1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37#include <sys/cdefs.h>
38#include "opt_ktrace.h"
39#include "opt_kstack_pages.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/bitstring.h>
44#include <sys/sysproto.h>
45#include <sys/eventhandler.h>
46#include <sys/fcntl.h>
47#include <sys/filedesc.h>
48#include <sys/jail.h>
49#include <sys/kernel.h>
50#include <sys/kthread.h>
51#include <sys/sysctl.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/msan.h>
55#include <sys/mutex.h>
56#include <sys/priv.h>
57#include <sys/proc.h>
58#include <sys/procdesc.h>
59#include <sys/ptrace.h>
60#include <sys/racct.h>
61#include <sys/resourcevar.h>
62#include <sys/sched.h>
63#include <sys/syscall.h>
64#include <sys/vmmeter.h>
65#include <sys/vnode.h>
66#include <sys/acct.h>
67#include <sys/ktr.h>
68#include <sys/ktrace.h>
69#include <sys/unistd.h>
70#include <sys/sdt.h>
71#include <sys/sx.h>
72#include <sys/sysent.h>
73#include <sys/signalvar.h>
74
75#include <security/audit/audit.h>
76#include <security/mac/mac_framework.h>
77
78#include <vm/vm.h>
79#include <vm/pmap.h>
80#include <vm/vm_map.h>
81#include <vm/vm_extern.h>
82#include <vm/uma.h>
83
84#ifdef KDTRACE_HOOKS
85#include <sys/dtrace_bsd.h>
86dtrace_fork_func_t	dtrace_fasttrap_fork;
87#endif
88
89SDT_PROVIDER_DECLARE(proc);
90SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
91
92#ifndef _SYS_SYSPROTO_H_
93struct fork_args {
94	int     dummy;
95};
96#endif
97
98/* ARGSUSED */
99int
100sys_fork(struct thread *td, struct fork_args *uap)
101{
102	struct fork_req fr;
103	int error, pid;
104
105	bzero(&fr, sizeof(fr));
106	fr.fr_flags = RFFDG | RFPROC;
107	fr.fr_pidp = &pid;
108	error = fork1(td, &fr);
109	if (error == 0) {
110		td->td_retval[0] = pid;
111		td->td_retval[1] = 0;
112	}
113	return (error);
114}
115
116/* ARGUSED */
117int
118sys_pdfork(struct thread *td, struct pdfork_args *uap)
119{
120	struct fork_req fr;
121	int error, fd, pid;
122
123	bzero(&fr, sizeof(fr));
124	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
125	fr.fr_pidp = &pid;
126	fr.fr_pd_fd = &fd;
127	fr.fr_pd_flags = uap->flags;
128	AUDIT_ARG_FFLAGS(uap->flags);
129	/*
130	 * It is necessary to return fd by reference because 0 is a valid file
131	 * descriptor number, and the child needs to be able to distinguish
132	 * itself from the parent using the return value.
133	 */
134	error = fork1(td, &fr);
135	if (error == 0) {
136		td->td_retval[0] = pid;
137		td->td_retval[1] = 0;
138		error = copyout(&fd, uap->fdp, sizeof(fd));
139	}
140	return (error);
141}
142
143/* ARGSUSED */
144int
145sys_vfork(struct thread *td, struct vfork_args *uap)
146{
147	struct fork_req fr;
148	int error, pid;
149
150	bzero(&fr, sizeof(fr));
151	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
152	fr.fr_pidp = &pid;
153	error = fork1(td, &fr);
154	if (error == 0) {
155		td->td_retval[0] = pid;
156		td->td_retval[1] = 0;
157	}
158	return (error);
159}
160
161int
162sys_rfork(struct thread *td, struct rfork_args *uap)
163{
164	struct fork_req fr;
165	int error, pid;
166
167	/* Don't allow kernel-only flags. */
168	if ((uap->flags & RFKERNELONLY) != 0)
169		return (EINVAL);
170	/* RFSPAWN must not appear with others */
171	if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
172		return (EINVAL);
173
174	AUDIT_ARG_FFLAGS(uap->flags);
175	bzero(&fr, sizeof(fr));
176	if ((uap->flags & RFSPAWN) != 0) {
177		fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
178		fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
179	} else {
180		fr.fr_flags = uap->flags;
181	}
182	fr.fr_pidp = &pid;
183	error = fork1(td, &fr);
184	if (error == 0) {
185		td->td_retval[0] = pid;
186		td->td_retval[1] = 0;
187	}
188	return (error);
189}
190
191int __exclusive_cache_line	nprocs = 1;		/* process 0 */
192int	lastpid = 0;
193SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
194    "Last used PID");
195
196/*
197 * Random component to lastpid generation.  We mix in a random factor to make
198 * it a little harder to predict.  We sanity check the modulus value to avoid
199 * doing it in critical paths.  Don't let it be too small or we pointlessly
200 * waste randomness entropy, and don't let it be impossibly large.  Using a
201 * modulus that is too big causes a LOT more process table scans and slows
202 * down fork processing as the pidchecked caching is defeated.
203 */
204static int randompid = 0;
205
206static int
207sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
208{
209	int error, pid;
210
211	error = sysctl_wire_old_buffer(req, sizeof(int));
212	if (error != 0)
213		return(error);
214	sx_xlock(&allproc_lock);
215	pid = randompid;
216	error = sysctl_handle_int(oidp, &pid, 0, req);
217	if (error == 0 && req->newptr != NULL) {
218		if (pid == 0)
219			randompid = 0;
220		else if (pid == 1)
221			/* generate a random PID modulus between 100 and 1123 */
222			randompid = 100 + arc4random() % 1024;
223		else if (pid < 0 || pid > pid_max - 100)
224			/* out of range */
225			randompid = pid_max - 100;
226		else if (pid < 100)
227			/* Make it reasonable */
228			randompid = 100;
229		else
230			randompid = pid;
231	}
232	sx_xunlock(&allproc_lock);
233	return (error);
234}
235
236SYSCTL_PROC(_kern, OID_AUTO, randompid,
237    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
238    sysctl_kern_randompid, "I",
239    "Random PID modulus. Special values: 0: disable, 1: choose random value");
240
241extern bitstr_t proc_id_pidmap;
242extern bitstr_t proc_id_grpidmap;
243extern bitstr_t proc_id_sessidmap;
244extern bitstr_t proc_id_reapmap;
245
246/*
247 * Find an unused process ID
248 *
249 * If RFHIGHPID is set (used during system boot), do not allocate
250 * low-numbered pids.
251 */
252static int
253fork_findpid(int flags)
254{
255	pid_t result;
256	int trypid, random;
257
258	/*
259	 * Avoid calling arc4random with procid_lock held.
260	 */
261	random = 0;
262	if (__predict_false(randompid))
263		random = arc4random() % randompid;
264
265	mtx_lock(&procid_lock);
266
267	trypid = lastpid + 1;
268	if (flags & RFHIGHPID) {
269		if (trypid < 10)
270			trypid = 10;
271	} else {
272		trypid += random;
273	}
274retry:
275	if (trypid >= pid_max)
276		trypid = 2;
277
278	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
279	if (result == -1) {
280		KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
281		trypid = 2;
282		goto retry;
283	}
284	if (bit_test(&proc_id_grpidmap, result) ||
285	    bit_test(&proc_id_sessidmap, result) ||
286	    bit_test(&proc_id_reapmap, result)) {
287		trypid = result + 1;
288		goto retry;
289	}
290
291	/*
292	 * RFHIGHPID does not mess with the lastpid counter during boot.
293	 */
294	if ((flags & RFHIGHPID) == 0)
295		lastpid = result;
296
297	bit_set(&proc_id_pidmap, result);
298	mtx_unlock(&procid_lock);
299
300	return (result);
301}
302
303static int
304fork_norfproc(struct thread *td, int flags)
305{
306	struct proc *p1;
307	int error;
308
309	KASSERT((flags & RFPROC) == 0,
310	    ("fork_norfproc called with RFPROC set"));
311	p1 = td->td_proc;
312
313	/*
314	 * Quiesce other threads if necessary.  If RFMEM is not specified we
315	 * must ensure that other threads do not concurrently create a second
316	 * process sharing the vmspace, see vmspace_unshare().
317	 */
318	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
319	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
320		PROC_LOCK(p1);
321		if (thread_single(p1, SINGLE_BOUNDARY)) {
322			PROC_UNLOCK(p1);
323			return (ERESTART);
324		}
325		PROC_UNLOCK(p1);
326	}
327
328	error = vm_forkproc(td, NULL, NULL, NULL, flags);
329	if (error != 0)
330		goto fail;
331
332	/*
333	 * Close all file descriptors.
334	 */
335	if ((flags & RFCFDG) != 0) {
336		struct filedesc *fdtmp;
337		struct pwddesc *pdtmp;
338
339		pdtmp = pdinit(td->td_proc->p_pd, false);
340		fdtmp = fdinit();
341		pdescfree(td);
342		fdescfree(td);
343		p1->p_fd = fdtmp;
344		p1->p_pd = pdtmp;
345	}
346
347	/*
348	 * Unshare file descriptors (from parent).
349	 */
350	if ((flags & RFFDG) != 0) {
351		fdunshare(td);
352		pdunshare(td);
353	}
354
355fail:
356	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
357	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
358		PROC_LOCK(p1);
359		thread_single_end(p1, SINGLE_BOUNDARY);
360		PROC_UNLOCK(p1);
361	}
362	return (error);
363}
364
365static void
366do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
367    struct vmspace *vm2, struct file *fp_procdesc)
368{
369	struct proc *p1, *pptr;
370	struct filedesc *fd;
371	struct filedesc_to_leader *fdtol;
372	struct pwddesc *pd;
373	struct sigacts *newsigacts;
374
375	p1 = td->td_proc;
376
377	PROC_LOCK(p1);
378	bcopy(&p1->p_startcopy, &p2->p_startcopy,
379	    __rangeof(struct proc, p_startcopy, p_endcopy));
380	pargs_hold(p2->p_args);
381	PROC_UNLOCK(p1);
382
383	bzero(&p2->p_startzero,
384	    __rangeof(struct proc, p_startzero, p_endzero));
385
386	/* Tell the prison that we exist. */
387	prison_proc_hold(p2->p_ucred->cr_prison);
388
389	p2->p_state = PRS_NEW;		/* protect against others */
390	p2->p_pid = fork_findpid(fr->fr_flags);
391	AUDIT_ARG_PID(p2->p_pid);
392	TSFORK(p2->p_pid, p1->p_pid);
393
394	sx_xlock(&allproc_lock);
395	LIST_INSERT_HEAD(&allproc, p2, p_list);
396	allproc_gen++;
397	prison_proc_link(p2->p_ucred->cr_prison, p2);
398	sx_xunlock(&allproc_lock);
399
400	sx_xlock(PIDHASHLOCK(p2->p_pid));
401	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
402	sx_xunlock(PIDHASHLOCK(p2->p_pid));
403
404	tidhash_add(td2);
405
406	/*
407	 * Malloc things while we don't hold any locks.
408	 */
409	if (fr->fr_flags & RFSIGSHARE)
410		newsigacts = NULL;
411	else
412		newsigacts = sigacts_alloc();
413
414	/*
415	 * Copy filedesc.
416	 */
417	if (fr->fr_flags & RFCFDG) {
418		pd = pdinit(p1->p_pd, false);
419		fd = fdinit();
420		fdtol = NULL;
421	} else if (fr->fr_flags & RFFDG) {
422		if (fr->fr_flags2 & FR2_SHARE_PATHS)
423			pd = pdshare(p1->p_pd);
424		else
425			pd = pdcopy(p1->p_pd);
426		fd = fdcopy(p1->p_fd);
427		fdtol = NULL;
428	} else {
429		if (fr->fr_flags2 & FR2_SHARE_PATHS)
430			pd = pdcopy(p1->p_pd);
431		else
432			pd = pdshare(p1->p_pd);
433		fd = fdshare(p1->p_fd);
434		if (p1->p_fdtol == NULL)
435			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
436			    p1->p_leader);
437		if ((fr->fr_flags & RFTHREAD) != 0) {
438			/*
439			 * Shared file descriptor table, and shared
440			 * process leaders.
441			 */
442			fdtol = filedesc_to_leader_share(p1->p_fdtol, p1->p_fd);
443		} else {
444			/*
445			 * Shared file descriptor table, and different
446			 * process leaders.
447			 */
448			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
449			    p1->p_fd, p2);
450		}
451	}
452	/*
453	 * Make a proc table entry for the new process.
454	 * Start by zeroing the section of proc that is zero-initialized,
455	 * then copy the section that is copied directly from the parent.
456	 */
457
458	PROC_LOCK(p2);
459	PROC_LOCK(p1);
460
461	bzero(&td2->td_startzero,
462	    __rangeof(struct thread, td_startzero, td_endzero));
463
464	bcopy(&td->td_startcopy, &td2->td_startcopy,
465	    __rangeof(struct thread, td_startcopy, td_endcopy));
466
467	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
468	td2->td_sigstk = td->td_sigstk;
469	td2->td_flags = TDF_INMEM;
470	td2->td_lend_user_pri = PRI_MAX;
471
472#ifdef VIMAGE
473	td2->td_vnet = NULL;
474	td2->td_vnet_lpush = NULL;
475#endif
476
477	/*
478	 * Allow the scheduler to initialize the child.
479	 */
480	thread_lock(td);
481	sched_fork(td, td2);
482	/*
483	 * Request AST to check for TDP_RFPPWAIT.  Do it here
484	 * to avoid calling thread_lock() again.
485	 */
486	if ((fr->fr_flags & RFPPWAIT) != 0)
487		ast_sched_locked(td, TDA_VFORK);
488	thread_unlock(td);
489
490	/*
491	 * Duplicate sub-structures as needed.
492	 * Increase reference counts on shared objects.
493	 */
494	p2->p_flag = P_INMEM;
495	p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
496	    P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
497	    P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
498	    P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC | P2_NO_NEW_PRIVS |
499	    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
500	p2->p_swtick = ticks;
501	if (p1->p_flag & P_PROFIL)
502		startprofclock(p2);
503
504	if (fr->fr_flags & RFSIGSHARE) {
505		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
506	} else {
507		sigacts_copy(newsigacts, p1->p_sigacts);
508		p2->p_sigacts = newsigacts;
509		if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) {
510			mtx_lock(&p2->p_sigacts->ps_mtx);
511			if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0)
512				sig_drop_caught(p2);
513			if ((fr->fr_flags2 & FR2_KPROC) != 0)
514				p2->p_sigacts->ps_flag |= PS_NOCLDWAIT;
515			mtx_unlock(&p2->p_sigacts->ps_mtx);
516		}
517	}
518
519	if (fr->fr_flags & RFTSIGZMB)
520	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
521	else if (fr->fr_flags & RFLINUXTHPN)
522	        p2->p_sigparent = SIGUSR1;
523	else
524	        p2->p_sigparent = SIGCHLD;
525
526	if ((fr->fr_flags2 & FR2_KPROC) != 0) {
527		p2->p_flag |= P_SYSTEM | P_KPROC;
528		td2->td_pflags |= TDP_KTHREAD;
529	}
530
531	p2->p_textvp = p1->p_textvp;
532	p2->p_textdvp = p1->p_textdvp;
533	p2->p_fd = fd;
534	p2->p_fdtol = fdtol;
535	p2->p_pd = pd;
536
537	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
538		p2->p_flag |= P_PROTECTED;
539		p2->p_flag2 |= P2_INHERIT_PROTECTED;
540	}
541
542	/*
543	 * p_limit is copy-on-write.  Bump its refcount.
544	 */
545	lim_fork(p1, p2);
546
547	thread_cow_get_proc(td2, p2);
548
549	pstats_fork(p1->p_stats, p2->p_stats);
550
551	PROC_UNLOCK(p1);
552	PROC_UNLOCK(p2);
553
554	/*
555	 * Bump references to the text vnode and directory, and copy
556	 * the hardlink name.
557	 */
558	if (p2->p_textvp != NULL)
559		vrefact(p2->p_textvp);
560	if (p2->p_textdvp != NULL)
561		vrefact(p2->p_textdvp);
562	p2->p_binname = p1->p_binname == NULL ? NULL :
563	    strdup(p1->p_binname, M_PARGS);
564
565	/*
566	 * Set up linkage for kernel based threading.
567	 */
568	if ((fr->fr_flags & RFTHREAD) != 0) {
569		mtx_lock(&ppeers_lock);
570		p2->p_peers = p1->p_peers;
571		p1->p_peers = p2;
572		p2->p_leader = p1->p_leader;
573		mtx_unlock(&ppeers_lock);
574		PROC_LOCK(p1->p_leader);
575		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
576			PROC_UNLOCK(p1->p_leader);
577			/*
578			 * The task leader is exiting, so process p1 is
579			 * going to be killed shortly.  Since p1 obviously
580			 * isn't dead yet, we know that the leader is either
581			 * sending SIGKILL's to all the processes in this
582			 * task or is sleeping waiting for all the peers to
583			 * exit.  We let p1 complete the fork, but we need
584			 * to go ahead and kill the new process p2 since
585			 * the task leader may not get a chance to send
586			 * SIGKILL to it.  We leave it on the list so that
587			 * the task leader will wait for this new process
588			 * to commit suicide.
589			 */
590			PROC_LOCK(p2);
591			kern_psignal(p2, SIGKILL);
592			PROC_UNLOCK(p2);
593		} else
594			PROC_UNLOCK(p1->p_leader);
595	} else {
596		p2->p_peers = NULL;
597		p2->p_leader = p2;
598	}
599
600	sx_xlock(&proctree_lock);
601	PGRP_LOCK(p1->p_pgrp);
602	PROC_LOCK(p2);
603	PROC_LOCK(p1);
604
605	/*
606	 * Preserve some more flags in subprocess.  P_PROFIL has already
607	 * been preserved.
608	 */
609	p2->p_flag |= p1->p_flag & P_SUGID;
610	td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK | TDP_SIGFASTBLOCK));
611	SESS_LOCK(p1->p_session);
612	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
613		p2->p_flag |= P_CONTROLT;
614	SESS_UNLOCK(p1->p_session);
615	if (fr->fr_flags & RFPPWAIT)
616		p2->p_flag |= P_PPWAIT;
617
618	p2->p_pgrp = p1->p_pgrp;
619	LIST_INSERT_AFTER(p1, p2, p_pglist);
620	PGRP_UNLOCK(p1->p_pgrp);
621	LIST_INIT(&p2->p_children);
622	LIST_INIT(&p2->p_orphans);
623
624	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
625
626	/*
627	 * This begins the section where we must prevent the parent
628	 * from being swapped.
629	 */
630	_PHOLD(p1);
631	PROC_UNLOCK(p1);
632
633	/*
634	 * Attach the new process to its parent.
635	 *
636	 * If RFNOWAIT is set, the newly created process becomes a child
637	 * of init.  This effectively disassociates the child from the
638	 * parent.
639	 */
640	if ((fr->fr_flags & RFNOWAIT) != 0) {
641		pptr = p1->p_reaper;
642		p2->p_reaper = pptr;
643	} else {
644		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
645		    p1 : p1->p_reaper;
646		pptr = p1;
647	}
648	p2->p_pptr = pptr;
649	p2->p_oppid = pptr->p_pid;
650	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
651	LIST_INIT(&p2->p_reaplist);
652	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
653	if (p2->p_reaper == p1 && p1 != initproc) {
654		p2->p_reapsubtree = p2->p_pid;
655		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
656	}
657	sx_xunlock(&proctree_lock);
658
659	/* Inform accounting that we have forked. */
660	p2->p_acflag = AFORK;
661	PROC_UNLOCK(p2);
662
663#ifdef KTRACE
664	ktrprocfork(p1, p2);
665#endif
666
667	/*
668	 * Finish creating the child process.  It will return via a different
669	 * execution path later.  (ie: directly into user mode)
670	 */
671	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
672
673	if (fr->fr_flags == (RFFDG | RFPROC)) {
674		VM_CNT_INC(v_forks);
675		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
676		    p2->p_vmspace->vm_ssize);
677	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
678		VM_CNT_INC(v_vforks);
679		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
680		    p2->p_vmspace->vm_ssize);
681	} else if (p1 == &proc0) {
682		VM_CNT_INC(v_kthreads);
683		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
684		    p2->p_vmspace->vm_ssize);
685	} else {
686		VM_CNT_INC(v_rforks);
687		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
688		    p2->p_vmspace->vm_ssize);
689	}
690
691	/*
692	 * Associate the process descriptor with the process before anything
693	 * can happen that might cause that process to need the descriptor.
694	 * However, don't do this until after fork(2) can no longer fail.
695	 */
696	if (fr->fr_flags & RFPROCDESC)
697		procdesc_new(p2, fr->fr_pd_flags);
698
699	/*
700	 * Both processes are set up, now check if any loadable modules want
701	 * to adjust anything.
702	 */
703	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
704
705	/*
706	 * Set the child start time and mark the process as being complete.
707	 */
708	PROC_LOCK(p2);
709	PROC_LOCK(p1);
710	microuptime(&p2->p_stats->p_start);
711	PROC_SLOCK(p2);
712	p2->p_state = PRS_NORMAL;
713	PROC_SUNLOCK(p2);
714
715#ifdef KDTRACE_HOOKS
716	/*
717	 * Tell the DTrace fasttrap provider about the new process so that any
718	 * tracepoints inherited from the parent can be removed. We have to do
719	 * this only after p_state is PRS_NORMAL since the fasttrap module will
720	 * use pfind() later on.
721	 */
722	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
723		dtrace_fasttrap_fork(p1, p2);
724#endif
725	if (fr->fr_flags & RFPPWAIT) {
726		td->td_pflags |= TDP_RFPPWAIT;
727		td->td_rfppwait_p = p2;
728		td->td_dbgflags |= TDB_VFORK;
729	}
730	PROC_UNLOCK(p2);
731
732	/*
733	 * Tell any interested parties about the new process.
734	 */
735	knote_fork(p1->p_klist, p2->p_pid);
736
737	/*
738	 * Now can be swapped.
739	 */
740	_PRELE(p1);
741	PROC_UNLOCK(p1);
742	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
743
744	if (fr->fr_flags & RFPROCDESC) {
745		procdesc_finit(p2->p_procdesc, fp_procdesc);
746		fdrop(fp_procdesc, td);
747	}
748
749	/*
750	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
751	 * synced with forks in progress so it is OK if we miss it
752	 * if being set atm.
753	 */
754	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
755		sx_xlock(&proctree_lock);
756		PROC_LOCK(p2);
757
758		/*
759		 * p1->p_ptevents & p1->p_pptr are protected by both
760		 * process and proctree locks for modifications,
761		 * so owning proctree_lock allows the race-free read.
762		 */
763		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
764			/*
765			 * Arrange for debugger to receive the fork event.
766			 *
767			 * We can report PL_FLAG_FORKED regardless of
768			 * P_FOLLOWFORK settings, but it does not make a sense
769			 * for runaway child.
770			 */
771			td->td_dbgflags |= TDB_FORK;
772			td->td_dbg_forked = p2->p_pid;
773			td2->td_dbgflags |= TDB_STOPATFORK;
774			proc_set_traced(p2, true);
775			CTR2(KTR_PTRACE,
776			    "do_fork: attaching to new child pid %d: oppid %d",
777			    p2->p_pid, p2->p_oppid);
778			proc_reparent(p2, p1->p_pptr, false);
779		}
780		PROC_UNLOCK(p2);
781		sx_xunlock(&proctree_lock);
782	}
783
784	racct_proc_fork_done(p2);
785
786	if ((fr->fr_flags & RFSTOPPED) == 0) {
787		if (fr->fr_pidp != NULL)
788			*fr->fr_pidp = p2->p_pid;
789		/*
790		 * If RFSTOPPED not requested, make child runnable and
791		 * add to run queue.
792		 */
793		thread_lock(td2);
794		TD_SET_CAN_RUN(td2);
795		sched_add(td2, SRQ_BORING);
796	} else {
797		*fr->fr_procp = p2;
798	}
799}
800
801static void
802ast_vfork(struct thread *td, int tda __unused)
803{
804	struct proc *p, *p2;
805
806	MPASS(td->td_pflags & TDP_RFPPWAIT);
807
808	p = td->td_proc;
809	/*
810	 * Preserve synchronization semantics of vfork.  If
811	 * waiting for child to exec or exit, fork set
812	 * P_PPWAIT on child, and there we sleep on our proc
813	 * (in case of exit).
814	 *
815	 * Do it after the ptracestop() above is finished, to
816	 * not block our debugger until child execs or exits
817	 * to finish vfork wait.
818	 */
819	td->td_pflags &= ~TDP_RFPPWAIT;
820	p2 = td->td_rfppwait_p;
821again:
822	PROC_LOCK(p2);
823	while (p2->p_flag & P_PPWAIT) {
824		PROC_LOCK(p);
825		if (thread_suspend_check_needed()) {
826			PROC_UNLOCK(p2);
827			thread_suspend_check(0);
828			PROC_UNLOCK(p);
829			goto again;
830		} else {
831			PROC_UNLOCK(p);
832		}
833		cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
834	}
835	PROC_UNLOCK(p2);
836
837	if (td->td_dbgflags & TDB_VFORK) {
838		PROC_LOCK(p);
839		if (p->p_ptevents & PTRACE_VFORK)
840			ptracestop(td, SIGTRAP, NULL);
841		td->td_dbgflags &= ~TDB_VFORK;
842		PROC_UNLOCK(p);
843	}
844}
845
846int
847fork1(struct thread *td, struct fork_req *fr)
848{
849	struct proc *p1, *newproc;
850	struct thread *td2;
851	struct vmspace *vm2;
852	struct ucred *cred;
853	struct file *fp_procdesc;
854	struct pgrp *pg;
855	vm_ooffset_t mem_charged;
856	int error, nprocs_new;
857	static int curfail;
858	static struct timeval lastfail;
859	int flags, pages;
860	bool killsx_locked, singlethreaded;
861
862	flags = fr->fr_flags;
863	pages = fr->fr_pages;
864
865	if ((flags & RFSTOPPED) != 0)
866		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
867	else
868		MPASS(fr->fr_procp == NULL);
869
870	/* Check for the undefined or unimplemented flags. */
871	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
872		return (EINVAL);
873
874	/* Signal value requires RFTSIGZMB. */
875	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
876		return (EINVAL);
877
878	/* Can't copy and clear. */
879	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
880		return (EINVAL);
881
882	/* Check the validity of the signal number. */
883	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
884		return (EINVAL);
885
886	if ((flags & RFPROCDESC) != 0) {
887		/* Can't not create a process yet get a process descriptor. */
888		if ((flags & RFPROC) == 0)
889			return (EINVAL);
890
891		/* Must provide a place to put a procdesc if creating one. */
892		if (fr->fr_pd_fd == NULL)
893			return (EINVAL);
894
895		/* Check if we are using supported flags. */
896		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
897			return (EINVAL);
898	}
899
900	p1 = td->td_proc;
901
902	/*
903	 * Here we don't create a new process, but we divorce
904	 * certain parts of a process from itself.
905	 */
906	if ((flags & RFPROC) == 0) {
907		if (fr->fr_procp != NULL)
908			*fr->fr_procp = NULL;
909		else if (fr->fr_pidp != NULL)
910			*fr->fr_pidp = 0;
911		return (fork_norfproc(td, flags));
912	}
913
914	fp_procdesc = NULL;
915	newproc = NULL;
916	vm2 = NULL;
917	killsx_locked = false;
918	singlethreaded = false;
919
920	/*
921	 * Increment the nprocs resource before allocations occur.
922	 * Although process entries are dynamically created, we still
923	 * keep a global limit on the maximum number we will
924	 * create. There are hard-limits as to the number of processes
925	 * that can run, established by the KVA and memory usage for
926	 * the process data.
927	 *
928	 * Don't allow a nonprivileged user to use the last ten
929	 * processes; don't let root exceed the limit.
930	 */
931	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
932	if (nprocs_new >= maxproc - 10) {
933		if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
934		    nprocs_new >= maxproc) {
935			error = EAGAIN;
936			sx_xlock(&allproc_lock);
937			if (ppsratecheck(&lastfail, &curfail, 1)) {
938				printf("maxproc limit exceeded by uid %u "
939				    "(pid %d); see tuning(7) and "
940				    "login.conf(5)\n",
941				    td->td_ucred->cr_ruid, p1->p_pid);
942			}
943			sx_xunlock(&allproc_lock);
944			goto fail2;
945		}
946	}
947
948	/*
949	 * If we are possibly multi-threaded, and there is a process
950	 * sending a signal to our group right now, ensure that our
951	 * other threads cannot be chosen for the signal queueing.
952	 * Otherwise, this might delay signal action, and make the new
953	 * child escape the signaling.
954	 */
955	pg = p1->p_pgrp;
956	if (p1->p_numthreads > 1) {
957		if (sx_try_slock(&pg->pg_killsx) != 0) {
958			killsx_locked = true;
959		} else {
960			PROC_LOCK(p1);
961			if (thread_single(p1, SINGLE_BOUNDARY)) {
962				PROC_UNLOCK(p1);
963				error = ERESTART;
964				goto fail2;
965			}
966			PROC_UNLOCK(p1);
967			singlethreaded = true;
968		}
969	}
970
971	/*
972	 * Atomically check for signals and block processes from sending
973	 * a signal to our process group until the child is visible.
974	 */
975	if (!killsx_locked && sx_slock_sig(&pg->pg_killsx) != 0) {
976		error = ERESTART;
977		goto fail2;
978	}
979	if (__predict_false(p1->p_pgrp != pg || sig_intr() != 0)) {
980		/*
981		 * Either the process was moved to other process
982		 * group, or there is pending signal.  sx_slock_sig()
983		 * does not check for signals if not sleeping for the
984		 * lock.
985		 */
986		sx_sunlock(&pg->pg_killsx);
987		killsx_locked = false;
988		error = ERESTART;
989		goto fail2;
990	} else {
991		killsx_locked = true;
992	}
993
994	/*
995	 * If required, create a process descriptor in the parent first; we
996	 * will abandon it if something goes wrong. We don't finit() until
997	 * later.
998	 */
999	if (flags & RFPROCDESC) {
1000		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
1001		    fr->fr_pd_flags, fr->fr_pd_fcaps);
1002		if (error != 0)
1003			goto fail2;
1004		AUDIT_ARG_FD(*fr->fr_pd_fd);
1005	}
1006
1007	mem_charged = 0;
1008	if (pages == 0)
1009		pages = kstack_pages;
1010	/* Allocate new proc. */
1011	newproc = uma_zalloc(proc_zone, M_WAITOK);
1012	td2 = FIRST_THREAD_IN_PROC(newproc);
1013	if (td2 == NULL) {
1014		td2 = thread_alloc(pages);
1015		if (td2 == NULL) {
1016			error = ENOMEM;
1017			goto fail2;
1018		}
1019		proc_linkup(newproc, td2);
1020	} else {
1021		error = thread_recycle(td2, pages);
1022		if (error != 0)
1023			goto fail2;
1024	}
1025
1026	if ((flags & RFMEM) == 0) {
1027		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
1028		if (vm2 == NULL) {
1029			error = ENOMEM;
1030			goto fail2;
1031		}
1032		if (!swap_reserve(mem_charged)) {
1033			/*
1034			 * The swap reservation failed. The accounting
1035			 * from the entries of the copied vm2 will be
1036			 * subtracted in vmspace_free(), so force the
1037			 * reservation there.
1038			 */
1039			swap_reserve_force(mem_charged);
1040			error = ENOMEM;
1041			goto fail2;
1042		}
1043	} else
1044		vm2 = NULL;
1045
1046	/*
1047	 * XXX: This is ugly; when we copy resource usage, we need to bump
1048	 *      per-cred resource counters.
1049	 */
1050	newproc->p_ucred = crcowget(td->td_ucred);
1051
1052	/*
1053	 * Initialize resource accounting for the child process.
1054	 */
1055	error = racct_proc_fork(p1, newproc);
1056	if (error != 0) {
1057		error = EAGAIN;
1058		goto fail1;
1059	}
1060
1061#ifdef MAC
1062	mac_proc_init(newproc);
1063#endif
1064	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
1065	STAILQ_INIT(&newproc->p_ktr);
1066
1067	/*
1068	 * Increment the count of procs running with this uid. Don't allow
1069	 * a nonprivileged user to exceed their current limit.
1070	 */
1071	cred = td->td_ucred;
1072	if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
1073		if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
1074			goto fail0;
1075		chgproccnt(cred->cr_ruidinfo, 1, 0);
1076	}
1077
1078	do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
1079	error = 0;
1080	goto cleanup;
1081fail0:
1082	error = EAGAIN;
1083#ifdef MAC
1084	mac_proc_destroy(newproc);
1085#endif
1086	racct_proc_exit(newproc);
1087fail1:
1088	proc_unset_cred(newproc);
1089fail2:
1090	if (vm2 != NULL)
1091		vmspace_free(vm2);
1092	uma_zfree(proc_zone, newproc);
1093	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1094		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1095		fdrop(fp_procdesc, td);
1096	}
1097	atomic_add_int(&nprocs, -1);
1098cleanup:
1099	if (killsx_locked)
1100		sx_sunlock(&pg->pg_killsx);
1101	if (singlethreaded) {
1102		PROC_LOCK(p1);
1103		thread_single_end(p1, SINGLE_BOUNDARY);
1104		PROC_UNLOCK(p1);
1105	}
1106	if (error != 0)
1107		pause("fork", hz / 2);
1108	return (error);
1109}
1110
1111/*
1112 * Handle the return of a child process from fork1().  This function
1113 * is called from the MD fork_trampoline() entry point.
1114 */
1115void
1116fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1117    struct trapframe *frame)
1118{
1119	struct proc *p;
1120	struct thread *td;
1121	struct thread *dtd;
1122
1123	kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
1124
1125	td = curthread;
1126	p = td->td_proc;
1127	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1128
1129	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1130	    td, td_get_sched(td), p->p_pid, td->td_name);
1131
1132	sched_fork_exit(td);
1133
1134	/*
1135	 * Processes normally resume in mi_switch() after being
1136	 * cpu_switch()'ed to, but when children start up they arrive here
1137	 * instead, so we must do much the same things as mi_switch() would.
1138	 */
1139	if ((dtd = PCPU_GET(deadthread))) {
1140		PCPU_SET(deadthread, NULL);
1141		thread_stash(dtd);
1142	}
1143	thread_unlock(td);
1144
1145	/*
1146	 * cpu_fork_kthread_handler intercepts this function call to
1147	 * have this call a non-return function to stay in kernel mode.
1148	 * initproc has its own fork handler, but it does return.
1149	 */
1150	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1151	callout(arg, frame);
1152
1153	/*
1154	 * Check if a kernel thread misbehaved and returned from its main
1155	 * function.
1156	 */
1157	if (p->p_flag & P_KPROC) {
1158		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1159		    td->td_name, p->p_pid);
1160		kthread_exit();
1161	}
1162	mtx_assert(&Giant, MA_NOTOWNED);
1163
1164	/*
1165	 * Now going to return to userland.
1166	 */
1167
1168	if (p->p_sysent->sv_schedtail != NULL)
1169		(p->p_sysent->sv_schedtail)(td);
1170
1171	userret(td, frame);
1172}
1173
1174/*
1175 * Simplified back end of syscall(), used when returning from fork()
1176 * directly into user mode.  This function is passed in to fork_exit()
1177 * as the first parameter and is called when returning to a new
1178 * userland process.
1179 */
1180void
1181fork_return(struct thread *td, struct trapframe *frame)
1182{
1183	struct proc *p;
1184
1185	p = td->td_proc;
1186	if (td->td_dbgflags & TDB_STOPATFORK) {
1187		PROC_LOCK(p);
1188		if ((p->p_flag & P_TRACED) != 0) {
1189			/*
1190			 * Inform the debugger if one is still present.
1191			 */
1192			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1193			ptracestop(td, SIGSTOP, NULL);
1194			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1195		} else {
1196			/*
1197			 * ... otherwise clear the request.
1198			 */
1199			td->td_dbgflags &= ~TDB_STOPATFORK;
1200		}
1201		PROC_UNLOCK(p);
1202	} else if (p->p_flag & P_TRACED) {
1203 		/*
1204		 * This is the start of a new thread in a traced
1205		 * process.  Report a system call exit event.
1206		 */
1207		PROC_LOCK(p);
1208		td->td_dbgflags |= TDB_SCX;
1209		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1210		    (td->td_dbgflags & TDB_BORN) != 0)
1211			ptracestop(td, SIGTRAP, NULL);
1212		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1213		PROC_UNLOCK(p);
1214	}
1215
1216	/*
1217	 * If the prison was killed mid-fork, die along with it.
1218	 */
1219	if (!prison_isalive(td->td_ucred->cr_prison))
1220		exit1(td, 0, SIGKILL);
1221
1222#ifdef KTRACE
1223	if (KTRPOINT(td, KTR_SYSRET))
1224		ktrsysret(td->td_sa.code, 0, 0);
1225#endif
1226}
1227
1228static void
1229fork_init(void *arg __unused)
1230{
1231	ast_register(TDA_VFORK, ASTR_ASTF_REQUIRED | ASTR_TDP, TDP_RFPPWAIT,
1232	    ast_vfork);
1233}
1234SYSINIT(fork, SI_SUB_INTRINSIC, SI_ORDER_ANY, fork_init, NULL);
1235