1/*-
2 * CAM IO Scheduler Interface
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 2015 Netflix, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include "opt_ddb.h"
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/kernel.h>
35#include <sys/bio.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mutex.h>
39#include <sys/sbuf.h>
40#include <sys/sysctl.h>
41
42#include <cam/cam.h>
43#include <cam/cam_ccb.h>
44#include <cam/cam_periph.h>
45#include <cam/cam_xpt_periph.h>
46#include <cam/cam_xpt_internal.h>
47#include <cam/cam_iosched.h>
48
49#include <ddb/ddb.h>
50
51static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
52    "CAM I/O Scheduler buffers");
53
54static SYSCTL_NODE(_kern_cam, OID_AUTO, iosched, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
55    "CAM I/O Scheduler parameters");
56
57/*
58 * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
59 * over the bioq_* interface, with notions of separate calls for normal I/O and
60 * for trims.
61 *
62 * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
63 * steer the rate of one type of traffic to help other types of traffic (eg
64 * limit writes when read latency deteriorates on SSDs).
65 */
66
67#ifdef CAM_IOSCHED_DYNAMIC
68
69static bool do_dynamic_iosched = true;
70SYSCTL_BOOL(_kern_cam_iosched, OID_AUTO, dynamic, CTLFLAG_RDTUN,
71    &do_dynamic_iosched, 1,
72    "Enable Dynamic I/O scheduler optimizations.");
73
74/*
75 * For an EMA, with an alpha of alpha, we know
76 * 	alpha = 2 / (N + 1)
77 * or
78 * 	N = 1 + (2 / alpha)
79 * where N is the number of samples that 86% of the current
80 * EMA is derived from.
81 *
82 * So we invent[*] alpha_bits:
83 *	alpha_bits = -log_2(alpha)
84 *	alpha = 2^-alpha_bits
85 * So
86 *	N = 1 + 2^(alpha_bits + 1)
87 *
88 * The default 9 gives a 1025 lookback for 86% of the data.
89 * For a brief intro: https://en.wikipedia.org/wiki/Moving_average
90 *
91 * [*] Steal from the load average code and many other places.
92 * Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
93 */
94static int alpha_bits = 9;
95SYSCTL_INT(_kern_cam_iosched, OID_AUTO, alpha_bits, CTLFLAG_RWTUN,
96    &alpha_bits, 1,
97    "Bits in EMA's alpha.");
98
99/*
100 * Different parameters for the buckets of latency we keep track of. These are all
101 * published read-only since at present they are compile time constants.
102 *
103 * Bucket base is the upper bounds of the first latency bucket. It's currently 20us.
104 * With 20 buckets (see below), that leads to a geometric progression with a max size
105 * of 5.2s which is safeily larger than 1s to help diagnose extreme outliers better.
106 */
107#ifndef BUCKET_BASE
108#define BUCKET_BASE ((SBT_1S / 50000) + 1)	/* 20us */
109#endif
110static sbintime_t bucket_base = BUCKET_BASE;
111SYSCTL_SBINTIME_USEC(_kern_cam_iosched, OID_AUTO, bucket_base_us, CTLFLAG_RD,
112    &bucket_base,
113    "Size of the smallest latency bucket");
114
115/*
116 * Bucket ratio is the geometric progression for the bucket. For a bucket b_n
117 * the size of bucket b_n+1 is b_n * bucket_ratio / 100.
118 */
119static int bucket_ratio = 200;	/* Rather hard coded at the moment */
120SYSCTL_INT(_kern_cam_iosched, OID_AUTO, bucket_ratio, CTLFLAG_RD,
121    &bucket_ratio, 200,
122    "Latency Bucket Ratio for geometric progression.");
123
124/*
125 * Number of total buckets. Starting at BUCKET_BASE, each one is a power of 2.
126 */
127#ifndef LAT_BUCKETS
128#define LAT_BUCKETS 20	/* < 20us < 40us ... < 2^(n-1)*20us >= 2^(n-1)*20us */
129#endif
130static int lat_buckets = LAT_BUCKETS;
131SYSCTL_INT(_kern_cam_iosched, OID_AUTO, buckets, CTLFLAG_RD,
132    &lat_buckets, LAT_BUCKETS,
133    "Total number of latency buckets published");
134
135/*
136 * Read bias: how many reads do we favor before scheduling a write
137 * when we have a choice.
138 */
139static int default_read_bias = 0;
140SYSCTL_INT(_kern_cam_iosched, OID_AUTO, read_bias, CTLFLAG_RWTUN,
141    &default_read_bias, 0,
142    "Default read bias for new devices.");
143
144struct iop_stats;
145struct cam_iosched_softc;
146
147int iosched_debug = 0;
148
149typedef enum {
150	none = 0,				/* No limits */
151	queue_depth,			/* Limit how many ops we queue to SIM */
152	iops,				/* Limit # of IOPS to the drive */
153	bandwidth,			/* Limit bandwidth to the drive */
154	limiter_max
155} io_limiter;
156
157static const char *cam_iosched_limiter_names[] =
158    { "none", "queue_depth", "iops", "bandwidth" };
159
160/*
161 * Called to initialize the bits of the iop_stats structure relevant to the
162 * limiter. Called just after the limiter is set.
163 */
164typedef int l_init_t(struct iop_stats *);
165
166/*
167 * Called every tick.
168 */
169typedef int l_tick_t(struct iop_stats *);
170
171/*
172 * Called to see if the limiter thinks this IOP can be allowed to
173 * proceed. If so, the limiter assumes that the IOP proceeded
174 * and makes any accounting of it that's needed.
175 */
176typedef int l_iop_t(struct iop_stats *, struct bio *);
177
178/*
179 * Called when an I/O completes so the limiter can update its
180 * accounting. Pending I/Os may complete in any order (even when
181 * sent to the hardware at the same time), so the limiter may not
182 * make any assumptions other than this I/O has completed. If it
183 * returns 1, then xpt_schedule() needs to be called again.
184 */
185typedef int l_iodone_t(struct iop_stats *, struct bio *);
186
187static l_iop_t cam_iosched_qd_iop;
188static l_iop_t cam_iosched_qd_caniop;
189static l_iodone_t cam_iosched_qd_iodone;
190
191static l_init_t cam_iosched_iops_init;
192static l_tick_t cam_iosched_iops_tick;
193static l_iop_t cam_iosched_iops_caniop;
194static l_iop_t cam_iosched_iops_iop;
195
196static l_init_t cam_iosched_bw_init;
197static l_tick_t cam_iosched_bw_tick;
198static l_iop_t cam_iosched_bw_caniop;
199static l_iop_t cam_iosched_bw_iop;
200
201struct limswitch {
202	l_init_t	*l_init;
203	l_tick_t	*l_tick;
204	l_iop_t		*l_iop;
205	l_iop_t		*l_caniop;
206	l_iodone_t	*l_iodone;
207} limsw[] =
208{
209	{	/* none */
210		.l_init = NULL,
211		.l_tick = NULL,
212		.l_iop = NULL,
213		.l_iodone= NULL,
214	},
215	{	/* queue_depth */
216		.l_init = NULL,
217		.l_tick = NULL,
218		.l_caniop = cam_iosched_qd_caniop,
219		.l_iop = cam_iosched_qd_iop,
220		.l_iodone= cam_iosched_qd_iodone,
221	},
222	{	/* iops */
223		.l_init = cam_iosched_iops_init,
224		.l_tick = cam_iosched_iops_tick,
225		.l_caniop = cam_iosched_iops_caniop,
226		.l_iop = cam_iosched_iops_iop,
227		.l_iodone= NULL,
228	},
229	{	/* bandwidth */
230		.l_init = cam_iosched_bw_init,
231		.l_tick = cam_iosched_bw_tick,
232		.l_caniop = cam_iosched_bw_caniop,
233		.l_iop = cam_iosched_bw_iop,
234		.l_iodone= NULL,
235	},
236};
237
238struct iop_stats {
239	/*
240	 * sysctl state for this subnode.
241	 */
242	struct sysctl_ctx_list	sysctl_ctx;
243	struct sysctl_oid	*sysctl_tree;
244
245	/*
246	 * Information about the current rate limiters, if any
247	 */
248	io_limiter	limiter;	/* How are I/Os being limited */
249	int		min;		/* Low range of limit */
250	int		max;		/* High range of limit */
251	int		current;	/* Current rate limiter */
252	int		l_value1;	/* per-limiter scratch value 1. */
253	int		l_value2;	/* per-limiter scratch value 2. */
254
255	/*
256	 * Debug information about counts of I/Os that have gone through the
257	 * scheduler.
258	 */
259	int		pending;	/* I/Os pending in the hardware */
260	int		queued;		/* number currently in the queue */
261	int		total;		/* Total for all time -- wraps */
262	int		in;		/* number queued all time -- wraps */
263	int		out;		/* number completed all time -- wraps */
264	int		errs;		/* Number of I/Os completed with error --  wraps */
265
266	/*
267	 * Statistics on different bits of the process.
268	 */
269		/* Exp Moving Average, see alpha_bits for more details */
270	sbintime_t      ema;
271	sbintime_t      emvar;
272	sbintime_t      sd;		/* Last computed sd */
273
274	uint32_t	state_flags;
275#define IOP_RATE_LIMITED		1u
276
277	uint64_t	latencies[LAT_BUCKETS];
278
279	struct cam_iosched_softc *softc;
280};
281
282typedef enum {
283	set_max = 0,			/* current = max */
284	read_latency,			/* Steer read latency by throttling writes */
285	cl_max				/* Keep last */
286} control_type;
287
288static const char *cam_iosched_control_type_names[] =
289    { "set_max", "read_latency" };
290
291struct control_loop {
292	/*
293	 * sysctl state for this subnode.
294	 */
295	struct sysctl_ctx_list	sysctl_ctx;
296	struct sysctl_oid	*sysctl_tree;
297
298	sbintime_t	next_steer;		/* Time of next steer */
299	sbintime_t	steer_interval;		/* How often do we steer? */
300	sbintime_t	lolat;
301	sbintime_t	hilat;
302	int		alpha;
303	control_type	type;			/* What type of control? */
304	int		last_count;		/* Last I/O count */
305
306	struct cam_iosched_softc *softc;
307};
308
309#endif
310
311struct cam_iosched_softc {
312	struct bio_queue_head bio_queue;
313	struct bio_queue_head trim_queue;
314				/* scheduler flags < 16, user flags >= 16 */
315	uint32_t	flags;
316	int		sort_io_queue;
317	int		trim_goal;		/* # of trims to queue before sending */
318	int		trim_ticks;		/* Max ticks to hold trims */
319	int		last_trim_tick;		/* Last 'tick' time ld a trim */
320	int		queued_trims;		/* Number of trims in the queue */
321#ifdef CAM_IOSCHED_DYNAMIC
322	int		read_bias;		/* Read bias setting */
323	int		current_read_bias;	/* Current read bias state */
324	int		total_ticks;
325	int		load;			/* EMA of 'load average' of disk / 2^16 */
326
327	struct bio_queue_head write_queue;
328	struct iop_stats read_stats, write_stats, trim_stats;
329	struct sysctl_ctx_list	sysctl_ctx;
330	struct sysctl_oid	*sysctl_tree;
331
332	int		quanta;			/* Number of quanta per second */
333	struct callout	ticker;			/* Callout for our quota system */
334	struct cam_periph *periph;		/* cam periph associated with this device */
335	uint32_t	this_frac;		/* Fraction of a second (1024ths) for this tick */
336	sbintime_t	last_time;		/* Last time we ticked */
337	struct control_loop cl;
338	sbintime_t	max_lat;		/* when != 0, if iop latency > max_lat, call max_lat_fcn */
339	cam_iosched_latfcn_t	latfcn;
340	void		*latarg;
341#endif
342};
343
344#ifdef CAM_IOSCHED_DYNAMIC
345/*
346 * helper functions to call the limsw functions.
347 */
348static int
349cam_iosched_limiter_init(struct iop_stats *ios)
350{
351	int lim = ios->limiter;
352
353	/* maybe this should be a kassert */
354	if (lim < none || lim >= limiter_max)
355		return EINVAL;
356
357	if (limsw[lim].l_init)
358		return limsw[lim].l_init(ios);
359
360	return 0;
361}
362
363static int
364cam_iosched_limiter_tick(struct iop_stats *ios)
365{
366	int lim = ios->limiter;
367
368	/* maybe this should be a kassert */
369	if (lim < none || lim >= limiter_max)
370		return EINVAL;
371
372	if (limsw[lim].l_tick)
373		return limsw[lim].l_tick(ios);
374
375	return 0;
376}
377
378static int
379cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
380{
381	int lim = ios->limiter;
382
383	/* maybe this should be a kassert */
384	if (lim < none || lim >= limiter_max)
385		return EINVAL;
386
387	if (limsw[lim].l_iop)
388		return limsw[lim].l_iop(ios, bp);
389
390	return 0;
391}
392
393static int
394cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
395{
396	int lim = ios->limiter;
397
398	/* maybe this should be a kassert */
399	if (lim < none || lim >= limiter_max)
400		return EINVAL;
401
402	if (limsw[lim].l_caniop)
403		return limsw[lim].l_caniop(ios, bp);
404
405	return 0;
406}
407
408static int
409cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
410{
411	int lim = ios->limiter;
412
413	/* maybe this should be a kassert */
414	if (lim < none || lim >= limiter_max)
415		return 0;
416
417	if (limsw[lim].l_iodone)
418		return limsw[lim].l_iodone(ios, bp);
419
420	return 0;
421}
422
423/*
424 * Functions to implement the different kinds of limiters
425 */
426
427static int
428cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
429{
430
431	if (ios->current <= 0 || ios->pending < ios->current)
432		return 0;
433
434	return EAGAIN;
435}
436
437static int
438cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
439{
440
441	if (ios->current <= 0 || ios->pending < ios->current)
442		return 0;
443
444	return EAGAIN;
445}
446
447static int
448cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
449{
450
451	if (ios->current <= 0 || ios->pending != ios->current)
452		return 0;
453
454	return 1;
455}
456
457static int
458cam_iosched_iops_init(struct iop_stats *ios)
459{
460
461	ios->l_value1 = ios->current / ios->softc->quanta;
462	if (ios->l_value1 <= 0)
463		ios->l_value1 = 1;
464	ios->l_value2 = 0;
465
466	return 0;
467}
468
469static int
470cam_iosched_iops_tick(struct iop_stats *ios)
471{
472	int new_ios;
473
474	/*
475	 * Allow at least one IO per tick until all
476	 * the IOs for this interval have been spent.
477	 */
478	new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
479	if (new_ios < 1 && ios->l_value2 < ios->current) {
480		new_ios = 1;
481		ios->l_value2++;
482	}
483
484	/*
485	 * If this a new accounting interval, discard any "unspent" ios
486	 * granted in the previous interval.  Otherwise add the new ios to
487	 * the previously granted ones that haven't been spent yet.
488	 */
489	if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
490		ios->l_value1 = new_ios;
491		ios->l_value2 = 1;
492	} else {
493		ios->l_value1 += new_ios;
494	}
495
496	return 0;
497}
498
499static int
500cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
501{
502
503	/*
504	 * So if we have any more IOPs left, allow it,
505	 * otherwise wait. If current iops is 0, treat that
506	 * as unlimited as a failsafe.
507	 */
508	if (ios->current > 0 && ios->l_value1 <= 0)
509		return EAGAIN;
510	return 0;
511}
512
513static int
514cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
515{
516	int rv;
517
518	rv = cam_iosched_limiter_caniop(ios, bp);
519	if (rv == 0)
520		ios->l_value1--;
521
522	return rv;
523}
524
525static int
526cam_iosched_bw_init(struct iop_stats *ios)
527{
528
529	/* ios->current is in kB/s, so scale to bytes */
530	ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
531
532	return 0;
533}
534
535static int
536cam_iosched_bw_tick(struct iop_stats *ios)
537{
538	int bw;
539
540	/*
541	 * If we're in the hole for available quota from
542	 * the last time, then add the quantum for this.
543	 * If we have any left over from last quantum,
544	 * then too bad, that's lost. Also, ios->current
545	 * is in kB/s, so scale.
546	 *
547	 * We also allow up to 4 quanta of credits to
548	 * accumulate to deal with burstiness. 4 is extremely
549	 * arbitrary.
550	 */
551	bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
552	if (ios->l_value1 < bw * 4)
553		ios->l_value1 += bw;
554
555	return 0;
556}
557
558static int
559cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
560{
561	/*
562	 * So if we have any more bw quota left, allow it,
563	 * otherwise wait. Note, we'll go negative and that's
564	 * OK. We'll just get a little less next quota.
565	 *
566	 * Note on going negative: that allows us to process
567	 * requests in order better, since we won't allow
568	 * shorter reads to get around the long one that we
569	 * don't have the quota to do just yet. It also prevents
570	 * starvation by being a little more permissive about
571	 * what we let through this quantum (to prevent the
572	 * starvation), at the cost of getting a little less
573	 * next quantum.
574	 *
575	 * Also note that if the current limit is <= 0,
576	 * we treat it as unlimited as a failsafe.
577	 */
578	if (ios->current > 0 && ios->l_value1 <= 0)
579		return EAGAIN;
580
581	return 0;
582}
583
584static int
585cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
586{
587	int rv;
588
589	rv = cam_iosched_limiter_caniop(ios, bp);
590	if (rv == 0)
591		ios->l_value1 -= bp->bio_length;
592
593	return rv;
594}
595
596static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
597
598static void
599cam_iosched_ticker(void *arg)
600{
601	struct cam_iosched_softc *isc = arg;
602	sbintime_t now, delta;
603	int pending;
604
605	callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
606
607	now = sbinuptime();
608	delta = now - isc->last_time;
609	isc->this_frac = (uint32_t)delta >> 16;		/* Note: discards seconds -- should be 0 harmless if not */
610	isc->last_time = now;
611
612	cam_iosched_cl_maybe_steer(&isc->cl);
613
614	cam_iosched_limiter_tick(&isc->read_stats);
615	cam_iosched_limiter_tick(&isc->write_stats);
616	cam_iosched_limiter_tick(&isc->trim_stats);
617
618	cam_iosched_schedule(isc, isc->periph);
619
620	/*
621	 * isc->load is an EMA of the pending I/Os at each tick. The number of
622	 * pending I/Os is the sum of the I/Os queued to the hardware, and those
623	 * in the software queue that could be queued to the hardware if there
624	 * were slots.
625	 *
626	 * ios_stats.pending is a count of requests in the SIM right now for
627	 * each of these types of I/O. So the total pending count is the sum of
628	 * these I/Os and the sum of the queued I/Os still in the software queue
629	 * for those operations that aren't being rate limited at the moment.
630	 *
631	 * The reason for the rate limiting bit is because those I/Os
632	 * aren't part of the software queued load (since we could
633	 * give them to hardware, but choose not to).
634	 *
635	 * Note: due to a bug in counting pending TRIM in the device, we
636	 * don't include them in this count. We count each BIO_DELETE in
637	 * the pending count, but the periph drivers collapse them down
638	 * into one TRIM command. That one trim command gets the completion
639	 * so the counts get off.
640	 */
641	pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
642	pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
643	    !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
644	    !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
645	pending <<= 16;
646	pending /= isc->periph->path->device->ccbq.total_openings;
647
648	isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
649
650	isc->total_ticks++;
651}
652
653static void
654cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
655{
656
657	clp->next_steer = sbinuptime();
658	clp->softc = isc;
659	clp->steer_interval = SBT_1S * 5;	/* Let's start out steering every 5s */
660	clp->lolat = 5 * SBT_1MS;
661	clp->hilat = 15 * SBT_1MS;
662	clp->alpha = 20;			/* Alpha == gain. 20 = .2 */
663	clp->type = set_max;
664}
665
666static void
667cam_iosched_cl_maybe_steer(struct control_loop *clp)
668{
669	struct cam_iosched_softc *isc;
670	sbintime_t now, lat;
671	int old;
672
673	isc = clp->softc;
674	now = isc->last_time;
675	if (now < clp->next_steer)
676		return;
677
678	clp->next_steer = now + clp->steer_interval;
679	switch (clp->type) {
680	case set_max:
681		if (isc->write_stats.current != isc->write_stats.max)
682			printf("Steering write from %d kBps to %d kBps\n",
683			    isc->write_stats.current, isc->write_stats.max);
684		isc->read_stats.current = isc->read_stats.max;
685		isc->write_stats.current = isc->write_stats.max;
686		isc->trim_stats.current = isc->trim_stats.max;
687		break;
688	case read_latency:
689		old = isc->write_stats.current;
690		lat = isc->read_stats.ema;
691		/*
692		 * Simple PLL-like engine. Since we're steering to a range for
693		 * the SP (set point) that makes things a little more
694		 * complicated. In addition, we're not directly controlling our
695		 * PV (process variable), the read latency, but instead are
696		 * manipulating the write bandwidth limit for our MV
697		 * (manipulation variable), analysis of this code gets a bit
698		 * messy. Also, the MV is a very noisy control surface for read
699		 * latency since it is affected by many hidden processes inside
700		 * the device which change how responsive read latency will be
701		 * in reaction to changes in write bandwidth. Unlike the classic
702		 * boiler control PLL. this may result in over-steering while
703		 * the SSD takes its time to react to the new, lower load. This
704		 * is why we use a relatively low alpha of between .1 and .25 to
705		 * compensate for this effect. At .1, it takes ~22 steering
706		 * intervals to back off by a factor of 10. At .2 it only takes
707		 * ~10. At .25 it only takes ~8. However some preliminary data
708		 * from the SSD drives suggests a reasponse time in 10's of
709		 * seconds before latency drops regardless of the new write
710		 * rate. Careful observation will be required to tune this
711		 * effectively.
712		 *
713		 * Also, when there's no read traffic, we jack up the write
714		 * limit too regardless of the last read latency.  10 is
715		 * somewhat arbitrary.
716		 */
717		if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
718			isc->write_stats.current = isc->write_stats.current *
719			    (100 + clp->alpha) / 100;	/* Scale up */
720		else if (lat > clp->hilat)
721			isc->write_stats.current = isc->write_stats.current *
722			    (100 - clp->alpha) / 100;	/* Scale down */
723		clp->last_count = isc->read_stats.total;
724
725		/*
726		 * Even if we don't steer, per se, enforce the min/max limits as
727		 * those may have changed.
728		 */
729		if (isc->write_stats.current < isc->write_stats.min)
730			isc->write_stats.current = isc->write_stats.min;
731		if (isc->write_stats.current > isc->write_stats.max)
732			isc->write_stats.current = isc->write_stats.max;
733		if (old != isc->write_stats.current && 	iosched_debug)
734			printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
735			    old, isc->write_stats.current,
736			    (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
737		break;
738	case cl_max:
739		break;
740	}
741}
742#endif
743
744/*
745 * Trim or similar currently pending completion. Should only be set for
746 * those drivers wishing only one Trim active at a time.
747 */
748#define CAM_IOSCHED_FLAG_TRIM_ACTIVE	(1ul << 0)
749			/* Callout active, and needs to be torn down */
750#define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
751
752			/* Periph drivers set these flags to indicate work */
753#define CAM_IOSCHED_FLAG_WORK_FLAGS	((0xffffu) << 16)
754
755#ifdef CAM_IOSCHED_DYNAMIC
756static void
757cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
758    sbintime_t sim_latency, int cmd, size_t size);
759#endif
760
761static inline bool
762cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
763{
764	return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
765}
766
767static inline bool
768cam_iosched_has_io(struct cam_iosched_softc *isc)
769{
770#ifdef CAM_IOSCHED_DYNAMIC
771	if (do_dynamic_iosched) {
772		struct bio *rbp = bioq_first(&isc->bio_queue);
773		struct bio *wbp = bioq_first(&isc->write_queue);
774		bool can_write = wbp != NULL &&
775		    cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
776		bool can_read = rbp != NULL &&
777		    cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
778		if (iosched_debug > 2) {
779			printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
780			printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
781			printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
782		}
783		return can_read || can_write;
784	}
785#endif
786	return bioq_first(&isc->bio_queue) != NULL;
787}
788
789static inline bool
790cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
791{
792	struct bio *bp;
793
794	bp = bioq_first(&isc->trim_queue);
795#ifdef CAM_IOSCHED_DYNAMIC
796	if (do_dynamic_iosched) {
797		/*
798		 * If we're limiting trims, then defer action on trims
799		 * for a bit.
800		 */
801		if (bp == NULL || cam_iosched_limiter_caniop(&isc->trim_stats, bp) != 0)
802			return false;
803	}
804#endif
805
806	/*
807	 * If we've set a trim_goal, then if we exceed that allow trims
808	 * to be passed back to the driver. If we've also set a tick timeout
809	 * allow trims back to the driver. Otherwise, don't allow trims yet.
810	 */
811	if (isc->trim_goal > 0) {
812		if (isc->queued_trims >= isc->trim_goal)
813			return true;
814		if (isc->queued_trims > 0 &&
815		    isc->trim_ticks > 0 &&
816		    ticks - isc->last_trim_tick > isc->trim_ticks)
817			return true;
818		return false;
819	}
820
821	/* NB: Should perhaps have a max trim active independent of I/O limiters */
822	return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) && bp != NULL;
823}
824
825#define cam_iosched_sort_queue(isc)	((isc)->sort_io_queue >= 0 ?	\
826    (isc)->sort_io_queue : cam_sort_io_queues)
827
828static inline bool
829cam_iosched_has_work(struct cam_iosched_softc *isc)
830{
831#ifdef CAM_IOSCHED_DYNAMIC
832	if (iosched_debug > 2)
833		printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
834		    cam_iosched_has_more_trim(isc),
835		    cam_iosched_has_flagged_work(isc));
836#endif
837
838	return cam_iosched_has_io(isc) ||
839		cam_iosched_has_more_trim(isc) ||
840		cam_iosched_has_flagged_work(isc);
841}
842
843#ifdef CAM_IOSCHED_DYNAMIC
844static void
845cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
846{
847
848	ios->limiter = none;
849	ios->in = 0;
850	ios->max = ios->current = 300000;
851	ios->min = 1;
852	ios->out = 0;
853	ios->errs = 0;
854	ios->pending = 0;
855	ios->queued = 0;
856	ios->total = 0;
857	ios->ema = 0;
858	ios->emvar = 0;
859	ios->softc = isc;
860	cam_iosched_limiter_init(ios);
861}
862
863static int
864cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
865{
866	char buf[16];
867	struct iop_stats *ios;
868	struct cam_iosched_softc *isc;
869	int value, i, error;
870	const char *p;
871
872	ios = arg1;
873	isc = ios->softc;
874	value = ios->limiter;
875	if (value < none || value >= limiter_max)
876		p = "UNKNOWN";
877	else
878		p = cam_iosched_limiter_names[value];
879
880	strlcpy(buf, p, sizeof(buf));
881	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
882	if (error != 0 || req->newptr == NULL)
883		return error;
884
885	cam_periph_lock(isc->periph);
886
887	for (i = none; i < limiter_max; i++) {
888		if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
889			continue;
890		ios->limiter = i;
891		error = cam_iosched_limiter_init(ios);
892		if (error != 0) {
893			ios->limiter = value;
894			cam_periph_unlock(isc->periph);
895			return error;
896		}
897		/* Note: disk load averate requires ticker to be always running */
898		callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
899		isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
900
901		cam_periph_unlock(isc->periph);
902		return 0;
903	}
904
905	cam_periph_unlock(isc->periph);
906	return EINVAL;
907}
908
909static int
910cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
911{
912	char buf[16];
913	struct control_loop *clp;
914	struct cam_iosched_softc *isc;
915	int value, i, error;
916	const char *p;
917
918	clp = arg1;
919	isc = clp->softc;
920	value = clp->type;
921	if (value < none || value >= cl_max)
922		p = "UNKNOWN";
923	else
924		p = cam_iosched_control_type_names[value];
925
926	strlcpy(buf, p, sizeof(buf));
927	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
928	if (error != 0 || req->newptr == NULL)
929		return error;
930
931	for (i = set_max; i < cl_max; i++) {
932		if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
933			continue;
934		cam_periph_lock(isc->periph);
935		clp->type = i;
936		cam_periph_unlock(isc->periph);
937		return 0;
938	}
939
940	return EINVAL;
941}
942
943static int
944cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
945{
946	char buf[16];
947	sbintime_t value;
948	int error;
949	uint64_t us;
950
951	value = *(sbintime_t *)arg1;
952	us = (uint64_t)value / SBT_1US;
953	snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
954	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
955	if (error != 0 || req->newptr == NULL)
956		return error;
957	us = strtoul(buf, NULL, 10);
958	if (us == 0)
959		return EINVAL;
960	*(sbintime_t *)arg1 = us * SBT_1US;
961	return 0;
962}
963
964static int
965cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
966{
967	int i, error;
968	struct sbuf sb;
969	uint64_t *latencies;
970
971	latencies = arg1;
972	sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
973
974	for (i = 0; i < LAT_BUCKETS - 1; i++)
975		sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
976	sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
977	error = sbuf_finish(&sb);
978	sbuf_delete(&sb);
979
980	return (error);
981}
982
983static int
984cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
985{
986	int *quanta;
987	int error, value;
988
989	quanta = (unsigned *)arg1;
990	value = *quanta;
991
992	error = sysctl_handle_int(oidp, (int *)&value, 0, req);
993	if ((error != 0) || (req->newptr == NULL))
994		return (error);
995
996	if (value < 1 || value > hz)
997		return (EINVAL);
998
999	*quanta = value;
1000
1001	return (0);
1002}
1003
1004static void
1005cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
1006{
1007	struct sysctl_oid_list *n;
1008	struct sysctl_ctx_list *ctx;
1009
1010	ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1011	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
1012	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, name);
1013	n = SYSCTL_CHILDREN(ios->sysctl_tree);
1014	ctx = &ios->sysctl_ctx;
1015
1016	SYSCTL_ADD_UQUAD(ctx, n,
1017	    OID_AUTO, "ema", CTLFLAG_RD,
1018	    &ios->ema,
1019	    "Fast Exponentially Weighted Moving Average");
1020	SYSCTL_ADD_UQUAD(ctx, n,
1021	    OID_AUTO, "emvar", CTLFLAG_RD,
1022	    &ios->emvar,
1023	    "Fast Exponentially Weighted Moving Variance");
1024
1025	SYSCTL_ADD_INT(ctx, n,
1026	    OID_AUTO, "pending", CTLFLAG_RD,
1027	    &ios->pending, 0,
1028	    "Instantaneous # of pending transactions");
1029	SYSCTL_ADD_INT(ctx, n,
1030	    OID_AUTO, "count", CTLFLAG_RD,
1031	    &ios->total, 0,
1032	    "# of transactions submitted to hardware");
1033	SYSCTL_ADD_INT(ctx, n,
1034	    OID_AUTO, "queued", CTLFLAG_RD,
1035	    &ios->queued, 0,
1036	    "# of transactions in the queue");
1037	SYSCTL_ADD_INT(ctx, n,
1038	    OID_AUTO, "in", CTLFLAG_RD,
1039	    &ios->in, 0,
1040	    "# of transactions queued to driver");
1041	SYSCTL_ADD_INT(ctx, n,
1042	    OID_AUTO, "out", CTLFLAG_RD,
1043	    &ios->out, 0,
1044	    "# of transactions completed (including with error)");
1045	SYSCTL_ADD_INT(ctx, n,
1046	    OID_AUTO, "errs", CTLFLAG_RD,
1047	    &ios->errs, 0,
1048	    "# of transactions completed with an error");
1049
1050	SYSCTL_ADD_PROC(ctx, n,
1051	    OID_AUTO, "limiter",
1052	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1053	    ios, 0, cam_iosched_limiter_sysctl, "A",
1054	    "Current limiting type.");
1055	SYSCTL_ADD_INT(ctx, n,
1056	    OID_AUTO, "min", CTLFLAG_RW,
1057	    &ios->min, 0,
1058	    "min resource");
1059	SYSCTL_ADD_INT(ctx, n,
1060	    OID_AUTO, "max", CTLFLAG_RW,
1061	    &ios->max, 0,
1062	    "max resource");
1063	SYSCTL_ADD_INT(ctx, n,
1064	    OID_AUTO, "current", CTLFLAG_RW,
1065	    &ios->current, 0,
1066	    "current resource");
1067
1068	SYSCTL_ADD_PROC(ctx, n,
1069	    OID_AUTO, "latencies",
1070	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1071	    &ios->latencies, 0,
1072	    cam_iosched_sysctl_latencies, "A",
1073	    "Array of latencies, a geometric progresson from\n"
1074	    "kern.cam.iosched.bucket_base_us with a ratio of\n"
1075	    "kern.cam.iosched.bucket_ration / 100 from one to\n"
1076	    "the next. By default 20 steps from 20us to 10.485s\n"
1077	    "by doubling.");
1078
1079}
1080
1081static void
1082cam_iosched_iop_stats_fini(struct iop_stats *ios)
1083{
1084	if (ios->sysctl_tree)
1085		if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
1086			printf("can't remove iosched sysctl stats context\n");
1087}
1088
1089static void
1090cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
1091{
1092	struct sysctl_oid_list *n;
1093	struct sysctl_ctx_list *ctx;
1094	struct control_loop *clp;
1095
1096	clp = &isc->cl;
1097	clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1098	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
1099	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Control loop info");
1100	n = SYSCTL_CHILDREN(clp->sysctl_tree);
1101	ctx = &clp->sysctl_ctx;
1102
1103	SYSCTL_ADD_PROC(ctx, n,
1104	    OID_AUTO, "type",
1105	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1106	    clp, 0, cam_iosched_control_type_sysctl, "A",
1107	    "Control loop algorithm");
1108	SYSCTL_ADD_PROC(ctx, n,
1109	    OID_AUTO, "steer_interval",
1110	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1111	    &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
1112	    "How often to steer (in us)");
1113	SYSCTL_ADD_PROC(ctx, n,
1114	    OID_AUTO, "lolat",
1115	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1116	    &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
1117	    "Low water mark for Latency (in us)");
1118	SYSCTL_ADD_PROC(ctx, n,
1119	    OID_AUTO, "hilat",
1120	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1121	    &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
1122	    "Hi water mark for Latency (in us)");
1123	SYSCTL_ADD_INT(ctx, n,
1124	    OID_AUTO, "alpha", CTLFLAG_RW,
1125	    &clp->alpha, 0,
1126	    "Alpha for PLL (x100) aka gain");
1127}
1128
1129static void
1130cam_iosched_cl_sysctl_fini(struct control_loop *clp)
1131{
1132	if (clp->sysctl_tree)
1133		if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
1134			printf("can't remove iosched sysctl control loop context\n");
1135}
1136#endif
1137
1138/*
1139 * Allocate the iosched structure. This also insulates callers from knowing
1140 * sizeof struct cam_iosched_softc.
1141 */
1142int
1143cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
1144{
1145
1146	*iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
1147	if (*iscp == NULL)
1148		return ENOMEM;
1149#ifdef CAM_IOSCHED_DYNAMIC
1150	if (iosched_debug)
1151		printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
1152#endif
1153	(*iscp)->sort_io_queue = -1;
1154	bioq_init(&(*iscp)->bio_queue);
1155	bioq_init(&(*iscp)->trim_queue);
1156#ifdef CAM_IOSCHED_DYNAMIC
1157	if (do_dynamic_iosched) {
1158		bioq_init(&(*iscp)->write_queue);
1159		(*iscp)->read_bias = default_read_bias;
1160		(*iscp)->current_read_bias = 0;
1161		(*iscp)->quanta = min(hz, 200);
1162		cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
1163		cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
1164		cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
1165		(*iscp)->trim_stats.max = 1;	/* Trims are special: one at a time for now */
1166		(*iscp)->last_time = sbinuptime();
1167		callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
1168		(*iscp)->periph = periph;
1169		cam_iosched_cl_init(&(*iscp)->cl, *iscp);
1170		callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp);
1171		(*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1172	}
1173#endif
1174
1175	return 0;
1176}
1177
1178/*
1179 * Reclaim all used resources. This assumes that other folks have
1180 * drained the requests in the hardware. Maybe an unwise assumption.
1181 */
1182void
1183cam_iosched_fini(struct cam_iosched_softc *isc)
1184{
1185	if (isc) {
1186		cam_iosched_flush(isc, NULL, ENXIO);
1187#ifdef CAM_IOSCHED_DYNAMIC
1188		cam_iosched_iop_stats_fini(&isc->read_stats);
1189		cam_iosched_iop_stats_fini(&isc->write_stats);
1190		cam_iosched_iop_stats_fini(&isc->trim_stats);
1191		cam_iosched_cl_sysctl_fini(&isc->cl);
1192		if (isc->sysctl_tree)
1193			if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
1194				printf("can't remove iosched sysctl stats context\n");
1195		if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
1196			callout_drain(&isc->ticker);
1197			isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1198		}
1199#endif
1200		free(isc, M_CAMSCHED);
1201	}
1202}
1203
1204/*
1205 * After we're sure we're attaching a device, go ahead and add
1206 * hooks for any sysctl we may wish to honor.
1207 */
1208void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
1209    struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
1210{
1211	struct sysctl_oid_list *n;
1212
1213	n = SYSCTL_CHILDREN(node);
1214	SYSCTL_ADD_INT(ctx, n,
1215		OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
1216		&isc->sort_io_queue, 0,
1217		"Sort IO queue to try and optimise disk access patterns");
1218	SYSCTL_ADD_INT(ctx, n,
1219	    OID_AUTO, "trim_goal", CTLFLAG_RW,
1220	    &isc->trim_goal, 0,
1221	    "Number of trims to try to accumulate before sending to hardware");
1222	SYSCTL_ADD_INT(ctx, n,
1223	    OID_AUTO, "trim_ticks", CTLFLAG_RW,
1224	    &isc->trim_goal, 0,
1225	    "IO Schedul qaunta to hold back trims for when accumulating");
1226
1227#ifdef CAM_IOSCHED_DYNAMIC
1228	if (!do_dynamic_iosched)
1229		return;
1230
1231	isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1232	    SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
1233	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "I/O scheduler statistics");
1234	n = SYSCTL_CHILDREN(isc->sysctl_tree);
1235	ctx = &isc->sysctl_ctx;
1236
1237	cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
1238	cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
1239	cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
1240	cam_iosched_cl_sysctl_init(isc);
1241
1242	SYSCTL_ADD_INT(ctx, n,
1243	    OID_AUTO, "read_bias", CTLFLAG_RW,
1244	    &isc->read_bias, default_read_bias,
1245	    "How biased towards read should we be independent of limits");
1246
1247	SYSCTL_ADD_PROC(ctx, n,
1248	    OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1249	    &isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
1250	    "How many quanta per second do we slice the I/O up into");
1251
1252	SYSCTL_ADD_INT(ctx, n,
1253	    OID_AUTO, "total_ticks", CTLFLAG_RD,
1254	    &isc->total_ticks, 0,
1255	    "Total number of ticks we've done");
1256
1257	SYSCTL_ADD_INT(ctx, n,
1258	    OID_AUTO, "load", CTLFLAG_RD,
1259	    &isc->load, 0,
1260	    "scaled load average / 100");
1261
1262	SYSCTL_ADD_U64(ctx, n,
1263	    OID_AUTO, "latency_trigger", CTLFLAG_RW,
1264	    &isc->max_lat, 0,
1265	    "Latency treshold to trigger callbacks");
1266#endif
1267}
1268
1269void
1270cam_iosched_set_latfcn(struct cam_iosched_softc *isc,
1271    cam_iosched_latfcn_t fnp, void *argp)
1272{
1273#ifdef CAM_IOSCHED_DYNAMIC
1274	isc->latfcn = fnp;
1275	isc->latarg = argp;
1276#endif
1277}
1278
1279/*
1280 * Client drivers can set two parameters. "goal" is the number of BIO_DELETEs
1281 * that will be queued up before iosched will "release" the trims to the client
1282 * driver to wo with what they will (usually combine as many as possible). If we
1283 * don't get this many, after trim_ticks we'll submit the I/O anyway with
1284 * whatever we have.  We do need an I/O of some kind of to clock the deferred
1285 * trims out to disk. Since we will eventually get a write for the super block
1286 * or something before we shutdown, the trims will complete. To be safe, when a
1287 * BIO_FLUSH is presented to the iosched work queue, we set the ticks time far
1288 * enough in the past so we'll present the BIO_DELETEs to the client driver.
1289 * There might be a race if no BIO_DELETESs were queued, a BIO_FLUSH comes in
1290 * and then a BIO_DELETE is sent down. No know client does this, and there's
1291 * already a race between an ordered BIO_FLUSH and any BIO_DELETEs in flight,
1292 * but no client depends on the ordering being honored.
1293 *
1294 * XXX I'm not sure what the interaction between UFS direct BIOs and the BUF
1295 * flushing on shutdown. I think there's bufs that would be dependent on the BIO
1296 * finishing to write out at least metadata, so we'll be fine. To be safe, keep
1297 * the number of ticks low (less than maybe 10s) to avoid shutdown races.
1298 */
1299
1300void
1301cam_iosched_set_trim_goal(struct cam_iosched_softc *isc, int goal)
1302{
1303
1304	isc->trim_goal = goal;
1305}
1306
1307void
1308cam_iosched_set_trim_ticks(struct cam_iosched_softc *isc, int trim_ticks)
1309{
1310
1311	isc->trim_ticks = trim_ticks;
1312}
1313
1314/*
1315 * Flush outstanding I/O. Consumers of this library don't know all the
1316 * queues we may keep, so this allows all I/O to be flushed in one
1317 * convenient call.
1318 */
1319void
1320cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
1321{
1322	bioq_flush(&isc->bio_queue, stp, err);
1323	bioq_flush(&isc->trim_queue, stp, err);
1324#ifdef CAM_IOSCHED_DYNAMIC
1325	if (do_dynamic_iosched)
1326		bioq_flush(&isc->write_queue, stp, err);
1327#endif
1328}
1329
1330#ifdef CAM_IOSCHED_DYNAMIC
1331static struct bio *
1332cam_iosched_get_write(struct cam_iosched_softc *isc)
1333{
1334	struct bio *bp;
1335
1336	/*
1337	 * We control the write rate by controlling how many requests we send
1338	 * down to the drive at any one time. Fewer requests limits the
1339	 * effects of both starvation when the requests take a while and write
1340	 * amplification when each request is causing more than one write to
1341	 * the NAND media. Limiting the queue depth like this will also limit
1342	 * the write throughput and give and reads that want to compete to
1343	 * compete unfairly.
1344	 */
1345	bp = bioq_first(&isc->write_queue);
1346	if (bp == NULL) {
1347		if (iosched_debug > 3)
1348			printf("No writes present in write_queue\n");
1349		return NULL;
1350	}
1351
1352	/*
1353	 * If pending read, prefer that based on current read bias
1354	 * setting.
1355	 */
1356	if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1357		if (iosched_debug)
1358			printf(
1359			    "Reads present and current_read_bias is %d queued "
1360			    "writes %d queued reads %d\n",
1361			    isc->current_read_bias, isc->write_stats.queued,
1362			    isc->read_stats.queued);
1363		isc->current_read_bias--;
1364		/* We're not limiting writes, per se, just doing reads first */
1365		return NULL;
1366	}
1367
1368	/*
1369	 * See if our current limiter allows this I/O.
1370	 */
1371	if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1372		if (iosched_debug)
1373			printf("Can't write because limiter says no.\n");
1374		isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1375		return NULL;
1376	}
1377
1378	/*
1379	 * Let's do this: We've passed all the gates and we're a go
1380	 * to schedule the I/O in the SIM.
1381	 */
1382	isc->current_read_bias = isc->read_bias;
1383	bioq_remove(&isc->write_queue, bp);
1384	if (bp->bio_cmd == BIO_WRITE) {
1385		isc->write_stats.queued--;
1386		isc->write_stats.total++;
1387		isc->write_stats.pending++;
1388	}
1389	if (iosched_debug > 9)
1390		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1391	isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1392	return bp;
1393}
1394#endif
1395
1396/*
1397 * Put back a trim that you weren't able to actually schedule this time.
1398 */
1399void
1400cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
1401{
1402	bioq_insert_head(&isc->trim_queue, bp);
1403	if (isc->queued_trims == 0)
1404		isc->last_trim_tick = ticks;
1405	isc->queued_trims++;
1406#ifdef CAM_IOSCHED_DYNAMIC
1407	isc->trim_stats.queued++;
1408	isc->trim_stats.total--;		/* since we put it back, don't double count */
1409	isc->trim_stats.pending--;
1410#endif
1411}
1412
1413/*
1414 * gets the next trim from the trim queue.
1415 *
1416 * Assumes we're called with the periph lock held.  It removes this
1417 * trim from the queue and the device must explicitly reinsert it
1418 * should the need arise.
1419 */
1420struct bio *
1421cam_iosched_next_trim(struct cam_iosched_softc *isc)
1422{
1423	struct bio *bp;
1424
1425	bp  = bioq_first(&isc->trim_queue);
1426	if (bp == NULL)
1427		return NULL;
1428	bioq_remove(&isc->trim_queue, bp);
1429	isc->queued_trims--;
1430	isc->last_trim_tick = ticks;	/* Reset the tick timer when we take trims */
1431#ifdef CAM_IOSCHED_DYNAMIC
1432	isc->trim_stats.queued--;
1433	isc->trim_stats.total++;
1434	isc->trim_stats.pending++;
1435#endif
1436	return bp;
1437}
1438
1439/*
1440 * gets an available trim from the trim queue, if there's no trim
1441 * already pending. It removes this trim from the queue and the device
1442 * must explicitly reinsert it should the need arise.
1443 *
1444 * Assumes we're called with the periph lock held.
1445 */
1446struct bio *
1447cam_iosched_get_trim(struct cam_iosched_softc *isc)
1448{
1449#ifdef CAM_IOSCHED_DYNAMIC
1450	struct bio *bp;
1451#endif
1452
1453	if (!cam_iosched_has_more_trim(isc))
1454		return NULL;
1455#ifdef CAM_IOSCHED_DYNAMIC
1456	bp  = bioq_first(&isc->trim_queue);
1457	if (bp == NULL)
1458		return NULL;
1459
1460	/*
1461	 * If pending read, prefer that based on current read bias setting. The
1462	 * read bias is shared for both writes and TRIMs, but on TRIMs the bias
1463	 * is for a combined TRIM not a single TRIM request that's come in.
1464	 */
1465	if (do_dynamic_iosched) {
1466		if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1467			if (iosched_debug)
1468				printf("Reads present and current_read_bias is %d"
1469				    " queued trims %d queued reads %d\n",
1470				    isc->current_read_bias, isc->trim_stats.queued,
1471				    isc->read_stats.queued);
1472			isc->current_read_bias--;
1473			/* We're not limiting TRIMS, per se, just doing reads first */
1474			return NULL;
1475		}
1476		/*
1477		 * We're going to do a trim, so reset the bias.
1478		 */
1479		isc->current_read_bias = isc->read_bias;
1480	}
1481
1482	/*
1483	 * See if our current limiter allows this I/O. Because we only call this
1484	 * here, and not in next_trim, the 'bandwidth' limits for trims won't
1485	 * work, while the iops or max queued limits will work. It's tricky
1486	 * because we want the limits to be from the perspective of the
1487	 * "commands sent to the device." To make iops work, we need to check
1488	 * only here (since we want all the ops we combine to count as one). To
1489	 * make bw limits work, we'd need to check in next_trim, but that would
1490	 * have the effect of limiting the iops as seen from the upper layers.
1491	 */
1492	if (cam_iosched_limiter_iop(&isc->trim_stats, bp) != 0) {
1493		if (iosched_debug)
1494			printf("Can't trim because limiter says no.\n");
1495		isc->trim_stats.state_flags |= IOP_RATE_LIMITED;
1496		return NULL;
1497	}
1498	isc->current_read_bias = isc->read_bias;
1499	isc->trim_stats.state_flags &= ~IOP_RATE_LIMITED;
1500	/* cam_iosched_next_trim below keeps proper book */
1501#endif
1502	return cam_iosched_next_trim(isc);
1503}
1504
1505
1506#ifdef CAM_IOSCHED_DYNAMIC
1507static struct bio *
1508bio_next(struct bio *bp)
1509{
1510	bp = TAILQ_NEXT(bp, bio_queue);
1511	/*
1512	 * After the first commands, the ordered bit terminates
1513	 * our search because BIO_ORDERED acts like a barrier.
1514	 */
1515	if (bp == NULL || bp->bio_flags & BIO_ORDERED)
1516		return NULL;
1517	return bp;
1518}
1519
1520static bool
1521cam_iosched_rate_limited(struct iop_stats *ios)
1522{
1523	return ios->state_flags & IOP_RATE_LIMITED;
1524}
1525#endif
1526
1527/*
1528 * Determine what the next bit of work to do is for the periph. The
1529 * default implementation looks to see if we have trims to do, but no
1530 * trims outstanding. If so, we do that. Otherwise we see if we have
1531 * other work. If we do, then we do that. Otherwise why were we called?
1532 */
1533struct bio *
1534cam_iosched_next_bio(struct cam_iosched_softc *isc)
1535{
1536	struct bio *bp;
1537
1538	/*
1539	 * See if we have a trim that can be scheduled. We can only send one
1540	 * at a time down, so this takes that into account.
1541	 *
1542	 * XXX newer TRIM commands are queueable. Revisit this when we
1543	 * implement them.
1544	 */
1545	if ((bp = cam_iosched_get_trim(isc)) != NULL)
1546		return bp;
1547
1548#ifdef CAM_IOSCHED_DYNAMIC
1549	/*
1550	 * See if we have any pending writes, room in the queue for them,
1551	 * and no pending reads (unless we've scheduled too many).
1552	 * if so, those are next.
1553	 */
1554	if (do_dynamic_iosched) {
1555		if ((bp = cam_iosched_get_write(isc)) != NULL)
1556			return bp;
1557	}
1558#endif
1559	/*
1560	 * next, see if there's other, normal I/O waiting. If so return that.
1561	 */
1562#ifdef CAM_IOSCHED_DYNAMIC
1563	if (do_dynamic_iosched) {
1564		for (bp = bioq_first(&isc->bio_queue); bp != NULL;
1565		     bp = bio_next(bp)) {
1566			/*
1567			 * For the dynamic scheduler with a read bias, bio_queue
1568			 * is only for reads. However, without one, all
1569			 * operations are queued. Enforce limits here for any
1570			 * operation we find here.
1571			 */
1572			if (bp->bio_cmd == BIO_READ) {
1573				if (cam_iosched_rate_limited(&isc->read_stats) ||
1574				    cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
1575					isc->read_stats.state_flags |= IOP_RATE_LIMITED;
1576					continue;
1577				}
1578				isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
1579			}
1580			/*
1581			 * There can only be write requests on the queue when
1582			 * the read bias is 0, but we need to process them
1583			 * here. We do not assert for read bias == 0, however,
1584			 * since it is dynamic and we can have WRITE operations
1585			 * in the queue after we transition from 0 to non-zero.
1586			 */
1587			if (bp->bio_cmd == BIO_WRITE) {
1588				if (cam_iosched_rate_limited(&isc->write_stats) ||
1589				    cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1590					isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1591					continue;
1592				}
1593				isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1594			}
1595			/*
1596			 * here we know we have a bp that's != NULL, that's not rate limited
1597			 * and can be the next I/O.
1598			 */
1599			break;
1600		}
1601	} else
1602#endif
1603		bp = bioq_first(&isc->bio_queue);
1604
1605	if (bp == NULL)
1606		return (NULL);
1607	bioq_remove(&isc->bio_queue, bp);
1608#ifdef CAM_IOSCHED_DYNAMIC
1609	if (do_dynamic_iosched) {
1610		if (bp->bio_cmd == BIO_READ) {
1611			isc->read_stats.queued--;
1612			isc->read_stats.total++;
1613			isc->read_stats.pending++;
1614		} else if (bp->bio_cmd == BIO_WRITE) {
1615			isc->write_stats.queued--;
1616			isc->write_stats.total++;
1617			isc->write_stats.pending++;
1618		}
1619	}
1620	if (iosched_debug > 9)
1621		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1622#endif
1623	return bp;
1624}
1625
1626/*
1627 * Driver has been given some work to do by the block layer. Tell the
1628 * scheduler about it and have it queue the work up. The scheduler module
1629 * will then return the currently most useful bit of work later, possibly
1630 * deferring work for various reasons.
1631 */
1632void
1633cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
1634{
1635
1636	/*
1637	 * A BIO_SPEEDUP from the upper layers means that they have a block
1638	 * shortage. At the present, this is only sent when we're trying to
1639	 * allocate blocks, but have a shortage before giving up. bio_length is
1640	 * the size of their shortage. We will complete just enough BIO_DELETEs
1641	 * in the queue to satisfy the need. If bio_length is 0, we'll complete
1642	 * them all. This allows the scheduler to delay BIO_DELETEs to improve
1643	 * read/write performance without worrying about the upper layers. When
1644	 * it's possibly a problem, we respond by pretending the BIO_DELETEs
1645	 * just worked. We can't do anything about the BIO_DELETEs in the
1646	 * hardware, though. We have to wait for them to complete.
1647	 */
1648	if (bp->bio_cmd == BIO_SPEEDUP) {
1649		off_t len;
1650		struct bio *nbp;
1651
1652		len = 0;
1653		while (bioq_first(&isc->trim_queue) &&
1654		    (bp->bio_length == 0 || len < bp->bio_length)) {
1655			nbp = bioq_takefirst(&isc->trim_queue);
1656			len += nbp->bio_length;
1657			nbp->bio_error = 0;
1658			biodone(nbp);
1659		}
1660		if (bp->bio_length > 0) {
1661			if (bp->bio_length > len)
1662				bp->bio_resid = bp->bio_length - len;
1663			else
1664				bp->bio_resid = 0;
1665		}
1666		bp->bio_error = 0;
1667		biodone(bp);
1668		return;
1669	}
1670
1671	/*
1672	 * If we get a BIO_FLUSH, and we're doing delayed BIO_DELETEs then we
1673	 * set the last tick time to one less than the current ticks minus the
1674	 * delay to force the BIO_DELETEs to be presented to the client driver.
1675	 */
1676	if (bp->bio_cmd == BIO_FLUSH && isc->trim_ticks > 0)
1677		isc->last_trim_tick = ticks - isc->trim_ticks - 1;
1678
1679	/*
1680	 * Put all trims on the trim queue. Otherwise put the work on the bio
1681	 * queue.
1682	 */
1683	if (bp->bio_cmd == BIO_DELETE) {
1684		bioq_insert_tail(&isc->trim_queue, bp);
1685		if (isc->queued_trims == 0)
1686			isc->last_trim_tick = ticks;
1687		isc->queued_trims++;
1688#ifdef CAM_IOSCHED_DYNAMIC
1689		isc->trim_stats.in++;
1690		isc->trim_stats.queued++;
1691#endif
1692	}
1693#ifdef CAM_IOSCHED_DYNAMIC
1694	else if (do_dynamic_iosched && isc->read_bias != 0 &&
1695	    (bp->bio_cmd != BIO_READ)) {
1696		if (cam_iosched_sort_queue(isc))
1697			bioq_disksort(&isc->write_queue, bp);
1698		else
1699			bioq_insert_tail(&isc->write_queue, bp);
1700		if (iosched_debug > 9)
1701			printf("Qw  : %p %#x\n", bp, bp->bio_cmd);
1702		if (bp->bio_cmd == BIO_WRITE) {
1703			isc->write_stats.in++;
1704			isc->write_stats.queued++;
1705		}
1706	}
1707#endif
1708	else {
1709		if (cam_iosched_sort_queue(isc))
1710			bioq_disksort(&isc->bio_queue, bp);
1711		else
1712			bioq_insert_tail(&isc->bio_queue, bp);
1713#ifdef CAM_IOSCHED_DYNAMIC
1714		if (iosched_debug > 9)
1715			printf("Qr  : %p %#x\n", bp, bp->bio_cmd);
1716		if (bp->bio_cmd == BIO_READ) {
1717			isc->read_stats.in++;
1718			isc->read_stats.queued++;
1719		} else if (bp->bio_cmd == BIO_WRITE) {
1720			isc->write_stats.in++;
1721			isc->write_stats.queued++;
1722		}
1723#endif
1724	}
1725}
1726
1727/*
1728 * If we have work, get it scheduled. Called with the periph lock held.
1729 */
1730void
1731cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
1732{
1733
1734	if (cam_iosched_has_work(isc))
1735		xpt_schedule(periph, CAM_PRIORITY_NORMAL);
1736}
1737
1738/*
1739 * Complete a trim request. Mark that we no longer have one in flight.
1740 */
1741void
1742cam_iosched_trim_done(struct cam_iosched_softc *isc)
1743{
1744
1745	isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1746}
1747
1748/*
1749 * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
1750 * might use notes in the ccb for statistics.
1751 */
1752int
1753cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
1754    union ccb *done_ccb)
1755{
1756	int retval = 0;
1757#ifdef CAM_IOSCHED_DYNAMIC
1758	if (!do_dynamic_iosched)
1759		return retval;
1760
1761	if (iosched_debug > 10)
1762		printf("done: %p %#x\n", bp, bp->bio_cmd);
1763	if (bp->bio_cmd == BIO_WRITE) {
1764		retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
1765		if ((bp->bio_flags & BIO_ERROR) != 0)
1766			isc->write_stats.errs++;
1767		isc->write_stats.out++;
1768		isc->write_stats.pending--;
1769	} else if (bp->bio_cmd == BIO_READ) {
1770		retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
1771		if ((bp->bio_flags & BIO_ERROR) != 0)
1772			isc->read_stats.errs++;
1773		isc->read_stats.out++;
1774		isc->read_stats.pending--;
1775	} else if (bp->bio_cmd == BIO_DELETE) {
1776		if ((bp->bio_flags & BIO_ERROR) != 0)
1777			isc->trim_stats.errs++;
1778		isc->trim_stats.out++;
1779		isc->trim_stats.pending--;
1780	} else if (bp->bio_cmd != BIO_FLUSH) {
1781		if (iosched_debug)
1782			printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
1783	}
1784
1785	if ((bp->bio_flags & BIO_ERROR) == 0 && done_ccb != NULL &&
1786	    (done_ccb->ccb_h.status & CAM_QOS_VALID) != 0) {
1787		sbintime_t sim_latency;
1788
1789		sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data);
1790
1791		cam_iosched_io_metric_update(isc, sim_latency,
1792		    bp->bio_cmd, bp->bio_bcount);
1793		/*
1794		 * Debugging code: allow callbacks to the periph driver when latency max
1795		 * is exceeded. This can be useful for triggering external debugging actions.
1796		 */
1797		if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat)
1798			isc->latfcn(isc->latarg, sim_latency, bp);
1799	}
1800
1801#endif
1802	return retval;
1803}
1804
1805/*
1806 * Tell the io scheduler that you've pushed a trim down into the sim.
1807 * This also tells the I/O scheduler not to push any more trims down, so
1808 * some periphs do not call it if they can cope with multiple trims in flight.
1809 */
1810void
1811cam_iosched_submit_trim(struct cam_iosched_softc *isc)
1812{
1813
1814	isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1815}
1816
1817/*
1818 * Change the sorting policy hint for I/O transactions for this device.
1819 */
1820void
1821cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
1822{
1823
1824	isc->sort_io_queue = val;
1825}
1826
1827int
1828cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1829{
1830	return isc->flags & flags;
1831}
1832
1833void
1834cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1835{
1836	isc->flags |= flags;
1837}
1838
1839void
1840cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1841{
1842	isc->flags &= ~flags;
1843}
1844
1845#ifdef CAM_IOSCHED_DYNAMIC
1846/*
1847 * After the method presented in Jack Crenshaw's 1998 article "Integer
1848 * Square Roots," reprinted at
1849 * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
1850 * and well worth the read. Briefly, we find the power of 4 that's the
1851 * largest smaller than val. We then check each smaller power of 4 to
1852 * see if val is still bigger. The right shifts at each step divide
1853 * the result by 2 which after successive application winds up
1854 * accumulating the right answer. It could also have been accumulated
1855 * using a separate root counter, but this code is smaller and faster
1856 * than that method. This method is also integer size invariant.
1857 * It returns floor(sqrt((float)val)), or the largest integer less than
1858 * or equal to the square root.
1859 */
1860static uint64_t
1861isqrt64(uint64_t val)
1862{
1863	uint64_t res = 0;
1864	uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
1865
1866	/*
1867	 * Find the largest power of 4 smaller than val.
1868	 */
1869	while (bit > val)
1870		bit >>= 2;
1871
1872	/*
1873	 * Accumulate the answer, one bit at a time (we keep moving
1874	 * them over since 2 is the square root of 4 and we test
1875	 * powers of 4). We accumulate where we find the bit, but
1876	 * the successive shifts land the bit in the right place
1877	 * by the end.
1878	 */
1879	while (bit != 0) {
1880		if (val >= res + bit) {
1881			val -= res + bit;
1882			res = (res >> 1) + bit;
1883		} else
1884			res >>= 1;
1885		bit >>= 2;
1886	}
1887
1888	return res;
1889}
1890
1891static sbintime_t latencies[LAT_BUCKETS - 1] = {
1892	BUCKET_BASE <<  0,	/* 20us */
1893	BUCKET_BASE <<  1,
1894	BUCKET_BASE <<  2,
1895	BUCKET_BASE <<  3,
1896	BUCKET_BASE <<  4,
1897	BUCKET_BASE <<  5,
1898	BUCKET_BASE <<  6,
1899	BUCKET_BASE <<  7,
1900	BUCKET_BASE <<  8,
1901	BUCKET_BASE <<  9,
1902	BUCKET_BASE << 10,
1903	BUCKET_BASE << 11,
1904	BUCKET_BASE << 12,
1905	BUCKET_BASE << 13,
1906	BUCKET_BASE << 14,
1907	BUCKET_BASE << 15,
1908	BUCKET_BASE << 16,
1909	BUCKET_BASE << 17,
1910	BUCKET_BASE << 18	/* 5,242,880us */
1911};
1912
1913static void
1914cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
1915{
1916	sbintime_t y, deltasq, delta;
1917	int i;
1918
1919	/*
1920	 * Keep counts for latency. We do it by power of two buckets.
1921	 * This helps us spot outlier behavior obscured by averages.
1922	 */
1923	for (i = 0; i < LAT_BUCKETS - 1; i++) {
1924		if (sim_latency < latencies[i]) {
1925			iop->latencies[i]++;
1926			break;
1927		}
1928	}
1929	if (i == LAT_BUCKETS - 1)
1930		iop->latencies[i]++; 	 /* Put all > 8192ms values into the last bucket. */
1931
1932	/*
1933	 * Classic exponentially decaying average with a tiny alpha
1934	 * (2 ^ -alpha_bits). For more info see the NIST statistical
1935	 * handbook.
1936	 *
1937	 * ema_t = y_t * alpha + ema_t-1 * (1 - alpha)		[nist]
1938	 * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
1939	 * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
1940	 * alpha = 1 / (1 << alpha_bits)
1941	 * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
1942	 *	= y_t/b - e/b + be/b
1943	 *      = (y_t - e + be) / b
1944	 *	= (e + d) / b
1945	 *
1946	 * Since alpha is a power of two, we can compute this w/o any mult or
1947	 * division.
1948	 *
1949	 * Variance can also be computed. Usually, it would be expressed as follows:
1950	 *	diff_t = y_t - ema_t-1
1951	 *	emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
1952	 *	  = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
1953	 * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
1954	 *	  = e - e/b + dd/b + dd/bb
1955	 *	  = (bbe - be + bdd + dd) / bb
1956	 *	  = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
1957	 */
1958	/*
1959	 * XXX possible numeric issues
1960	 *	o We assume right shifted integers do the right thing, since that's
1961	 *	  implementation defined. You can change the right shifts to / (1LL << alpha).
1962	 *	o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
1963	 *	  for emvar. This puts a ceiling of 13 bits on alpha since we need a
1964	 *	  few tens of seconds of representation.
1965	 *	o We mitigate alpha issues by never setting it too high.
1966	 */
1967	y = sim_latency;
1968	delta = (y - iop->ema);					/* d */
1969	iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
1970
1971	/*
1972	 * Were we to naively plow ahead at this point, we wind up with many numerical
1973	 * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
1974	 * us with microsecond level precision in the input, so the same in the
1975	 * output. It means we can't overflow deltasq unless delta > 4k seconds. It
1976	 * also means that emvar can be up 46 bits 40 of which are fraction, which
1977	 * gives us a way to measure up to ~8s in the SD before the computation goes
1978	 * unstable. Even the worst hard disk rarely has > 1s service time in the
1979	 * drive. It does mean we have to shift left 12 bits after taking the
1980	 * square root to compute the actual standard deviation estimate. This loss of
1981	 * precision is preferable to needing int128 types to work. The above numbers
1982	 * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
1983	 * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
1984	 */
1985	delta >>= 12;
1986	deltasq = delta * delta;				/* dd */
1987	iop->emvar = ((iop->emvar << (2 * alpha_bits)) +	/* bbe */
1988	    ((deltasq - iop->emvar) << alpha_bits) +		/* b(dd-e) */
1989	    deltasq)						/* dd */
1990	    >> (2 * alpha_bits);				/* div bb */
1991	iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
1992}
1993
1994static void
1995cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
1996    sbintime_t sim_latency, int cmd, size_t size)
1997{
1998	/* xxx Do we need to scale based on the size of the I/O ? */
1999	switch (cmd) {
2000	case BIO_READ:
2001		cam_iosched_update(&isc->read_stats, sim_latency);
2002		break;
2003	case BIO_WRITE:
2004		cam_iosched_update(&isc->write_stats, sim_latency);
2005		break;
2006	case BIO_DELETE:
2007		cam_iosched_update(&isc->trim_stats, sim_latency);
2008		break;
2009	default:
2010		break;
2011	}
2012}
2013
2014#ifdef DDB
2015static int biolen(struct bio_queue_head *bq)
2016{
2017	int i = 0;
2018	struct bio *bp;
2019
2020	TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
2021		i++;
2022	}
2023	return i;
2024}
2025
2026/*
2027 * Show the internal state of the I/O scheduler.
2028 */
2029DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
2030{
2031	struct cam_iosched_softc *isc;
2032
2033	if (!have_addr) {
2034		db_printf("Need addr\n");
2035		return;
2036	}
2037	isc = (struct cam_iosched_softc *)addr;
2038	db_printf("pending_reads:     %d\n", isc->read_stats.pending);
2039	db_printf("min_reads:         %d\n", isc->read_stats.min);
2040	db_printf("max_reads:         %d\n", isc->read_stats.max);
2041	db_printf("reads:             %d\n", isc->read_stats.total);
2042	db_printf("in_reads:          %d\n", isc->read_stats.in);
2043	db_printf("out_reads:         %d\n", isc->read_stats.out);
2044	db_printf("queued_reads:      %d\n", isc->read_stats.queued);
2045	db_printf("Read Q len         %d\n", biolen(&isc->bio_queue));
2046	db_printf("pending_writes:    %d\n", isc->write_stats.pending);
2047	db_printf("min_writes:        %d\n", isc->write_stats.min);
2048	db_printf("max_writes:        %d\n", isc->write_stats.max);
2049	db_printf("writes:            %d\n", isc->write_stats.total);
2050	db_printf("in_writes:         %d\n", isc->write_stats.in);
2051	db_printf("out_writes:        %d\n", isc->write_stats.out);
2052	db_printf("queued_writes:     %d\n", isc->write_stats.queued);
2053	db_printf("Write Q len        %d\n", biolen(&isc->write_queue));
2054	db_printf("pending_trims:     %d\n", isc->trim_stats.pending);
2055	db_printf("min_trims:         %d\n", isc->trim_stats.min);
2056	db_printf("max_trims:         %d\n", isc->trim_stats.max);
2057	db_printf("trims:             %d\n", isc->trim_stats.total);
2058	db_printf("in_trims:          %d\n", isc->trim_stats.in);
2059	db_printf("out_trims:         %d\n", isc->trim_stats.out);
2060	db_printf("queued_trims:      %d\n", isc->trim_stats.queued);
2061	db_printf("Trim Q len         %d\n", biolen(&isc->trim_queue));
2062	db_printf("read_bias:         %d\n", isc->read_bias);
2063	db_printf("current_read_bias: %d\n", isc->current_read_bias);
2064	db_printf("Trim active?       %s\n",
2065	    (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
2066}
2067#endif
2068#endif
2069