ntp_control.c revision 298770
1/*
2 * ntp_control.c - respond to mode 6 control messages and send async
3 *		   traps.  Provides service to ntpq and others.
4 */
5
6#ifdef HAVE_CONFIG_H
7# include <config.h>
8#endif
9
10#include <stdio.h>
11#include <ctype.h>
12#include <signal.h>
13#include <sys/stat.h>
14#ifdef HAVE_NETINET_IN_H
15# include <netinet/in.h>
16#endif
17#include <arpa/inet.h>
18
19#include "ntpd.h"
20#include "ntp_io.h"
21#include "ntp_refclock.h"
22#include "ntp_control.h"
23#include "ntp_unixtime.h"
24#include "ntp_stdlib.h"
25#include "ntp_config.h"
26#include "ntp_crypto.h"
27#include "ntp_assert.h"
28#include "ntp_leapsec.h"
29#include "ntp_md5.h"	/* provides OpenSSL digest API */
30#include "lib_strbuf.h"
31#include <rc_cmdlength.h>
32#ifdef KERNEL_PLL
33# include "ntp_syscall.h"
34#endif
35
36
37/*
38 * Structure to hold request procedure information
39 */
40
41struct ctl_proc {
42	short control_code;		/* defined request code */
43#define NO_REQUEST	(-1)
44	u_short flags;			/* flags word */
45	/* Only one flag.  Authentication required or not. */
46#define NOAUTH	0
47#define AUTH	1
48	void (*handler) (struct recvbuf *, int); /* handle request */
49};
50
51
52/*
53 * Request processing routines
54 */
55static	void	ctl_error	(u_char);
56#ifdef REFCLOCK
57static	u_short ctlclkstatus	(struct refclockstat *);
58#endif
59static	void	ctl_flushpkt	(u_char);
60static	void	ctl_putdata	(const char *, unsigned int, int);
61static	void	ctl_putstr	(const char *, const char *, size_t);
62static	void	ctl_putdblf	(const char *, int, int, double);
63#define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
64#define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
65#define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
66					    FPTOD(sfp))
67static	void	ctl_putuint	(const char *, u_long);
68static	void	ctl_puthex	(const char *, u_long);
69static	void	ctl_putint	(const char *, long);
70static	void	ctl_putts	(const char *, l_fp *);
71static	void	ctl_putadr	(const char *, u_int32,
72				 sockaddr_u *);
73static	void	ctl_putrefid	(const char *, u_int32);
74static	void	ctl_putarray	(const char *, double *, int);
75static	void	ctl_putsys	(int);
76static	void	ctl_putpeer	(int, struct peer *);
77static	void	ctl_putfs	(const char *, tstamp_t);
78static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
79#ifdef REFCLOCK
80static	void	ctl_putclock	(int, struct refclockstat *, int);
81#endif	/* REFCLOCK */
82static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
83					  char **);
84static	u_short	count_var	(const struct ctl_var *);
85static	void	control_unspec	(struct recvbuf *, int);
86static	void	read_status	(struct recvbuf *, int);
87static	void	read_sysvars	(void);
88static	void	read_peervars	(void);
89static	void	read_variables	(struct recvbuf *, int);
90static	void	write_variables (struct recvbuf *, int);
91static	void	read_clockstatus(struct recvbuf *, int);
92static	void	write_clockstatus(struct recvbuf *, int);
93static	void	set_trap	(struct recvbuf *, int);
94static	void	save_config	(struct recvbuf *, int);
95static	void	configure	(struct recvbuf *, int);
96static	void	send_mru_entry	(mon_entry *, int);
97static	void	send_random_tag_value(int);
98static	void	read_mru_list	(struct recvbuf *, int);
99static	void	send_ifstats_entry(endpt *, u_int);
100static	void	read_ifstats	(struct recvbuf *);
101static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
102					  restrict_u *, int);
103static	void	send_restrict_entry(restrict_u *, int, u_int);
104static	void	send_restrict_list(restrict_u *, int, u_int *);
105static	void	read_addr_restrictions(struct recvbuf *);
106static	void	read_ordlist	(struct recvbuf *, int);
107static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
108static	void	generate_nonce	(struct recvbuf *, char *, size_t);
109static	int	validate_nonce	(const char *, struct recvbuf *);
110static	void	req_nonce	(struct recvbuf *, int);
111static	void	unset_trap	(struct recvbuf *, int);
112static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
113				     struct interface *);
114
115int/*BOOL*/ is_safe_filename(const char * name);
116
117static const struct ctl_proc control_codes[] = {
118	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
119	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
120	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
121	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
122	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
123	{ CTL_OP_WRITECLOCK,		NOAUTH,	write_clockstatus },
124	{ CTL_OP_SETTRAP,		NOAUTH,	set_trap },
125	{ CTL_OP_CONFIGURE,		AUTH,	configure },
126	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
127	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
128	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
129	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
130	{ CTL_OP_UNSETTRAP,		NOAUTH,	unset_trap },
131	{ NO_REQUEST,			0,	NULL }
132};
133
134/*
135 * System variables we understand
136 */
137#define	CS_LEAP			1
138#define	CS_STRATUM		2
139#define	CS_PRECISION		3
140#define	CS_ROOTDELAY		4
141#define	CS_ROOTDISPERSION	5
142#define	CS_REFID		6
143#define	CS_REFTIME		7
144#define	CS_POLL			8
145#define	CS_PEERID		9
146#define	CS_OFFSET		10
147#define	CS_DRIFT		11
148#define	CS_JITTER		12
149#define	CS_ERROR		13
150#define	CS_CLOCK		14
151#define	CS_PROCESSOR		15
152#define	CS_SYSTEM		16
153#define	CS_VERSION		17
154#define	CS_STABIL		18
155#define	CS_VARLIST		19
156#define	CS_TAI			20
157#define	CS_LEAPTAB		21
158#define	CS_LEAPEND		22
159#define	CS_RATE			23
160#define	CS_MRU_ENABLED		24
161#define	CS_MRU_DEPTH		25
162#define	CS_MRU_DEEPEST		26
163#define	CS_MRU_MINDEPTH		27
164#define	CS_MRU_MAXAGE		28
165#define	CS_MRU_MAXDEPTH		29
166#define	CS_MRU_MEM		30
167#define	CS_MRU_MAXMEM		31
168#define	CS_SS_UPTIME		32
169#define	CS_SS_RESET		33
170#define	CS_SS_RECEIVED		34
171#define	CS_SS_THISVER		35
172#define	CS_SS_OLDVER		36
173#define	CS_SS_BADFORMAT		37
174#define	CS_SS_BADAUTH		38
175#define	CS_SS_DECLINED		39
176#define	CS_SS_RESTRICTED	40
177#define	CS_SS_LIMITED		41
178#define	CS_SS_KODSENT		42
179#define	CS_SS_PROCESSED		43
180#define	CS_PEERADR		44
181#define	CS_PEERMODE		45
182#define	CS_BCASTDELAY		46
183#define	CS_AUTHDELAY		47
184#define	CS_AUTHKEYS		48
185#define	CS_AUTHFREEK		49
186#define	CS_AUTHKLOOKUPS		50
187#define	CS_AUTHKNOTFOUND	51
188#define	CS_AUTHKUNCACHED	52
189#define	CS_AUTHKEXPIRED		53
190#define	CS_AUTHENCRYPTS		54
191#define	CS_AUTHDECRYPTS		55
192#define	CS_AUTHRESET		56
193#define	CS_K_OFFSET		57
194#define	CS_K_FREQ		58
195#define	CS_K_MAXERR		59
196#define	CS_K_ESTERR		60
197#define	CS_K_STFLAGS		61
198#define	CS_K_TIMECONST		62
199#define	CS_K_PRECISION		63
200#define	CS_K_FREQTOL		64
201#define	CS_K_PPS_FREQ		65
202#define	CS_K_PPS_STABIL		66
203#define	CS_K_PPS_JITTER		67
204#define	CS_K_PPS_CALIBDUR	68
205#define	CS_K_PPS_CALIBS		69
206#define	CS_K_PPS_CALIBERRS	70
207#define	CS_K_PPS_JITEXC		71
208#define	CS_K_PPS_STBEXC		72
209#define	CS_KERN_FIRST		CS_K_OFFSET
210#define	CS_KERN_LAST		CS_K_PPS_STBEXC
211#define	CS_IOSTATS_RESET	73
212#define	CS_TOTAL_RBUF		74
213#define	CS_FREE_RBUF		75
214#define	CS_USED_RBUF		76
215#define	CS_RBUF_LOWATER		77
216#define	CS_IO_DROPPED		78
217#define	CS_IO_IGNORED		79
218#define	CS_IO_RECEIVED		80
219#define	CS_IO_SENT		81
220#define	CS_IO_SENDFAILED	82
221#define	CS_IO_WAKEUPS		83
222#define	CS_IO_GOODWAKEUPS	84
223#define	CS_TIMERSTATS_RESET	85
224#define	CS_TIMER_OVERRUNS	86
225#define	CS_TIMER_XMTS		87
226#define	CS_FUZZ			88
227#define	CS_WANDER_THRESH	89
228#define	CS_LEAPSMEARINTV	90
229#define	CS_LEAPSMEAROFFS	91
230#define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
231#ifdef AUTOKEY
232#define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
233#define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
234#define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
235#define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
236#define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
237#define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
238#define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
239#define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
240#define	CS_MAXCODE		CS_DIGEST
241#else	/* !AUTOKEY follows */
242#define	CS_MAXCODE		CS_MAX_NOAUTOKEY
243#endif	/* !AUTOKEY */
244
245/*
246 * Peer variables we understand
247 */
248#define	CP_CONFIG		1
249#define	CP_AUTHENABLE		2
250#define	CP_AUTHENTIC		3
251#define	CP_SRCADR		4
252#define	CP_SRCPORT		5
253#define	CP_DSTADR		6
254#define	CP_DSTPORT		7
255#define	CP_LEAP			8
256#define	CP_HMODE		9
257#define	CP_STRATUM		10
258#define	CP_PPOLL		11
259#define	CP_HPOLL		12
260#define	CP_PRECISION		13
261#define	CP_ROOTDELAY		14
262#define	CP_ROOTDISPERSION	15
263#define	CP_REFID		16
264#define	CP_REFTIME		17
265#define	CP_ORG			18
266#define	CP_REC			19
267#define	CP_XMT			20
268#define	CP_REACH		21
269#define	CP_UNREACH		22
270#define	CP_TIMER		23
271#define	CP_DELAY		24
272#define	CP_OFFSET		25
273#define	CP_JITTER		26
274#define	CP_DISPERSION		27
275#define	CP_KEYID		28
276#define	CP_FILTDELAY		29
277#define	CP_FILTOFFSET		30
278#define	CP_PMODE		31
279#define	CP_RECEIVED		32
280#define	CP_SENT			33
281#define	CP_FILTERROR		34
282#define	CP_FLASH		35
283#define	CP_TTL			36
284#define	CP_VARLIST		37
285#define	CP_IN			38
286#define	CP_OUT			39
287#define	CP_RATE			40
288#define	CP_BIAS			41
289#define	CP_SRCHOST		42
290#define	CP_TIMEREC		43
291#define	CP_TIMEREACH		44
292#define	CP_BADAUTH		45
293#define	CP_BOGUSORG		46
294#define	CP_OLDPKT		47
295#define	CP_SELDISP		48
296#define	CP_SELBROKEN		49
297#define	CP_CANDIDATE		50
298#define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
299#ifdef AUTOKEY
300#define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
301#define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
302#define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
303#define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
304#define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
305#define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
306#define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
307#define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
308#define	CP_MAXCODE		CP_IDENT
309#else	/* !AUTOKEY follows */
310#define	CP_MAXCODE		CP_MAX_NOAUTOKEY
311#endif	/* !AUTOKEY */
312
313/*
314 * Clock variables we understand
315 */
316#define	CC_TYPE		1
317#define	CC_TIMECODE	2
318#define	CC_POLL		3
319#define	CC_NOREPLY	4
320#define	CC_BADFORMAT	5
321#define	CC_BADDATA	6
322#define	CC_FUDGETIME1	7
323#define	CC_FUDGETIME2	8
324#define	CC_FUDGEVAL1	9
325#define	CC_FUDGEVAL2	10
326#define	CC_FLAGS	11
327#define	CC_DEVICE	12
328#define	CC_VARLIST	13
329#define	CC_MAXCODE	CC_VARLIST
330
331/*
332 * System variable values. The array can be indexed by the variable
333 * index to find the textual name.
334 */
335static const struct ctl_var sys_var[] = {
336	{ 0,		PADDING, "" },		/* 0 */
337	{ CS_LEAP,	RW, "leap" },		/* 1 */
338	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
339	{ CS_PRECISION, RO, "precision" },	/* 3 */
340	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
341	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
342	{ CS_REFID,	RO, "refid" },		/* 6 */
343	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
344	{ CS_POLL,	RO, "tc" },		/* 8 */
345	{ CS_PEERID,	RO, "peer" },		/* 9 */
346	{ CS_OFFSET,	RO, "offset" },		/* 10 */
347	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
348	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
349	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
350	{ CS_CLOCK,	RO, "clock" },		/* 14 */
351	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
352	{ CS_SYSTEM,	RO, "system" },		/* 16 */
353	{ CS_VERSION,	RO, "version" },	/* 17 */
354	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
355	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
356	{ CS_TAI,	RO, "tai" },		/* 20 */
357	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
358	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
359	{ CS_RATE,	RO, "mintc" },		/* 23 */
360	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
361	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
362	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
363	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
364	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
365	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
366	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
367	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
368	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
369	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
370	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
371	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
372	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
373	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
374	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
375	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
376	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
377	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
378	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
379	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
380	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
381	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
382	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
383	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
384	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
385	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
386	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
387	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
388	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
389	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
390	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
391	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
392	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
393	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
394	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
395	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
396	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
397	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
398	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
399	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
400	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
401	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
402	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
403	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
404	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
405	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
406	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
407	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
408	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
409	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
410	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
411	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
412	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
413	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
414	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
415	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
416	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
417	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
418	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
419	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
420	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
421	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
422	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
423	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
424	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
425	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
426
427	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
428	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
429
430#ifdef AUTOKEY
431	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
432	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
433	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
434	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
435	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
436	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
437	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
438	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
439#endif	/* AUTOKEY */
440	{ 0,		EOV, "" }		/* 87/95 */
441};
442
443static struct ctl_var *ext_sys_var = NULL;
444
445/*
446 * System variables we print by default (in fuzzball order,
447 * more-or-less)
448 */
449static const u_char def_sys_var[] = {
450	CS_VERSION,
451	CS_PROCESSOR,
452	CS_SYSTEM,
453	CS_LEAP,
454	CS_STRATUM,
455	CS_PRECISION,
456	CS_ROOTDELAY,
457	CS_ROOTDISPERSION,
458	CS_REFID,
459	CS_REFTIME,
460	CS_CLOCK,
461	CS_PEERID,
462	CS_POLL,
463	CS_RATE,
464	CS_OFFSET,
465	CS_DRIFT,
466	CS_JITTER,
467	CS_ERROR,
468	CS_STABIL,
469	CS_TAI,
470	CS_LEAPTAB,
471	CS_LEAPEND,
472	CS_LEAPSMEARINTV,
473	CS_LEAPSMEAROFFS,
474#ifdef AUTOKEY
475	CS_HOST,
476	CS_IDENT,
477	CS_FLAGS,
478	CS_DIGEST,
479	CS_SIGNATURE,
480	CS_PUBLIC,
481	CS_CERTIF,
482#endif	/* AUTOKEY */
483	0
484};
485
486
487/*
488 * Peer variable list
489 */
490static const struct ctl_var peer_var[] = {
491	{ 0,		PADDING, "" },		/* 0 */
492	{ CP_CONFIG,	RO, "config" },		/* 1 */
493	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
494	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
495	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
496	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
497	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
498	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
499	{ CP_LEAP,	RO, "leap" },		/* 8 */
500	{ CP_HMODE,	RO, "hmode" },		/* 9 */
501	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
502	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
503	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
504	{ CP_PRECISION,	RO, "precision" },	/* 13 */
505	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
506	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
507	{ CP_REFID,	RO, "refid" },		/* 16 */
508	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
509	{ CP_ORG,	RO, "org" },		/* 18 */
510	{ CP_REC,	RO, "rec" },		/* 19 */
511	{ CP_XMT,	RO, "xleave" },		/* 20 */
512	{ CP_REACH,	RO, "reach" },		/* 21 */
513	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
514	{ CP_TIMER,	RO, "timer" },		/* 23 */
515	{ CP_DELAY,	RO, "delay" },		/* 24 */
516	{ CP_OFFSET,	RO, "offset" },		/* 25 */
517	{ CP_JITTER,	RO, "jitter" },		/* 26 */
518	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
519	{ CP_KEYID,	RO, "keyid" },		/* 28 */
520	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
521	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
522	{ CP_PMODE,	RO, "pmode" },		/* 31 */
523	{ CP_RECEIVED,	RO, "received"},	/* 32 */
524	{ CP_SENT,	RO, "sent" },		/* 33 */
525	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
526	{ CP_FLASH,	RO, "flash" },		/* 35 */
527	{ CP_TTL,	RO, "ttl" },		/* 36 */
528	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
529	{ CP_IN,	RO, "in" },		/* 38 */
530	{ CP_OUT,	RO, "out" },		/* 39 */
531	{ CP_RATE,	RO, "headway" },	/* 40 */
532	{ CP_BIAS,	RO, "bias" },		/* 41 */
533	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
534	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
535	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
536	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
537	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
538	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
539	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
540	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
541	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
542#ifdef AUTOKEY
543	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
544	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
545	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
546	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
547	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
548	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
549	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
550	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
551#endif	/* AUTOKEY */
552	{ 0,		EOV, "" }		/* 50/58 */
553};
554
555
556/*
557 * Peer variables we print by default
558 */
559static const u_char def_peer_var[] = {
560	CP_SRCADR,
561	CP_SRCPORT,
562	CP_SRCHOST,
563	CP_DSTADR,
564	CP_DSTPORT,
565	CP_OUT,
566	CP_IN,
567	CP_LEAP,
568	CP_STRATUM,
569	CP_PRECISION,
570	CP_ROOTDELAY,
571	CP_ROOTDISPERSION,
572	CP_REFID,
573	CP_REFTIME,
574	CP_REC,
575	CP_REACH,
576	CP_UNREACH,
577	CP_HMODE,
578	CP_PMODE,
579	CP_HPOLL,
580	CP_PPOLL,
581	CP_RATE,
582	CP_FLASH,
583	CP_KEYID,
584	CP_TTL,
585	CP_OFFSET,
586	CP_DELAY,
587	CP_DISPERSION,
588	CP_JITTER,
589	CP_XMT,
590	CP_BIAS,
591	CP_FILTDELAY,
592	CP_FILTOFFSET,
593	CP_FILTERROR,
594#ifdef AUTOKEY
595	CP_HOST,
596	CP_FLAGS,
597	CP_SIGNATURE,
598	CP_VALID,
599	CP_INITSEQ,
600	CP_IDENT,
601#endif	/* AUTOKEY */
602	0
603};
604
605
606#ifdef REFCLOCK
607/*
608 * Clock variable list
609 */
610static const struct ctl_var clock_var[] = {
611	{ 0,		PADDING, "" },		/* 0 */
612	{ CC_TYPE,	RO, "type" },		/* 1 */
613	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
614	{ CC_POLL,	RO, "poll" },		/* 3 */
615	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
616	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
617	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
618	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
619	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
620	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
621	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
622	{ CC_FLAGS,	RO, "flags" },		/* 11 */
623	{ CC_DEVICE,	RO, "device" },		/* 12 */
624	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
625	{ 0,		EOV, ""  }		/* 14 */
626};
627
628
629/*
630 * Clock variables printed by default
631 */
632static const u_char def_clock_var[] = {
633	CC_DEVICE,
634	CC_TYPE,	/* won't be output if device = known */
635	CC_TIMECODE,
636	CC_POLL,
637	CC_NOREPLY,
638	CC_BADFORMAT,
639	CC_BADDATA,
640	CC_FUDGETIME1,
641	CC_FUDGETIME2,
642	CC_FUDGEVAL1,
643	CC_FUDGEVAL2,
644	CC_FLAGS,
645	0
646};
647#endif
648
649/*
650 * MRU string constants shared by send_mru_entry() and read_mru_list().
651 */
652static const char addr_fmt[] =		"addr.%d";
653static const char last_fmt[] =		"last.%d";
654
655/*
656 * System and processor definitions.
657 */
658#ifndef HAVE_UNAME
659# ifndef STR_SYSTEM
660#  define		STR_SYSTEM	"UNIX"
661# endif
662# ifndef STR_PROCESSOR
663#  define		STR_PROCESSOR	"unknown"
664# endif
665
666static const char str_system[] = STR_SYSTEM;
667static const char str_processor[] = STR_PROCESSOR;
668#else
669# include <sys/utsname.h>
670static struct utsname utsnamebuf;
671#endif /* HAVE_UNAME */
672
673/*
674 * Trap structures. We only allow a few of these, and send a copy of
675 * each async message to each live one. Traps time out after an hour, it
676 * is up to the trap receipient to keep resetting it to avoid being
677 * timed out.
678 */
679/* ntp_request.c */
680struct ctl_trap ctl_traps[CTL_MAXTRAPS];
681int num_ctl_traps;
682
683/*
684 * Type bits, for ctlsettrap() call.
685 */
686#define TRAP_TYPE_CONFIG	0	/* used by configuration code */
687#define TRAP_TYPE_PRIO		1	/* priority trap */
688#define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
689
690
691/*
692 * List relating reference clock types to control message time sources.
693 * Index by the reference clock type. This list will only be used iff
694 * the reference clock driver doesn't set peer->sstclktype to something
695 * different than CTL_SST_TS_UNSPEC.
696 */
697#ifdef REFCLOCK
698static const u_char clocktypes[] = {
699	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
700	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
701	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
702	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
703	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
704	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
705	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
706	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
707	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
708	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
709	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
710	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
711	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
712	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
713	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
714	CTL_SST_TS_NTP,		/* not used (15) */
715	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
716	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
717	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
718	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
719	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
720	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
721	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
722	CTL_SST_TS_NTP,		/* not used (23) */
723	CTL_SST_TS_NTP,		/* not used (24) */
724	CTL_SST_TS_NTP,		/* not used (25) */
725	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
726	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
727	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
728	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
729	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
730	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
731	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
732	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
733	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
734	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
735	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
736	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
737	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
738	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
739	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
740	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
741	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
742	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
743	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
744	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
745	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
746};
747#endif  /* REFCLOCK */
748
749
750/*
751 * Keyid used for authenticating write requests.
752 */
753keyid_t ctl_auth_keyid;
754
755/*
756 * We keep track of the last error reported by the system internally
757 */
758static	u_char ctl_sys_last_event;
759static	u_char ctl_sys_num_events;
760
761
762/*
763 * Statistic counters to keep track of requests and responses.
764 */
765u_long ctltimereset;		/* time stats reset */
766u_long numctlreq;		/* number of requests we've received */
767u_long numctlbadpkts;		/* number of bad control packets */
768u_long numctlresponses;		/* number of resp packets sent with data */
769u_long numctlfrags;		/* number of fragments sent */
770u_long numctlerrors;		/* number of error responses sent */
771u_long numctltooshort;		/* number of too short input packets */
772u_long numctlinputresp;		/* number of responses on input */
773u_long numctlinputfrag;		/* number of fragments on input */
774u_long numctlinputerr;		/* number of input pkts with err bit set */
775u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
776u_long numctlbadversion;	/* number of input pkts with unknown version */
777u_long numctldatatooshort;	/* data too short for count */
778u_long numctlbadop;		/* bad op code found in packet */
779u_long numasyncmsgs;		/* number of async messages we've sent */
780
781/*
782 * Response packet used by these routines. Also some state information
783 * so that we can handle packet formatting within a common set of
784 * subroutines.  Note we try to enter data in place whenever possible,
785 * but the need to set the more bit correctly means we occasionally
786 * use the extra buffer and copy.
787 */
788static struct ntp_control rpkt;
789static u_char	res_version;
790static u_char	res_opcode;
791static associd_t res_associd;
792static u_short	res_frags;	/* datagrams in this response */
793static int	res_offset;	/* offset of payload in response */
794static u_char * datapt;
795static u_char * dataend;
796static int	datalinelen;
797static int	datasent;	/* flag to avoid initial ", " */
798static int	datanotbinflag;
799static sockaddr_u *rmt_addr;
800static struct interface *lcl_inter;
801
802static u_char	res_authenticate;
803static u_char	res_authokay;
804static keyid_t	res_keyid;
805
806#define MAXDATALINELEN	(72)
807
808static u_char	res_async;	/* sending async trap response? */
809
810/*
811 * Pointers for saving state when decoding request packets
812 */
813static	char *reqpt;
814static	char *reqend;
815
816#ifndef MIN
817#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
818#endif
819
820/*
821 * init_control - initialize request data
822 */
823void
824init_control(void)
825{
826	size_t i;
827
828#ifdef HAVE_UNAME
829	uname(&utsnamebuf);
830#endif /* HAVE_UNAME */
831
832	ctl_clr_stats();
833
834	ctl_auth_keyid = 0;
835	ctl_sys_last_event = EVNT_UNSPEC;
836	ctl_sys_num_events = 0;
837
838	num_ctl_traps = 0;
839	for (i = 0; i < COUNTOF(ctl_traps); i++)
840		ctl_traps[i].tr_flags = 0;
841}
842
843
844/*
845 * ctl_error - send an error response for the current request
846 */
847static void
848ctl_error(
849	u_char errcode
850	)
851{
852	size_t		maclen;
853
854	numctlerrors++;
855	DPRINTF(3, ("sending control error %u\n", errcode));
856
857	/*
858	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
859	 * have already been filled in.
860	 */
861	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
862			(res_opcode & CTL_OP_MASK);
863	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
864	rpkt.count = 0;
865
866	/*
867	 * send packet and bump counters
868	 */
869	if (res_authenticate && sys_authenticate) {
870		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
871				     CTL_HEADER_LEN);
872		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
873			CTL_HEADER_LEN + maclen);
874	} else
875		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
876			CTL_HEADER_LEN);
877}
878
879int/*BOOL*/
880is_safe_filename(const char * name)
881{
882	/* We need a strict validation of filenames we should write: The
883	 * daemon might run with special permissions and is remote
884	 * controllable, so we better take care what we allow as file
885	 * name!
886	 *
887	 * The first character must be digit or a letter from the ASCII
888	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
889	 * must be from [-._+A-Za-z0-9].
890	 *
891	 * We do not trust the character classification much here: Since
892	 * the NTP protocol makes no provisions for UTF-8 or local code
893	 * pages, we strictly require the 7bit ASCII code page.
894	 *
895	 * The following table is a packed bit field of 128 two-bit
896	 * groups. The LSB in each group tells us if a character is
897	 * acceptable at the first position, the MSB if the character is
898	 * accepted at any other position.
899	 *
900	 * This does not ensure that the file name is syntactically
901	 * correct (multiple dots will not work with VMS...) but it will
902	 * exclude potential globbing bombs and directory traversal. It
903	 * also rules out drive selection. (For systems that have this
904	 * notion, like Windows or VMS.)
905	 */
906	static const uint32_t chclass[8] = {
907		0x00000000, 0x00000000,
908		0x28800000, 0x000FFFFF,
909		0xFFFFFFFC, 0xC03FFFFF,
910		0xFFFFFFFC, 0x003FFFFF
911	};
912
913	u_int widx, bidx, mask;
914	if ( ! (name && *name))
915		return FALSE;
916
917	mask = 1u;
918	while (0 != (widx = (u_char)*name++)) {
919		bidx = (widx & 15) << 1;
920		widx = widx >> 4;
921		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
922			return FALSE;
923		if (0 == ((chclass[widx] >> bidx) & mask))
924			return FALSE;
925		mask = 2u;
926	}
927	return TRUE;
928}
929
930
931/*
932 * save_config - Implements ntpq -c "saveconfig <filename>"
933 *		 Writes current configuration including any runtime
934 *		 changes by ntpq's :config or config-from-file
935 *
936 * Note: There should be no buffer overflow or truncation in the
937 * processing of file names -- both cause security problems. This is bit
938 * painful to code but essential here.
939 */
940void
941save_config(
942	struct recvbuf *rbufp,
943	int restrict_mask
944	)
945{
946	/* block directory traversal by searching for characters that
947	 * indicate directory components in a file path.
948	 *
949	 * Conceptually we should be searching for DIRSEP in filename,
950	 * however Windows actually recognizes both forward and
951	 * backslashes as equivalent directory separators at the API
952	 * level.  On POSIX systems we could allow '\\' but such
953	 * filenames are tricky to manipulate from a shell, so just
954	 * reject both types of slashes on all platforms.
955	 */
956	/* TALOS-CAN-0062: block directory traversal for VMS, too */
957	static const char * illegal_in_filename =
958#if defined(VMS)
959	    ":[]"	/* do not allow drive and path components here */
960#elif defined(SYS_WINNT)
961	    ":\\/"	/* path and drive separators */
962#else
963	    "\\/"	/* separator and critical char for POSIX */
964#endif
965	    ;
966	char reply[128];
967#ifdef SAVECONFIG
968	static const char savedconfig_eq[] = "savedconfig=";
969
970	/* Build a safe open mode from the available mode flags. We want
971	 * to create a new file and write it in text mode (when
972	 * applicable -- only Windows does this...)
973	 */
974	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
975#  if defined(O_EXCL)		/* posix, vms */
976	    | O_EXCL
977#  elif defined(_O_EXCL)	/* windows is alway very special... */
978	    | _O_EXCL
979#  endif
980#  if defined(_O_TEXT)		/* windows, again */
981	    | _O_TEXT
982#endif
983	    ;
984
985	char filespec[128];
986	char filename[128];
987	char fullpath[512];
988	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
989	time_t now;
990	int fd;
991	FILE *fptr;
992	int prc;
993	size_t reqlen;
994#endif
995
996	if (RES_NOMODIFY & restrict_mask) {
997		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
998		ctl_flushpkt(0);
999		NLOG(NLOG_SYSINFO)
1000			msyslog(LOG_NOTICE,
1001				"saveconfig from %s rejected due to nomodify restriction",
1002				stoa(&rbufp->recv_srcadr));
1003		sys_restricted++;
1004		return;
1005	}
1006
1007#ifdef SAVECONFIG
1008	if (NULL == saveconfigdir) {
1009		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1010		ctl_flushpkt(0);
1011		NLOG(NLOG_SYSINFO)
1012			msyslog(LOG_NOTICE,
1013				"saveconfig from %s rejected, no saveconfigdir",
1014				stoa(&rbufp->recv_srcadr));
1015		return;
1016	}
1017
1018	/* The length checking stuff gets serious. Do not assume a NUL
1019	 * byte can be found, but if so, use it to calculate the needed
1020	 * buffer size. If the available buffer is too short, bail out;
1021	 * likewise if there is no file spec. (The latter will not
1022	 * happen when using NTPQ, but there are other ways to craft a
1023	 * network packet!)
1024	 */
1025	reqlen = (size_t)(reqend - reqpt);
1026	if (0 != reqlen) {
1027		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1028		if (NULL != nulpos)
1029			reqlen = (size_t)(nulpos - reqpt);
1030	}
1031	if (0 == reqlen)
1032		return;
1033	if (reqlen >= sizeof(filespec)) {
1034		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1035			   (u_int)sizeof(filespec));
1036		ctl_flushpkt(0);
1037		msyslog(LOG_NOTICE,
1038			"saveconfig exceeded maximum raw name length from %s",
1039			stoa(&rbufp->recv_srcadr));
1040		return;
1041	}
1042
1043	/* copy data directly as we exactly know the size */
1044	memcpy(filespec, reqpt, reqlen);
1045	filespec[reqlen] = '\0';
1046
1047	/*
1048	 * allow timestamping of the saved config filename with
1049	 * strftime() format such as:
1050	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1051	 * XXX: Nice feature, but not too safe.
1052	 * YYY: The check for permitted characters in file names should
1053	 *      weed out the worst. Let's hope 'strftime()' does not
1054	 *      develop pathological problems.
1055	 */
1056	time(&now);
1057	if (0 == strftime(filename, sizeof(filename), filespec,
1058			  localtime(&now)))
1059	{
1060		/*
1061		 * If we arrive here, 'strftime()' balked; most likely
1062		 * the buffer was too short. (Or it encounterd an empty
1063		 * format, or just a format that expands to an empty
1064		 * string.) We try to use the original name, though this
1065		 * is very likely to fail later if there are format
1066		 * specs in the string. Note that truncation cannot
1067		 * happen here as long as both buffers have the same
1068		 * size!
1069		 */
1070		strlcpy(filename, filespec, sizeof(filename));
1071	}
1072
1073	/*
1074	 * Check the file name for sanity. This might/will rule out file
1075	 * names that would be legal but problematic, and it blocks
1076	 * directory traversal.
1077	 */
1078	if (!is_safe_filename(filename)) {
1079		ctl_printf("saveconfig rejects unsafe file name '%s'",
1080			   filename);
1081		ctl_flushpkt(0);
1082		msyslog(LOG_NOTICE,
1083			"saveconfig rejects unsafe file name from %s",
1084			stoa(&rbufp->recv_srcadr));
1085		return;
1086	}
1087
1088	/*
1089	 * XXX: This next test may not be needed with is_safe_filename()
1090	 */
1091
1092	/* block directory/drive traversal */
1093	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1094	if (NULL != strpbrk(filename, illegal_in_filename)) {
1095		snprintf(reply, sizeof(reply),
1096			 "saveconfig does not allow directory in filename");
1097		ctl_putdata(reply, strlen(reply), 0);
1098		ctl_flushpkt(0);
1099		msyslog(LOG_NOTICE,
1100			"saveconfig rejects unsafe file name from %s",
1101			stoa(&rbufp->recv_srcadr));
1102		return;
1103	}
1104
1105	/* concatenation of directory and path can cause another
1106	 * truncation...
1107	 */
1108	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1109		       saveconfigdir, filename);
1110	if (prc < 0 || prc >= sizeof(fullpath)) {
1111		ctl_printf("saveconfig exceeded maximum path length (%u)",
1112			   (u_int)sizeof(fullpath));
1113		ctl_flushpkt(0);
1114		msyslog(LOG_NOTICE,
1115			"saveconfig exceeded maximum path length from %s",
1116			stoa(&rbufp->recv_srcadr));
1117		return;
1118	}
1119
1120	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1121	if (-1 == fd)
1122		fptr = NULL;
1123	else
1124		fptr = fdopen(fd, "w");
1125
1126	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1127		ctl_printf("Unable to save configuration to file '%s': %m",
1128			   filename);
1129		msyslog(LOG_ERR,
1130			"saveconfig %s from %s failed", filename,
1131			stoa(&rbufp->recv_srcadr));
1132	} else {
1133		ctl_printf("Configuration saved to '%s'", filename);
1134		msyslog(LOG_NOTICE,
1135			"Configuration saved to '%s' (requested by %s)",
1136			fullpath, stoa(&rbufp->recv_srcadr));
1137		/*
1138		 * save the output filename in system variable
1139		 * savedconfig, retrieved with:
1140		 *   ntpq -c "rv 0 savedconfig"
1141		 * Note: the way 'savedconfig' is defined makes overflow
1142		 * checks unnecessary here.
1143		 */
1144		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1145			 savedconfig_eq, filename);
1146		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1147	}
1148
1149	if (NULL != fptr)
1150		fclose(fptr);
1151#else	/* !SAVECONFIG follows */
1152	ctl_printf("%s",
1153		   "saveconfig unavailable, configured with --disable-saveconfig");
1154#endif
1155	ctl_flushpkt(0);
1156}
1157
1158
1159/*
1160 * process_control - process an incoming control message
1161 */
1162void
1163process_control(
1164	struct recvbuf *rbufp,
1165	int restrict_mask
1166	)
1167{
1168	struct ntp_control *pkt;
1169	int req_count;
1170	int req_data;
1171	const struct ctl_proc *cc;
1172	keyid_t *pkid;
1173	int properlen;
1174	size_t maclen;
1175
1176	DPRINTF(3, ("in process_control()\n"));
1177
1178	/*
1179	 * Save the addresses for error responses
1180	 */
1181	numctlreq++;
1182	rmt_addr = &rbufp->recv_srcadr;
1183	lcl_inter = rbufp->dstadr;
1184	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1185
1186	/*
1187	 * If the length is less than required for the header, or
1188	 * it is a response or a fragment, ignore this.
1189	 */
1190	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1191	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1192	    || pkt->offset != 0) {
1193		DPRINTF(1, ("invalid format in control packet\n"));
1194		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1195			numctltooshort++;
1196		if (CTL_RESPONSE & pkt->r_m_e_op)
1197			numctlinputresp++;
1198		if (CTL_MORE & pkt->r_m_e_op)
1199			numctlinputfrag++;
1200		if (CTL_ERROR & pkt->r_m_e_op)
1201			numctlinputerr++;
1202		if (pkt->offset != 0)
1203			numctlbadoffset++;
1204		return;
1205	}
1206	res_version = PKT_VERSION(pkt->li_vn_mode);
1207	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1208		DPRINTF(1, ("unknown version %d in control packet\n",
1209			    res_version));
1210		numctlbadversion++;
1211		return;
1212	}
1213
1214	/*
1215	 * Pull enough data from the packet to make intelligent
1216	 * responses
1217	 */
1218	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1219					 MODE_CONTROL);
1220	res_opcode = pkt->r_m_e_op;
1221	rpkt.sequence = pkt->sequence;
1222	rpkt.associd = pkt->associd;
1223	rpkt.status = 0;
1224	res_frags = 1;
1225	res_offset = 0;
1226	res_associd = htons(pkt->associd);
1227	res_async = FALSE;
1228	res_authenticate = FALSE;
1229	res_keyid = 0;
1230	res_authokay = FALSE;
1231	req_count = (int)ntohs(pkt->count);
1232	datanotbinflag = FALSE;
1233	datalinelen = 0;
1234	datasent = 0;
1235	datapt = rpkt.u.data;
1236	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1237
1238	if ((rbufp->recv_length & 0x3) != 0)
1239		DPRINTF(3, ("Control packet length %d unrounded\n",
1240			    rbufp->recv_length));
1241
1242	/*
1243	 * We're set up now. Make sure we've got at least enough
1244	 * incoming data space to match the count.
1245	 */
1246	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1247	if (req_data < req_count || rbufp->recv_length & 0x3) {
1248		ctl_error(CERR_BADFMT);
1249		numctldatatooshort++;
1250		return;
1251	}
1252
1253	properlen = req_count + CTL_HEADER_LEN;
1254	/* round up proper len to a 8 octet boundary */
1255
1256	properlen = (properlen + 7) & ~7;
1257	maclen = rbufp->recv_length - properlen;
1258	if ((rbufp->recv_length & 3) == 0 &&
1259	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1260	    sys_authenticate) {
1261		res_authenticate = TRUE;
1262		pkid = (void *)((char *)pkt + properlen);
1263		res_keyid = ntohl(*pkid);
1264		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1265			    rbufp->recv_length, properlen, res_keyid,
1266			    maclen));
1267
1268		if (!authistrusted(res_keyid))
1269			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1270		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1271				     rbufp->recv_length - maclen,
1272				     maclen)) {
1273			res_authokay = TRUE;
1274			DPRINTF(3, ("authenticated okay\n"));
1275		} else {
1276			res_keyid = 0;
1277			DPRINTF(3, ("authentication failed\n"));
1278		}
1279	}
1280
1281	/*
1282	 * Set up translate pointers
1283	 */
1284	reqpt = (char *)pkt->u.data;
1285	reqend = reqpt + req_count;
1286
1287	/*
1288	 * Look for the opcode processor
1289	 */
1290	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1291		if (cc->control_code == res_opcode) {
1292			DPRINTF(3, ("opcode %d, found command handler\n",
1293				    res_opcode));
1294			if (cc->flags == AUTH
1295			    && (!res_authokay
1296				|| res_keyid != ctl_auth_keyid)) {
1297				ctl_error(CERR_PERMISSION);
1298				return;
1299			}
1300			(cc->handler)(rbufp, restrict_mask);
1301			return;
1302		}
1303	}
1304
1305	/*
1306	 * Can't find this one, return an error.
1307	 */
1308	numctlbadop++;
1309	ctl_error(CERR_BADOP);
1310	return;
1311}
1312
1313
1314/*
1315 * ctlpeerstatus - return a status word for this peer
1316 */
1317u_short
1318ctlpeerstatus(
1319	register struct peer *p
1320	)
1321{
1322	u_short status;
1323
1324	status = p->status;
1325	if (FLAG_CONFIG & p->flags)
1326		status |= CTL_PST_CONFIG;
1327	if (p->keyid)
1328		status |= CTL_PST_AUTHENABLE;
1329	if (FLAG_AUTHENTIC & p->flags)
1330		status |= CTL_PST_AUTHENTIC;
1331	if (p->reach)
1332		status |= CTL_PST_REACH;
1333	if (MDF_TXONLY_MASK & p->cast_flags)
1334		status |= CTL_PST_BCAST;
1335
1336	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1337}
1338
1339
1340/*
1341 * ctlclkstatus - return a status word for this clock
1342 */
1343#ifdef REFCLOCK
1344static u_short
1345ctlclkstatus(
1346	struct refclockstat *pcs
1347	)
1348{
1349	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1350}
1351#endif
1352
1353
1354/*
1355 * ctlsysstatus - return the system status word
1356 */
1357u_short
1358ctlsysstatus(void)
1359{
1360	register u_char this_clock;
1361
1362	this_clock = CTL_SST_TS_UNSPEC;
1363#ifdef REFCLOCK
1364	if (sys_peer != NULL) {
1365		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1366			this_clock = sys_peer->sstclktype;
1367		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1368			this_clock = clocktypes[sys_peer->refclktype];
1369	}
1370#else /* REFCLOCK */
1371	if (sys_peer != 0)
1372		this_clock = CTL_SST_TS_NTP;
1373#endif /* REFCLOCK */
1374	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1375			      ctl_sys_last_event);
1376}
1377
1378
1379/*
1380 * ctl_flushpkt - write out the current packet and prepare
1381 *		  another if necessary.
1382 */
1383static void
1384ctl_flushpkt(
1385	u_char more
1386	)
1387{
1388	size_t i;
1389	size_t dlen;
1390	size_t sendlen;
1391	size_t maclen;
1392	size_t totlen;
1393	keyid_t keyid;
1394
1395	dlen = datapt - rpkt.u.data;
1396	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1397		/*
1398		 * Big hack, output a trailing \r\n
1399		 */
1400		*datapt++ = '\r';
1401		*datapt++ = '\n';
1402		dlen += 2;
1403	}
1404	sendlen = dlen + CTL_HEADER_LEN;
1405
1406	/*
1407	 * Pad to a multiple of 32 bits
1408	 */
1409	while (sendlen & 0x3) {
1410		*datapt++ = '\0';
1411		sendlen++;
1412	}
1413
1414	/*
1415	 * Fill in the packet with the current info
1416	 */
1417	rpkt.r_m_e_op = CTL_RESPONSE | more |
1418			(res_opcode & CTL_OP_MASK);
1419	rpkt.count = htons((u_short)dlen);
1420	rpkt.offset = htons((u_short)res_offset);
1421	if (res_async) {
1422		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1423			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1424				rpkt.li_vn_mode =
1425				    PKT_LI_VN_MODE(
1426					sys_leap,
1427					ctl_traps[i].tr_version,
1428					MODE_CONTROL);
1429				rpkt.sequence =
1430				    htons(ctl_traps[i].tr_sequence);
1431				sendpkt(&ctl_traps[i].tr_addr,
1432					ctl_traps[i].tr_localaddr, -4,
1433					(struct pkt *)&rpkt, sendlen);
1434				if (!more)
1435					ctl_traps[i].tr_sequence++;
1436				numasyncmsgs++;
1437			}
1438		}
1439	} else {
1440		if (res_authenticate && sys_authenticate) {
1441			totlen = sendlen;
1442			/*
1443			 * If we are going to authenticate, then there
1444			 * is an additional requirement that the MAC
1445			 * begin on a 64 bit boundary.
1446			 */
1447			while (totlen & 7) {
1448				*datapt++ = '\0';
1449				totlen++;
1450			}
1451			keyid = htonl(res_keyid);
1452			memcpy(datapt, &keyid, sizeof(keyid));
1453			maclen = authencrypt(res_keyid,
1454					     (u_int32 *)&rpkt, totlen);
1455			sendpkt(rmt_addr, lcl_inter, -5,
1456				(struct pkt *)&rpkt, totlen + maclen);
1457		} else {
1458			sendpkt(rmt_addr, lcl_inter, -6,
1459				(struct pkt *)&rpkt, sendlen);
1460		}
1461		if (more)
1462			numctlfrags++;
1463		else
1464			numctlresponses++;
1465	}
1466
1467	/*
1468	 * Set us up for another go around.
1469	 */
1470	res_frags++;
1471	res_offset += dlen;
1472	datapt = rpkt.u.data;
1473}
1474
1475
1476/*
1477 * ctl_putdata - write data into the packet, fragmenting and starting
1478 * another if this one is full.
1479 */
1480static void
1481ctl_putdata(
1482	const char *dp,
1483	unsigned int dlen,
1484	int bin			/* set to 1 when data is binary */
1485	)
1486{
1487	int overhead;
1488	unsigned int currentlen;
1489
1490	overhead = 0;
1491	if (!bin) {
1492		datanotbinflag = TRUE;
1493		overhead = 3;
1494		if (datasent) {
1495			*datapt++ = ',';
1496			datalinelen++;
1497			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1498				*datapt++ = '\r';
1499				*datapt++ = '\n';
1500				datalinelen = 0;
1501			} else {
1502				*datapt++ = ' ';
1503				datalinelen++;
1504			}
1505		}
1506	}
1507
1508	/*
1509	 * Save room for trailing junk
1510	 */
1511	while (dlen + overhead + datapt > dataend) {
1512		/*
1513		 * Not enough room in this one, flush it out.
1514		 */
1515		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1516
1517		memcpy(datapt, dp, currentlen);
1518
1519		datapt += currentlen;
1520		dp += currentlen;
1521		dlen -= currentlen;
1522		datalinelen += currentlen;
1523
1524		ctl_flushpkt(CTL_MORE);
1525	}
1526
1527	memcpy(datapt, dp, dlen);
1528	datapt += dlen;
1529	datalinelen += dlen;
1530	datasent = TRUE;
1531}
1532
1533
1534/*
1535 * ctl_putstr - write a tagged string into the response packet
1536 *		in the form:
1537 *
1538 *		tag="data"
1539 *
1540 *		len is the data length excluding the NUL terminator,
1541 *		as in ctl_putstr("var", "value", strlen("value"));
1542 */
1543static void
1544ctl_putstr(
1545	const char *	tag,
1546	const char *	data,
1547	size_t		len
1548	)
1549{
1550	char buffer[512];
1551	char *cp;
1552	size_t tl;
1553
1554	tl = strlen(tag);
1555	memcpy(buffer, tag, tl);
1556	cp = buffer + tl;
1557	if (len > 0) {
1558		INSIST(tl + 3 + len <= sizeof(buffer));
1559		*cp++ = '=';
1560		*cp++ = '"';
1561		memcpy(cp, data, len);
1562		cp += len;
1563		*cp++ = '"';
1564	}
1565	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1566}
1567
1568
1569/*
1570 * ctl_putunqstr - write a tagged string into the response packet
1571 *		   in the form:
1572 *
1573 *		   tag=data
1574 *
1575 *	len is the data length excluding the NUL terminator.
1576 *	data must not contain a comma or whitespace.
1577 */
1578static void
1579ctl_putunqstr(
1580	const char *	tag,
1581	const char *	data,
1582	size_t		len
1583	)
1584{
1585	char buffer[512];
1586	char *cp;
1587	size_t tl;
1588
1589	tl = strlen(tag);
1590	memcpy(buffer, tag, tl);
1591	cp = buffer + tl;
1592	if (len > 0) {
1593		INSIST(tl + 1 + len <= sizeof(buffer));
1594		*cp++ = '=';
1595		memcpy(cp, data, len);
1596		cp += len;
1597	}
1598	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1599}
1600
1601
1602/*
1603 * ctl_putdblf - write a tagged, signed double into the response packet
1604 */
1605static void
1606ctl_putdblf(
1607	const char *	tag,
1608	int		use_f,
1609	int		precision,
1610	double		d
1611	)
1612{
1613	char *cp;
1614	const char *cq;
1615	char buffer[200];
1616
1617	cp = buffer;
1618	cq = tag;
1619	while (*cq != '\0')
1620		*cp++ = *cq++;
1621	*cp++ = '=';
1622	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1623	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1624	    precision, d);
1625	cp += strlen(cp);
1626	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1627}
1628
1629/*
1630 * ctl_putuint - write a tagged unsigned integer into the response
1631 */
1632static void
1633ctl_putuint(
1634	const char *tag,
1635	u_long uval
1636	)
1637{
1638	register char *cp;
1639	register const char *cq;
1640	char buffer[200];
1641
1642	cp = buffer;
1643	cq = tag;
1644	while (*cq != '\0')
1645		*cp++ = *cq++;
1646
1647	*cp++ = '=';
1648	INSIST((cp - buffer) < (int)sizeof(buffer));
1649	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1650	cp += strlen(cp);
1651	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1652}
1653
1654/*
1655 * ctl_putcal - write a decoded calendar data into the response
1656 */
1657static void
1658ctl_putcal(
1659	const char *tag,
1660	const struct calendar *pcal
1661	)
1662{
1663	char buffer[100];
1664	unsigned numch;
1665
1666	numch = snprintf(buffer, sizeof(buffer),
1667			"%s=%04d%02d%02d%02d%02d",
1668			tag,
1669			pcal->year,
1670			pcal->month,
1671			pcal->monthday,
1672			pcal->hour,
1673			pcal->minute
1674			);
1675	INSIST(numch < sizeof(buffer));
1676	ctl_putdata(buffer, numch, 0);
1677
1678	return;
1679}
1680
1681/*
1682 * ctl_putfs - write a decoded filestamp into the response
1683 */
1684static void
1685ctl_putfs(
1686	const char *tag,
1687	tstamp_t uval
1688	)
1689{
1690	register char *cp;
1691	register const char *cq;
1692	char buffer[200];
1693	struct tm *tm = NULL;
1694	time_t fstamp;
1695
1696	cp = buffer;
1697	cq = tag;
1698	while (*cq != '\0')
1699		*cp++ = *cq++;
1700
1701	*cp++ = '=';
1702	fstamp = uval - JAN_1970;
1703	tm = gmtime(&fstamp);
1704	if (NULL ==  tm)
1705		return;
1706	INSIST((cp - buffer) < (int)sizeof(buffer));
1707	snprintf(cp, sizeof(buffer) - (cp - buffer),
1708		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1709		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1710	cp += strlen(cp);
1711	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1712}
1713
1714
1715/*
1716 * ctl_puthex - write a tagged unsigned integer, in hex, into the
1717 * response
1718 */
1719static void
1720ctl_puthex(
1721	const char *tag,
1722	u_long uval
1723	)
1724{
1725	register char *cp;
1726	register const char *cq;
1727	char buffer[200];
1728
1729	cp = buffer;
1730	cq = tag;
1731	while (*cq != '\0')
1732		*cp++ = *cq++;
1733
1734	*cp++ = '=';
1735	INSIST((cp - buffer) < (int)sizeof(buffer));
1736	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1737	cp += strlen(cp);
1738	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1739}
1740
1741
1742/*
1743 * ctl_putint - write a tagged signed integer into the response
1744 */
1745static void
1746ctl_putint(
1747	const char *tag,
1748	long ival
1749	)
1750{
1751	register char *cp;
1752	register const char *cq;
1753	char buffer[200];
1754
1755	cp = buffer;
1756	cq = tag;
1757	while (*cq != '\0')
1758		*cp++ = *cq++;
1759
1760	*cp++ = '=';
1761	INSIST((cp - buffer) < (int)sizeof(buffer));
1762	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1763	cp += strlen(cp);
1764	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1765}
1766
1767
1768/*
1769 * ctl_putts - write a tagged timestamp, in hex, into the response
1770 */
1771static void
1772ctl_putts(
1773	const char *tag,
1774	l_fp *ts
1775	)
1776{
1777	register char *cp;
1778	register const char *cq;
1779	char buffer[200];
1780
1781	cp = buffer;
1782	cq = tag;
1783	while (*cq != '\0')
1784		*cp++ = *cq++;
1785
1786	*cp++ = '=';
1787	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1788	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1789		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1790	cp += strlen(cp);
1791	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1792}
1793
1794
1795/*
1796 * ctl_putadr - write an IP address into the response
1797 */
1798static void
1799ctl_putadr(
1800	const char *tag,
1801	u_int32 addr32,
1802	sockaddr_u *addr
1803	)
1804{
1805	register char *cp;
1806	register const char *cq;
1807	char buffer[200];
1808
1809	cp = buffer;
1810	cq = tag;
1811	while (*cq != '\0')
1812		*cp++ = *cq++;
1813
1814	*cp++ = '=';
1815	if (NULL == addr)
1816		cq = numtoa(addr32);
1817	else
1818		cq = stoa(addr);
1819	INSIST((cp - buffer) < (int)sizeof(buffer));
1820	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1821	cp += strlen(cp);
1822	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1823}
1824
1825
1826/*
1827 * ctl_putrefid - send a u_int32 refid as printable text
1828 */
1829static void
1830ctl_putrefid(
1831	const char *	tag,
1832	u_int32		refid
1833	)
1834{
1835	char	output[16];
1836	char *	optr;
1837	char *	oplim;
1838	char *	iptr;
1839	char *	iplim;
1840	char *	past_eq;
1841
1842	optr = output;
1843	oplim = output + sizeof(output);
1844	while (optr < oplim && '\0' != *tag)
1845		*optr++ = *tag++;
1846	if (optr < oplim) {
1847		*optr++ = '=';
1848		past_eq = optr;
1849	}
1850	if (!(optr < oplim))
1851		return;
1852	iptr = (char *)&refid;
1853	iplim = iptr + sizeof(refid);
1854	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1855	     iptr++, optr++)
1856		if (isprint((int)*iptr))
1857			*optr = *iptr;
1858		else
1859			*optr = '.';
1860	if (!(optr <= oplim))
1861		optr = past_eq;
1862	ctl_putdata(output, (u_int)(optr - output), FALSE);
1863}
1864
1865
1866/*
1867 * ctl_putarray - write a tagged eight element double array into the response
1868 */
1869static void
1870ctl_putarray(
1871	const char *tag,
1872	double *arr,
1873	int start
1874	)
1875{
1876	register char *cp;
1877	register const char *cq;
1878	char buffer[200];
1879	int i;
1880	cp = buffer;
1881	cq = tag;
1882	while (*cq != '\0')
1883		*cp++ = *cq++;
1884	*cp++ = '=';
1885	i = start;
1886	do {
1887		if (i == 0)
1888			i = NTP_SHIFT;
1889		i--;
1890		INSIST((cp - buffer) < (int)sizeof(buffer));
1891		snprintf(cp, sizeof(buffer) - (cp - buffer),
1892			 " %.2f", arr[i] * 1e3);
1893		cp += strlen(cp);
1894	} while (i != start);
1895	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1896}
1897
1898/*
1899 * ctl_printf - put a formatted string into the data buffer
1900 */
1901static void
1902ctl_printf(
1903	const char * fmt,
1904	...
1905	)
1906{
1907	static const char * ellipsis = "[...]";
1908	va_list va;
1909	char    fmtbuf[128];
1910	int     rc;
1911
1912	va_start(va, fmt);
1913	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1914	va_end(va);
1915	if (rc < 0 || rc >= sizeof(fmtbuf))
1916		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1917		       ellipsis);
1918	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1919}
1920
1921
1922/*
1923 * ctl_putsys - output a system variable
1924 */
1925static void
1926ctl_putsys(
1927	int varid
1928	)
1929{
1930	l_fp tmp;
1931	char str[256];
1932	u_int u;
1933	double kb;
1934	double dtemp;
1935	const char *ss;
1936#ifdef AUTOKEY
1937	struct cert_info *cp;
1938#endif	/* AUTOKEY */
1939#ifdef KERNEL_PLL
1940	static struct timex ntx;
1941	static u_long ntp_adjtime_time;
1942
1943	static const double to_ms =
1944# ifdef STA_NANO
1945		1.0e-6; /* nsec to msec */
1946# else
1947		1.0e-3; /* usec to msec */
1948# endif
1949
1950	/*
1951	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1952	 */
1953	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1954	    current_time != ntp_adjtime_time) {
1955		ZERO(ntx);
1956		if (ntp_adjtime(&ntx) < 0)
1957			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1958		else
1959			ntp_adjtime_time = current_time;
1960	}
1961#endif	/* KERNEL_PLL */
1962
1963	switch (varid) {
1964
1965	case CS_LEAP:
1966		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1967		break;
1968
1969	case CS_STRATUM:
1970		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1971		break;
1972
1973	case CS_PRECISION:
1974		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1975		break;
1976
1977	case CS_ROOTDELAY:
1978		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1979			   1e3);
1980		break;
1981
1982	case CS_ROOTDISPERSION:
1983		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1984			   sys_rootdisp * 1e3);
1985		break;
1986
1987	case CS_REFID:
1988		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1989			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1990		else
1991			ctl_putrefid(sys_var[varid].text, sys_refid);
1992		break;
1993
1994	case CS_REFTIME:
1995		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1996		break;
1997
1998	case CS_POLL:
1999		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
2000		break;
2001
2002	case CS_PEERID:
2003		if (sys_peer == NULL)
2004			ctl_putuint(sys_var[CS_PEERID].text, 0);
2005		else
2006			ctl_putuint(sys_var[CS_PEERID].text,
2007				    sys_peer->associd);
2008		break;
2009
2010	case CS_PEERADR:
2011		if (sys_peer != NULL && sys_peer->dstadr != NULL)
2012			ss = sptoa(&sys_peer->srcadr);
2013		else
2014			ss = "0.0.0.0:0";
2015		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
2016		break;
2017
2018	case CS_PEERMODE:
2019		u = (sys_peer != NULL)
2020			? sys_peer->hmode
2021			: MODE_UNSPEC;
2022		ctl_putuint(sys_var[CS_PEERMODE].text, u);
2023		break;
2024
2025	case CS_OFFSET:
2026		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
2027		break;
2028
2029	case CS_DRIFT:
2030		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2031		break;
2032
2033	case CS_JITTER:
2034		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2035		break;
2036
2037	case CS_ERROR:
2038		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2039		break;
2040
2041	case CS_CLOCK:
2042		get_systime(&tmp);
2043		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2044		break;
2045
2046	case CS_PROCESSOR:
2047#ifndef HAVE_UNAME
2048		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2049			   sizeof(str_processor) - 1);
2050#else
2051		ctl_putstr(sys_var[CS_PROCESSOR].text,
2052			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2053#endif /* HAVE_UNAME */
2054		break;
2055
2056	case CS_SYSTEM:
2057#ifndef HAVE_UNAME
2058		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2059			   sizeof(str_system) - 1);
2060#else
2061		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2062			 utsnamebuf.release);
2063		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2064#endif /* HAVE_UNAME */
2065		break;
2066
2067	case CS_VERSION:
2068		ctl_putstr(sys_var[CS_VERSION].text, Version,
2069			   strlen(Version));
2070		break;
2071
2072	case CS_STABIL:
2073		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2074			   1e6);
2075		break;
2076
2077	case CS_VARLIST:
2078	{
2079		char buf[CTL_MAX_DATA_LEN];
2080		//buffPointer, firstElementPointer, buffEndPointer
2081		char *buffp, *buffend;
2082		int firstVarName;
2083		const char *ss1;
2084		int len;
2085		const struct ctl_var *k;
2086
2087		buffp = buf;
2088		buffend = buf + sizeof(buf);
2089		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
2090			break;	/* really long var name */
2091
2092		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2093		buffp += strlen(buffp);
2094		firstVarName = TRUE;
2095		for (k = sys_var; !(k->flags & EOV); k++) {
2096			if (k->flags & PADDING)
2097				continue;
2098			len = strlen(k->text);
2099			if (buffp + len + 1 >= buffend)
2100				break;
2101			if (!firstVarName)
2102				*buffp++ = ',';
2103			else
2104				firstVarName = FALSE;
2105			memcpy(buffp, k->text, len);
2106			buffp += len;
2107		}
2108
2109		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2110			if (k->flags & PADDING)
2111				continue;
2112			if (NULL == k->text)
2113				continue;
2114			ss1 = strchr(k->text, '=');
2115			if (NULL == ss1)
2116				len = strlen(k->text);
2117			else
2118				len = ss1 - k->text;
2119			if (buffp + len + 1 >= buffend)
2120				break;
2121			if (firstVarName) {
2122				*buffp++ = ',';
2123				firstVarName = FALSE;
2124			}
2125			memcpy(buffp, k->text,(unsigned)len);
2126			buffp += len;
2127		}
2128		if (buffp + 2 >= buffend)
2129			break;
2130
2131		*buffp++ = '"';
2132		*buffp = '\0';
2133
2134		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2135		break;
2136	}
2137
2138	case CS_TAI:
2139		if (sys_tai > 0)
2140			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2141		break;
2142
2143	case CS_LEAPTAB:
2144	{
2145		leap_signature_t lsig;
2146		leapsec_getsig(&lsig);
2147		if (lsig.ttime > 0)
2148			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2149		break;
2150	}
2151
2152	case CS_LEAPEND:
2153	{
2154		leap_signature_t lsig;
2155		leapsec_getsig(&lsig);
2156		if (lsig.etime > 0)
2157			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2158		break;
2159	}
2160
2161#ifdef LEAP_SMEAR
2162	case CS_LEAPSMEARINTV:
2163		if (leap_smear_intv > 0)
2164			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2165		break;
2166
2167	case CS_LEAPSMEAROFFS:
2168		if (leap_smear_intv > 0)
2169			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2170				   leap_smear.doffset * 1e3);
2171		break;
2172#endif	/* LEAP_SMEAR */
2173
2174	case CS_RATE:
2175		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2176		break;
2177
2178	case CS_MRU_ENABLED:
2179		ctl_puthex(sys_var[varid].text, mon_enabled);
2180		break;
2181
2182	case CS_MRU_DEPTH:
2183		ctl_putuint(sys_var[varid].text, mru_entries);
2184		break;
2185
2186	case CS_MRU_MEM:
2187		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2188		u = (u_int)kb;
2189		if (kb - u >= 0.5)
2190			u++;
2191		ctl_putuint(sys_var[varid].text, u);
2192		break;
2193
2194	case CS_MRU_DEEPEST:
2195		ctl_putuint(sys_var[varid].text, mru_peakentries);
2196		break;
2197
2198	case CS_MRU_MINDEPTH:
2199		ctl_putuint(sys_var[varid].text, mru_mindepth);
2200		break;
2201
2202	case CS_MRU_MAXAGE:
2203		ctl_putint(sys_var[varid].text, mru_maxage);
2204		break;
2205
2206	case CS_MRU_MAXDEPTH:
2207		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2208		break;
2209
2210	case CS_MRU_MAXMEM:
2211		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2212		u = (u_int)kb;
2213		if (kb - u >= 0.5)
2214			u++;
2215		ctl_putuint(sys_var[varid].text, u);
2216		break;
2217
2218	case CS_SS_UPTIME:
2219		ctl_putuint(sys_var[varid].text, current_time);
2220		break;
2221
2222	case CS_SS_RESET:
2223		ctl_putuint(sys_var[varid].text,
2224			    current_time - sys_stattime);
2225		break;
2226
2227	case CS_SS_RECEIVED:
2228		ctl_putuint(sys_var[varid].text, sys_received);
2229		break;
2230
2231	case CS_SS_THISVER:
2232		ctl_putuint(sys_var[varid].text, sys_newversion);
2233		break;
2234
2235	case CS_SS_OLDVER:
2236		ctl_putuint(sys_var[varid].text, sys_oldversion);
2237		break;
2238
2239	case CS_SS_BADFORMAT:
2240		ctl_putuint(sys_var[varid].text, sys_badlength);
2241		break;
2242
2243	case CS_SS_BADAUTH:
2244		ctl_putuint(sys_var[varid].text, sys_badauth);
2245		break;
2246
2247	case CS_SS_DECLINED:
2248		ctl_putuint(sys_var[varid].text, sys_declined);
2249		break;
2250
2251	case CS_SS_RESTRICTED:
2252		ctl_putuint(sys_var[varid].text, sys_restricted);
2253		break;
2254
2255	case CS_SS_LIMITED:
2256		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2257		break;
2258
2259	case CS_SS_KODSENT:
2260		ctl_putuint(sys_var[varid].text, sys_kodsent);
2261		break;
2262
2263	case CS_SS_PROCESSED:
2264		ctl_putuint(sys_var[varid].text, sys_processed);
2265		break;
2266
2267	case CS_BCASTDELAY:
2268		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2269		break;
2270
2271	case CS_AUTHDELAY:
2272		LFPTOD(&sys_authdelay, dtemp);
2273		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2274		break;
2275
2276	case CS_AUTHKEYS:
2277		ctl_putuint(sys_var[varid].text, authnumkeys);
2278		break;
2279
2280	case CS_AUTHFREEK:
2281		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2282		break;
2283
2284	case CS_AUTHKLOOKUPS:
2285		ctl_putuint(sys_var[varid].text, authkeylookups);
2286		break;
2287
2288	case CS_AUTHKNOTFOUND:
2289		ctl_putuint(sys_var[varid].text, authkeynotfound);
2290		break;
2291
2292	case CS_AUTHKUNCACHED:
2293		ctl_putuint(sys_var[varid].text, authkeyuncached);
2294		break;
2295
2296	case CS_AUTHKEXPIRED:
2297		ctl_putuint(sys_var[varid].text, authkeyexpired);
2298		break;
2299
2300	case CS_AUTHENCRYPTS:
2301		ctl_putuint(sys_var[varid].text, authencryptions);
2302		break;
2303
2304	case CS_AUTHDECRYPTS:
2305		ctl_putuint(sys_var[varid].text, authdecryptions);
2306		break;
2307
2308	case CS_AUTHRESET:
2309		ctl_putuint(sys_var[varid].text,
2310			    current_time - auth_timereset);
2311		break;
2312
2313		/*
2314		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2315		 * unavailable, otherwise calls putfunc with args.
2316		 */
2317#ifndef KERNEL_PLL
2318# define	CTL_IF_KERNLOOP(putfunc, args)	\
2319		ctl_putint(sys_var[varid].text, 0)
2320#else
2321# define	CTL_IF_KERNLOOP(putfunc, args)	\
2322		putfunc args
2323#endif
2324
2325		/*
2326		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2327		 * loop is unavailable, or kernel hard PPS is not
2328		 * active, otherwise calls putfunc with args.
2329		 */
2330#ifndef KERNEL_PLL
2331# define	CTL_IF_KERNPPS(putfunc, args)	\
2332		ctl_putint(sys_var[varid].text, 0)
2333#else
2334# define	CTL_IF_KERNPPS(putfunc, args)			\
2335		if (0 == ntx.shift)				\
2336			ctl_putint(sys_var[varid].text, 0);	\
2337		else						\
2338			putfunc args	/* no trailing ; */
2339#endif
2340
2341	case CS_K_OFFSET:
2342		CTL_IF_KERNLOOP(
2343			ctl_putdblf,
2344			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2345		);
2346		break;
2347
2348	case CS_K_FREQ:
2349		CTL_IF_KERNLOOP(
2350			ctl_putsfp,
2351			(sys_var[varid].text, ntx.freq)
2352		);
2353		break;
2354
2355	case CS_K_MAXERR:
2356		CTL_IF_KERNLOOP(
2357			ctl_putdblf,
2358			(sys_var[varid].text, 0, 6,
2359			 to_ms * ntx.maxerror)
2360		);
2361		break;
2362
2363	case CS_K_ESTERR:
2364		CTL_IF_KERNLOOP(
2365			ctl_putdblf,
2366			(sys_var[varid].text, 0, 6,
2367			 to_ms * ntx.esterror)
2368		);
2369		break;
2370
2371	case CS_K_STFLAGS:
2372#ifndef KERNEL_PLL
2373		ss = "";
2374#else
2375		ss = k_st_flags(ntx.status);
2376#endif
2377		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2378		break;
2379
2380	case CS_K_TIMECONST:
2381		CTL_IF_KERNLOOP(
2382			ctl_putint,
2383			(sys_var[varid].text, ntx.constant)
2384		);
2385		break;
2386
2387	case CS_K_PRECISION:
2388		CTL_IF_KERNLOOP(
2389			ctl_putdblf,
2390			(sys_var[varid].text, 0, 6,
2391			    to_ms * ntx.precision)
2392		);
2393		break;
2394
2395	case CS_K_FREQTOL:
2396		CTL_IF_KERNLOOP(
2397			ctl_putsfp,
2398			(sys_var[varid].text, ntx.tolerance)
2399		);
2400		break;
2401
2402	case CS_K_PPS_FREQ:
2403		CTL_IF_KERNPPS(
2404			ctl_putsfp,
2405			(sys_var[varid].text, ntx.ppsfreq)
2406		);
2407		break;
2408
2409	case CS_K_PPS_STABIL:
2410		CTL_IF_KERNPPS(
2411			ctl_putsfp,
2412			(sys_var[varid].text, ntx.stabil)
2413		);
2414		break;
2415
2416	case CS_K_PPS_JITTER:
2417		CTL_IF_KERNPPS(
2418			ctl_putdbl,
2419			(sys_var[varid].text, to_ms * ntx.jitter)
2420		);
2421		break;
2422
2423	case CS_K_PPS_CALIBDUR:
2424		CTL_IF_KERNPPS(
2425			ctl_putint,
2426			(sys_var[varid].text, 1 << ntx.shift)
2427		);
2428		break;
2429
2430	case CS_K_PPS_CALIBS:
2431		CTL_IF_KERNPPS(
2432			ctl_putint,
2433			(sys_var[varid].text, ntx.calcnt)
2434		);
2435		break;
2436
2437	case CS_K_PPS_CALIBERRS:
2438		CTL_IF_KERNPPS(
2439			ctl_putint,
2440			(sys_var[varid].text, ntx.errcnt)
2441		);
2442		break;
2443
2444	case CS_K_PPS_JITEXC:
2445		CTL_IF_KERNPPS(
2446			ctl_putint,
2447			(sys_var[varid].text, ntx.jitcnt)
2448		);
2449		break;
2450
2451	case CS_K_PPS_STBEXC:
2452		CTL_IF_KERNPPS(
2453			ctl_putint,
2454			(sys_var[varid].text, ntx.stbcnt)
2455		);
2456		break;
2457
2458	case CS_IOSTATS_RESET:
2459		ctl_putuint(sys_var[varid].text,
2460			    current_time - io_timereset);
2461		break;
2462
2463	case CS_TOTAL_RBUF:
2464		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2465		break;
2466
2467	case CS_FREE_RBUF:
2468		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2469		break;
2470
2471	case CS_USED_RBUF:
2472		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2473		break;
2474
2475	case CS_RBUF_LOWATER:
2476		ctl_putuint(sys_var[varid].text, lowater_additions());
2477		break;
2478
2479	case CS_IO_DROPPED:
2480		ctl_putuint(sys_var[varid].text, packets_dropped);
2481		break;
2482
2483	case CS_IO_IGNORED:
2484		ctl_putuint(sys_var[varid].text, packets_ignored);
2485		break;
2486
2487	case CS_IO_RECEIVED:
2488		ctl_putuint(sys_var[varid].text, packets_received);
2489		break;
2490
2491	case CS_IO_SENT:
2492		ctl_putuint(sys_var[varid].text, packets_sent);
2493		break;
2494
2495	case CS_IO_SENDFAILED:
2496		ctl_putuint(sys_var[varid].text, packets_notsent);
2497		break;
2498
2499	case CS_IO_WAKEUPS:
2500		ctl_putuint(sys_var[varid].text, handler_calls);
2501		break;
2502
2503	case CS_IO_GOODWAKEUPS:
2504		ctl_putuint(sys_var[varid].text, handler_pkts);
2505		break;
2506
2507	case CS_TIMERSTATS_RESET:
2508		ctl_putuint(sys_var[varid].text,
2509			    current_time - timer_timereset);
2510		break;
2511
2512	case CS_TIMER_OVERRUNS:
2513		ctl_putuint(sys_var[varid].text, alarm_overflow);
2514		break;
2515
2516	case CS_TIMER_XMTS:
2517		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2518		break;
2519
2520	case CS_FUZZ:
2521		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2522		break;
2523	case CS_WANDER_THRESH:
2524		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2525		break;
2526#ifdef AUTOKEY
2527	case CS_FLAGS:
2528		if (crypto_flags)
2529			ctl_puthex(sys_var[CS_FLAGS].text,
2530			    crypto_flags);
2531		break;
2532
2533	case CS_DIGEST:
2534		if (crypto_flags) {
2535			strlcpy(str, OBJ_nid2ln(crypto_nid),
2536			    COUNTOF(str));
2537			ctl_putstr(sys_var[CS_DIGEST].text, str,
2538			    strlen(str));
2539		}
2540		break;
2541
2542	case CS_SIGNATURE:
2543		if (crypto_flags) {
2544			const EVP_MD *dp;
2545
2546			dp = EVP_get_digestbynid(crypto_flags >> 16);
2547			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2548			    COUNTOF(str));
2549			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2550			    strlen(str));
2551		}
2552		break;
2553
2554	case CS_HOST:
2555		if (hostval.ptr != NULL)
2556			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2557			    strlen(hostval.ptr));
2558		break;
2559
2560	case CS_IDENT:
2561		if (sys_ident != NULL)
2562			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2563			    strlen(sys_ident));
2564		break;
2565
2566	case CS_CERTIF:
2567		for (cp = cinfo; cp != NULL; cp = cp->link) {
2568			snprintf(str, sizeof(str), "%s %s 0x%x",
2569			    cp->subject, cp->issuer, cp->flags);
2570			ctl_putstr(sys_var[CS_CERTIF].text, str,
2571			    strlen(str));
2572			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2573		}
2574		break;
2575
2576	case CS_PUBLIC:
2577		if (hostval.tstamp != 0)
2578			ctl_putfs(sys_var[CS_PUBLIC].text,
2579			    ntohl(hostval.tstamp));
2580		break;
2581#endif	/* AUTOKEY */
2582
2583	default:
2584		break;
2585	}
2586}
2587
2588
2589/*
2590 * ctl_putpeer - output a peer variable
2591 */
2592static void
2593ctl_putpeer(
2594	int id,
2595	struct peer *p
2596	)
2597{
2598	char buf[CTL_MAX_DATA_LEN];
2599	char *s;
2600	char *t;
2601	char *be;
2602	int i;
2603	const struct ctl_var *k;
2604#ifdef AUTOKEY
2605	struct autokey *ap;
2606	const EVP_MD *dp;
2607	const char *str;
2608#endif	/* AUTOKEY */
2609
2610	switch (id) {
2611
2612	case CP_CONFIG:
2613		ctl_putuint(peer_var[id].text,
2614			    !(FLAG_PREEMPT & p->flags));
2615		break;
2616
2617	case CP_AUTHENABLE:
2618		ctl_putuint(peer_var[id].text, !(p->keyid));
2619		break;
2620
2621	case CP_AUTHENTIC:
2622		ctl_putuint(peer_var[id].text,
2623			    !!(FLAG_AUTHENTIC & p->flags));
2624		break;
2625
2626	case CP_SRCADR:
2627		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2628		break;
2629
2630	case CP_SRCPORT:
2631		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2632		break;
2633
2634	case CP_SRCHOST:
2635		if (p->hostname != NULL)
2636			ctl_putstr(peer_var[id].text, p->hostname,
2637				   strlen(p->hostname));
2638		break;
2639
2640	case CP_DSTADR:
2641		ctl_putadr(peer_var[id].text, 0,
2642			   (p->dstadr != NULL)
2643				? &p->dstadr->sin
2644				: NULL);
2645		break;
2646
2647	case CP_DSTPORT:
2648		ctl_putuint(peer_var[id].text,
2649			    (p->dstadr != NULL)
2650				? SRCPORT(&p->dstadr->sin)
2651				: 0);
2652		break;
2653
2654	case CP_IN:
2655		if (p->r21 > 0.)
2656			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2657		break;
2658
2659	case CP_OUT:
2660		if (p->r34 > 0.)
2661			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2662		break;
2663
2664	case CP_RATE:
2665		ctl_putuint(peer_var[id].text, p->throttle);
2666		break;
2667
2668	case CP_LEAP:
2669		ctl_putuint(peer_var[id].text, p->leap);
2670		break;
2671
2672	case CP_HMODE:
2673		ctl_putuint(peer_var[id].text, p->hmode);
2674		break;
2675
2676	case CP_STRATUM:
2677		ctl_putuint(peer_var[id].text, p->stratum);
2678		break;
2679
2680	case CP_PPOLL:
2681		ctl_putuint(peer_var[id].text, p->ppoll);
2682		break;
2683
2684	case CP_HPOLL:
2685		ctl_putuint(peer_var[id].text, p->hpoll);
2686		break;
2687
2688	case CP_PRECISION:
2689		ctl_putint(peer_var[id].text, p->precision);
2690		break;
2691
2692	case CP_ROOTDELAY:
2693		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2694		break;
2695
2696	case CP_ROOTDISPERSION:
2697		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2698		break;
2699
2700	case CP_REFID:
2701#ifdef REFCLOCK
2702		if (p->flags & FLAG_REFCLOCK) {
2703			ctl_putrefid(peer_var[id].text, p->refid);
2704			break;
2705		}
2706#endif
2707		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2708			ctl_putadr(peer_var[id].text, p->refid,
2709				   NULL);
2710		else
2711			ctl_putrefid(peer_var[id].text, p->refid);
2712		break;
2713
2714	case CP_REFTIME:
2715		ctl_putts(peer_var[id].text, &p->reftime);
2716		break;
2717
2718	case CP_ORG:
2719		ctl_putts(peer_var[id].text, &p->aorg);
2720		break;
2721
2722	case CP_REC:
2723		ctl_putts(peer_var[id].text, &p->dst);
2724		break;
2725
2726	case CP_XMT:
2727		if (p->xleave)
2728			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2729		break;
2730
2731	case CP_BIAS:
2732		if (p->bias != 0.)
2733			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2734		break;
2735
2736	case CP_REACH:
2737		ctl_puthex(peer_var[id].text, p->reach);
2738		break;
2739
2740	case CP_FLASH:
2741		ctl_puthex(peer_var[id].text, p->flash);
2742		break;
2743
2744	case CP_TTL:
2745#ifdef REFCLOCK
2746		if (p->flags & FLAG_REFCLOCK) {
2747			ctl_putuint(peer_var[id].text, p->ttl);
2748			break;
2749		}
2750#endif
2751		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2752			ctl_putint(peer_var[id].text,
2753				   sys_ttl[p->ttl]);
2754		break;
2755
2756	case CP_UNREACH:
2757		ctl_putuint(peer_var[id].text, p->unreach);
2758		break;
2759
2760	case CP_TIMER:
2761		ctl_putuint(peer_var[id].text,
2762			    p->nextdate - current_time);
2763		break;
2764
2765	case CP_DELAY:
2766		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2767		break;
2768
2769	case CP_OFFSET:
2770		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2771		break;
2772
2773	case CP_JITTER:
2774		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2775		break;
2776
2777	case CP_DISPERSION:
2778		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2779		break;
2780
2781	case CP_KEYID:
2782		if (p->keyid > NTP_MAXKEY)
2783			ctl_puthex(peer_var[id].text, p->keyid);
2784		else
2785			ctl_putuint(peer_var[id].text, p->keyid);
2786		break;
2787
2788	case CP_FILTDELAY:
2789		ctl_putarray(peer_var[id].text, p->filter_delay,
2790			     p->filter_nextpt);
2791		break;
2792
2793	case CP_FILTOFFSET:
2794		ctl_putarray(peer_var[id].text, p->filter_offset,
2795			     p->filter_nextpt);
2796		break;
2797
2798	case CP_FILTERROR:
2799		ctl_putarray(peer_var[id].text, p->filter_disp,
2800			     p->filter_nextpt);
2801		break;
2802
2803	case CP_PMODE:
2804		ctl_putuint(peer_var[id].text, p->pmode);
2805		break;
2806
2807	case CP_RECEIVED:
2808		ctl_putuint(peer_var[id].text, p->received);
2809		break;
2810
2811	case CP_SENT:
2812		ctl_putuint(peer_var[id].text, p->sent);
2813		break;
2814
2815	case CP_VARLIST:
2816		s = buf;
2817		be = buf + sizeof(buf);
2818		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2819			break;	/* really long var name */
2820
2821		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2822		s += strlen(s);
2823		t = s;
2824		for (k = peer_var; !(EOV & k->flags); k++) {
2825			if (PADDING & k->flags)
2826				continue;
2827			i = strlen(k->text);
2828			if (s + i + 1 >= be)
2829				break;
2830			if (s != t)
2831				*s++ = ',';
2832			memcpy(s, k->text, i);
2833			s += i;
2834		}
2835		if (s + 2 < be) {
2836			*s++ = '"';
2837			*s = '\0';
2838			ctl_putdata(buf, (u_int)(s - buf), 0);
2839		}
2840		break;
2841
2842	case CP_TIMEREC:
2843		ctl_putuint(peer_var[id].text,
2844			    current_time - p->timereceived);
2845		break;
2846
2847	case CP_TIMEREACH:
2848		ctl_putuint(peer_var[id].text,
2849			    current_time - p->timereachable);
2850		break;
2851
2852	case CP_BADAUTH:
2853		ctl_putuint(peer_var[id].text, p->badauth);
2854		break;
2855
2856	case CP_BOGUSORG:
2857		ctl_putuint(peer_var[id].text, p->bogusorg);
2858		break;
2859
2860	case CP_OLDPKT:
2861		ctl_putuint(peer_var[id].text, p->oldpkt);
2862		break;
2863
2864	case CP_SELDISP:
2865		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2866		break;
2867
2868	case CP_SELBROKEN:
2869		ctl_putuint(peer_var[id].text, p->selbroken);
2870		break;
2871
2872	case CP_CANDIDATE:
2873		ctl_putuint(peer_var[id].text, p->status);
2874		break;
2875#ifdef AUTOKEY
2876	case CP_FLAGS:
2877		if (p->crypto)
2878			ctl_puthex(peer_var[id].text, p->crypto);
2879		break;
2880
2881	case CP_SIGNATURE:
2882		if (p->crypto) {
2883			dp = EVP_get_digestbynid(p->crypto >> 16);
2884			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2885			ctl_putstr(peer_var[id].text, str, strlen(str));
2886		}
2887		break;
2888
2889	case CP_HOST:
2890		if (p->subject != NULL)
2891			ctl_putstr(peer_var[id].text, p->subject,
2892			    strlen(p->subject));
2893		break;
2894
2895	case CP_VALID:		/* not used */
2896		break;
2897
2898	case CP_INITSEQ:
2899		if (NULL == (ap = p->recval.ptr))
2900			break;
2901
2902		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2903		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2904		ctl_putfs(peer_var[CP_INITTSP].text,
2905			  ntohl(p->recval.tstamp));
2906		break;
2907
2908	case CP_IDENT:
2909		if (p->ident != NULL)
2910			ctl_putstr(peer_var[id].text, p->ident,
2911			    strlen(p->ident));
2912		break;
2913
2914
2915#endif	/* AUTOKEY */
2916	}
2917}
2918
2919
2920#ifdef REFCLOCK
2921/*
2922 * ctl_putclock - output clock variables
2923 */
2924static void
2925ctl_putclock(
2926	int id,
2927	struct refclockstat *pcs,
2928	int mustput
2929	)
2930{
2931	char buf[CTL_MAX_DATA_LEN];
2932	char *s, *t, *be;
2933	const char *ss;
2934	int i;
2935	const struct ctl_var *k;
2936
2937	switch (id) {
2938
2939	case CC_TYPE:
2940		if (mustput || pcs->clockdesc == NULL
2941		    || *(pcs->clockdesc) == '\0') {
2942			ctl_putuint(clock_var[id].text, pcs->type);
2943		}
2944		break;
2945	case CC_TIMECODE:
2946		ctl_putstr(clock_var[id].text,
2947			   pcs->p_lastcode,
2948			   (unsigned)pcs->lencode);
2949		break;
2950
2951	case CC_POLL:
2952		ctl_putuint(clock_var[id].text, pcs->polls);
2953		break;
2954
2955	case CC_NOREPLY:
2956		ctl_putuint(clock_var[id].text,
2957			    pcs->noresponse);
2958		break;
2959
2960	case CC_BADFORMAT:
2961		ctl_putuint(clock_var[id].text,
2962			    pcs->badformat);
2963		break;
2964
2965	case CC_BADDATA:
2966		ctl_putuint(clock_var[id].text,
2967			    pcs->baddata);
2968		break;
2969
2970	case CC_FUDGETIME1:
2971		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2972			ctl_putdbl(clock_var[id].text,
2973				   pcs->fudgetime1 * 1e3);
2974		break;
2975
2976	case CC_FUDGETIME2:
2977		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2978			ctl_putdbl(clock_var[id].text,
2979				   pcs->fudgetime2 * 1e3);
2980		break;
2981
2982	case CC_FUDGEVAL1:
2983		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2984			ctl_putint(clock_var[id].text,
2985				   pcs->fudgeval1);
2986		break;
2987
2988	case CC_FUDGEVAL2:
2989		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2990			if (pcs->fudgeval1 > 1)
2991				ctl_putadr(clock_var[id].text,
2992					   pcs->fudgeval2, NULL);
2993			else
2994				ctl_putrefid(clock_var[id].text,
2995					     pcs->fudgeval2);
2996		}
2997		break;
2998
2999	case CC_FLAGS:
3000		ctl_putuint(clock_var[id].text, pcs->flags);
3001		break;
3002
3003	case CC_DEVICE:
3004		if (pcs->clockdesc == NULL ||
3005		    *(pcs->clockdesc) == '\0') {
3006			if (mustput)
3007				ctl_putstr(clock_var[id].text,
3008					   "", 0);
3009		} else {
3010			ctl_putstr(clock_var[id].text,
3011				   pcs->clockdesc,
3012				   strlen(pcs->clockdesc));
3013		}
3014		break;
3015
3016	case CC_VARLIST:
3017		s = buf;
3018		be = buf + sizeof(buf);
3019		if (strlen(clock_var[CC_VARLIST].text) + 4 >
3020		    sizeof(buf))
3021			break;	/* really long var name */
3022
3023		snprintf(s, sizeof(buf), "%s=\"",
3024			 clock_var[CC_VARLIST].text);
3025		s += strlen(s);
3026		t = s;
3027
3028		for (k = clock_var; !(EOV & k->flags); k++) {
3029			if (PADDING & k->flags)
3030				continue;
3031
3032			i = strlen(k->text);
3033			if (s + i + 1 >= be)
3034				break;
3035
3036			if (s != t)
3037				*s++ = ',';
3038			memcpy(s, k->text, i);
3039			s += i;
3040		}
3041
3042		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3043			if (PADDING & k->flags)
3044				continue;
3045
3046			ss = k->text;
3047			if (NULL == ss)
3048				continue;
3049
3050			while (*ss && *ss != '=')
3051				ss++;
3052			i = ss - k->text;
3053			if (s + i + 1 >= be)
3054				break;
3055
3056			if (s != t)
3057				*s++ = ',';
3058			memcpy(s, k->text, (unsigned)i);
3059			s += i;
3060			*s = '\0';
3061		}
3062		if (s + 2 >= be)
3063			break;
3064
3065		*s++ = '"';
3066		*s = '\0';
3067		ctl_putdata(buf, (unsigned)(s - buf), 0);
3068		break;
3069	}
3070}
3071#endif
3072
3073
3074
3075/*
3076 * ctl_getitem - get the next data item from the incoming packet
3077 */
3078static const struct ctl_var *
3079ctl_getitem(
3080	const struct ctl_var *var_list,
3081	char **data
3082	)
3083{
3084	/* [Bug 3008] First check the packet data sanity, then search
3085	 * the key. This improves the consistency of result values: If
3086	 * the result is NULL once, it will never be EOV again for this
3087	 * packet; If it's EOV, it will never be NULL again until the
3088	 * variable is found and processed in a given 'var_list'. (That
3089	 * is, a result is returned that is neither NULL nor EOV).
3090	 */
3091	static const struct ctl_var eol = { 0, EOV, NULL };
3092	static char buf[128];
3093	static u_long quiet_until;
3094	const struct ctl_var *v;
3095	char *cp;
3096	char *tp;
3097
3098	/*
3099	 * Part One: Validate the packet state
3100	 */
3101
3102	/* Delete leading commas and white space */
3103	while (reqpt < reqend && (*reqpt == ',' ||
3104				  isspace((unsigned char)*reqpt)))
3105		reqpt++;
3106	if (reqpt >= reqend)
3107		return NULL;
3108
3109	/* Scan the string in the packet until we hit comma or
3110	 * EoB. Register position of first '=' on the fly. */
3111	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3112		if (*cp == '=' && tp == NULL)
3113			tp = cp;
3114		if (*cp == ',')
3115			break;
3116	}
3117
3118	/* Process payload, if any. */
3119	*data = NULL;
3120	if (NULL != tp) {
3121		/* eventually strip white space from argument. */
3122		const char *plhead = tp + 1; /* skip the '=' */
3123		const char *pltail = cp;
3124		size_t      plsize;
3125
3126		while (plhead != pltail && isspace((u_char)plhead[0]))
3127			++plhead;
3128		while (plhead != pltail && isspace((u_char)pltail[-1]))
3129			--pltail;
3130
3131		/* check payload size, terminate packet on overflow */
3132		plsize = (size_t)(pltail - plhead);
3133		if (plsize >= sizeof(buf))
3134			goto badpacket;
3135
3136		/* copy data, NUL terminate, and set result data ptr */
3137		memcpy(buf, plhead, plsize);
3138		buf[plsize] = '\0';
3139		*data = buf;
3140	} else {
3141		/* no payload, current end --> current name termination */
3142		tp = cp;
3143	}
3144
3145	/* Part Two
3146	 *
3147	 * Now we're sure that the packet data itself is sane. Scan the
3148	 * list now. Make sure a NULL list is properly treated by
3149	 * returning a synthetic End-Of-Values record. We must not
3150	 * return NULL pointers after this point, or the behaviour would
3151	 * become inconsistent if called several times with different
3152	 * variable lists after an EoV was returned.  (Such a behavior
3153	 * actually caused Bug 3008.)
3154	 */
3155
3156	if (NULL == var_list)
3157		return &eol;
3158
3159	for (v = var_list; !(EOV & v->flags); ++v)
3160		if (!(PADDING & v->flags)) {
3161			/* check if the var name matches the buffer */
3162			const char *sp1 = reqpt;
3163			const char *sp2 = v->text;
3164
3165			while ((sp1 != tp) && *sp2 && (*sp1 == *sp2)) {
3166				++sp1;
3167				++sp2;
3168			}
3169			if (sp1 == tp && !*sp2)
3170				break;
3171		}
3172
3173	/* See if we have found a valid entry or not. If found, advance
3174	 * the request pointer for the next round; if not, clear the
3175	 * data pointer so we have no dangling garbage here.
3176	 */
3177	if (EOV & v->flags)
3178		*data = NULL;
3179	else
3180		reqpt = cp + (cp != reqend);
3181	return v;
3182
3183  badpacket:
3184	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3185	numctlbadpkts++;
3186	NLOG(NLOG_SYSEVENT)
3187	    if (quiet_until <= current_time) {
3188		    quiet_until = current_time + 300;
3189		    msyslog(LOG_WARNING,
3190			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3191			    stoa(rmt_addr), SRCPORT(rmt_addr));
3192	    }
3193	reqpt = reqend; /* never again for this packet! */
3194	return NULL;
3195}
3196
3197
3198/*
3199 * control_unspec - response to an unspecified op-code
3200 */
3201/*ARGSUSED*/
3202static void
3203control_unspec(
3204	struct recvbuf *rbufp,
3205	int restrict_mask
3206	)
3207{
3208	struct peer *peer;
3209
3210	/*
3211	 * What is an appropriate response to an unspecified op-code?
3212	 * I return no errors and no data, unless a specified assocation
3213	 * doesn't exist.
3214	 */
3215	if (res_associd) {
3216		peer = findpeerbyassoc(res_associd);
3217		if (NULL == peer) {
3218			ctl_error(CERR_BADASSOC);
3219			return;
3220		}
3221		rpkt.status = htons(ctlpeerstatus(peer));
3222	} else
3223		rpkt.status = htons(ctlsysstatus());
3224	ctl_flushpkt(0);
3225}
3226
3227
3228/*
3229 * read_status - return either a list of associd's, or a particular
3230 * peer's status.
3231 */
3232/*ARGSUSED*/
3233static void
3234read_status(
3235	struct recvbuf *rbufp,
3236	int restrict_mask
3237	)
3238{
3239	struct peer *peer;
3240	const u_char *cp;
3241	size_t n;
3242	/* a_st holds association ID, status pairs alternating */
3243	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3244
3245#ifdef DEBUG
3246	if (debug > 2)
3247		printf("read_status: ID %d\n", res_associd);
3248#endif
3249	/*
3250	 * Two choices here. If the specified association ID is
3251	 * zero we return all known assocation ID's.  Otherwise
3252	 * we return a bunch of stuff about the particular peer.
3253	 */
3254	if (res_associd) {
3255		peer = findpeerbyassoc(res_associd);
3256		if (NULL == peer) {
3257			ctl_error(CERR_BADASSOC);
3258			return;
3259		}
3260		rpkt.status = htons(ctlpeerstatus(peer));
3261		if (res_authokay)
3262			peer->num_events = 0;
3263		/*
3264		 * For now, output everything we know about the
3265		 * peer. May be more selective later.
3266		 */
3267		for (cp = def_peer_var; *cp != 0; cp++)
3268			ctl_putpeer((int)*cp, peer);
3269		ctl_flushpkt(0);
3270		return;
3271	}
3272	n = 0;
3273	rpkt.status = htons(ctlsysstatus());
3274	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3275		a_st[n++] = htons(peer->associd);
3276		a_st[n++] = htons(ctlpeerstatus(peer));
3277		/* two entries each loop iteration, so n + 1 */
3278		if (n + 1 >= COUNTOF(a_st)) {
3279			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3280				    1);
3281			n = 0;
3282		}
3283	}
3284	if (n)
3285		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3286	ctl_flushpkt(0);
3287}
3288
3289
3290/*
3291 * read_peervars - half of read_variables() implementation
3292 */
3293static void
3294read_peervars(void)
3295{
3296	const struct ctl_var *v;
3297	struct peer *peer;
3298	const u_char *cp;
3299	size_t i;
3300	char *	valuep;
3301	u_char	wants[CP_MAXCODE + 1];
3302	u_int	gotvar;
3303
3304	/*
3305	 * Wants info for a particular peer. See if we know
3306	 * the guy.
3307	 */
3308	peer = findpeerbyassoc(res_associd);
3309	if (NULL == peer) {
3310		ctl_error(CERR_BADASSOC);
3311		return;
3312	}
3313	rpkt.status = htons(ctlpeerstatus(peer));
3314	if (res_authokay)
3315		peer->num_events = 0;
3316	ZERO(wants);
3317	gotvar = 0;
3318	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3319		if (v->flags & EOV) {
3320			ctl_error(CERR_UNKNOWNVAR);
3321			return;
3322		}
3323		INSIST(v->code < COUNTOF(wants));
3324		wants[v->code] = 1;
3325		gotvar = 1;
3326	}
3327	if (gotvar) {
3328		for (i = 1; i < COUNTOF(wants); i++)
3329			if (wants[i])
3330				ctl_putpeer(i, peer);
3331	} else
3332		for (cp = def_peer_var; *cp != 0; cp++)
3333			ctl_putpeer((int)*cp, peer);
3334	ctl_flushpkt(0);
3335}
3336
3337
3338/*
3339 * read_sysvars - half of read_variables() implementation
3340 */
3341static void
3342read_sysvars(void)
3343{
3344	const struct ctl_var *v;
3345	struct ctl_var *kv;
3346	u_int	n;
3347	u_int	gotvar;
3348	const u_char *cs;
3349	char *	valuep;
3350	const char * pch;
3351	u_char *wants;
3352	size_t	wants_count;
3353
3354	/*
3355	 * Wants system variables. Figure out which he wants
3356	 * and give them to him.
3357	 */
3358	rpkt.status = htons(ctlsysstatus());
3359	if (res_authokay)
3360		ctl_sys_num_events = 0;
3361	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3362	wants = emalloc_zero(wants_count);
3363	gotvar = 0;
3364	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3365		if (!(EOV & v->flags)) {
3366			INSIST(v->code < wants_count);
3367			wants[v->code] = 1;
3368			gotvar = 1;
3369		} else {
3370			v = ctl_getitem(ext_sys_var, &valuep);
3371			if (NULL == v) {
3372				ctl_error(CERR_BADVALUE);
3373				free(wants);
3374				return;
3375			}
3376			if (EOV & v->flags) {
3377				ctl_error(CERR_UNKNOWNVAR);
3378				free(wants);
3379				return;
3380			}
3381			n = v->code + CS_MAXCODE + 1;
3382			INSIST(n < wants_count);
3383			wants[n] = 1;
3384			gotvar = 1;
3385		}
3386	}
3387	if (gotvar) {
3388		for (n = 1; n <= CS_MAXCODE; n++)
3389			if (wants[n])
3390				ctl_putsys(n);
3391		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3392			if (wants[n + CS_MAXCODE + 1]) {
3393				pch = ext_sys_var[n].text;
3394				ctl_putdata(pch, strlen(pch), 0);
3395			}
3396	} else {
3397		for (cs = def_sys_var; *cs != 0; cs++)
3398			ctl_putsys((int)*cs);
3399		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3400			if (DEF & kv->flags)
3401				ctl_putdata(kv->text, strlen(kv->text),
3402					    0);
3403	}
3404	free(wants);
3405	ctl_flushpkt(0);
3406}
3407
3408
3409/*
3410 * read_variables - return the variables the caller asks for
3411 */
3412/*ARGSUSED*/
3413static void
3414read_variables(
3415	struct recvbuf *rbufp,
3416	int restrict_mask
3417	)
3418{
3419	if (res_associd)
3420		read_peervars();
3421	else
3422		read_sysvars();
3423}
3424
3425
3426/*
3427 * write_variables - write into variables. We only allow leap bit
3428 * writing this way.
3429 */
3430/*ARGSUSED*/
3431static void
3432write_variables(
3433	struct recvbuf *rbufp,
3434	int restrict_mask
3435	)
3436{
3437	const struct ctl_var *v;
3438	int ext_var;
3439	char *valuep;
3440	long val;
3441	size_t octets;
3442	char *vareqv;
3443	const char *t;
3444	char *tt;
3445
3446	val = 0;
3447	/*
3448	 * If he's trying to write into a peer tell him no way
3449	 */
3450	if (res_associd != 0) {
3451		ctl_error(CERR_PERMISSION);
3452		return;
3453	}
3454
3455	/*
3456	 * Set status
3457	 */
3458	rpkt.status = htons(ctlsysstatus());
3459
3460	/*
3461	 * Look through the variables. Dump out at the first sign of
3462	 * trouble.
3463	 */
3464	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3465		ext_var = 0;
3466		if (v->flags & EOV) {
3467			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3468			    0) {
3469				if (v->flags & EOV) {
3470					ctl_error(CERR_UNKNOWNVAR);
3471					return;
3472				}
3473				ext_var = 1;
3474			} else {
3475				break;
3476			}
3477		}
3478		if (!(v->flags & CAN_WRITE)) {
3479			ctl_error(CERR_PERMISSION);
3480			return;
3481		}
3482		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3483							    &val))) {
3484			ctl_error(CERR_BADFMT);
3485			return;
3486		}
3487		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3488			ctl_error(CERR_BADVALUE);
3489			return;
3490		}
3491
3492		if (ext_var) {
3493			octets = strlen(v->text) + strlen(valuep) + 2;
3494			vareqv = emalloc(octets);
3495			tt = vareqv;
3496			t = v->text;
3497			while (*t && *t != '=')
3498				*tt++ = *t++;
3499			*tt++ = '=';
3500			memcpy(tt, valuep, 1 + strlen(valuep));
3501			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3502			free(vareqv);
3503		} else {
3504			ctl_error(CERR_UNSPEC); /* really */
3505			return;
3506		}
3507	}
3508
3509	/*
3510	 * If we got anything, do it. xxx nothing to do ***
3511	 */
3512	/*
3513	  if (leapind != ~0 || leapwarn != ~0) {
3514	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3515	  ctl_error(CERR_PERMISSION);
3516	  return;
3517	  }
3518	  }
3519	*/
3520	ctl_flushpkt(0);
3521}
3522
3523
3524/*
3525 * configure() processes ntpq :config/config-from-file, allowing
3526 *		generic runtime reconfiguration.
3527 */
3528static void configure(
3529	struct recvbuf *rbufp,
3530	int restrict_mask
3531	)
3532{
3533	size_t data_count;
3534	int retval;
3535
3536	/* I haven't yet implemented changes to an existing association.
3537	 * Hence check if the association id is 0
3538	 */
3539	if (res_associd != 0) {
3540		ctl_error(CERR_BADVALUE);
3541		return;
3542	}
3543
3544	if (RES_NOMODIFY & restrict_mask) {
3545		snprintf(remote_config.err_msg,
3546			 sizeof(remote_config.err_msg),
3547			 "runtime configuration prohibited by restrict ... nomodify");
3548		ctl_putdata(remote_config.err_msg,
3549			    strlen(remote_config.err_msg), 0);
3550		ctl_flushpkt(0);
3551		NLOG(NLOG_SYSINFO)
3552			msyslog(LOG_NOTICE,
3553				"runtime config from %s rejected due to nomodify restriction",
3554				stoa(&rbufp->recv_srcadr));
3555		sys_restricted++;
3556		return;
3557	}
3558
3559	/* Initialize the remote config buffer */
3560	data_count = remoteconfig_cmdlength(reqpt, reqend);
3561
3562	if (data_count > sizeof(remote_config.buffer) - 2) {
3563		snprintf(remote_config.err_msg,
3564			 sizeof(remote_config.err_msg),
3565			 "runtime configuration failed: request too long");
3566		ctl_putdata(remote_config.err_msg,
3567			    strlen(remote_config.err_msg), 0);
3568		ctl_flushpkt(0);
3569		msyslog(LOG_NOTICE,
3570			"runtime config from %s rejected: request too long",
3571			stoa(&rbufp->recv_srcadr));
3572		return;
3573	}
3574	/* Bug 2853 -- check if all characters were acceptable */
3575	if (data_count != (size_t)(reqend - reqpt)) {
3576		snprintf(remote_config.err_msg,
3577			 sizeof(remote_config.err_msg),
3578			 "runtime configuration failed: request contains an unprintable character");
3579		ctl_putdata(remote_config.err_msg,
3580			    strlen(remote_config.err_msg), 0);
3581		ctl_flushpkt(0);
3582		msyslog(LOG_NOTICE,
3583			"runtime config from %s rejected: request contains an unprintable character: %0x",
3584			stoa(&rbufp->recv_srcadr),
3585			reqpt[data_count]);
3586		return;
3587	}
3588
3589	memcpy(remote_config.buffer, reqpt, data_count);
3590	/* The buffer has no trailing linefeed or NUL right now. For
3591	 * logging, we do not want a newline, so we do that first after
3592	 * adding the necessary NUL byte.
3593	 */
3594	remote_config.buffer[data_count] = '\0';
3595	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3596		remote_config.buffer));
3597	msyslog(LOG_NOTICE, "%s config: %s",
3598		stoa(&rbufp->recv_srcadr),
3599		remote_config.buffer);
3600
3601	/* Now we have to make sure there is a NL/NUL sequence at the
3602	 * end of the buffer before we parse it.
3603	 */
3604	remote_config.buffer[data_count++] = '\n';
3605	remote_config.buffer[data_count] = '\0';
3606	remote_config.pos = 0;
3607	remote_config.err_pos = 0;
3608	remote_config.no_errors = 0;
3609	config_remotely(&rbufp->recv_srcadr);
3610
3611	/*
3612	 * Check if errors were reported. If not, output 'Config
3613	 * Succeeded'.  Else output the error count.  It would be nice
3614	 * to output any parser error messages.
3615	 */
3616	if (0 == remote_config.no_errors) {
3617		retval = snprintf(remote_config.err_msg,
3618				  sizeof(remote_config.err_msg),
3619				  "Config Succeeded");
3620		if (retval > 0)
3621			remote_config.err_pos += retval;
3622	}
3623
3624	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3625	ctl_flushpkt(0);
3626
3627	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3628
3629	if (remote_config.no_errors > 0)
3630		msyslog(LOG_NOTICE, "%d error in %s config",
3631			remote_config.no_errors,
3632			stoa(&rbufp->recv_srcadr));
3633}
3634
3635
3636/*
3637 * derive_nonce - generate client-address-specific nonce value
3638 *		  associated with a given timestamp.
3639 */
3640static u_int32 derive_nonce(
3641	sockaddr_u *	addr,
3642	u_int32		ts_i,
3643	u_int32		ts_f
3644	)
3645{
3646	static u_int32	salt[4];
3647	static u_long	last_salt_update;
3648	union d_tag {
3649		u_char	digest[EVP_MAX_MD_SIZE];
3650		u_int32 extract;
3651	}		d;
3652	EVP_MD_CTX	ctx;
3653	u_int		len;
3654
3655	while (!salt[0] || current_time - last_salt_update >= 3600) {
3656		salt[0] = ntp_random();
3657		salt[1] = ntp_random();
3658		salt[2] = ntp_random();
3659		salt[3] = ntp_random();
3660		last_salt_update = current_time;
3661	}
3662
3663	EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3664	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3665	EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3666	EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3667	if (IS_IPV4(addr))
3668		EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3669			         sizeof(SOCK_ADDR4(addr)));
3670	else
3671		EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3672			         sizeof(SOCK_ADDR6(addr)));
3673	EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3674	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3675	EVP_DigestFinal(&ctx, d.digest, &len);
3676
3677	return d.extract;
3678}
3679
3680
3681/*
3682 * generate_nonce - generate client-address-specific nonce string.
3683 */
3684static void generate_nonce(
3685	struct recvbuf *	rbufp,
3686	char *			nonce,
3687	size_t			nonce_octets
3688	)
3689{
3690	u_int32 derived;
3691
3692	derived = derive_nonce(&rbufp->recv_srcadr,
3693			       rbufp->recv_time.l_ui,
3694			       rbufp->recv_time.l_uf);
3695	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3696		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3697}
3698
3699
3700/*
3701 * validate_nonce - validate client-address-specific nonce string.
3702 *
3703 * Returns TRUE if the local calculation of the nonce matches the
3704 * client-provided value and the timestamp is recent enough.
3705 */
3706static int validate_nonce(
3707	const char *		pnonce,
3708	struct recvbuf *	rbufp
3709	)
3710{
3711	u_int	ts_i;
3712	u_int	ts_f;
3713	l_fp	ts;
3714	l_fp	now_delta;
3715	u_int	supposed;
3716	u_int	derived;
3717
3718	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3719		return FALSE;
3720
3721	ts.l_ui = (u_int32)ts_i;
3722	ts.l_uf = (u_int32)ts_f;
3723	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3724	get_systime(&now_delta);
3725	L_SUB(&now_delta, &ts);
3726
3727	return (supposed == derived && now_delta.l_ui < 16);
3728}
3729
3730
3731/*
3732 * send_random_tag_value - send a randomly-generated three character
3733 *			   tag prefix, a '.', an index, a '=' and a
3734 *			   random integer value.
3735 *
3736 * To try to force clients to ignore unrecognized tags in mrulist,
3737 * reslist, and ifstats responses, the first and last rows are spiced
3738 * with randomly-generated tag names with correct .# index.  Make it
3739 * three characters knowing that none of the currently-used subscripted
3740 * tags have that length, avoiding the need to test for
3741 * tag collision.
3742 */
3743static void
3744send_random_tag_value(
3745	int	indx
3746	)
3747{
3748	int	noise;
3749	char	buf[32];
3750
3751	noise = rand() ^ (rand() << 16);
3752	buf[0] = 'a' + noise % 26;
3753	noise >>= 5;
3754	buf[1] = 'a' + noise % 26;
3755	noise >>= 5;
3756	buf[2] = 'a' + noise % 26;
3757	noise >>= 5;
3758	buf[3] = '.';
3759	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3760	ctl_putuint(buf, noise);
3761}
3762
3763
3764/*
3765 * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3766 *
3767 * To keep clients honest about not depending on the order of values,
3768 * and thereby avoid being locked into ugly workarounds to maintain
3769 * backward compatibility later as new fields are added to the response,
3770 * the order is random.
3771 */
3772static void
3773send_mru_entry(
3774	mon_entry *	mon,
3775	int		count
3776	)
3777{
3778	const char first_fmt[] =	"first.%d";
3779	const char ct_fmt[] =		"ct.%d";
3780	const char mv_fmt[] =		"mv.%d";
3781	const char rs_fmt[] =		"rs.%d";
3782	char	tag[32];
3783	u_char	sent[6]; /* 6 tag=value pairs */
3784	u_int32 noise;
3785	u_int	which;
3786	u_int	remaining;
3787	const char * pch;
3788
3789	remaining = COUNTOF(sent);
3790	ZERO(sent);
3791	noise = (u_int32)(rand() ^ (rand() << 16));
3792	while (remaining > 0) {
3793		which = (noise & 7) % COUNTOF(sent);
3794		noise >>= 3;
3795		while (sent[which])
3796			which = (which + 1) % COUNTOF(sent);
3797
3798		switch (which) {
3799
3800		case 0:
3801			snprintf(tag, sizeof(tag), addr_fmt, count);
3802			pch = sptoa(&mon->rmtadr);
3803			ctl_putunqstr(tag, pch, strlen(pch));
3804			break;
3805
3806		case 1:
3807			snprintf(tag, sizeof(tag), last_fmt, count);
3808			ctl_putts(tag, &mon->last);
3809			break;
3810
3811		case 2:
3812			snprintf(tag, sizeof(tag), first_fmt, count);
3813			ctl_putts(tag, &mon->first);
3814			break;
3815
3816		case 3:
3817			snprintf(tag, sizeof(tag), ct_fmt, count);
3818			ctl_putint(tag, mon->count);
3819			break;
3820
3821		case 4:
3822			snprintf(tag, sizeof(tag), mv_fmt, count);
3823			ctl_putuint(tag, mon->vn_mode);
3824			break;
3825
3826		case 5:
3827			snprintf(tag, sizeof(tag), rs_fmt, count);
3828			ctl_puthex(tag, mon->flags);
3829			break;
3830		}
3831		sent[which] = TRUE;
3832		remaining--;
3833	}
3834}
3835
3836
3837/*
3838 * read_mru_list - supports ntpq's mrulist command.
3839 *
3840 * The challenge here is to match ntpdc's monlist functionality without
3841 * being limited to hundreds of entries returned total, and without
3842 * requiring state on the server.  If state were required, ntpq's
3843 * mrulist command would require authentication.
3844 *
3845 * The approach was suggested by Ry Jones.  A finite and variable number
3846 * of entries are retrieved per request, to avoid having responses with
3847 * such large numbers of packets that socket buffers are overflowed and
3848 * packets lost.  The entries are retrieved oldest-first, taking into
3849 * account that the MRU list will be changing between each request.  We
3850 * can expect to see duplicate entries for addresses updated in the MRU
3851 * list during the fetch operation.  In the end, the client can assemble
3852 * a close approximation of the MRU list at the point in time the last
3853 * response was sent by ntpd.  The only difference is it may be longer,
3854 * containing some number of oldest entries which have since been
3855 * reclaimed.  If necessary, the protocol could be extended to zap those
3856 * from the client snapshot at the end, but so far that doesn't seem
3857 * useful.
3858 *
3859 * To accomodate the changing MRU list, the starting point for requests
3860 * after the first request is supplied as a series of last seen
3861 * timestamps and associated addresses, the newest ones the client has
3862 * received.  As long as at least one of those entries hasn't been
3863 * bumped to the head of the MRU list, ntpd can pick up at that point.
3864 * Otherwise, the request is failed and it is up to ntpq to back up and
3865 * provide the next newest entry's timestamps and addresses, conceivably
3866 * backing up all the way to the starting point.
3867 *
3868 * input parameters:
3869 *	nonce=		Regurgitated nonce retrieved by the client
3870 *			previously using CTL_OP_REQ_NONCE, demonstrating
3871 *			ability to receive traffic sent to its address.
3872 *	frags=		Limit on datagrams (fragments) in response.  Used
3873 *			by newer ntpq versions instead of limit= when
3874 *			retrieving multiple entries.
3875 *	limit=		Limit on MRU entries returned.  One of frags= or
3876 *			limit= must be provided.
3877 *			limit=1 is a special case:  Instead of fetching
3878 *			beginning with the supplied starting point's
3879 *			newer neighbor, fetch the supplied entry, and
3880 *			in that case the #.last timestamp can be zero.
3881 *			This enables fetching a single entry by IP
3882 *			address.  When limit is not one and frags= is
3883 *			provided, the fragment limit controls.
3884 *	mincount=	(decimal) Return entries with count >= mincount.
3885 *	laddr=		Return entries associated with the server's IP
3886 *			address given.  No port specification is needed,
3887 *			and any supplied is ignored.
3888 *	resall=		0x-prefixed hex restrict bits which must all be
3889 *			lit for an MRU entry to be included.
3890 *			Has precedence over any resany=.
3891 *	resany=		0x-prefixed hex restrict bits, at least one of
3892 *			which must be list for an MRU entry to be
3893 *			included.
3894 *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3895 *			which client previously received.
3896 *	addr.0=		text of newest entry's IP address and port,
3897 *			IPv6 addresses in bracketed form: [::]:123
3898 *	last.1=		timestamp of 2nd newest entry client has.
3899 *	addr.1=		address of 2nd newest entry.
3900 *	[...]
3901 *
3902 * ntpq provides as many last/addr pairs as will fit in a single request
3903 * packet, except for the first request in a MRU fetch operation.
3904 *
3905 * The response begins with a new nonce value to be used for any
3906 * followup request.  Following the nonce is the next newer entry than
3907 * referred to by last.0 and addr.0, if the "0" entry has not been
3908 * bumped to the front.  If it has, the first entry returned will be the
3909 * next entry newer than referred to by last.1 and addr.1, and so on.
3910 * If none of the referenced entries remain unchanged, the request fails
3911 * and ntpq backs up to the next earlier set of entries to resync.
3912 *
3913 * Except for the first response, the response begins with confirmation
3914 * of the entry that precedes the first additional entry provided:
3915 *
3916 *	last.older=	hex l_fp timestamp matching one of the input
3917 *			.last timestamps, which entry now precedes the
3918 *			response 0. entry in the MRU list.
3919 *	addr.older=	text of address corresponding to older.last.
3920 *
3921 * And in any case, a successful response contains sets of values
3922 * comprising entries, with the oldest numbered 0 and incrementing from
3923 * there:
3924 *
3925 *	addr.#		text of IPv4 or IPv6 address and port
3926 *	last.#		hex l_fp timestamp of last receipt
3927 *	first.#		hex l_fp timestamp of first receipt
3928 *	ct.#		count of packets received
3929 *	mv.#		mode and version
3930 *	rs.#		restriction mask (RES_* bits)
3931 *
3932 * Note the code currently assumes there are no valid three letter
3933 * tags sent with each row, and needs to be adjusted if that changes.
3934 *
3935 * The client should accept the values in any order, and ignore .#
3936 * values which it does not understand, to allow a smooth path to
3937 * future changes without requiring a new opcode.  Clients can rely
3938 * on all *.0 values preceding any *.1 values, that is all values for
3939 * a given index number are together in the response.
3940 *
3941 * The end of the response list is noted with one or two tag=value
3942 * pairs.  Unconditionally:
3943 *
3944 *	now=		0x-prefixed l_fp timestamp at the server marking
3945 *			the end of the operation.
3946 *
3947 * If any entries were returned, now= is followed by:
3948 *
3949 *	last.newest=	hex l_fp identical to last.# of the prior
3950 *			entry.
3951 */
3952static void read_mru_list(
3953	struct recvbuf *rbufp,
3954	int restrict_mask
3955	)
3956{
3957	const char		nonce_text[] =		"nonce";
3958	const char		frags_text[] =		"frags";
3959	const char		limit_text[] =		"limit";
3960	const char		mincount_text[] =	"mincount";
3961	const char		resall_text[] =		"resall";
3962	const char		resany_text[] =		"resany";
3963	const char		maxlstint_text[] =	"maxlstint";
3964	const char		laddr_text[] =		"laddr";
3965	const char		resaxx_fmt[] =		"0x%hx";
3966	u_int			limit;
3967	u_short			frags;
3968	u_short			resall;
3969	u_short			resany;
3970	int			mincount;
3971	u_int			maxlstint;
3972	sockaddr_u		laddr;
3973	struct interface *	lcladr;
3974	u_int			count;
3975	u_int			ui;
3976	u_int			uf;
3977	l_fp			last[16];
3978	sockaddr_u		addr[COUNTOF(last)];
3979	char			buf[128];
3980	struct ctl_var *	in_parms;
3981	const struct ctl_var *	v;
3982	char *			val;
3983	const char *		pch;
3984	char *			pnonce;
3985	int			nonce_valid;
3986	size_t			i;
3987	int			priors;
3988	u_short			hash;
3989	mon_entry *		mon;
3990	mon_entry *		prior_mon;
3991	l_fp			now;
3992
3993	if (RES_NOMRULIST & restrict_mask) {
3994		ctl_error(CERR_PERMISSION);
3995		NLOG(NLOG_SYSINFO)
3996			msyslog(LOG_NOTICE,
3997				"mrulist from %s rejected due to nomrulist restriction",
3998				stoa(&rbufp->recv_srcadr));
3999		sys_restricted++;
4000		return;
4001	}
4002	/*
4003	 * fill in_parms var list with all possible input parameters.
4004	 */
4005	in_parms = NULL;
4006	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4007	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4008	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4009	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4010	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4011	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4012	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4013	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4014	for (i = 0; i < COUNTOF(last); i++) {
4015		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4016		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4017		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4018		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4019	}
4020
4021	/* decode input parms */
4022	pnonce = NULL;
4023	frags = 0;
4024	limit = 0;
4025	mincount = 0;
4026	resall = 0;
4027	resany = 0;
4028	maxlstint = 0;
4029	lcladr = NULL;
4030	priors = 0;
4031	ZERO(last);
4032	ZERO(addr);
4033
4034	while (NULL != (v = ctl_getitem(in_parms, &val)) &&
4035	       !(EOV & v->flags)) {
4036		int si;
4037
4038		if (!strcmp(nonce_text, v->text)) {
4039			if (NULL != pnonce)
4040				free(pnonce);
4041			pnonce = estrdup(val);
4042		} else if (!strcmp(frags_text, v->text)) {
4043			sscanf(val, "%hu", &frags);
4044		} else if (!strcmp(limit_text, v->text)) {
4045			sscanf(val, "%u", &limit);
4046		} else if (!strcmp(mincount_text, v->text)) {
4047			if (1 != sscanf(val, "%d", &mincount) ||
4048			    mincount < 0)
4049				mincount = 0;
4050		} else if (!strcmp(resall_text, v->text)) {
4051			sscanf(val, resaxx_fmt, &resall);
4052		} else if (!strcmp(resany_text, v->text)) {
4053			sscanf(val, resaxx_fmt, &resany);
4054		} else if (!strcmp(maxlstint_text, v->text)) {
4055			sscanf(val, "%u", &maxlstint);
4056		} else if (!strcmp(laddr_text, v->text)) {
4057			if (decodenetnum(val, &laddr))
4058				lcladr = getinterface(&laddr, 0);
4059		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4060			   (size_t)si < COUNTOF(last)) {
4061			if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
4062				last[si].l_ui = ui;
4063				last[si].l_uf = uf;
4064				if (!SOCK_UNSPEC(&addr[si]) &&
4065				    si == priors)
4066					priors++;
4067			}
4068		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4069			   (size_t)si < COUNTOF(addr)) {
4070			if (decodenetnum(val, &addr[si])
4071			    && last[si].l_ui && last[si].l_uf &&
4072			    si == priors)
4073				priors++;
4074		}
4075	}
4076	free_varlist(in_parms);
4077	in_parms = NULL;
4078
4079	/* return no responses until the nonce is validated */
4080	if (NULL == pnonce)
4081		return;
4082
4083	nonce_valid = validate_nonce(pnonce, rbufp);
4084	free(pnonce);
4085	if (!nonce_valid)
4086		return;
4087
4088	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4089	    frags > MRU_FRAGS_LIMIT) {
4090		ctl_error(CERR_BADVALUE);
4091		return;
4092	}
4093
4094	/*
4095	 * If either frags or limit is not given, use the max.
4096	 */
4097	if (0 != frags && 0 == limit)
4098		limit = UINT_MAX;
4099	else if (0 != limit && 0 == frags)
4100		frags = MRU_FRAGS_LIMIT;
4101
4102	/*
4103	 * Find the starting point if one was provided.
4104	 */
4105	mon = NULL;
4106	for (i = 0; i < (size_t)priors; i++) {
4107		hash = MON_HASH(&addr[i]);
4108		for (mon = mon_hash[hash];
4109		     mon != NULL;
4110		     mon = mon->hash_next)
4111			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4112				break;
4113		if (mon != NULL) {
4114			if (L_ISEQU(&mon->last, &last[i]))
4115				break;
4116			mon = NULL;
4117		}
4118	}
4119
4120	/* If a starting point was provided... */
4121	if (priors) {
4122		/* and none could be found unmodified... */
4123		if (NULL == mon) {
4124			/* tell ntpq to try again with older entries */
4125			ctl_error(CERR_UNKNOWNVAR);
4126			return;
4127		}
4128		/* confirm the prior entry used as starting point */
4129		ctl_putts("last.older", &mon->last);
4130		pch = sptoa(&mon->rmtadr);
4131		ctl_putunqstr("addr.older", pch, strlen(pch));
4132
4133		/*
4134		 * Move on to the first entry the client doesn't have,
4135		 * except in the special case of a limit of one.  In
4136		 * that case return the starting point entry.
4137		 */
4138		if (limit > 1)
4139			mon = PREV_DLIST(mon_mru_list, mon, mru);
4140	} else {	/* start with the oldest */
4141		mon = TAIL_DLIST(mon_mru_list, mru);
4142	}
4143
4144	/*
4145	 * send up to limit= entries in up to frags= datagrams
4146	 */
4147	get_systime(&now);
4148	generate_nonce(rbufp, buf, sizeof(buf));
4149	ctl_putunqstr("nonce", buf, strlen(buf));
4150	prior_mon = NULL;
4151	for (count = 0;
4152	     mon != NULL && res_frags < frags && count < limit;
4153	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4154
4155		if (mon->count < mincount)
4156			continue;
4157		if (resall && resall != (resall & mon->flags))
4158			continue;
4159		if (resany && !(resany & mon->flags))
4160			continue;
4161		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4162		    maxlstint)
4163			continue;
4164		if (lcladr != NULL && mon->lcladr != lcladr)
4165			continue;
4166
4167		send_mru_entry(mon, count);
4168		if (!count)
4169			send_random_tag_value(0);
4170		count++;
4171		prior_mon = mon;
4172	}
4173
4174	/*
4175	 * If this batch completes the MRU list, say so explicitly with
4176	 * a now= l_fp timestamp.
4177	 */
4178	if (NULL == mon) {
4179		if (count > 1)
4180			send_random_tag_value(count - 1);
4181		ctl_putts("now", &now);
4182		/* if any entries were returned confirm the last */
4183		if (prior_mon != NULL)
4184			ctl_putts("last.newest", &prior_mon->last);
4185	}
4186	ctl_flushpkt(0);
4187}
4188
4189
4190/*
4191 * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4192 *
4193 * To keep clients honest about not depending on the order of values,
4194 * and thereby avoid being locked into ugly workarounds to maintain
4195 * backward compatibility later as new fields are added to the response,
4196 * the order is random.
4197 */
4198static void
4199send_ifstats_entry(
4200	endpt *	la,
4201	u_int	ifnum
4202	)
4203{
4204	const char addr_fmtu[] =	"addr.%u";
4205	const char bcast_fmt[] =	"bcast.%u";
4206	const char en_fmt[] =		"en.%u";	/* enabled */
4207	const char name_fmt[] =		"name.%u";
4208	const char flags_fmt[] =	"flags.%u";
4209	const char tl_fmt[] =		"tl.%u";	/* ttl */
4210	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4211	const char rx_fmt[] =		"rx.%u";
4212	const char tx_fmt[] =		"tx.%u";
4213	const char txerr_fmt[] =	"txerr.%u";
4214	const char pc_fmt[] =		"pc.%u";	/* peer count */
4215	const char up_fmt[] =		"up.%u";	/* uptime */
4216	char	tag[32];
4217	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4218	int	noisebits;
4219	u_int32 noise;
4220	u_int	which;
4221	u_int	remaining;
4222	const char *pch;
4223
4224	remaining = COUNTOF(sent);
4225	ZERO(sent);
4226	noise = 0;
4227	noisebits = 0;
4228	while (remaining > 0) {
4229		if (noisebits < 4) {
4230			noise = rand() ^ (rand() << 16);
4231			noisebits = 31;
4232		}
4233		which = (noise & 0xf) % COUNTOF(sent);
4234		noise >>= 4;
4235		noisebits -= 4;
4236
4237		while (sent[which])
4238			which = (which + 1) % COUNTOF(sent);
4239
4240		switch (which) {
4241
4242		case 0:
4243			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4244			pch = sptoa(&la->sin);
4245			ctl_putunqstr(tag, pch, strlen(pch));
4246			break;
4247
4248		case 1:
4249			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4250			if (INT_BCASTOPEN & la->flags)
4251				pch = sptoa(&la->bcast);
4252			else
4253				pch = "";
4254			ctl_putunqstr(tag, pch, strlen(pch));
4255			break;
4256
4257		case 2:
4258			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4259			ctl_putint(tag, !la->ignore_packets);
4260			break;
4261
4262		case 3:
4263			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4264			ctl_putstr(tag, la->name, strlen(la->name));
4265			break;
4266
4267		case 4:
4268			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4269			ctl_puthex(tag, (u_int)la->flags);
4270			break;
4271
4272		case 5:
4273			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4274			ctl_putint(tag, la->last_ttl);
4275			break;
4276
4277		case 6:
4278			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4279			ctl_putint(tag, la->num_mcast);
4280			break;
4281
4282		case 7:
4283			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4284			ctl_putint(tag, la->received);
4285			break;
4286
4287		case 8:
4288			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4289			ctl_putint(tag, la->sent);
4290			break;
4291
4292		case 9:
4293			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4294			ctl_putint(tag, la->notsent);
4295			break;
4296
4297		case 10:
4298			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4299			ctl_putuint(tag, la->peercnt);
4300			break;
4301
4302		case 11:
4303			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4304			ctl_putuint(tag, current_time - la->starttime);
4305			break;
4306		}
4307		sent[which] = TRUE;
4308		remaining--;
4309	}
4310	send_random_tag_value((int)ifnum);
4311}
4312
4313
4314/*
4315 * read_ifstats - send statistics for each local address, exposed by
4316 *		  ntpq -c ifstats
4317 */
4318static void
4319read_ifstats(
4320	struct recvbuf *	rbufp
4321	)
4322{
4323	u_int	ifidx;
4324	endpt *	la;
4325
4326	/*
4327	 * loop over [0..sys_ifnum] searching ep_list for each
4328	 * ifnum in turn.
4329	 */
4330	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4331		for (la = ep_list; la != NULL; la = la->elink)
4332			if (ifidx == la->ifnum)
4333				break;
4334		if (NULL == la)
4335			continue;
4336		/* return stats for one local address */
4337		send_ifstats_entry(la, ifidx);
4338	}
4339	ctl_flushpkt(0);
4340}
4341
4342static void
4343sockaddrs_from_restrict_u(
4344	sockaddr_u *	psaA,
4345	sockaddr_u *	psaM,
4346	restrict_u *	pres,
4347	int		ipv6
4348	)
4349{
4350	ZERO(*psaA);
4351	ZERO(*psaM);
4352	if (!ipv6) {
4353		psaA->sa.sa_family = AF_INET;
4354		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4355		psaM->sa.sa_family = AF_INET;
4356		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4357	} else {
4358		psaA->sa.sa_family = AF_INET6;
4359		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4360		       sizeof(psaA->sa6.sin6_addr));
4361		psaM->sa.sa_family = AF_INET6;
4362		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4363		       sizeof(psaA->sa6.sin6_addr));
4364	}
4365}
4366
4367
4368/*
4369 * Send a restrict entry in response to a "ntpq -c reslist" request.
4370 *
4371 * To keep clients honest about not depending on the order of values,
4372 * and thereby avoid being locked into ugly workarounds to maintain
4373 * backward compatibility later as new fields are added to the response,
4374 * the order is random.
4375 */
4376static void
4377send_restrict_entry(
4378	restrict_u *	pres,
4379	int		ipv6,
4380	u_int		idx
4381	)
4382{
4383	const char addr_fmtu[] =	"addr.%u";
4384	const char mask_fmtu[] =	"mask.%u";
4385	const char hits_fmt[] =		"hits.%u";
4386	const char flags_fmt[] =	"flags.%u";
4387	char		tag[32];
4388	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4389	int		noisebits;
4390	u_int32		noise;
4391	u_int		which;
4392	u_int		remaining;
4393	sockaddr_u	addr;
4394	sockaddr_u	mask;
4395	const char *	pch;
4396	char *		buf;
4397	const char *	match_str;
4398	const char *	access_str;
4399
4400	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4401	remaining = COUNTOF(sent);
4402	ZERO(sent);
4403	noise = 0;
4404	noisebits = 0;
4405	while (remaining > 0) {
4406		if (noisebits < 2) {
4407			noise = rand() ^ (rand() << 16);
4408			noisebits = 31;
4409		}
4410		which = (noise & 0x3) % COUNTOF(sent);
4411		noise >>= 2;
4412		noisebits -= 2;
4413
4414		while (sent[which])
4415			which = (which + 1) % COUNTOF(sent);
4416
4417		switch (which) {
4418
4419		case 0:
4420			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4421			pch = stoa(&addr);
4422			ctl_putunqstr(tag, pch, strlen(pch));
4423			break;
4424
4425		case 1:
4426			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4427			pch = stoa(&mask);
4428			ctl_putunqstr(tag, pch, strlen(pch));
4429			break;
4430
4431		case 2:
4432			snprintf(tag, sizeof(tag), hits_fmt, idx);
4433			ctl_putuint(tag, pres->count);
4434			break;
4435
4436		case 3:
4437			snprintf(tag, sizeof(tag), flags_fmt, idx);
4438			match_str = res_match_flags(pres->mflags);
4439			access_str = res_access_flags(pres->flags);
4440			if ('\0' == match_str[0]) {
4441				pch = access_str;
4442			} else {
4443				LIB_GETBUF(buf);
4444				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4445					 match_str, access_str);
4446				pch = buf;
4447			}
4448			ctl_putunqstr(tag, pch, strlen(pch));
4449			break;
4450		}
4451		sent[which] = TRUE;
4452		remaining--;
4453	}
4454	send_random_tag_value((int)idx);
4455}
4456
4457
4458static void
4459send_restrict_list(
4460	restrict_u *	pres,
4461	int		ipv6,
4462	u_int *		pidx
4463	)
4464{
4465	for ( ; pres != NULL; pres = pres->link) {
4466		send_restrict_entry(pres, ipv6, *pidx);
4467		(*pidx)++;
4468	}
4469}
4470
4471
4472/*
4473 * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4474 */
4475static void
4476read_addr_restrictions(
4477	struct recvbuf *	rbufp
4478)
4479{
4480	u_int idx;
4481
4482	idx = 0;
4483	send_restrict_list(restrictlist4, FALSE, &idx);
4484	send_restrict_list(restrictlist6, TRUE, &idx);
4485	ctl_flushpkt(0);
4486}
4487
4488
4489/*
4490 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4491 */
4492static void
4493read_ordlist(
4494	struct recvbuf *	rbufp,
4495	int			restrict_mask
4496	)
4497{
4498	const char ifstats_s[] = "ifstats";
4499	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4500	const char addr_rst_s[] = "addr_restrictions";
4501	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4502	struct ntp_control *	cpkt;
4503	u_short			qdata_octets;
4504
4505	/*
4506	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4507	 * used only for ntpq -c ifstats.  With the addition of reslist
4508	 * the same opcode was generalized to retrieve ordered lists
4509	 * which require authentication.  The request data is empty or
4510	 * contains "ifstats" (not null terminated) to retrieve local
4511	 * addresses and associated stats.  It is "addr_restrictions"
4512	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4513	 * which are access control lists.  Other request data return
4514	 * CERR_UNKNOWNVAR.
4515	 */
4516	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4517	qdata_octets = ntohs(cpkt->count);
4518	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4519	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4520		read_ifstats(rbufp);
4521		return;
4522	}
4523	if (a_r_chars == qdata_octets &&
4524	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4525		read_addr_restrictions(rbufp);
4526		return;
4527	}
4528	ctl_error(CERR_UNKNOWNVAR);
4529}
4530
4531
4532/*
4533 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4534 */
4535static void req_nonce(
4536	struct recvbuf *	rbufp,
4537	int			restrict_mask
4538	)
4539{
4540	char	buf[64];
4541
4542	generate_nonce(rbufp, buf, sizeof(buf));
4543	ctl_putunqstr("nonce", buf, strlen(buf));
4544	ctl_flushpkt(0);
4545}
4546
4547
4548/*
4549 * read_clockstatus - return clock radio status
4550 */
4551/*ARGSUSED*/
4552static void
4553read_clockstatus(
4554	struct recvbuf *rbufp,
4555	int restrict_mask
4556	)
4557{
4558#ifndef REFCLOCK
4559	/*
4560	 * If no refclock support, no data to return
4561	 */
4562	ctl_error(CERR_BADASSOC);
4563#else
4564	const struct ctl_var *	v;
4565	int			i;
4566	struct peer *		peer;
4567	char *			valuep;
4568	u_char *		wants;
4569	size_t			wants_alloc;
4570	int			gotvar;
4571	const u_char *		cc;
4572	struct ctl_var *	kv;
4573	struct refclockstat	cs;
4574
4575	if (res_associd != 0) {
4576		peer = findpeerbyassoc(res_associd);
4577	} else {
4578		/*
4579		 * Find a clock for this jerk.	If the system peer
4580		 * is a clock use it, else search peer_list for one.
4581		 */
4582		if (sys_peer != NULL && (FLAG_REFCLOCK &
4583		    sys_peer->flags))
4584			peer = sys_peer;
4585		else
4586			for (peer = peer_list;
4587			     peer != NULL;
4588			     peer = peer->p_link)
4589				if (FLAG_REFCLOCK & peer->flags)
4590					break;
4591	}
4592	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4593		ctl_error(CERR_BADASSOC);
4594		return;
4595	}
4596	/*
4597	 * If we got here we have a peer which is a clock. Get his
4598	 * status.
4599	 */
4600	cs.kv_list = NULL;
4601	refclock_control(&peer->srcadr, NULL, &cs);
4602	kv = cs.kv_list;
4603	/*
4604	 * Look for variables in the packet.
4605	 */
4606	rpkt.status = htons(ctlclkstatus(&cs));
4607	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4608	wants = emalloc_zero(wants_alloc);
4609	gotvar = FALSE;
4610	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4611		if (!(EOV & v->flags)) {
4612			wants[v->code] = TRUE;
4613			gotvar = TRUE;
4614		} else {
4615			v = ctl_getitem(kv, &valuep);
4616			if (NULL == v) {
4617				ctl_error(CERR_BADVALUE);
4618				free(wants);
4619				free_varlist(cs.kv_list);
4620				return;
4621			}
4622			if (EOV & v->flags) {
4623				ctl_error(CERR_UNKNOWNVAR);
4624				free(wants);
4625				free_varlist(cs.kv_list);
4626				return;
4627			}
4628			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4629			gotvar = TRUE;
4630		}
4631	}
4632
4633	if (gotvar) {
4634		for (i = 1; i <= CC_MAXCODE; i++)
4635			if (wants[i])
4636				ctl_putclock(i, &cs, TRUE);
4637		if (kv != NULL)
4638			for (i = 0; !(EOV & kv[i].flags); i++)
4639				if (wants[i + CC_MAXCODE + 1])
4640					ctl_putdata(kv[i].text,
4641						    strlen(kv[i].text),
4642						    FALSE);
4643	} else {
4644		for (cc = def_clock_var; *cc != 0; cc++)
4645			ctl_putclock((int)*cc, &cs, FALSE);
4646		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4647			if (DEF & kv->flags)
4648				ctl_putdata(kv->text, strlen(kv->text),
4649					    FALSE);
4650	}
4651
4652	free(wants);
4653	free_varlist(cs.kv_list);
4654
4655	ctl_flushpkt(0);
4656#endif
4657}
4658
4659
4660/*
4661 * write_clockstatus - we don't do this
4662 */
4663/*ARGSUSED*/
4664static void
4665write_clockstatus(
4666	struct recvbuf *rbufp,
4667	int restrict_mask
4668	)
4669{
4670	ctl_error(CERR_PERMISSION);
4671}
4672
4673/*
4674 * Trap support from here on down. We send async trap messages when the
4675 * upper levels report trouble. Traps can by set either by control
4676 * messages or by configuration.
4677 */
4678/*
4679 * set_trap - set a trap in response to a control message
4680 */
4681static void
4682set_trap(
4683	struct recvbuf *rbufp,
4684	int restrict_mask
4685	)
4686{
4687	int traptype;
4688
4689	/*
4690	 * See if this guy is allowed
4691	 */
4692	if (restrict_mask & RES_NOTRAP) {
4693		ctl_error(CERR_PERMISSION);
4694		return;
4695	}
4696
4697	/*
4698	 * Determine his allowed trap type.
4699	 */
4700	traptype = TRAP_TYPE_PRIO;
4701	if (restrict_mask & RES_LPTRAP)
4702		traptype = TRAP_TYPE_NONPRIO;
4703
4704	/*
4705	 * Call ctlsettrap() to do the work.  Return
4706	 * an error if it can't assign the trap.
4707	 */
4708	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4709			(int)res_version))
4710		ctl_error(CERR_NORESOURCE);
4711	ctl_flushpkt(0);
4712}
4713
4714
4715/*
4716 * unset_trap - unset a trap in response to a control message
4717 */
4718static void
4719unset_trap(
4720	struct recvbuf *rbufp,
4721	int restrict_mask
4722	)
4723{
4724	int traptype;
4725
4726	/*
4727	 * We don't prevent anyone from removing his own trap unless the
4728	 * trap is configured. Note we also must be aware of the
4729	 * possibility that restriction flags were changed since this
4730	 * guy last set his trap. Set the trap type based on this.
4731	 */
4732	traptype = TRAP_TYPE_PRIO;
4733	if (restrict_mask & RES_LPTRAP)
4734		traptype = TRAP_TYPE_NONPRIO;
4735
4736	/*
4737	 * Call ctlclrtrap() to clear this out.
4738	 */
4739	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4740		ctl_error(CERR_BADASSOC);
4741	ctl_flushpkt(0);
4742}
4743
4744
4745/*
4746 * ctlsettrap - called to set a trap
4747 */
4748int
4749ctlsettrap(
4750	sockaddr_u *raddr,
4751	struct interface *linter,
4752	int traptype,
4753	int version
4754	)
4755{
4756	size_t n;
4757	struct ctl_trap *tp;
4758	struct ctl_trap *tptouse;
4759
4760	/*
4761	 * See if we can find this trap.  If so, we only need update
4762	 * the flags and the time.
4763	 */
4764	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4765		switch (traptype) {
4766
4767		case TRAP_TYPE_CONFIG:
4768			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4769			break;
4770
4771		case TRAP_TYPE_PRIO:
4772			if (tp->tr_flags & TRAP_CONFIGURED)
4773				return (1); /* don't change anything */
4774			tp->tr_flags = TRAP_INUSE;
4775			break;
4776
4777		case TRAP_TYPE_NONPRIO:
4778			if (tp->tr_flags & TRAP_CONFIGURED)
4779				return (1); /* don't change anything */
4780			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4781			break;
4782		}
4783		tp->tr_settime = current_time;
4784		tp->tr_resets++;
4785		return (1);
4786	}
4787
4788	/*
4789	 * First we heard of this guy.	Try to find a trap structure
4790	 * for him to use, clearing out lesser priority guys if we
4791	 * have to. Clear out anyone who's expired while we're at it.
4792	 */
4793	tptouse = NULL;
4794	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4795		tp = &ctl_traps[n];
4796		if ((TRAP_INUSE & tp->tr_flags) &&
4797		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4798		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4799			tp->tr_flags = 0;
4800			num_ctl_traps--;
4801		}
4802		if (!(TRAP_INUSE & tp->tr_flags)) {
4803			tptouse = tp;
4804		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4805			switch (traptype) {
4806
4807			case TRAP_TYPE_CONFIG:
4808				if (tptouse == NULL) {
4809					tptouse = tp;
4810					break;
4811				}
4812				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4813				    !(TRAP_NONPRIO & tp->tr_flags))
4814					break;
4815
4816				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4817				    && (TRAP_NONPRIO & tp->tr_flags)) {
4818					tptouse = tp;
4819					break;
4820				}
4821				if (tptouse->tr_origtime <
4822				    tp->tr_origtime)
4823					tptouse = tp;
4824				break;
4825
4826			case TRAP_TYPE_PRIO:
4827				if ( TRAP_NONPRIO & tp->tr_flags) {
4828					if (tptouse == NULL ||
4829					    ((TRAP_INUSE &
4830					      tptouse->tr_flags) &&
4831					     tptouse->tr_origtime <
4832					     tp->tr_origtime))
4833						tptouse = tp;
4834				}
4835				break;
4836
4837			case TRAP_TYPE_NONPRIO:
4838				break;
4839			}
4840		}
4841	}
4842
4843	/*
4844	 * If we don't have room for him return an error.
4845	 */
4846	if (tptouse == NULL)
4847		return (0);
4848
4849	/*
4850	 * Set up this structure for him.
4851	 */
4852	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4853	tptouse->tr_count = tptouse->tr_resets = 0;
4854	tptouse->tr_sequence = 1;
4855	tptouse->tr_addr = *raddr;
4856	tptouse->tr_localaddr = linter;
4857	tptouse->tr_version = (u_char) version;
4858	tptouse->tr_flags = TRAP_INUSE;
4859	if (traptype == TRAP_TYPE_CONFIG)
4860		tptouse->tr_flags |= TRAP_CONFIGURED;
4861	else if (traptype == TRAP_TYPE_NONPRIO)
4862		tptouse->tr_flags |= TRAP_NONPRIO;
4863	num_ctl_traps++;
4864	return (1);
4865}
4866
4867
4868/*
4869 * ctlclrtrap - called to clear a trap
4870 */
4871int
4872ctlclrtrap(
4873	sockaddr_u *raddr,
4874	struct interface *linter,
4875	int traptype
4876	)
4877{
4878	register struct ctl_trap *tp;
4879
4880	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4881		return (0);
4882
4883	if (tp->tr_flags & TRAP_CONFIGURED
4884	    && traptype != TRAP_TYPE_CONFIG)
4885		return (0);
4886
4887	tp->tr_flags = 0;
4888	num_ctl_traps--;
4889	return (1);
4890}
4891
4892
4893/*
4894 * ctlfindtrap - find a trap given the remote and local addresses
4895 */
4896static struct ctl_trap *
4897ctlfindtrap(
4898	sockaddr_u *raddr,
4899	struct interface *linter
4900	)
4901{
4902	size_t	n;
4903
4904	for (n = 0; n < COUNTOF(ctl_traps); n++)
4905		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4906		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4907		    && (linter == ctl_traps[n].tr_localaddr))
4908			return &ctl_traps[n];
4909
4910	return NULL;
4911}
4912
4913
4914/*
4915 * report_event - report an event to the trappers
4916 */
4917void
4918report_event(
4919	int	err,		/* error code */
4920	struct peer *peer,	/* peer structure pointer */
4921	const char *str		/* protostats string */
4922	)
4923{
4924	char	statstr[NTP_MAXSTRLEN];
4925	int	i;
4926	size_t	len;
4927
4928	/*
4929	 * Report the error to the protostats file, system log and
4930	 * trappers.
4931	 */
4932	if (peer == NULL) {
4933
4934		/*
4935		 * Discard a system report if the number of reports of
4936		 * the same type exceeds the maximum.
4937		 */
4938		if (ctl_sys_last_event != (u_char)err)
4939			ctl_sys_num_events= 0;
4940		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4941			return;
4942
4943		ctl_sys_last_event = (u_char)err;
4944		ctl_sys_num_events++;
4945		snprintf(statstr, sizeof(statstr),
4946		    "0.0.0.0 %04x %02x %s",
4947		    ctlsysstatus(), err, eventstr(err));
4948		if (str != NULL) {
4949			len = strlen(statstr);
4950			snprintf(statstr + len, sizeof(statstr) - len,
4951			    " %s", str);
4952		}
4953		NLOG(NLOG_SYSEVENT)
4954			msyslog(LOG_INFO, "%s", statstr);
4955	} else {
4956
4957		/*
4958		 * Discard a peer report if the number of reports of
4959		 * the same type exceeds the maximum for that peer.
4960		 */
4961		const char *	src;
4962		u_char		errlast;
4963
4964		errlast = (u_char)err & ~PEER_EVENT;
4965		if (peer->last_event == errlast)
4966			peer->num_events = 0;
4967		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4968			return;
4969
4970		peer->last_event = errlast;
4971		peer->num_events++;
4972		if (ISREFCLOCKADR(&peer->srcadr))
4973			src = refnumtoa(&peer->srcadr);
4974		else
4975			src = stoa(&peer->srcadr);
4976
4977		snprintf(statstr, sizeof(statstr),
4978		    "%s %04x %02x %s", src,
4979		    ctlpeerstatus(peer), err, eventstr(err));
4980		if (str != NULL) {
4981			len = strlen(statstr);
4982			snprintf(statstr + len, sizeof(statstr) - len,
4983			    " %s", str);
4984		}
4985		NLOG(NLOG_PEEREVENT)
4986			msyslog(LOG_INFO, "%s", statstr);
4987	}
4988	record_proto_stats(statstr);
4989#if DEBUG
4990	if (debug)
4991		printf("event at %lu %s\n", current_time, statstr);
4992#endif
4993
4994	/*
4995	 * If no trappers, return.
4996	 */
4997	if (num_ctl_traps <= 0)
4998		return;
4999
5000	/*
5001	 * Set up the outgoing packet variables
5002	 */
5003	res_opcode = CTL_OP_ASYNCMSG;
5004	res_offset = 0;
5005	res_async = TRUE;
5006	res_authenticate = FALSE;
5007	datapt = rpkt.u.data;
5008	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5009	if (!(err & PEER_EVENT)) {
5010		rpkt.associd = 0;
5011		rpkt.status = htons(ctlsysstatus());
5012
5013		/* Include the core system variables and the list. */
5014		for (i = 1; i <= CS_VARLIST; i++)
5015			ctl_putsys(i);
5016	} else {
5017		INSIST(peer != NULL);
5018		rpkt.associd = htons(peer->associd);
5019		rpkt.status = htons(ctlpeerstatus(peer));
5020
5021		/* Dump it all. Later, maybe less. */
5022		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5023			ctl_putpeer(i, peer);
5024#ifdef REFCLOCK
5025		/*
5026		 * for clock exception events: add clock variables to
5027		 * reflect info on exception
5028		 */
5029		if (err == PEVNT_CLOCK) {
5030			struct refclockstat cs;
5031			struct ctl_var *kv;
5032
5033			cs.kv_list = NULL;
5034			refclock_control(&peer->srcadr, NULL, &cs);
5035
5036			ctl_puthex("refclockstatus",
5037				   ctlclkstatus(&cs));
5038
5039			for (i = 1; i <= CC_MAXCODE; i++)
5040				ctl_putclock(i, &cs, FALSE);
5041			for (kv = cs.kv_list;
5042			     kv != NULL && !(EOV & kv->flags);
5043			     kv++)
5044				if (DEF & kv->flags)
5045					ctl_putdata(kv->text,
5046						    strlen(kv->text),
5047						    FALSE);
5048			free_varlist(cs.kv_list);
5049		}
5050#endif /* REFCLOCK */
5051	}
5052
5053	/*
5054	 * We're done, return.
5055	 */
5056	ctl_flushpkt(0);
5057}
5058
5059
5060/*
5061 * mprintf_event - printf-style varargs variant of report_event()
5062 */
5063int
5064mprintf_event(
5065	int		evcode,		/* event code */
5066	struct peer *	p,		/* may be NULL */
5067	const char *	fmt,		/* msnprintf format */
5068	...
5069	)
5070{
5071	va_list	ap;
5072	int	rc;
5073	char	msg[512];
5074
5075	va_start(ap, fmt);
5076	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5077	va_end(ap);
5078	report_event(evcode, p, msg);
5079
5080	return rc;
5081}
5082
5083
5084/*
5085 * ctl_clr_stats - clear stat counters
5086 */
5087void
5088ctl_clr_stats(void)
5089{
5090	ctltimereset = current_time;
5091	numctlreq = 0;
5092	numctlbadpkts = 0;
5093	numctlresponses = 0;
5094	numctlfrags = 0;
5095	numctlerrors = 0;
5096	numctlfrags = 0;
5097	numctltooshort = 0;
5098	numctlinputresp = 0;
5099	numctlinputfrag = 0;
5100	numctlinputerr = 0;
5101	numctlbadoffset = 0;
5102	numctlbadversion = 0;
5103	numctldatatooshort = 0;
5104	numctlbadop = 0;
5105	numasyncmsgs = 0;
5106}
5107
5108static u_short
5109count_var(
5110	const struct ctl_var *k
5111	)
5112{
5113	u_int c;
5114
5115	if (NULL == k)
5116		return 0;
5117
5118	c = 0;
5119	while (!(EOV & (k++)->flags))
5120		c++;
5121
5122	ENSURE(c <= USHRT_MAX);
5123	return (u_short)c;
5124}
5125
5126
5127char *
5128add_var(
5129	struct ctl_var **kv,
5130	u_long size,
5131	u_short def
5132	)
5133{
5134	u_short		c;
5135	struct ctl_var *k;
5136	char *		buf;
5137
5138	c = count_var(*kv);
5139	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5140	k = *kv;
5141	buf = emalloc(size);
5142	k[c].code  = c;
5143	k[c].text  = buf;
5144	k[c].flags = def;
5145	k[c + 1].code  = 0;
5146	k[c + 1].text  = NULL;
5147	k[c + 1].flags = EOV;
5148
5149	return buf;
5150}
5151
5152
5153void
5154set_var(
5155	struct ctl_var **kv,
5156	const char *data,
5157	u_long size,
5158	u_short def
5159	)
5160{
5161	struct ctl_var *k;
5162	const char *s;
5163	const char *t;
5164	char *td;
5165
5166	if (NULL == data || !size)
5167		return;
5168
5169	k = *kv;
5170	if (k != NULL) {
5171		while (!(EOV & k->flags)) {
5172			if (NULL == k->text)	{
5173				td = emalloc(size);
5174				memcpy(td, data, size);
5175				k->text = td;
5176				k->flags = def;
5177				return;
5178			} else {
5179				s = data;
5180				t = k->text;
5181				while (*t != '=' && *s == *t) {
5182					s++;
5183					t++;
5184				}
5185				if (*s == *t && ((*t == '=') || !*t)) {
5186					td = erealloc((void *)(intptr_t)k->text, size);
5187					memcpy(td, data, size);
5188					k->text = td;
5189					k->flags = def;
5190					return;
5191				}
5192			}
5193			k++;
5194		}
5195	}
5196	td = add_var(kv, size, def);
5197	memcpy(td, data, size);
5198}
5199
5200
5201void
5202set_sys_var(
5203	const char *data,
5204	u_long size,
5205	u_short def
5206	)
5207{
5208	set_var(&ext_sys_var, data, size, def);
5209}
5210
5211
5212/*
5213 * get_ext_sys_var() retrieves the value of a user-defined variable or
5214 * NULL if the variable has not been setvar'd.
5215 */
5216const char *
5217get_ext_sys_var(const char *tag)
5218{
5219	struct ctl_var *	v;
5220	size_t			c;
5221	const char *		val;
5222
5223	val = NULL;
5224	c = strlen(tag);
5225	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5226		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5227			if ('=' == v->text[c]) {
5228				val = v->text + c + 1;
5229				break;
5230			} else if ('\0' == v->text[c]) {
5231				val = "";
5232				break;
5233			}
5234		}
5235	}
5236
5237	return val;
5238}
5239
5240
5241void
5242free_varlist(
5243	struct ctl_var *kv
5244	)
5245{
5246	struct ctl_var *k;
5247	if (kv) {
5248		for (k = kv; !(k->flags & EOV); k++)
5249			free((void *)(intptr_t)k->text);
5250		free((void *)kv);
5251	}
5252}
5253