audit_bsm.c revision 243727
1/*
2 * Copyright (c) 1999-2009 Apple Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1.  Redistributions of source code must retain the above copyright
9 *     notice, this list of conditions and the following disclaimer.
10 * 2.  Redistributions in binary form must reproduce the above copyright
11 *     notice, this list of conditions and the following disclaimer in the
12 *     documentation and/or other materials provided with the distribution.
13 * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
14 *     its contributors may be used to endorse or promote products derived
15 *     from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
25 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
26 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/security/audit/audit_bsm.c 243727 2012-11-30 23:21:55Z pjd $");
32
33#include <sys/param.h>
34#include <sys/vnode.h>
35#include <sys/ipc.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mutex.h>
39#include <sys/socket.h>
40#include <sys/extattr.h>
41#include <sys/fcntl.h>
42#include <sys/user.h>
43#include <sys/systm.h>
44
45#include <bsm/audit.h>
46#include <bsm/audit_internal.h>
47#include <bsm/audit_record.h>
48#include <bsm/audit_kevents.h>
49
50#include <security/audit/audit.h>
51#include <security/audit/audit_private.h>
52
53#include <netinet/in_systm.h>
54#include <netinet/in.h>
55#include <netinet/ip.h>
56
57MALLOC_DEFINE(M_AUDITBSM, "audit_bsm", "Audit BSM data");
58
59static void	audit_sys_auditon(struct audit_record *ar,
60		    struct au_record *rec);
61
62/*
63 * Initialize the BSM auditing subsystem.
64 */
65void
66kau_init(void)
67{
68
69	au_evclassmap_init();
70}
71
72/*
73 * This call reserves memory for the audit record.  Memory must be guaranteed
74 * before any auditable event can be generated.  The au_record structure
75 * maintains a reference to the memory allocated above and also the list of
76 * tokens associated with this record.
77 */
78static struct au_record *
79kau_open(void)
80{
81	struct au_record *rec;
82
83	rec = malloc(sizeof(*rec), M_AUDITBSM, M_WAITOK);
84	rec->data = NULL;
85	TAILQ_INIT(&rec->token_q);
86	rec->len = 0;
87	rec->used = 1;
88
89	return (rec);
90}
91
92/*
93 * Store the token with the record descriptor.
94 */
95static void
96kau_write(struct au_record *rec, struct au_token *tok)
97{
98
99	KASSERT(tok != NULL, ("kau_write: tok == NULL"));
100
101	TAILQ_INSERT_TAIL(&rec->token_q, tok, tokens);
102	rec->len += tok->len;
103}
104
105/*
106 * Close out the audit record by adding the header token, identifying any
107 * missing tokens.  Write out the tokens to the record memory.
108 */
109static void
110kau_close(struct au_record *rec, struct timespec *ctime, short event)
111{
112	u_char *dptr;
113	size_t tot_rec_size;
114	token_t *cur, *hdr, *trail;
115	struct timeval tm;
116	size_t hdrsize;
117	struct auditinfo_addr ak;
118	struct in6_addr *ap;
119
120	audit_get_kinfo(&ak);
121	hdrsize = 0;
122	switch (ak.ai_termid.at_type) {
123	case AU_IPv4:
124		hdrsize = (ak.ai_termid.at_addr[0] == INADDR_ANY) ?
125		    AUDIT_HEADER_SIZE : AUDIT_HEADER_EX_SIZE(&ak);
126		break;
127	case AU_IPv6:
128		ap = (struct in6_addr *)&ak.ai_termid.at_addr[0];
129		hdrsize = (IN6_IS_ADDR_UNSPECIFIED(ap)) ? AUDIT_HEADER_SIZE :
130		    AUDIT_HEADER_EX_SIZE(&ak);
131		break;
132	default:
133		panic("kau_close: invalid address family");
134	}
135	tot_rec_size = rec->len + hdrsize + AUDIT_TRAILER_SIZE;
136	rec->data = malloc(tot_rec_size, M_AUDITBSM, M_WAITOK | M_ZERO);
137
138	tm.tv_usec = ctime->tv_nsec / 1000;
139	tm.tv_sec = ctime->tv_sec;
140	if (hdrsize != AUDIT_HEADER_SIZE)
141		hdr = au_to_header32_ex_tm(tot_rec_size, event, 0, tm, &ak);
142	else
143		hdr = au_to_header32_tm(tot_rec_size, event, 0, tm);
144	TAILQ_INSERT_HEAD(&rec->token_q, hdr, tokens);
145
146	trail = au_to_trailer(tot_rec_size);
147	TAILQ_INSERT_TAIL(&rec->token_q, trail, tokens);
148
149	rec->len = tot_rec_size;
150	dptr = rec->data;
151	TAILQ_FOREACH(cur, &rec->token_q, tokens) {
152		memcpy(dptr, cur->t_data, cur->len);
153		dptr += cur->len;
154	}
155}
156
157/*
158 * Free a BSM audit record by releasing all the tokens and clearing the audit
159 * record information.
160 */
161void
162kau_free(struct au_record *rec)
163{
164	struct au_token *tok;
165
166	/* Free the token list. */
167	while ((tok = TAILQ_FIRST(&rec->token_q))) {
168		TAILQ_REMOVE(&rec->token_q, tok, tokens);
169		free(tok->t_data, M_AUDITBSM);
170		free(tok, M_AUDITBSM);
171	}
172
173	rec->used = 0;
174	rec->len = 0;
175	free(rec->data, M_AUDITBSM);
176	free(rec, M_AUDITBSM);
177}
178
179/*
180 * XXX: May want turn some (or all) of these macros into functions in order
181 * to reduce the generated code size.
182 *
183 * XXXAUDIT: These macros assume that 'kar', 'ar', 'rec', and 'tok' in the
184 * caller are OK with this.
185 */
186#define	ATFD1_TOKENS(argnum) do {					\
187	if (ARG_IS_VALID(kar, ARG_ATFD1)) {				\
188		tok = au_to_arg32(argnum, "at fd 1", ar->ar_arg_atfd1);	\
189		kau_write(rec, tok);					\
190	}								\
191} while (0)
192
193#define	ATFD2_TOKENS(argnum) do {					\
194	if (ARG_IS_VALID(kar, ARG_ATFD2)) {				\
195		tok = au_to_arg32(argnum, "at fd 2", ar->ar_arg_atfd2);	\
196		kau_write(rec, tok);					\
197	}								\
198} while (0)
199
200#define	UPATH1_TOKENS do {						\
201	if (ARG_IS_VALID(kar, ARG_UPATH1)) {				\
202		tok = au_to_path(ar->ar_arg_upath1);			\
203		kau_write(rec, tok);					\
204	}								\
205} while (0)
206
207#define	UPATH2_TOKENS do {						\
208	if (ARG_IS_VALID(kar, ARG_UPATH2)) {				\
209		tok = au_to_path(ar->ar_arg_upath2);			\
210		kau_write(rec, tok);					\
211	}								\
212} while (0)
213
214#define	VNODE1_TOKENS do {						\
215	if (ARG_IS_VALID(kar, ARG_ATFD)) {				\
216		tok = au_to_arg32(1, "at fd", ar->ar_arg_atfd);		\
217		kau_write(rec, tok);					\
218	}								\
219	if (ARG_IS_VALID(kar, ARG_VNODE1)) {				\
220		tok = au_to_attr32(&ar->ar_arg_vnode1);			\
221		kau_write(rec, tok);					\
222	}								\
223} while (0)
224
225#define	UPATH1_VNODE1_TOKENS do {					\
226	if (ARG_IS_VALID(kar, ARG_UPATH1)) {				\
227		UPATH1_TOKENS;						\
228	}								\
229	if (ARG_IS_VALID(kar, ARG_VNODE1)) {				\
230		tok = au_to_attr32(&ar->ar_arg_vnode1);			\
231		kau_write(rec, tok);					\
232	}								\
233} while (0)
234
235#define	VNODE2_TOKENS do {						\
236	if (ARG_IS_VALID(kar, ARG_VNODE2)) {				\
237		tok = au_to_attr32(&ar->ar_arg_vnode2);			\
238		kau_write(rec, tok);					\
239	}								\
240} while (0)
241
242#define	FD_VNODE1_TOKENS do {						\
243	if (ARG_IS_VALID(kar, ARG_VNODE1)) {				\
244		if (ARG_IS_VALID(kar, ARG_FD)) {			\
245			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);	\
246			kau_write(rec, tok);				\
247		}							\
248		tok = au_to_attr32(&ar->ar_arg_vnode1);			\
249		kau_write(rec, tok);					\
250	} else {							\
251		if (ARG_IS_VALID(kar, ARG_FD)) {			\
252			tok = au_to_arg32(1, "non-file: fd",		\
253			    ar->ar_arg_fd);				\
254			kau_write(rec, tok);				\
255		}							\
256	}								\
257} while (0)
258
259#define	PROCESS_PID_TOKENS(argn) do {					\
260	if ((ar->ar_arg_pid > 0) /* Reference a single process */	\
261	    && (ARG_IS_VALID(kar, ARG_PROCESS))) {			\
262		tok = au_to_process32_ex(ar->ar_arg_auid,		\
263		    ar->ar_arg_euid, ar->ar_arg_egid,			\
264		    ar->ar_arg_ruid, ar->ar_arg_rgid,			\
265		    ar->ar_arg_pid, ar->ar_arg_asid,			\
266		    &ar->ar_arg_termid_addr);				\
267		kau_write(rec, tok);					\
268	} else if (ARG_IS_VALID(kar, ARG_PID)) {			\
269		tok = au_to_arg32(argn, "process", ar->ar_arg_pid);	\
270		kau_write(rec, tok);					\
271	}								\
272} while (0)
273
274#define	EXTATTR_TOKENS(namespace_argnum) do {				\
275	if (ARG_IS_VALID(kar, ARG_VALUE)) {				\
276		switch (ar->ar_arg_value) {				\
277		case EXTATTR_NAMESPACE_USER:				\
278			tok = au_to_text(EXTATTR_NAMESPACE_USER_STRING);\
279			break;						\
280		case EXTATTR_NAMESPACE_SYSTEM:				\
281			tok = au_to_text(EXTATTR_NAMESPACE_SYSTEM_STRING);\
282			break;						\
283		default:						\
284			tok = au_to_arg32((namespace_argnum),		\
285			    "attrnamespace", ar->ar_arg_value);		\
286			break;						\
287		}							\
288		kau_write(rec, tok);					\
289	}								\
290	/* attrname is in the text field */				\
291	if (ARG_IS_VALID(kar, ARG_TEXT)) {				\
292		tok = au_to_text(ar->ar_arg_text);			\
293		kau_write(rec, tok);					\
294	}								\
295} while (0)
296
297/*
298 * Not all pointer arguments to system calls are of interest, but in some
299 * cases they reflect delegation of rights, such as mmap(2) followed by
300 * minherit(2) before execve(2), so do the best we can.
301 */
302#define	ADDR_TOKEN(argnum, argname) do {				\
303	if (ARG_IS_VALID(kar, ARG_ADDR)) {				\
304		if (sizeof(void *) == sizeof(uint32_t))			\
305			tok = au_to_arg32((argnum), (argname),		\
306			    (uint32_t)(uintptr_t)ar->ar_arg_addr);	\
307		else							\
308			tok = au_to_arg64((argnum), (argname),		\
309			    (uint64_t)(uintptr_t)ar->ar_arg_addr);	\
310		kau_write(rec, tok);					\
311	}								\
312} while (0)
313
314
315/*
316 * Implement auditing for the auditon() system call. The audit tokens that
317 * are generated depend on the command that was sent into the auditon()
318 * system call.
319 */
320static void
321audit_sys_auditon(struct audit_record *ar, struct au_record *rec)
322{
323	struct au_token *tok;
324
325	tok = au_to_arg32(3, "length", ar->ar_arg_len);
326	kau_write(rec, tok);
327	switch (ar->ar_arg_cmd) {
328	case A_OLDSETPOLICY:
329		if ((size_t)ar->ar_arg_len == sizeof(int64_t)) {
330			tok = au_to_arg64(2, "policy",
331			    ar->ar_arg_auditon.au_policy64);
332			kau_write(rec, tok);
333			break;
334		}
335		/* FALLTHROUGH */
336
337	case A_SETPOLICY:
338		tok = au_to_arg32(2, "policy", ar->ar_arg_auditon.au_policy);
339		kau_write(rec, tok);
340		break;
341
342	case A_SETKMASK:
343		tok = au_to_arg32(2, "setkmask:as_success",
344		    ar->ar_arg_auditon.au_mask.am_success);
345		kau_write(rec, tok);
346		tok = au_to_arg32(2, "setkmask:as_failure",
347		    ar->ar_arg_auditon.au_mask.am_failure);
348		kau_write(rec, tok);
349		break;
350
351	case A_OLDSETQCTRL:
352		if ((size_t)ar->ar_arg_len == sizeof(au_qctrl64_t)) {
353			tok = au_to_arg64(2, "setqctrl:aq_hiwater",
354			    ar->ar_arg_auditon.au_qctrl64.aq64_hiwater);
355			kau_write(rec, tok);
356			tok = au_to_arg64(2, "setqctrl:aq_lowater",
357			    ar->ar_arg_auditon.au_qctrl64.aq64_lowater);
358			kau_write(rec, tok);
359			tok = au_to_arg64(2, "setqctrl:aq_bufsz",
360			    ar->ar_arg_auditon.au_qctrl64.aq64_bufsz);
361			kau_write(rec, tok);
362			tok = au_to_arg64(2, "setqctrl:aq_delay",
363			    ar->ar_arg_auditon.au_qctrl64.aq64_delay);
364			kau_write(rec, tok);
365			tok = au_to_arg64(2, "setqctrl:aq_minfree",
366			    ar->ar_arg_auditon.au_qctrl64.aq64_minfree);
367			kau_write(rec, tok);
368			break;
369		}
370		/* FALLTHROUGH */
371
372	case A_SETQCTRL:
373		tok = au_to_arg32(2, "setqctrl:aq_hiwater",
374		    ar->ar_arg_auditon.au_qctrl.aq_hiwater);
375		kau_write(rec, tok);
376		tok = au_to_arg32(2, "setqctrl:aq_lowater",
377		    ar->ar_arg_auditon.au_qctrl.aq_lowater);
378		kau_write(rec, tok);
379		tok = au_to_arg32(2, "setqctrl:aq_bufsz",
380		    ar->ar_arg_auditon.au_qctrl.aq_bufsz);
381		kau_write(rec, tok);
382		tok = au_to_arg32(2, "setqctrl:aq_delay",
383		    ar->ar_arg_auditon.au_qctrl.aq_delay);
384		kau_write(rec, tok);
385		tok = au_to_arg32(2, "setqctrl:aq_minfree",
386		    ar->ar_arg_auditon.au_qctrl.aq_minfree);
387		kau_write(rec, tok);
388		break;
389
390	case A_SETUMASK:
391		tok = au_to_arg32(2, "setumask:as_success",
392		    ar->ar_arg_auditon.au_auinfo.ai_mask.am_success);
393		kau_write(rec, tok);
394		tok = au_to_arg32(2, "setumask:as_failure",
395		    ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure);
396		kau_write(rec, tok);
397		break;
398
399	case A_SETSMASK:
400		tok = au_to_arg32(2, "setsmask:as_success",
401		    ar->ar_arg_auditon.au_auinfo.ai_mask.am_success);
402		kau_write(rec, tok);
403		tok = au_to_arg32(2, "setsmask:as_failure",
404		    ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure);
405		kau_write(rec, tok);
406		break;
407
408	case A_OLDSETCOND:
409		if ((size_t)ar->ar_arg_len == sizeof(int64_t)) {
410			tok = au_to_arg64(2, "setcond",
411			    ar->ar_arg_auditon.au_cond64);
412			kau_write(rec, tok);
413			break;
414		}
415		/* FALLTHROUGH */
416
417	case A_SETCOND:
418		tok = au_to_arg32(2, "setcond", ar->ar_arg_auditon.au_cond);
419		kau_write(rec, tok);
420		break;
421
422	case A_SETCLASS:
423		kau_write(rec, tok);
424		tok = au_to_arg32(2, "setclass:ec_event",
425		    ar->ar_arg_auditon.au_evclass.ec_number);
426		kau_write(rec, tok);
427		tok = au_to_arg32(2, "setclass:ec_class",
428		    ar->ar_arg_auditon.au_evclass.ec_class);
429		kau_write(rec, tok);
430		break;
431
432	case A_SETPMASK:
433		tok = au_to_arg32(2, "setpmask:as_success",
434		    ar->ar_arg_auditon.au_aupinfo.ap_mask.am_success);
435		kau_write(rec, tok);
436		tok = au_to_arg32(2, "setpmask:as_failure",
437		    ar->ar_arg_auditon.au_aupinfo.ap_mask.am_failure);
438		kau_write(rec, tok);
439		break;
440
441	case A_SETFSIZE:
442		tok = au_to_arg32(2, "setfsize:filesize",
443		    ar->ar_arg_auditon.au_fstat.af_filesz);
444		kau_write(rec, tok);
445		break;
446
447	default:
448		break;
449	}
450}
451
452/*
453 * Convert an internal kernel audit record to a BSM record and return a
454 * success/failure indicator. The BSM record is passed as an out parameter to
455 * this function.
456 *
457 * Return conditions:
458 *   BSM_SUCCESS: The BSM record is valid
459 *   BSM_FAILURE: Failure; the BSM record is NULL.
460 *   BSM_NOAUDIT: The event is not auditable for BSM; the BSM record is NULL.
461 */
462int
463kaudit_to_bsm(struct kaudit_record *kar, struct au_record **pau)
464{
465	struct au_token *tok, *subj_tok;
466	struct au_record *rec;
467	au_tid_t tid;
468	struct audit_record *ar;
469	int ctr;
470
471	KASSERT(kar != NULL, ("kaudit_to_bsm: kar == NULL"));
472
473	*pau = NULL;
474	ar = &kar->k_ar;
475	rec = kau_open();
476
477	/*
478	 * Create the subject token.
479	 */
480	switch (ar->ar_subj_term_addr.at_type) {
481	case AU_IPv4:
482		tid.port = ar->ar_subj_term_addr.at_port;
483		tid.machine = ar->ar_subj_term_addr.at_addr[0];
484		subj_tok = au_to_subject32(ar->ar_subj_auid,  /* audit ID */
485		    ar->ar_subj_cred.cr_uid, /* eff uid */
486		    ar->ar_subj_egid,	/* eff group id */
487		    ar->ar_subj_ruid,	/* real uid */
488		    ar->ar_subj_rgid,	/* real group id */
489		    ar->ar_subj_pid,	/* process id */
490		    ar->ar_subj_asid,	/* session ID */
491		    &tid);
492		break;
493	case AU_IPv6:
494		subj_tok = au_to_subject32_ex(ar->ar_subj_auid,
495		    ar->ar_subj_cred.cr_uid,
496		    ar->ar_subj_egid,
497		    ar->ar_subj_ruid,
498		    ar->ar_subj_rgid,
499		    ar->ar_subj_pid,
500		    ar->ar_subj_asid,
501		    &ar->ar_subj_term_addr);
502		break;
503	default:
504		bzero(&tid, sizeof(tid));
505		subj_tok = au_to_subject32(ar->ar_subj_auid,
506		    ar->ar_subj_cred.cr_uid,
507		    ar->ar_subj_egid,
508		    ar->ar_subj_ruid,
509		    ar->ar_subj_rgid,
510		    ar->ar_subj_pid,
511		    ar->ar_subj_asid,
512		    &tid);
513	}
514
515	/*
516	 * The logic inside each case fills in the tokens required for the
517	 * event, except for the header, trailer, and return tokens.  The
518	 * header and trailer tokens are added by the kau_close() function.
519	 * The return token is added outside of the switch statement.
520	 */
521	switch(ar->ar_event) {
522	case AUE_ACCEPT:
523	case AUE_BIND:
524	case AUE_LISTEN:
525	case AUE_CONNECT:
526	case AUE_RECV:
527	case AUE_RECVFROM:
528	case AUE_RECVMSG:
529	case AUE_SEND:
530	case AUE_SENDFILE:
531	case AUE_SENDMSG:
532	case AUE_SENDTO:
533		/*
534		 * Socket-related events.
535		 */
536		if (ARG_IS_VALID(kar, ARG_FD)) {
537			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
538			kau_write(rec, tok);
539		}
540		if (ARG_IS_VALID(kar, ARG_SADDRINET)) {
541			tok = au_to_sock_inet((struct sockaddr_in *)
542			    &ar->ar_arg_sockaddr);
543			kau_write(rec, tok);
544		}
545		if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) {
546			tok = au_to_sock_unix((struct sockaddr_un *)
547			    &ar->ar_arg_sockaddr);
548			kau_write(rec, tok);
549			UPATH1_TOKENS;
550		}
551		/* XXX Need to handle ARG_SADDRINET6 */
552		break;
553
554	case AUE_SOCKET:
555	case AUE_SOCKETPAIR:
556		if (ARG_IS_VALID(kar, ARG_SOCKINFO)) {
557			tok = au_to_arg32(1, "domain",
558			    ar->ar_arg_sockinfo.so_domain);
559			kau_write(rec, tok);
560			tok = au_to_arg32(2, "type",
561			    ar->ar_arg_sockinfo.so_type);
562			kau_write(rec, tok);
563			tok = au_to_arg32(3, "protocol",
564			    ar->ar_arg_sockinfo.so_protocol);
565			kau_write(rec, tok);
566		}
567		break;
568
569	case AUE_SETSOCKOPT:
570	case AUE_SHUTDOWN:
571		if (ARG_IS_VALID(kar, ARG_FD)) {
572			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
573			kau_write(rec, tok);
574		}
575		break;
576
577	case AUE_ACCT:
578		if (ARG_IS_VALID(kar, ARG_UPATH1)) {
579			UPATH1_VNODE1_TOKENS;
580		} else {
581			tok = au_to_arg32(1, "accounting off", 0);
582			kau_write(rec, tok);
583		}
584		break;
585
586	case AUE_SETAUID:
587		if (ARG_IS_VALID(kar, ARG_AUID)) {
588			tok = au_to_arg32(2, "setauid", ar->ar_arg_auid);
589			kau_write(rec, tok);
590		}
591		break;
592
593	case AUE_SETAUDIT:
594		if (ARG_IS_VALID(kar, ARG_AUID) &&
595		    ARG_IS_VALID(kar, ARG_ASID) &&
596		    ARG_IS_VALID(kar, ARG_AMASK) &&
597		    ARG_IS_VALID(kar, ARG_TERMID)) {
598			tok = au_to_arg32(1, "setaudit:auid",
599			    ar->ar_arg_auid);
600			kau_write(rec, tok);
601			tok = au_to_arg32(1, "setaudit:port",
602			    ar->ar_arg_termid.port);
603			kau_write(rec, tok);
604			tok = au_to_arg32(1, "setaudit:machine",
605			    ar->ar_arg_termid.machine);
606			kau_write(rec, tok);
607			tok = au_to_arg32(1, "setaudit:as_success",
608			    ar->ar_arg_amask.am_success);
609			kau_write(rec, tok);
610			tok = au_to_arg32(1, "setaudit:as_failure",
611			    ar->ar_arg_amask.am_failure);
612			kau_write(rec, tok);
613			tok = au_to_arg32(1, "setaudit:asid",
614			    ar->ar_arg_asid);
615			kau_write(rec, tok);
616		}
617		break;
618
619	case AUE_SETAUDIT_ADDR:
620		if (ARG_IS_VALID(kar, ARG_AUID) &&
621		    ARG_IS_VALID(kar, ARG_ASID) &&
622		    ARG_IS_VALID(kar, ARG_AMASK) &&
623		    ARG_IS_VALID(kar, ARG_TERMID_ADDR)) {
624			tok = au_to_arg32(1, "setaudit_addr:auid",
625			    ar->ar_arg_auid);
626			kau_write(rec, tok);
627			tok = au_to_arg32(1, "setaudit_addr:as_success",
628			    ar->ar_arg_amask.am_success);
629			kau_write(rec, tok);
630			tok = au_to_arg32(1, "setaudit_addr:as_failure",
631			    ar->ar_arg_amask.am_failure);
632			kau_write(rec, tok);
633			tok = au_to_arg32(1, "setaudit_addr:asid",
634			    ar->ar_arg_asid);
635			kau_write(rec, tok);
636			tok = au_to_arg32(1, "setaudit_addr:type",
637			    ar->ar_arg_termid_addr.at_type);
638			kau_write(rec, tok);
639			tok = au_to_arg32(1, "setaudit_addr:port",
640			    ar->ar_arg_termid_addr.at_port);
641			kau_write(rec, tok);
642			if (ar->ar_arg_termid_addr.at_type == AU_IPv6)
643				tok = au_to_in_addr_ex((struct in6_addr *)
644				    &ar->ar_arg_termid_addr.at_addr[0]);
645			if (ar->ar_arg_termid_addr.at_type == AU_IPv4)
646				tok = au_to_in_addr((struct in_addr *)
647				    &ar->ar_arg_termid_addr.at_addr[0]);
648			kau_write(rec, tok);
649		}
650		break;
651
652	case AUE_AUDITON:
653		/*
654		 * For AUDITON commands without own event, audit the cmd.
655		 */
656		if (ARG_IS_VALID(kar, ARG_CMD)) {
657			tok = au_to_arg32(1, "cmd", ar->ar_arg_cmd);
658			kau_write(rec, tok);
659		}
660		/* FALLTHROUGH */
661
662	case AUE_AUDITON_GETCAR:
663	case AUE_AUDITON_GETCLASS:
664	case AUE_AUDITON_GETCOND:
665	case AUE_AUDITON_GETCWD:
666	case AUE_AUDITON_GETKMASK:
667	case AUE_AUDITON_GETSTAT:
668	case AUE_AUDITON_GPOLICY:
669	case AUE_AUDITON_GQCTRL:
670	case AUE_AUDITON_SETCLASS:
671	case AUE_AUDITON_SETCOND:
672	case AUE_AUDITON_SETKMASK:
673	case AUE_AUDITON_SETSMASK:
674	case AUE_AUDITON_SETSTAT:
675	case AUE_AUDITON_SETUMASK:
676	case AUE_AUDITON_SPOLICY:
677	case AUE_AUDITON_SQCTRL:
678		if (ARG_IS_VALID(kar, ARG_AUDITON))
679			audit_sys_auditon(ar, rec);
680		break;
681
682	case AUE_AUDITCTL:
683		UPATH1_VNODE1_TOKENS;
684		break;
685
686	case AUE_EXIT:
687		if (ARG_IS_VALID(kar, ARG_EXIT)) {
688			tok = au_to_exit(ar->ar_arg_exitretval,
689			    ar->ar_arg_exitstatus);
690			kau_write(rec, tok);
691		}
692		break;
693
694	case AUE_ADJTIME:
695	case AUE_CLOCK_SETTIME:
696	case AUE_AUDIT:
697	case AUE_DUP2:
698	case AUE_GETAUDIT:
699	case AUE_GETAUDIT_ADDR:
700	case AUE_GETAUID:
701	case AUE_GETCWD:
702	case AUE_GETFSSTAT:
703	case AUE_GETRESUID:
704	case AUE_GETRESGID:
705	case AUE_KQUEUE:
706	case AUE_MODLOAD:
707	case AUE_MODUNLOAD:
708	case AUE_MSGSYS:
709	case AUE_NTP_ADJTIME:
710	case AUE_PIPE:
711	case AUE_POSIX_OPENPT:
712	case AUE_PROFILE:
713	case AUE_RTPRIO:
714	case AUE_SEMSYS:
715	case AUE_SHMSYS:
716	case AUE_SETPGRP:
717	case AUE_SETRLIMIT:
718	case AUE_SETSID:
719	case AUE_SETTIMEOFDAY:
720	case AUE_SYSARCH:
721
722		/*
723		 * Header, subject, and return tokens added at end.
724		 */
725		break;
726
727	case AUE_CHDIR:
728	case AUE_CHROOT:
729	case AUE_FSTATAT:
730	case AUE_FUTIMESAT:
731	case AUE_GETATTRLIST:
732	case AUE_JAIL:
733	case AUE_LUTIMES:
734	case AUE_NFS_GETFH:
735	case AUE_LSTAT:
736	case AUE_LPATHCONF:
737	case AUE_PATHCONF:
738	case AUE_READLINK:
739	case AUE_READLINKAT:
740	case AUE_REVOKE:
741	case AUE_RMDIR:
742	case AUE_SEARCHFS:
743	case AUE_SETATTRLIST:
744	case AUE_STAT:
745	case AUE_STATFS:
746	case AUE_SWAPON:
747	case AUE_SWAPOFF:
748	case AUE_TRUNCATE:
749	case AUE_UNDELETE:
750	case AUE_UNLINK:
751	case AUE_UNLINKAT:
752	case AUE_UTIMES:
753		ATFD1_TOKENS(1);
754		UPATH1_VNODE1_TOKENS;
755		break;
756
757	case AUE_ACCESS:
758	case AUE_EACCESS:
759	case AUE_FACCESSAT:
760		ATFD1_TOKENS(1);
761		UPATH1_VNODE1_TOKENS;
762		if (ARG_IS_VALID(kar, ARG_VALUE)) {
763			tok = au_to_arg32(2, "mode", ar->ar_arg_value);
764			kau_write(rec, tok);
765		}
766		break;
767
768	case AUE_FHSTATFS:
769	case AUE_FHOPEN:
770	case AUE_FHSTAT:
771		/* XXXRW: Need to audit vnode argument. */
772		break;
773
774	case AUE_CHFLAGS:
775	case AUE_LCHFLAGS:
776		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
777			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
778			kau_write(rec, tok);
779		}
780		UPATH1_VNODE1_TOKENS;
781		break;
782
783	case AUE_CHMOD:
784	case AUE_LCHMOD:
785		if (ARG_IS_VALID(kar, ARG_MODE)) {
786			tok = au_to_arg32(2, "new file mode",
787			    ar->ar_arg_mode);
788			kau_write(rec, tok);
789		}
790		UPATH1_VNODE1_TOKENS;
791		break;
792
793	case AUE_FCHMODAT:
794		ATFD1_TOKENS(1);
795		if (ARG_IS_VALID(kar, ARG_MODE)) {
796			tok = au_to_arg32(3, "new file mode",
797			    ar->ar_arg_mode);
798			kau_write(rec, tok);
799		}
800		UPATH1_VNODE1_TOKENS;
801		break;
802
803	case AUE_CHOWN:
804	case AUE_LCHOWN:
805		if (ARG_IS_VALID(kar, ARG_UID)) {
806			tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid);
807			kau_write(rec, tok);
808		}
809		if (ARG_IS_VALID(kar, ARG_GID)) {
810			tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid);
811			kau_write(rec, tok);
812		}
813		UPATH1_VNODE1_TOKENS;
814		break;
815
816	case AUE_FCHOWNAT:
817		ATFD1_TOKENS(1);
818		if (ARG_IS_VALID(kar, ARG_UID)) {
819			tok = au_to_arg32(3, "new file uid", ar->ar_arg_uid);
820			kau_write(rec, tok);
821		}
822		if (ARG_IS_VALID(kar, ARG_GID)) {
823			tok = au_to_arg32(4, "new file gid", ar->ar_arg_gid);
824			kau_write(rec, tok);
825		}
826		UPATH1_VNODE1_TOKENS;
827		break;
828
829	case AUE_EXCHANGEDATA:
830		UPATH1_VNODE1_TOKENS;
831		UPATH2_TOKENS;
832		break;
833
834	case AUE_CLOSE:
835		if (ARG_IS_VALID(kar, ARG_FD)) {
836			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
837			kau_write(rec, tok);
838		}
839		UPATH1_VNODE1_TOKENS;
840		break;
841
842	case AUE_CLOSEFROM:
843		if (ARG_IS_VALID(kar, ARG_FD)) {
844			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
845			kau_write(rec, tok);
846		}
847		break;
848
849	case AUE_CORE:
850		if (ARG_IS_VALID(kar, ARG_SIGNUM)) {
851			tok = au_to_arg32(1, "signal", ar->ar_arg_signum);
852			kau_write(rec, tok);
853		}
854		UPATH1_VNODE1_TOKENS;
855		break;
856
857	case AUE_EXTATTRCTL:
858		UPATH1_VNODE1_TOKENS;
859		if (ARG_IS_VALID(kar, ARG_CMD)) {
860			tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd);
861			kau_write(rec, tok);
862		}
863		/* extattrctl(2) filename parameter is in upath2/vnode2 */
864		UPATH2_TOKENS;
865		VNODE2_TOKENS;
866		EXTATTR_TOKENS(4);
867		break;
868
869	case AUE_EXTATTR_GET_FILE:
870	case AUE_EXTATTR_SET_FILE:
871	case AUE_EXTATTR_LIST_FILE:
872	case AUE_EXTATTR_DELETE_FILE:
873	case AUE_EXTATTR_GET_LINK:
874	case AUE_EXTATTR_SET_LINK:
875	case AUE_EXTATTR_LIST_LINK:
876	case AUE_EXTATTR_DELETE_LINK:
877		UPATH1_VNODE1_TOKENS;
878		EXTATTR_TOKENS(2);
879		break;
880
881	case AUE_EXTATTR_GET_FD:
882	case AUE_EXTATTR_SET_FD:
883	case AUE_EXTATTR_LIST_FD:
884	case AUE_EXTATTR_DELETE_FD:
885		if (ARG_IS_VALID(kar, ARG_FD)) {
886			tok = au_to_arg32(2, "fd", ar->ar_arg_fd);
887			kau_write(rec, tok);
888		}
889		EXTATTR_TOKENS(2);
890		break;
891
892	case AUE_FEXECVE:
893		if (ARG_IS_VALID(kar, ARG_FD)) {
894			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
895			kau_write(rec, tok);
896		}
897		/* FALLTHROUGH */
898
899	case AUE_EXECVE:
900	case AUE_MAC_EXECVE:
901		if (ARG_IS_VALID(kar, ARG_ARGV)) {
902			tok = au_to_exec_args(ar->ar_arg_argv,
903			    ar->ar_arg_argc);
904			kau_write(rec, tok);
905		}
906		if (ARG_IS_VALID(kar, ARG_ENVV)) {
907			tok = au_to_exec_env(ar->ar_arg_envv,
908			    ar->ar_arg_envc);
909			kau_write(rec, tok);
910		}
911		UPATH1_VNODE1_TOKENS;
912		break;
913
914	case AUE_FCHMOD:
915		if (ARG_IS_VALID(kar, ARG_MODE)) {
916			tok = au_to_arg32(2, "new file mode",
917			    ar->ar_arg_mode);
918			kau_write(rec, tok);
919		}
920		FD_VNODE1_TOKENS;
921		break;
922
923	/*
924	 * XXXRW: Some of these need to handle non-vnode cases as well.
925	 */
926	case AUE_FCHDIR:
927	case AUE_FPATHCONF:
928	case AUE_FSTAT:
929	case AUE_FSTATFS:
930	case AUE_FSYNC:
931	case AUE_FTRUNCATE:
932	case AUE_FUTIMES:
933	case AUE_GETDIRENTRIES:
934	case AUE_GETDIRENTRIESATTR:
935	case AUE_LSEEK:
936	case AUE_POLL:
937	case AUE_READ:
938	case AUE_READV:
939	case AUE_WRITE:
940	case AUE_WRITEV:
941		FD_VNODE1_TOKENS;
942		break;
943
944	case AUE_FCHOWN:
945		if (ARG_IS_VALID(kar, ARG_UID)) {
946			tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid);
947			kau_write(rec, tok);
948		}
949		if (ARG_IS_VALID(kar, ARG_GID)) {
950			tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid);
951			kau_write(rec, tok);
952		}
953		FD_VNODE1_TOKENS;
954		break;
955
956	case AUE_FCNTL:
957		if (ARG_IS_VALID(kar, ARG_CMD)) {
958			tok = au_to_arg32(2, "cmd",
959			    au_fcntl_cmd_to_bsm(ar->ar_arg_cmd));
960			kau_write(rec, tok);
961		}
962		if (ar->ar_arg_cmd == F_GETLK || ar->ar_arg_cmd == F_SETLK ||
963		    ar->ar_arg_cmd == F_SETLKW) {
964			FD_VNODE1_TOKENS;
965		}
966		break;
967
968	case AUE_FCHFLAGS:
969		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
970			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
971			kau_write(rec, tok);
972		}
973		FD_VNODE1_TOKENS;
974		break;
975
976	case AUE_FLOCK:
977		if (ARG_IS_VALID(kar, ARG_CMD)) {
978			tok = au_to_arg32(2, "operation", ar->ar_arg_cmd);
979			kau_write(rec, tok);
980		}
981		FD_VNODE1_TOKENS;
982		break;
983
984	case AUE_RFORK:
985		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
986			tok = au_to_arg32(1, "flags", ar->ar_arg_fflags);
987			kau_write(rec, tok);
988		}
989		/* FALLTHROUGH */
990
991	case AUE_FORK:
992	case AUE_VFORK:
993		if (ARG_IS_VALID(kar, ARG_PID)) {
994			tok = au_to_arg32(0, "child PID", ar->ar_arg_pid);
995			kau_write(rec, tok);
996		}
997		break;
998
999	case AUE_IOCTL:
1000		if (ARG_IS_VALID(kar, ARG_CMD)) {
1001			tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd);
1002			kau_write(rec, tok);
1003		}
1004		if (ARG_IS_VALID(kar, ARG_VNODE1))
1005			FD_VNODE1_TOKENS;
1006		else {
1007			if (ARG_IS_VALID(kar, ARG_SOCKINFO)) {
1008				tok = kau_to_socket(&ar->ar_arg_sockinfo);
1009				kau_write(rec, tok);
1010			} else {
1011				if (ARG_IS_VALID(kar, ARG_FD)) {
1012					tok = au_to_arg32(1, "fd",
1013					    ar->ar_arg_fd);
1014					kau_write(rec, tok);
1015				}
1016			}
1017		}
1018		break;
1019
1020	case AUE_KILL:
1021	case AUE_KILLPG:
1022		if (ARG_IS_VALID(kar, ARG_SIGNUM)) {
1023			tok = au_to_arg32(2, "signal", ar->ar_arg_signum);
1024			kau_write(rec, tok);
1025		}
1026		PROCESS_PID_TOKENS(1);
1027		break;
1028
1029	case AUE_KTRACE:
1030		if (ARG_IS_VALID(kar, ARG_CMD)) {
1031			tok = au_to_arg32(2, "ops", ar->ar_arg_cmd);
1032			kau_write(rec, tok);
1033		}
1034		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1035			tok = au_to_arg32(3, "trpoints", ar->ar_arg_value);
1036			kau_write(rec, tok);
1037		}
1038		PROCESS_PID_TOKENS(4);
1039		UPATH1_VNODE1_TOKENS;
1040		break;
1041
1042	case AUE_LINK:
1043	case AUE_LINKAT:
1044	case AUE_RENAME:
1045	case AUE_RENAMEAT:
1046		ATFD1_TOKENS(1);
1047		UPATH1_VNODE1_TOKENS;
1048		ATFD2_TOKENS(3);
1049		UPATH2_TOKENS;
1050		break;
1051
1052	case AUE_LOADSHFILE:
1053		ADDR_TOKEN(4, "base addr");
1054		UPATH1_VNODE1_TOKENS;
1055		break;
1056
1057	case AUE_MKDIR:
1058	case AUE_MKDIRAT:
1059	case AUE_MKFIFO:
1060	case AUE_MKFIFOAT:
1061		ATFD1_TOKENS(1);
1062		if (ARG_IS_VALID(kar, ARG_MODE)) {
1063			tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
1064			kau_write(rec, tok);
1065		}
1066		UPATH1_VNODE1_TOKENS;
1067		break;
1068
1069	case AUE_MKNOD:
1070	case AUE_MKNODAT:
1071		ATFD1_TOKENS(1);
1072		if (ARG_IS_VALID(kar, ARG_MODE)) {
1073			tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
1074			kau_write(rec, tok);
1075		}
1076		if (ARG_IS_VALID(kar, ARG_DEV)) {
1077			tok = au_to_arg32(3, "dev", ar->ar_arg_dev);
1078			kau_write(rec, tok);
1079		}
1080		UPATH1_VNODE1_TOKENS;
1081		break;
1082
1083	case AUE_MMAP:
1084	case AUE_MUNMAP:
1085	case AUE_MPROTECT:
1086	case AUE_MLOCK:
1087	case AUE_MUNLOCK:
1088	case AUE_MINHERIT:
1089		ADDR_TOKEN(1, "addr");
1090		if (ARG_IS_VALID(kar, ARG_LEN)) {
1091			tok = au_to_arg32(2, "len", ar->ar_arg_len);
1092			kau_write(rec, tok);
1093		}
1094		if (ar->ar_event == AUE_MMAP)
1095			FD_VNODE1_TOKENS;
1096		if (ar->ar_event == AUE_MPROTECT) {
1097			if (ARG_IS_VALID(kar, ARG_VALUE)) {
1098				tok = au_to_arg32(3, "protection",
1099				    ar->ar_arg_value);
1100				kau_write(rec, tok);
1101			}
1102		}
1103		if (ar->ar_event == AUE_MINHERIT) {
1104			if (ARG_IS_VALID(kar, ARG_VALUE)) {
1105				tok = au_to_arg32(3, "inherit",
1106				    ar->ar_arg_value);
1107				kau_write(rec, tok);
1108			}
1109		}
1110		break;
1111
1112	case AUE_MOUNT:
1113	case AUE_NMOUNT:
1114		/* XXX Need to handle NFS mounts */
1115		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
1116			tok = au_to_arg32(3, "flags", ar->ar_arg_fflags);
1117			kau_write(rec, tok);
1118		}
1119		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1120			tok = au_to_text(ar->ar_arg_text);
1121			kau_write(rec, tok);
1122		}
1123		/* FALLTHROUGH */
1124
1125	case AUE_NFS_SVC:
1126		if (ARG_IS_VALID(kar, ARG_CMD)) {
1127			tok = au_to_arg32(1, "flags", ar->ar_arg_cmd);
1128			kau_write(rec, tok);
1129		}
1130		break;
1131
1132	case AUE_UMOUNT:
1133		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1134			tok = au_to_arg32(2, "flags", ar->ar_arg_value);
1135			kau_write(rec, tok);
1136		}
1137		UPATH1_VNODE1_TOKENS;
1138		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1139			tok = au_to_text(ar->ar_arg_text);
1140			kau_write(rec, tok);
1141		}
1142		break;
1143
1144	case AUE_MSGCTL:
1145		ar->ar_event = audit_msgctl_to_event(ar->ar_arg_svipc_cmd);
1146		/* Fall through */
1147
1148	case AUE_MSGRCV:
1149	case AUE_MSGSND:
1150		tok = au_to_arg32(1, "msg ID", ar->ar_arg_svipc_id);
1151		kau_write(rec, tok);
1152		if (ar->ar_errno != EINVAL) {
1153			tok = au_to_ipc(AT_IPC_MSG, ar->ar_arg_svipc_id);
1154			kau_write(rec, tok);
1155		}
1156		break;
1157
1158	case AUE_MSGGET:
1159		if (ar->ar_errno == 0) {
1160			if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1161				tok = au_to_ipc(AT_IPC_MSG,
1162				    ar->ar_arg_svipc_id);
1163				kau_write(rec, tok);
1164			}
1165		}
1166		break;
1167
1168	case AUE_RESETSHFILE:
1169		ADDR_TOKEN(1, "base addr");
1170		break;
1171
1172	case AUE_OPEN_RC:
1173	case AUE_OPEN_RTC:
1174	case AUE_OPEN_RWC:
1175	case AUE_OPEN_RWTC:
1176	case AUE_OPEN_WC:
1177	case AUE_OPEN_WTC:
1178	case AUE_CREAT:
1179		if (ARG_IS_VALID(kar, ARG_MODE)) {
1180			tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
1181			kau_write(rec, tok);
1182		}
1183		/* FALLTHROUGH */
1184
1185	case AUE_OPEN_R:
1186	case AUE_OPEN_RT:
1187	case AUE_OPEN_RW:
1188	case AUE_OPEN_RWT:
1189	case AUE_OPEN_W:
1190	case AUE_OPEN_WT:
1191		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
1192			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
1193			kau_write(rec, tok);
1194		}
1195		UPATH1_VNODE1_TOKENS;
1196		break;
1197
1198	case AUE_OPENAT_RC:
1199	case AUE_OPENAT_RTC:
1200	case AUE_OPENAT_RWC:
1201	case AUE_OPENAT_RWTC:
1202	case AUE_OPENAT_WC:
1203	case AUE_OPENAT_WTC:
1204		if (ARG_IS_VALID(kar, ARG_MODE)) {
1205			tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
1206			kau_write(rec, tok);
1207		}
1208		/* FALLTHROUGH */
1209
1210	case AUE_OPENAT_R:
1211	case AUE_OPENAT_RT:
1212	case AUE_OPENAT_RW:
1213	case AUE_OPENAT_RWT:
1214	case AUE_OPENAT_W:
1215	case AUE_OPENAT_WT:
1216		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
1217			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
1218			kau_write(rec, tok);
1219		}
1220		ATFD1_TOKENS(1);
1221		UPATH1_VNODE1_TOKENS;
1222		break;
1223
1224	case AUE_PTRACE:
1225		if (ARG_IS_VALID(kar, ARG_CMD)) {
1226			tok = au_to_arg32(1, "request", ar->ar_arg_cmd);
1227			kau_write(rec, tok);
1228		}
1229		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1230			tok = au_to_arg32(4, "data", ar->ar_arg_value);
1231			kau_write(rec, tok);
1232		}
1233		PROCESS_PID_TOKENS(2);
1234		break;
1235
1236	case AUE_QUOTACTL:
1237		if (ARG_IS_VALID(kar, ARG_CMD)) {
1238			tok = au_to_arg32(2, "command", ar->ar_arg_cmd);
1239			kau_write(rec, tok);
1240		}
1241		if (ARG_IS_VALID(kar, ARG_UID)) {
1242			tok = au_to_arg32(3, "uid", ar->ar_arg_uid);
1243			kau_write(rec, tok);
1244		}
1245		if (ARG_IS_VALID(kar, ARG_GID)) {
1246			tok = au_to_arg32(3, "gid", ar->ar_arg_gid);
1247			kau_write(rec, tok);
1248		}
1249		UPATH1_VNODE1_TOKENS;
1250		break;
1251
1252	case AUE_REBOOT:
1253		if (ARG_IS_VALID(kar, ARG_CMD)) {
1254			tok = au_to_arg32(1, "howto", ar->ar_arg_cmd);
1255			kau_write(rec, tok);
1256		}
1257		break;
1258
1259	case AUE_SEMCTL:
1260		ar->ar_event = audit_semctl_to_event(ar->ar_arg_svipc_cmd);
1261		/* Fall through */
1262
1263	case AUE_SEMOP:
1264		if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1265			tok = au_to_arg32(1, "sem ID", ar->ar_arg_svipc_id);
1266			kau_write(rec, tok);
1267			if (ar->ar_errno != EINVAL) {
1268				tok = au_to_ipc(AT_IPC_SEM,
1269				    ar->ar_arg_svipc_id);
1270				kau_write(rec, tok);
1271			}
1272		}
1273		break;
1274
1275	case AUE_SEMGET:
1276		if (ar->ar_errno == 0) {
1277			if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1278				tok = au_to_ipc(AT_IPC_SEM,
1279				    ar->ar_arg_svipc_id);
1280				kau_write(rec, tok);
1281			}
1282		}
1283		break;
1284
1285	case AUE_SETEGID:
1286		if (ARG_IS_VALID(kar, ARG_EGID)) {
1287			tok = au_to_arg32(1, "egid", ar->ar_arg_egid);
1288			kau_write(rec, tok);
1289		}
1290		break;
1291
1292	case AUE_SETEUID:
1293		if (ARG_IS_VALID(kar, ARG_EUID)) {
1294			tok = au_to_arg32(1, "euid", ar->ar_arg_euid);
1295			kau_write(rec, tok);
1296		}
1297		break;
1298
1299	case AUE_SETREGID:
1300		if (ARG_IS_VALID(kar, ARG_RGID)) {
1301			tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid);
1302			kau_write(rec, tok);
1303		}
1304		if (ARG_IS_VALID(kar, ARG_EGID)) {
1305			tok = au_to_arg32(2, "egid", ar->ar_arg_egid);
1306			kau_write(rec, tok);
1307		}
1308		break;
1309
1310	case AUE_SETREUID:
1311		if (ARG_IS_VALID(kar, ARG_RUID)) {
1312			tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid);
1313			kau_write(rec, tok);
1314		}
1315		if (ARG_IS_VALID(kar, ARG_EUID)) {
1316			tok = au_to_arg32(2, "euid", ar->ar_arg_euid);
1317			kau_write(rec, tok);
1318		}
1319		break;
1320
1321	case AUE_SETRESGID:
1322		if (ARG_IS_VALID(kar, ARG_RGID)) {
1323			tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid);
1324			kau_write(rec, tok);
1325		}
1326		if (ARG_IS_VALID(kar, ARG_EGID)) {
1327			tok = au_to_arg32(2, "egid", ar->ar_arg_egid);
1328			kau_write(rec, tok);
1329		}
1330		if (ARG_IS_VALID(kar, ARG_SGID)) {
1331			tok = au_to_arg32(3, "sgid", ar->ar_arg_sgid);
1332			kau_write(rec, tok);
1333		}
1334		break;
1335
1336	case AUE_SETRESUID:
1337		if (ARG_IS_VALID(kar, ARG_RUID)) {
1338			tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid);
1339			kau_write(rec, tok);
1340		}
1341		if (ARG_IS_VALID(kar, ARG_EUID)) {
1342			tok = au_to_arg32(2, "euid", ar->ar_arg_euid);
1343			kau_write(rec, tok);
1344		}
1345		if (ARG_IS_VALID(kar, ARG_SUID)) {
1346			tok = au_to_arg32(3, "suid", ar->ar_arg_suid);
1347			kau_write(rec, tok);
1348		}
1349		break;
1350
1351	case AUE_SETGID:
1352		if (ARG_IS_VALID(kar, ARG_GID)) {
1353			tok = au_to_arg32(1, "gid", ar->ar_arg_gid);
1354			kau_write(rec, tok);
1355		}
1356		break;
1357
1358	case AUE_SETUID:
1359		if (ARG_IS_VALID(kar, ARG_UID)) {
1360			tok = au_to_arg32(1, "uid", ar->ar_arg_uid);
1361			kau_write(rec, tok);
1362		}
1363		break;
1364
1365	case AUE_SETGROUPS:
1366		if (ARG_IS_VALID(kar, ARG_GROUPSET)) {
1367			for(ctr = 0; ctr < ar->ar_arg_groups.gidset_size; ctr++)
1368			{
1369				tok = au_to_arg32(1, "setgroups",
1370				    ar->ar_arg_groups.gidset[ctr]);
1371				kau_write(rec, tok);
1372			}
1373		}
1374		break;
1375
1376	case AUE_SETLOGIN:
1377		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1378			tok = au_to_text(ar->ar_arg_text);
1379			kau_write(rec, tok);
1380		}
1381		break;
1382
1383	case AUE_SETPRIORITY:
1384		if (ARG_IS_VALID(kar, ARG_CMD)) {
1385			tok = au_to_arg32(1, "which", ar->ar_arg_cmd);
1386			kau_write(rec, tok);
1387		}
1388		if (ARG_IS_VALID(kar, ARG_UID)) {
1389			tok = au_to_arg32(2, "who", ar->ar_arg_uid);
1390			kau_write(rec, tok);
1391		}
1392		PROCESS_PID_TOKENS(2);
1393		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1394			tok = au_to_arg32(3, "priority", ar->ar_arg_value);
1395			kau_write(rec, tok);
1396		}
1397		break;
1398
1399	case AUE_SETPRIVEXEC:
1400		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1401			tok = au_to_arg32(1, "flag", ar->ar_arg_value);
1402			kau_write(rec, tok);
1403		}
1404		break;
1405
1406	/* AUE_SHMAT, AUE_SHMCTL, AUE_SHMDT and AUE_SHMGET are SysV IPC */
1407	case AUE_SHMAT:
1408		if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1409			tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id);
1410			kau_write(rec, tok);
1411			/* XXXAUDIT: Does having the ipc token make sense? */
1412			tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
1413			kau_write(rec, tok);
1414		}
1415		if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
1416			tok = au_to_arg32(2, "shmaddr",
1417			    (int)(uintptr_t)ar->ar_arg_svipc_addr);
1418			kau_write(rec, tok);
1419		}
1420		if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
1421			tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
1422			kau_write(rec, tok);
1423		}
1424		break;
1425
1426	case AUE_SHMCTL:
1427		if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1428			tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id);
1429			kau_write(rec, tok);
1430			/* XXXAUDIT: Does having the ipc token make sense? */
1431			tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
1432			kau_write(rec, tok);
1433		}
1434		switch (ar->ar_arg_svipc_cmd) {
1435		case IPC_STAT:
1436			ar->ar_event = AUE_SHMCTL_STAT;
1437			break;
1438		case IPC_RMID:
1439			ar->ar_event = AUE_SHMCTL_RMID;
1440			break;
1441		case IPC_SET:
1442			ar->ar_event = AUE_SHMCTL_SET;
1443			if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
1444				tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
1445				kau_write(rec, tok);
1446			}
1447			break;
1448		default:
1449			break;	/* We will audit a bad command */
1450		}
1451		break;
1452
1453	case AUE_SHMDT:
1454		if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
1455			tok = au_to_arg32(1, "shmaddr",
1456			    (int)(uintptr_t)ar->ar_arg_svipc_addr);
1457			kau_write(rec, tok);
1458		}
1459		break;
1460
1461	case AUE_SHMGET:
1462		/* This is unusual; the return value is in an argument token */
1463		if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1464			tok = au_to_arg32(0, "shmid", ar->ar_arg_svipc_id);
1465			kau_write(rec, tok);
1466			tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
1467			kau_write(rec, tok);
1468		}
1469		if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
1470			tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
1471			kau_write(rec, tok);
1472		}
1473		break;
1474
1475	/* AUE_SHMOPEN, AUE_SHMUNLINK, AUE_SEMOPEN, AUE_SEMCLOSE
1476	 * and AUE_SEMUNLINK are Posix IPC */
1477	case AUE_SHMOPEN:
1478		if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
1479			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
1480			kau_write(rec, tok);
1481		}
1482		if (ARG_IS_VALID(kar, ARG_MODE)) {
1483			tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
1484			kau_write(rec, tok);
1485		}
1486		/* FALLTHROUGH */
1487
1488	case AUE_SHMUNLINK:
1489		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1490			tok = au_to_text(ar->ar_arg_text);
1491			kau_write(rec, tok);
1492		}
1493		if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) {
1494			struct ipc_perm perm;
1495
1496			perm.uid = ar->ar_arg_pipc_perm.pipc_uid;
1497			perm.gid = ar->ar_arg_pipc_perm.pipc_gid;
1498			perm.cuid = ar->ar_arg_pipc_perm.pipc_uid;
1499			perm.cgid = ar->ar_arg_pipc_perm.pipc_gid;
1500			perm.mode = ar->ar_arg_pipc_perm.pipc_mode;
1501			perm.seq = 0;
1502			perm.key = 0;
1503			tok = au_to_ipc_perm(&perm);
1504			kau_write(rec, tok);
1505		}
1506		break;
1507
1508	case AUE_SEMOPEN:
1509		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
1510			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
1511			kau_write(rec, tok);
1512		}
1513		if (ARG_IS_VALID(kar, ARG_MODE)) {
1514			tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
1515			kau_write(rec, tok);
1516		}
1517		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1518			tok = au_to_arg32(4, "value", ar->ar_arg_value);
1519			kau_write(rec, tok);
1520		}
1521		/* FALLTHROUGH */
1522
1523	case AUE_SEMUNLINK:
1524		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1525			tok = au_to_text(ar->ar_arg_text);
1526			kau_write(rec, tok);
1527		}
1528		if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) {
1529			struct ipc_perm perm;
1530
1531			perm.uid = ar->ar_arg_pipc_perm.pipc_uid;
1532			perm.gid = ar->ar_arg_pipc_perm.pipc_gid;
1533			perm.cuid = ar->ar_arg_pipc_perm.pipc_uid;
1534			perm.cgid = ar->ar_arg_pipc_perm.pipc_gid;
1535			perm.mode = ar->ar_arg_pipc_perm.pipc_mode;
1536			perm.seq = 0;
1537			perm.key = 0;
1538			tok = au_to_ipc_perm(&perm);
1539			kau_write(rec, tok);
1540		}
1541		break;
1542
1543	case AUE_SEMCLOSE:
1544		if (ARG_IS_VALID(kar, ARG_FD)) {
1545			tok = au_to_arg32(1, "sem", ar->ar_arg_fd);
1546			kau_write(rec, tok);
1547		}
1548		break;
1549
1550	case AUE_SYMLINK:
1551	case AUE_SYMLINKAT:
1552		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1553			tok = au_to_text(ar->ar_arg_text);
1554			kau_write(rec, tok);
1555		}
1556		ATFD1_TOKENS(1);
1557		UPATH1_VNODE1_TOKENS;
1558		break;
1559
1560	case AUE_SYSCTL:
1561	case AUE_SYSCTL_NONADMIN:
1562		if (ARG_IS_VALID(kar, ARG_CTLNAME | ARG_LEN)) {
1563			for (ctr = 0; ctr < ar->ar_arg_len; ctr++) {
1564				tok = au_to_arg32(1, "name",
1565				    ar->ar_arg_ctlname[ctr]);
1566				kau_write(rec, tok);
1567			}
1568		}
1569		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1570			tok = au_to_arg32(5, "newval", ar->ar_arg_value);
1571			kau_write(rec, tok);
1572		}
1573		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1574			tok = au_to_text(ar->ar_arg_text);
1575			kau_write(rec, tok);
1576		}
1577		break;
1578
1579	case AUE_UMASK:
1580		if (ARG_IS_VALID(kar, ARG_MASK)) {
1581			tok = au_to_arg32(1, "new mask", ar->ar_arg_mask);
1582			kau_write(rec, tok);
1583		}
1584		tok = au_to_arg32(0, "prev mask", ar->ar_retval);
1585		kau_write(rec, tok);
1586		break;
1587
1588	case AUE_WAIT4:
1589		PROCESS_PID_TOKENS(1);
1590		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1591			tok = au_to_arg32(3, "options", ar->ar_arg_value);
1592			kau_write(rec, tok);
1593		}
1594		break;
1595
1596	case AUE_CAP_NEW:
1597		/*
1598		 * XXXRW/XXXJA: Would be nice to audit socket/etc information.
1599		 */
1600		FD_VNODE1_TOKENS;
1601		if (ARG_IS_VALID(kar, ARG_RIGHTS)) {
1602			tok = au_to_arg64(2, "rights", ar->ar_arg_rights);
1603			kau_write(rec, tok);
1604		}
1605		break;
1606
1607	case AUE_CAP_GETRIGHTS:
1608		if (ARG_IS_VALID(kar, ARG_FD)) {
1609			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
1610			kau_write(rec, tok);
1611		}
1612		break;
1613
1614	case AUE_CAP_ENTER:
1615	case AUE_CAP_GETMODE:
1616		break;
1617
1618	case AUE_NULL:
1619	default:
1620		printf("BSM conversion requested for unknown event %d\n",
1621		    ar->ar_event);
1622
1623		/*
1624		 * Write the subject token so it is properly freed here.
1625		 */
1626		kau_write(rec, subj_tok);
1627		kau_free(rec);
1628		return (BSM_NOAUDIT);
1629	}
1630
1631	kau_write(rec, subj_tok);
1632	tok = au_to_return32(au_errno_to_bsm(ar->ar_errno), ar->ar_retval);
1633	kau_write(rec, tok);  /* Every record gets a return token */
1634
1635	kau_close(rec, &ar->ar_endtime, ar->ar_event);
1636
1637	*pau = rec;
1638	return (BSM_SUCCESS);
1639}
1640
1641/*
1642 * Verify that a record is a valid BSM record. This verification is simple
1643 * now, but may be expanded on sometime in the future.  Return 1 if the
1644 * record is good, 0 otherwise.
1645 */
1646int
1647bsm_rec_verify(void *rec)
1648{
1649	char c = *(char *)rec;
1650
1651	/*
1652	 * Check the token ID of the first token; it has to be a header
1653	 * token.
1654	 *
1655	 * XXXAUDIT There needs to be a token structure to map a token.
1656	 * XXXAUDIT 'Shouldn't be simply looking at the first char.
1657	 */
1658	if ((c != AUT_HEADER32) && (c != AUT_HEADER32_EX) &&
1659	    (c != AUT_HEADER64) && (c != AUT_HEADER64_EX))
1660		return (0);
1661	return (1);
1662}
1663