp;
522		if (ref)
523			vrefact(vp);
524	} else {
525		vp = NULL;
526	}
527	return (vp);
528}
529
530void
531ktrsyscall(int code, int narg, syscallarg_t args[])
532{
533	struct ktr_request *req;
534	struct ktr_syscall *ktp;
535	size_t buflen;
536	char *buf = NULL;
537
538	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
539		return;
540
541	buflen = sizeof(register_t) * narg;
542	if (buflen > 0) {
543		buf = malloc(buflen, M_KTRACE, M_WAITOK);
544		bcopy(args, buf, buflen);
545	}
546	req = ktr_getrequest(KTR_SYSCALL);
547	if (req == NULL) {
548		if (buf != NULL)
549			free(buf, M_KTRACE);
550		return;
551	}
552	ktp = &req->ktr_data.ktr_syscall;
553	ktp->ktr_code = code;
554	ktp->ktr_narg = narg;
555	if (buflen > 0) {
556		req->ktr_header.ktr_len = buflen;
557		req->ktr_buffer = buf;
558	}
559	ktr_submitrequest(curthread, req);
560}
561
562void
563ktrsysret(int code, int error, register_t retval)
564{
565	struct ktr_request *req;
566	struct ktr_sysret *ktp;
567
568	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
569		return;
570
571	req = ktr_getrequest(KTR_SYSRET);
572	if (req == NULL)
573		return;
574	ktp = &req->ktr_data.ktr_sysret;
575	ktp->ktr_code = code;
576	ktp->ktr_error = error;
577	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
578	ktr_submitrequest(curthread, req);
579}
580
581/*
582 * When a setuid process execs, disable tracing.
583 *
584 * XXX: We toss any pending asynchronous records.
585 */
586struct ktr_io_params *
587ktrprocexec(struct proc *p)
588{
589	struct ktr_io_params *kiop;
590
591	PROC_LOCK_ASSERT(p, MA_OWNED);
592
593	kiop = p->p_ktrioparms;
594	if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED))
595		return (NULL);
596
597	mtx_lock(&ktrace_mtx);
598	kiop = ktr_freeproc(p);
599	mtx_unlock(&ktrace_mtx);
600	return (kiop);
601}
602
603/*
604 * When a process exits, drain per-process asynchronous trace records
605 * and disable tracing.
606 */
607void
608ktrprocexit(struct thread *td)
609{
610	struct ktr_request *req;
611	struct proc *p;
612	struct ktr_io_params *kiop;
613
614	p = td->td_proc;
615	if (p->p_traceflag == 0)
616		return;
617
618	ktrace_enter(td);
619	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
620	if (req != NULL)
621		ktr_enqueuerequest(td, req);
622	sx_xlock(&ktrace_sx);
623	ktr_drain(td);
624	sx_xunlock(&ktrace_sx);
625	PROC_LOCK(p);
626	mtx_lock(&ktrace_mtx);
627	kiop = ktr_freeproc(p);
628	mtx_unlock(&ktrace_mtx);
629	PROC_UNLOCK(p);
630	ktr_io_params_free(kiop);
631	ktrace_exit(td);
632}
633
634static void
635ktrprocctor_entered(struct thread *td, struct proc *p)
636{
637	struct ktr_proc_ctor *ktp;
638	struct ktr_request *req;
639	struct thread *td2;
640
641	ktrace_assert(td);
642	td2 = FIRST_THREAD_IN_PROC(p);
643	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
644	if (req == NULL)
645		return;
646	ktp = &req->ktr_data.ktr_proc_ctor;
647	ktp->sv_flags = p->p_sysent->sv_flags;
648	ktr_enqueuerequest(td2, req);
649}
650
651void
652ktrprocctor(struct proc *p)
653{
654	struct thread *td = curthread;
655
656	if ((p->p_traceflag & KTRFAC_MASK) == 0)
657		return;
658
659	ktrace_enter(td);
660	ktrprocctor_entered(td, p);
661	ktrace_exit(td);
662}
663
664/*
665 * When a process forks, enable tracing in the new process if needed.
666 */
667void
668ktrprocfork(struct proc *p1, struct proc *p2)
669{
670
671	MPASS(p2->p_ktrioparms == NULL);
672	MPASS(p2->p_traceflag == 0);
673
674	if (p1->p_traceflag == 0)
675		return;
676
677	PROC_LOCK(p1);
678	mtx_lock(&ktrace_mtx);
679	if (p1->p_traceflag & KTRFAC_INHERIT) {
680		p2->p_traceflag = p1->p_traceflag;
681		if ((p2->p_ktrioparms = p1->p_ktrioparms) != NULL)
682			p1->p_ktrioparms->refs++;
683	}
684	mtx_unlock(&ktrace_mtx);
685	PROC_UNLOCK(p1);
686
687	ktrprocctor(p2);
688}
689
690/*
691 * When a thread returns, drain any asynchronous records generated by the
692 * system call.
693 */
694void
695ktruserret(struct thread *td)
696{
697
698	ktrace_enter(td);
699	sx_xlock(&ktrace_sx);
700	ktr_drain(td);
701	sx_xunlock(&ktrace_sx);
702	ktrace_exit(td);
703}
704
705void
706ktrnamei(const char *path)
707{
708	struct ktr_request *req;
709	int namelen;
710	char *buf = NULL;
711
712	namelen = strlen(path);
713	if (namelen > 0) {
714		buf = malloc(namelen, M_KTRACE, M_WAITOK);
715		bcopy(path, buf, namelen);
716	}
717	req = ktr_getrequest(KTR_NAMEI);
718	if (req == NULL) {
719		if (buf != NULL)
720			free(buf, M_KTRACE);
721		return;
722	}
723	if (namelen > 0) {
724		req->ktr_header.ktr_len = namelen;
725		req->ktr_buffer = buf;
726	}
727	ktr_submitrequest(curthread, req);
728}
729
730void
731ktrsysctl(int *name, u_int namelen)
732{
733	struct ktr_request *req;
734	u_int mib[CTL_MAXNAME + 2];
735	char *mibname;
736	size_t mibnamelen;
737	int error;
738
739	/* Lookup name of mib. */
740	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
741	mib[0] = 0;
742	mib[1] = 1;
743	bcopy(name, mib + 2, namelen * sizeof(*name));
744	mibnamelen = 128;
745	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
746	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
747	    NULL, 0, &mibnamelen, 0);
748	if (error) {
749		free(mibname, M_KTRACE);
750		return;
751	}
752	req = ktr_getrequest(KTR_SYSCTL);
753	if (req == NULL) {
754		free(mibname, M_KTRACE);
755		return;
756	}
757	req->ktr_header.ktr_len = mibnamelen;
758	req->ktr_buffer = mibname;
759	ktr_submitrequest(curthread, req);
760}
761
762void
763ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error)
764{
765	struct ktr_request *req;
766	struct ktr_genio *ktg;
767	int datalen;
768	char *buf;
769
770	if (error != 0 && (rw == UIO_READ || error == EFAULT)) {
771		freeuio(uio);
772		return;
773	}
774	uio->uio_offset = 0;
775	uio->uio_rw = UIO_WRITE;
776	datalen = MIN(uio->uio_resid, ktr_geniosize);
777	buf = malloc(datalen, M_KTRACE, M_WAITOK);
778	error = uiomove(buf, datalen, uio);
779	freeuio(uio);
780	if (error) {
781		free(buf, M_KTRACE);
782		return;
783	}
784	req = ktr_getrequest(KTR_GENIO);
785	if (req == NULL) {
786		free(buf, M_KTRACE);
787		return;
788	}
789	ktg = &req->ktr_data.ktr_genio;
790	ktg->ktr_fd = fd;
791	ktg->ktr_rw = rw;
792	req->ktr_header.ktr_len = datalen;
793	req->ktr_buffer = buf;
794	ktr_submitrequest(curthread, req);
795}
796
797void
798ktrpsig(int sig, sig_t action, sigset_t *mask, int code)
799{
800	struct thread *td = curthread;
801	struct ktr_request *req;
802	struct ktr_psig	*kp;
803
804	req = ktr_getrequest(KTR_PSIG);
805	if (req == NULL)
806		return;
807	kp = &req->ktr_data.ktr_psig;
808	kp->signo = (char)sig;
809	kp->action = action;
810	kp->mask = *mask;
811	kp->code = code;
812	ktr_enqueuerequest(td, req);
813	ktrace_exit(td);
814}
815
816void
817ktrcsw(int out, int user, const char *wmesg)
818{
819	struct thread *td = curthread;
820	struct ktr_request *req;
821	struct ktr_csw *kc;
822
823	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
824		return;
825
826	req = ktr_getrequest(KTR_CSW);
827	if (req == NULL)
828		return;
829	kc = &req->ktr_data.ktr_csw;
830	kc->out = out;
831	kc->user = user;
832	if (wmesg != NULL)
833		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
834	else
835		bzero(kc->wmesg, sizeof(kc->wmesg));
836	ktr_enqueuerequest(td, req);
837	ktrace_exit(td);
838}
839
840void
841ktrstruct(const char *name, const void *data, size_t datalen)
842{
843	struct ktr_request *req;
844	char *buf;
845	size_t buflen, namelen;
846
847	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
848		return;
849
850	if (data == NULL)
851		datalen = 0;
852	namelen = strlen(name) + 1;
853	buflen = namelen + datalen;
854	buf = malloc(buflen, M_KTRACE, M_WAITOK);
855	strcpy(buf, name);
856	bcopy(data, buf + namelen, datalen);
857	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
858		free(buf, M_KTRACE);
859		return;
860	}
861	req->ktr_buffer = buf;
862	req->ktr_header.ktr_len = buflen;
863	ktr_submitrequest(curthread, req);
864}
865
866void
867ktrstruct_error(const char *name, const void *data, size_t datalen, int error)
868{
869
870	if (error == 0)
871		ktrstruct(name, data, datalen);
872}
873
874void
875ktrstructarray(const char *name, enum uio_seg seg, const void *data,
876    int num_items, size_t struct_size)
877{
878	struct ktr_request *req;
879	struct ktr_struct_array *ksa;
880	char *buf;
881	size_t buflen, datalen, namelen;
882	int max_items;
883
884	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
885		return;
886	if (num_items < 0)
887		return;
888
889	/* Trim array length to genio size. */
890	max_items = ktr_geniosize / struct_size;
891	if (num_items > max_items) {
892		if (max_items == 0)
893			num_items = 1;
894		else
895			num_items = max_items;
896	}
897	datalen = num_items * struct_size;
898
899	if (data == NULL)
900		datalen = 0;
901
902	namelen = strlen(name) + 1;
903	buflen = namelen + datalen;
904	buf = malloc(buflen, M_KTRACE, M_WAITOK);
905	strcpy(buf, name);
906	if (seg == UIO_SYSSPACE)
907		bcopy(data, buf + namelen, datalen);
908	else {
909		if (copyin(data, buf + namelen, datalen) != 0) {
910			free(buf, M_KTRACE);
911			return;
912		}
913	}
914	if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) {
915		free(buf, M_KTRACE);
916		return;
917	}
918	ksa = &req->ktr_data.ktr_struct_array;
919	ksa->struct_size = struct_size;
920	req->ktr_buffer = buf;
921	req->ktr_header.ktr_len = buflen;
922	ktr_submitrequest(curthread, req);
923}
924
925void
926ktrcapfail(enum ktr_cap_violation type, const void *data)
927{
928	struct thread *td = curthread;
929	struct ktr_request *req;
930	struct ktr_cap_fail *kcf;
931	union ktr_cap_data *kcd;
932
933	if (__predict_false(td->td_pflags & TDP_INKTRACE))
934		return;
935	if (type != CAPFAIL_SYSCALL &&
936	    (td->td_sa.callp->sy_flags & SYF_CAPENABLED) == 0)
937		return;
938
939	req = ktr_getrequest(KTR_CAPFAIL);
940	if (req == NULL)
941		return;
942	kcf = &req->ktr_data.ktr_cap_fail;
943	kcf->cap_type = type;
944	kcf->cap_code = td->td_sa.code;
945	kcf->cap_svflags = td->td_proc->p_sysent->sv_flags;
946	if (data != NULL) {
947		kcd = &kcf->cap_data;
948		switch (type) {
949		case CAPFAIL_NOTCAPABLE:
950		case CAPFAIL_INCREASE:
951			kcd->cap_needed = *(const cap_rights_t *)data;
952			kcd->cap_held = *((const cap_rights_t *)data + 1);
953			break;
954		case CAPFAIL_SYSCALL:
955		case CAPFAIL_SIGNAL:
956		case CAPFAIL_PROTO:
957			kcd->cap_int = *(const int *)data;
958			break;
959		case CAPFAIL_SOCKADDR:
960			kcd->cap_sockaddr = *(const struct sockaddr *)data;
961			break;
962		case CAPFAIL_NAMEI:
963			strlcpy(kcd->cap_path, data, MAXPATHLEN);
964			break;
965		case CAPFAIL_CPUSET:
966		default:
967			break;
968		}
969	}
970	ktr_enqueuerequest(td, req);
971	ktrace_exit(td);
972}
973
974void
975ktrfault(vm_offset_t vaddr, int type)
976{
977	struct thread *td = curthread;
978	struct ktr_request *req;
979	struct ktr_fault *kf;
980
981	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
982		return;
983
984	req = ktr_getrequest(KTR_FAULT);
985	if (req == NULL)
986		return;
987	kf = &req->ktr_data.ktr_fault;
988	kf->vaddr = vaddr;
989	kf->type = type;
990	ktr_enqueuerequest(td, req);
991	ktrace_exit(td);
992}
993
994void
995ktrfaultend(int result)
996{
997	struct thread *td = curthread;
998	struct ktr_request *req;
999	struct ktr_faultend *kf;
1000
1001	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
1002		return;
1003
1004	req = ktr_getrequest(KTR_FAULTEND);
1005	if (req == NULL)
1006		return;
1007	kf = &req->ktr_data.ktr_faultend;
1008	kf->result = result;
1009	ktr_enqueuerequest(td, req);
1010	ktrace_exit(td);
1011}
1012#endif /* KTRACE */
1013
1014/* Interface and common routines */
1015
1016#ifndef _SYS_SYSPROTO_H_
1017struct ktrace_args {
1018	char	*fname;
1019	int	ops;
1020	int	facs;
1021	int	pid;
1022};
1023#endif
1024/* ARGSUSED */
1025int
1026sys_ktrace(struct thread *td, struct ktrace_args *uap)
1027{
1028#ifdef KTRACE
1029	struct vnode *vp = NULL;
1030	struct proc *p;
1031	struct pgrp *pg;
1032	int facs = uap->facs & ~KTRFAC_ROOT;
1033	int ops = KTROP(uap->ops);
1034	int descend = uap->ops & KTRFLAG_DESCEND;
1035	int ret = 0;
1036	int flags, error = 0;
1037	struct nameidata nd;
1038	struct ktr_io_params *kiop, *old_kiop;
1039
1040	/*
1041	 * Need something to (un)trace.
1042	 */
1043	if (ops != KTROP_CLEARFILE && facs == 0)
1044		return (EINVAL);
1045
1046	kiop = NULL;
1047	if (ops != KTROP_CLEAR) {
1048		/*
1049		 * an operation which requires a file argument.
1050		 */
1051		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname);
1052		flags = FREAD | FWRITE | O_NOFOLLOW;
1053		error = vn_open(&nd, &flags, 0, NULL);
1054		if (error)
1055			return (error);
1056		NDFREE_PNBUF(&nd);
1057		vp = nd.ni_vp;
1058		VOP_UNLOCK(vp);
1059		if (vp->v_type != VREG) {
1060			(void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
1061			return (EACCES);
1062		}
1063		kiop = ktr_io_params_alloc(td, vp);
1064	}
1065
1066	/*
1067	 * Clear all uses of the tracefile.
1068	 */
1069	ktrace_enter(td);
1070	if (ops == KTROP_CLEARFILE) {
1071restart:
1072		sx_slock(&allproc_lock);
1073		FOREACH_PROC_IN_SYSTEM(p) {
1074			old_kiop = NULL;
1075			PROC_LOCK(p);
1076			if (p->p_ktrioparms != NULL &&
1077			    p->p_ktrioparms->vp == vp) {
1078				if (ktrcanset(td, p)) {
1079					mtx_lock(&ktrace_mtx);
1080					old_kiop = ktr_freeproc(p);
1081					mtx_unlock(&ktrace_mtx);
1082				} else
1083					error = EPERM;
1084			}
1085			PROC_UNLOCK(p);
1086			if (old_kiop != NULL) {
1087				sx_sunlock(&allproc_lock);
1088				ktr_io_params_free(old_kiop);
1089				goto restart;
1090			}
1091		}
1092		sx_sunlock(&allproc_lock);
1093		goto done;
1094	}
1095	/*
1096	 * do it
1097	 */
1098	sx_slock(&proctree_lock);
1099	if (uap->pid < 0) {
1100		/*
1101		 * by process group
1102		 */
1103		pg = pgfind(-uap->pid);
1104		if (pg == NULL) {
1105			sx_sunlock(&proctree_lock);
1106			error = ESRCH;
1107			goto done;
1108		}
1109
1110		/*
1111		 * ktrops() may call vrele(). Lock pg_members
1112		 * by the proctree_lock rather than pg_mtx.
1113		 */
1114		PGRP_UNLOCK(pg);
1115		if (LIST_EMPTY(&pg->pg_members)) {
1116			sx_sunlock(&proctree_lock);
1117			error = ESRCH;
1118			goto done;
1119		}
1120		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1121			PROC_LOCK(p);
1122			if (descend)
1123				ret |= ktrsetchildren(td, p, ops, facs, kiop);
1124			else
1125				ret |= ktrops(td, p, ops, facs, kiop);
1126		}
1127	} else {
1128		/*
1129		 * by pid
1130		 */
1131		p = pfind(uap->pid);
1132		if (p == NULL) {
1133			error = ESRCH;
1134			sx_sunlock(&proctree_lock);
1135			goto done;
1136		}
1137		if (descend)
1138			ret |= ktrsetchildren(td, p, ops, facs, kiop);
1139		else
1140			ret |= ktrops(td, p, ops, facs, kiop);
1141	}
1142	sx_sunlock(&proctree_lock);
1143	if (!ret)
1144		error = EPERM;
1145done:
1146	if (kiop != NULL) {
1147		mtx_lock(&ktrace_mtx);
1148		kiop = ktr_io_params_rele(kiop);
1149		mtx_unlock(&ktrace_mtx);
1150		ktr_io_params_free(kiop);
1151	}
1152	ktrace_exit(td);
1153	return (error);
1154#else /* !KTRACE */
1155	return (ENOSYS);
1156#endif /* KTRACE */
1157}
1158
1159/* ARGSUSED */
1160int
1161sys_utrace(struct thread *td, struct utrace_args *uap)
1162{
1163
1164#ifdef KTRACE
1165	struct ktr_request *req;
1166	void *cp;
1167	int error;
1168
1169	if (!KTRPOINT(td, KTR_USER))
1170		return (0);
1171	if (uap->len > KTR_USER_MAXLEN)
1172		return (EINVAL);
1173	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
1174	error = copyin(uap->addr, cp, uap->len);
1175	if (error) {
1176		free(cp, M_KTRACE);
1177		return (error);
1178	}
1179	req = ktr_getrequest(KTR_USER);
1180	if (req == NULL) {
1181		free(cp, M_KTRACE);
1182		return (ENOMEM);
1183	}
1184	req->ktr_buffer = cp;
1185	req->ktr_header.ktr_len = uap->len;
1186	ktr_submitrequest(td, req);
1187	return (0);
1188#else /* !KTRACE */
1189	return (ENOSYS);
1190#endif /* KTRACE */
1191}
1192
1193#ifdef KTRACE
1194static int
1195ktrops(struct thread *td, struct proc *p, int ops, int facs,
1196    struct ktr_io_params *new_kiop)
1197{
1198	struct ktr_io_params *old_kiop;
1199
1200	PROC_LOCK_ASSERT(p, MA_OWNED);
1201	if (!ktrcanset(td, p)) {
1202		PROC_UNLOCK(p);
1203		return (0);
1204	}
1205	if ((ops == KTROP_SET && p->p_state == PRS_NEW) ||
1206	    p_cansee(td, p) != 0) {
1207		/*
1208		 * Disallow setting trace points if the process is being born.
1209		 * This avoids races with trace point inheritance in
1210		 * ktrprocfork().
1211		 */
1212		PROC_UNLOCK(p);
1213		return (0);
1214	}
1215	if ((p->p_flag & P_WEXIT) != 0) {
1216		/*
1217		 * There's nothing to do if the process is exiting, but avoid
1218		 * signaling an error.
1219		 */
1220		PROC_UNLOCK(p);
1221		return (1);
1222	}
1223	old_kiop = NULL;
1224	mtx_lock(&ktrace_mtx);
1225	if (ops == KTROP_SET) {
1226		if (p->p_ktrioparms != NULL &&
1227		    p->p_ktrioparms->vp != new_kiop->vp) {
1228			/* if trace file already in use, relinquish below */
1229			old_kiop = ktr_io_params_rele(p->p_ktrioparms);
1230			p->p_ktrioparms = NULL;
1231		}
1232		if (p->p_ktrioparms == NULL) {
1233			p->p_ktrioparms = new_kiop;
1234			ktr_io_params_ref(new_kiop);
1235		}
1236		p->p_traceflag |= facs;
1237		if (priv_check(td, PRIV_KTRACE) == 0)
1238			p->p_traceflag |= KTRFAC_ROOT;
1239	} else {
1240		/* KTROP_CLEAR */
1241		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1242			/* no more tracing */
1243			old_kiop = ktr_freeproc(p);
1244	}
1245	mtx_unlock(&ktrace_mtx);
1246	if ((p->p_traceflag & KTRFAC_MASK) != 0)
1247		ktrprocctor_entered(td, p);
1248	PROC_UNLOCK(p);
1249	ktr_io_params_free(old_kiop);
1250
1251	return (1);
1252}
1253
1254static int
1255ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs,
1256    struct ktr_io_params *new_kiop)
1257{
1258	struct proc *p;
1259	int ret = 0;
1260
1261	p = top;
1262	PROC_LOCK_ASSERT(p, MA_OWNED);
1263	sx_assert(&proctree_lock, SX_LOCKED);
1264	for (;;) {
1265		ret |= ktrops(td, p, ops, facs, new_kiop);
1266		/*
1267		 * If this process has children, descend to them next,
1268		 * otherwise do any siblings, and if done with this level,
1269		 * follow back up the tree (but not past top).
1270		 */
1271		if (!LIST_EMPTY(&p->p_children))
1272			p = LIST_FIRST(&p->p_children);
1273		else for (;;) {
1274			if (p == top)
1275				return (ret);
1276			if (LIST_NEXT(p, p_sibling)) {
1277				p = LIST_NEXT(p, p_sibling);
1278				break;
1279			}
1280			p = p->p_pptr;
1281		}
1282		PROC_LOCK(p);
1283	}
1284	/*NOTREACHED*/
1285}
1286
1287static void
1288ktr_writerequest(struct thread *td, struct ktr_request *req)
1289{
1290	struct ktr_io_params *kiop, *kiop1;
1291	struct ktr_header *kth;
1292	struct vnode *vp;
1293	struct proc *p;
1294	struct ucred *cred;
1295	struct uio auio;
1296	struct iovec aiov[3];
1297	struct mount *mp;
1298	off_t lim;
1299	int datalen, buflen;
1300	int error;
1301
1302	p = td->td_proc;
1303
1304	/*
1305	 * We reference the kiop for use in I/O in case ktrace is
1306	 * disabled on the process as we write out the request.
1307	 */
1308	mtx_lock(&ktrace_mtx);
1309	kiop = p->p_ktrioparms;
1310
1311	/*
1312	 * If kiop is NULL, it has been cleared out from under this
1313	 * request, so just drop it.
1314	 */
1315	if (kiop == NULL) {
1316		mtx_unlock(&ktrace_mtx);
1317		return;
1318	}
1319
1320	ktr_io_params_ref(kiop);
1321	vp = kiop->vp;
1322	cred = kiop->cr;
1323	lim = kiop->lim;
1324
1325	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1326	mtx_unlock(&ktrace_mtx);
1327
1328	kth = &req->ktr_header;
1329	KASSERT(((u_short)kth->ktr_type & ~KTR_TYPE) < nitems(data_lengths),
1330	    ("data_lengths array overflow"));
1331	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_TYPE];
1332	buflen = kth->ktr_len;
1333	auio.uio_iov = &aiov[0];
1334	auio.uio_offset = 0;
1335	auio.uio_segflg = UIO_SYSSPACE;
1336	auio.uio_rw = UIO_WRITE;
1337	aiov[0].iov_base = (caddr_t)kth;
1338	aiov[0].iov_len = sizeof(struct ktr_header);
1339	auio.uio_resid = sizeof(struct ktr_header);
1340	auio.uio_iovcnt = 1;
1341	auio.uio_td = td;
1342	if (datalen != 0) {
1343		aiov[1].iov_base = (caddr_t)&req->ktr_data;
1344		aiov[1].iov_len = datalen;
1345		auio.uio_resid += datalen;
1346		auio.uio_iovcnt++;
1347		kth->ktr_len += datalen;
1348	}
1349	if (buflen != 0) {
1350		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1351		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1352		aiov[auio.uio_iovcnt].iov_len = buflen;
1353		auio.uio_resid += buflen;
1354		auio.uio_iovcnt++;
1355	}
1356
1357	vn_start_write(vp, &mp, V_WAIT);
1358	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1359	td->td_ktr_io_lim = lim;
1360#ifdef MAC
1361	error = mac_vnode_check_write(cred, NOCRED, vp);
1362	if (error == 0)
1363#endif
1364		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1365	VOP_UNLOCK(vp);
1366	vn_finished_write(mp);
1367	if (error == 0) {
1368		mtx_lock(&ktrace_mtx);
1369		kiop = ktr_io_params_rele(kiop);
1370		mtx_unlock(&ktrace_mtx);
1371		ktr_io_params_free(kiop);
1372		return;
1373	}
1374
1375	/*
1376	 * If error encountered, give up tracing on this vnode on this
1377	 * process.  Other processes might still be suitable for
1378	 * writes to this vnode.
1379	 */
1380	log(LOG_NOTICE,
1381	    "ktrace write failed, errno %d, tracing stopped for pid %d\n",
1382	    error, p->p_pid);
1383
1384	kiop1 = NULL;
1385	PROC_LOCK(p);
1386	mtx_lock(&ktrace_mtx);
1387	if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp)
1388		kiop1 = ktr_freeproc(p);
1389	kiop = ktr_io_params_rele(kiop);
1390	mtx_unlock(&ktrace_mtx);
1391	PROC_UNLOCK(p);
1392	ktr_io_params_free(kiop1);
1393	ktr_io_params_free(kiop);
1394}
1395
1396/*
1397 * Return true if caller has permission to set the ktracing state
1398 * of target.  Essentially, the target can't possess any
1399 * more permissions than the caller.  KTRFAC_ROOT signifies that
1400 * root previously set the tracing status on the target process, and
1401 * so, only root may further change it.
1402 */
1403static int
1404ktrcanset(struct thread *td, struct proc *targetp)
1405{
1406
1407	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1408	if (targetp->p_traceflag & KTRFAC_ROOT &&
1409	    priv_check(td, PRIV_KTRACE))
1410		return (0);
1411
1412	if (p_candebug(td, targetp) != 0)
1413		return (0);
1414
1415	return (1);
1416}
1417
1418#endif /* KTRACE */
1419