audit.c revision 195925
1/*-
2 * Copyright (c) 1999-2005 Apple Inc.
3 * Copyright (c) 2006-2007 Robert N. M. Watson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1.  Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 * 2.  Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
15 *     its contributors may be used to endorse or promote products derived
16 *     from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/security/audit/audit.c 195925 2009-07-28 21:39:58Z rwatson $");
33
34#include <sys/param.h>
35#include <sys/condvar.h>
36#include <sys/conf.h>
37#include <sys/file.h>
38#include <sys/filedesc.h>
39#include <sys/fcntl.h>
40#include <sys/ipc.h>
41#include <sys/kernel.h>
42#include <sys/kthread.h>
43#include <sys/malloc.h>
44#include <sys/mount.h>
45#include <sys/namei.h>
46#include <sys/priv.h>
47#include <sys/proc.h>
48#include <sys/queue.h>
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51#include <sys/protosw.h>
52#include <sys/domain.h>
53#include <sys/sysctl.h>
54#include <sys/sysproto.h>
55#include <sys/sysent.h>
56#include <sys/systm.h>
57#include <sys/ucred.h>
58#include <sys/uio.h>
59#include <sys/un.h>
60#include <sys/unistd.h>
61#include <sys/vnode.h>
62
63#include <bsm/audit.h>
64#include <bsm/audit_internal.h>
65#include <bsm/audit_kevents.h>
66
67#include <netinet/in.h>
68#include <netinet/in_pcb.h>
69
70#include <security/audit/audit.h>
71#include <security/audit/audit_private.h>
72
73#include <vm/uma.h>
74
75static uma_zone_t	audit_record_zone;
76static MALLOC_DEFINE(M_AUDITCRED, "audit_cred", "Audit cred storage");
77MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage");
78MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage");
79MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage");
80MALLOC_DEFINE(M_AUDITGIDSET, "audit_gidset", "Audit GID set storage");
81
82SYSCTL_NODE(_security, OID_AUTO, audit, CTLFLAG_RW, 0,
83    "TrustedBSD audit controls");
84
85/*
86 * Audit control settings that are set/read by system calls and are hence
87 * non-static.
88 *
89 * Define the audit control flags.
90 */
91int			audit_enabled;
92int			audit_suspended;
93
94/*
95 * Flags controlling behavior in low storage situations.  Should we panic if
96 * a write fails?  Should we fail stop if we're out of disk space?
97 */
98int			audit_panic_on_write_fail;
99int			audit_fail_stop;
100int			audit_argv;
101int			audit_arge;
102
103/*
104 * Are we currently "failing stop" due to out of disk space?
105 */
106int			audit_in_failure;
107
108/*
109 * Global audit statistics.
110 */
111struct audit_fstat	audit_fstat;
112
113/*
114 * Preselection mask for non-attributable events.
115 */
116struct au_mask		audit_nae_mask;
117
118/*
119 * Mutex to protect global variables shared between various threads and
120 * processes.
121 */
122struct mtx		audit_mtx;
123
124/*
125 * Queue of audit records ready for delivery to disk.  We insert new records
126 * at the tail, and remove records from the head.  Also, a count of the
127 * number of records used for checking queue depth.  In addition, a counter
128 * of records that we have allocated but are not yet in the queue, which is
129 * needed to estimate the total size of the combined set of records
130 * outstanding in the system.
131 */
132struct kaudit_queue	audit_q;
133int			audit_q_len;
134int			audit_pre_q_len;
135
136/*
137 * Audit queue control settings (minimum free, low/high water marks, etc.)
138 */
139struct au_qctrl		audit_qctrl;
140
141/*
142 * Condition variable to signal to the worker that it has work to do: either
143 * new records are in the queue, or a log replacement is taking place.
144 */
145struct cv		audit_worker_cv;
146
147/*
148 * Condition variable to flag when crossing the low watermark, meaning that
149 * threads blocked due to hitting the high watermark can wake up and continue
150 * to commit records.
151 */
152struct cv		audit_watermark_cv;
153
154/*
155 * Condition variable for  auditing threads wait on when in fail-stop mode.
156 * Threads wait on this CV forever (and ever), never seeing the light of day
157 * again.
158 */
159static struct cv	audit_fail_cv;
160
161/*
162 * Kernel audit information.  This will store the current audit address
163 * or host information that the kernel will use when it's generating
164 * audit records.  This data is modified by the A_GET{SET}KAUDIT auditon(2)
165 * command.
166 */
167static struct auditinfo_addr	audit_kinfo;
168static struct rwlock		audit_kinfo_lock;
169
170#define	KINFO_LOCK_INIT()	rw_init(&audit_kinfo_lock, \
171				    "audit_kinfo_lock")
172#define	KINFO_RLOCK()		rw_rlock(&audit_kinfo_lock)
173#define	KINFO_WLOCK()		rw_wlock(&audit_kinfo_lock)
174#define	KINFO_RUNLOCK()		rw_runlock(&audit_kinfo_lock)
175#define	KINFO_WUNLOCK()		rw_wunlock(&audit_kinfo_lock)
176
177void
178audit_set_kinfo(struct auditinfo_addr *ak)
179{
180
181	KASSERT(ak->ai_termid.at_type == AU_IPv4 ||
182	    ak->ai_termid.at_type == AU_IPv6,
183	    ("audit_set_kinfo: invalid address type"));
184
185	KINFO_WLOCK();
186	audit_kinfo = *ak;
187	KINFO_WUNLOCK();
188}
189
190void
191audit_get_kinfo(struct auditinfo_addr *ak)
192{
193
194	KASSERT(audit_kinfo.ai_termid.at_type == AU_IPv4 ||
195	    audit_kinfo.ai_termid.at_type == AU_IPv6,
196	    ("audit_set_kinfo: invalid address type"));
197
198	KINFO_RLOCK();
199	*ak = audit_kinfo;
200	KINFO_RUNLOCK();
201}
202
203/*
204 * Construct an audit record for the passed thread.
205 */
206static int
207audit_record_ctor(void *mem, int size, void *arg, int flags)
208{
209	struct kaudit_record *ar;
210	struct thread *td;
211	struct ucred *cred;
212
213	KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size"));
214
215	td = arg;
216	ar = mem;
217	bzero(ar, sizeof(*ar));
218	ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC;
219	nanotime(&ar->k_ar.ar_starttime);
220
221	/*
222	 * Export the subject credential.
223	 */
224	cred = td->td_ucred;
225	cru2x(cred, &ar->k_ar.ar_subj_cred);
226	ar->k_ar.ar_subj_ruid = cred->cr_ruid;
227	ar->k_ar.ar_subj_rgid = cred->cr_rgid;
228	ar->k_ar.ar_subj_egid = cred->cr_groups[0];
229	ar->k_ar.ar_subj_auid = cred->cr_audit.ai_auid;
230	ar->k_ar.ar_subj_asid = cred->cr_audit.ai_asid;
231	ar->k_ar.ar_subj_pid = td->td_proc->p_pid;
232	ar->k_ar.ar_subj_amask = cred->cr_audit.ai_mask;
233	ar->k_ar.ar_subj_term_addr = cred->cr_audit.ai_termid;
234	return (0);
235}
236
237static void
238audit_record_dtor(void *mem, int size, void *arg)
239{
240	struct kaudit_record *ar;
241
242	KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size"));
243
244	ar = mem;
245	if (ar->k_ar.ar_arg_upath1 != NULL)
246		free(ar->k_ar.ar_arg_upath1, M_AUDITPATH);
247	if (ar->k_ar.ar_arg_upath2 != NULL)
248		free(ar->k_ar.ar_arg_upath2, M_AUDITPATH);
249	if (ar->k_ar.ar_arg_text != NULL)
250		free(ar->k_ar.ar_arg_text, M_AUDITTEXT);
251	if (ar->k_udata != NULL)
252		free(ar->k_udata, M_AUDITDATA);
253	if (ar->k_ar.ar_arg_argv != NULL)
254		free(ar->k_ar.ar_arg_argv, M_AUDITTEXT);
255	if (ar->k_ar.ar_arg_envv != NULL)
256		free(ar->k_ar.ar_arg_envv, M_AUDITTEXT);
257	if (ar->k_ar.ar_arg_groups.gidset != NULL)
258		free(ar->k_ar.ar_arg_groups.gidset, M_AUDITGIDSET);
259}
260
261/*
262 * Initialize the Audit subsystem: configuration state, work queue,
263 * synchronization primitives, worker thread, and trigger device node.  Also
264 * call into the BSM assembly code to initialize it.
265 */
266static void
267audit_init(void)
268{
269
270	audit_enabled = 0;
271	audit_suspended = 0;
272	audit_panic_on_write_fail = 0;
273	audit_fail_stop = 0;
274	audit_in_failure = 0;
275	audit_argv = 0;
276	audit_arge = 0;
277
278	audit_fstat.af_filesz = 0;	/* '0' means unset, unbounded. */
279	audit_fstat.af_currsz = 0;
280	audit_nae_mask.am_success = 0;
281	audit_nae_mask.am_failure = 0;
282
283	TAILQ_INIT(&audit_q);
284	audit_q_len = 0;
285	audit_pre_q_len = 0;
286	audit_qctrl.aq_hiwater = AQ_HIWATER;
287	audit_qctrl.aq_lowater = AQ_LOWATER;
288	audit_qctrl.aq_bufsz = AQ_BUFSZ;
289	audit_qctrl.aq_minfree = AU_FS_MINFREE;
290
291	audit_kinfo.ai_termid.at_type = AU_IPv4;
292	audit_kinfo.ai_termid.at_addr[0] = INADDR_ANY;
293
294	mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF);
295	KINFO_LOCK_INIT();
296	cv_init(&audit_worker_cv, "audit_worker_cv");
297	cv_init(&audit_watermark_cv, "audit_watermark_cv");
298	cv_init(&audit_fail_cv, "audit_fail_cv");
299
300	audit_record_zone = uma_zcreate("audit_record",
301	    sizeof(struct kaudit_record), audit_record_ctor,
302	    audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
303
304	/* Initialize the BSM audit subsystem. */
305	kau_init();
306
307	audit_trigger_init();
308
309	/* Register shutdown handler. */
310	EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL,
311	    SHUTDOWN_PRI_FIRST);
312
313	/* Start audit worker thread. */
314	audit_worker_init();
315}
316
317SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL);
318
319/*
320 * Drain the audit queue and close the log at shutdown.  Note that this can
321 * be called both from the system shutdown path and also from audit
322 * configuration syscalls, so 'arg' and 'howto' are ignored.
323 *
324 * XXXRW: In FreeBSD 7.x and 8.x, this fails to wait for the record queue to
325 * drain before returning, which could lead to lost records on shutdown.
326 */
327void
328audit_shutdown(void *arg, int howto)
329{
330
331	audit_rotate_vnode(NULL, NULL);
332}
333
334/*
335 * Return the current thread's audit record, if any.
336 */
337struct kaudit_record *
338currecord(void)
339{
340
341	return (curthread->td_ar);
342}
343
344/*
345 * XXXAUDIT: There are a number of races present in the code below due to
346 * release and re-grab of the mutex.  The code should be revised to become
347 * slightly less racy.
348 *
349 * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available
350 * pre_q space, suspending the system call until there is room?
351 */
352struct kaudit_record *
353audit_new(int event, struct thread *td)
354{
355	struct kaudit_record *ar;
356	int no_record;
357
358	mtx_lock(&audit_mtx);
359	no_record = (audit_suspended || !audit_enabled);
360	mtx_unlock(&audit_mtx);
361	if (no_record)
362		return (NULL);
363
364	/*
365	 * Note: the number of outstanding uncommitted audit records is
366	 * limited to the number of concurrent threads servicing system calls
367	 * in the kernel.
368	 */
369	ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK);
370	ar->k_ar.ar_event = event;
371
372	mtx_lock(&audit_mtx);
373	audit_pre_q_len++;
374	mtx_unlock(&audit_mtx);
375
376	return (ar);
377}
378
379void
380audit_free(struct kaudit_record *ar)
381{
382
383	uma_zfree(audit_record_zone, ar);
384}
385
386void
387audit_commit(struct kaudit_record *ar, int error, int retval)
388{
389	au_event_t event;
390	au_class_t class;
391	au_id_t auid;
392	int sorf;
393	struct au_mask *aumask;
394
395	if (ar == NULL)
396		return;
397
398	/*
399	 * Decide whether to commit the audit record by checking the error
400	 * value from the system call and using the appropriate audit mask.
401	 */
402	if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID)
403		aumask = &audit_nae_mask;
404	else
405		aumask = &ar->k_ar.ar_subj_amask;
406
407	if (error)
408		sorf = AU_PRS_FAILURE;
409	else
410		sorf = AU_PRS_SUCCESS;
411
412	/*
413	 * syscalls.master sometimes contains a prototype event number, which
414	 * we will transform into a more specific event number now that we
415	 * have more complete information gathered during the system call.
416	 */
417	switch(ar->k_ar.ar_event) {
418	case AUE_OPEN_RWTC:
419		ar->k_ar.ar_event = audit_flags_and_error_to_openevent(
420		    ar->k_ar.ar_arg_fflags, error);
421		break;
422
423	case AUE_OPENAT_RWTC:
424		ar->k_ar.ar_event = audit_flags_and_error_to_openatevent(
425		    ar->k_ar.ar_arg_fflags, error);
426		break;
427
428	case AUE_SYSCTL:
429		ar->k_ar.ar_event = audit_ctlname_to_sysctlevent(
430		    ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg);
431		break;
432
433	case AUE_AUDITON:
434		/* Convert the auditon() command to an event. */
435		ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd);
436		break;
437	}
438
439	auid = ar->k_ar.ar_subj_auid;
440	event = ar->k_ar.ar_event;
441	class = au_event_class(event);
442
443	ar->k_ar_commit |= AR_COMMIT_KERNEL;
444	if (au_preselect(event, class, aumask, sorf) != 0)
445		ar->k_ar_commit |= AR_PRESELECT_TRAIL;
446	if (audit_pipe_preselect(auid, event, class, sorf,
447	    ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0)
448		ar->k_ar_commit |= AR_PRESELECT_PIPE;
449	if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE |
450	    AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE)) == 0) {
451		mtx_lock(&audit_mtx);
452		audit_pre_q_len--;
453		mtx_unlock(&audit_mtx);
454		audit_free(ar);
455		return;
456	}
457
458	ar->k_ar.ar_errno = error;
459	ar->k_ar.ar_retval = retval;
460	nanotime(&ar->k_ar.ar_endtime);
461
462	/*
463	 * Note: it could be that some records initiated while audit was
464	 * enabled should still be committed?
465	 */
466	mtx_lock(&audit_mtx);
467	if (audit_suspended || !audit_enabled) {
468		audit_pre_q_len--;
469		mtx_unlock(&audit_mtx);
470		audit_free(ar);
471		return;
472	}
473
474	/*
475	 * Constrain the number of committed audit records based on the
476	 * configurable parameter.
477	 */
478	while (audit_q_len >= audit_qctrl.aq_hiwater)
479		cv_wait(&audit_watermark_cv, &audit_mtx);
480
481	TAILQ_INSERT_TAIL(&audit_q, ar, k_q);
482	audit_q_len++;
483	audit_pre_q_len--;
484	cv_signal(&audit_worker_cv);
485	mtx_unlock(&audit_mtx);
486}
487
488/*
489 * audit_syscall_enter() is called on entry to each system call.  It is
490 * responsible for deciding whether or not to audit the call (preselection),
491 * and if so, allocating a per-thread audit record.  audit_new() will fill in
492 * basic thread/credential properties.
493 */
494void
495audit_syscall_enter(unsigned short code, struct thread *td)
496{
497	struct au_mask *aumask;
498	au_class_t class;
499	au_event_t event;
500	au_id_t auid;
501
502	KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL"));
503	KASSERT((td->td_pflags & TDP_AUDITREC) == 0,
504	    ("audit_syscall_enter: TDP_AUDITREC set"));
505
506	/*
507	 * In FreeBSD, each ABI has its own system call table, and hence
508	 * mapping of system call codes to audit events.  Convert the code to
509	 * an audit event identifier using the process system call table
510	 * reference.  In Darwin, there's only one, so we use the global
511	 * symbol for the system call table.  No audit record is generated
512	 * for bad system calls, as no operation has been performed.
513	 */
514	if (code >= td->td_proc->p_sysent->sv_size)
515		return;
516
517	event = td->td_proc->p_sysent->sv_table[code].sy_auevent;
518	if (event == AUE_NULL)
519		return;
520
521	/*
522	 * Check which audit mask to use; either the kernel non-attributable
523	 * event mask or the process audit mask.
524	 */
525	auid = td->td_ucred->cr_audit.ai_auid;
526	if (auid == AU_DEFAUDITID)
527		aumask = &audit_nae_mask;
528	else
529		aumask = &td->td_ucred->cr_audit.ai_mask;
530
531	/*
532	 * Allocate an audit record, if preselection allows it, and store in
533	 * the thread for later use.
534	 */
535	class = au_event_class(event);
536	if (au_preselect(event, class, aumask, AU_PRS_BOTH)) {
537		/*
538		 * If we're out of space and need to suspend unprivileged
539		 * processes, do that here rather than trying to allocate
540		 * another audit record.
541		 *
542		 * Note: we might wish to be able to continue here in the
543		 * future, if the system recovers.  That should be possible
544		 * by means of checking the condition in a loop around
545		 * cv_wait().  It might be desirable to reevaluate whether an
546		 * audit record is still required for this event by
547		 * re-calling au_preselect().
548		 */
549		if (audit_in_failure &&
550		    priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) {
551			cv_wait(&audit_fail_cv, &audit_mtx);
552			panic("audit_failing_stop: thread continued");
553		}
554		td->td_ar = audit_new(event, td);
555		if (td->td_ar != NULL)
556			td->td_pflags |= TDP_AUDITREC;
557	} else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) {
558		td->td_ar = audit_new(event, td);
559		if (td->td_ar != NULL)
560			td->td_pflags |= TDP_AUDITREC;
561	} else
562		td->td_ar = NULL;
563}
564
565/*
566 * audit_syscall_exit() is called from the return of every system call, or in
567 * the event of exit1(), during the execution of exit1().  It is responsible
568 * for committing the audit record, if any, along with return condition.
569 */
570void
571audit_syscall_exit(int error, struct thread *td)
572{
573	int retval;
574
575	/*
576	 * Commit the audit record as desired; once we pass the record into
577	 * audit_commit(), the memory is owned by the audit subsystem.  The
578	 * return value from the system call is stored on the user thread.
579	 * If there was an error, the return value is set to -1, imitating
580	 * the behavior of the cerror routine.
581	 */
582	if (error)
583		retval = -1;
584	else
585		retval = td->td_retval[0];
586
587	audit_commit(td->td_ar, error, retval);
588	td->td_ar = NULL;
589	td->td_pflags &= ~TDP_AUDITREC;
590}
591
592void
593audit_cred_copy(struct ucred *src, struct ucred *dest)
594{
595
596	bcopy(&src->cr_audit, &dest->cr_audit, sizeof(dest->cr_audit));
597}
598
599void
600audit_cred_destroy(struct ucred *cred)
601{
602
603}
604
605void
606audit_cred_init(struct ucred *cred)
607{
608
609	bzero(&cred->cr_audit, sizeof(cred->cr_audit));
610}
611
612/*
613 * Initialize audit information for the first kernel process (proc 0) and for
614 * the first user process (init).
615 */
616void
617audit_cred_kproc0(struct ucred *cred)
618{
619
620	cred->cr_audit.ai_auid = AU_DEFAUDITID;
621	cred->cr_audit.ai_termid.at_type = AU_IPv4;
622}
623
624void
625audit_cred_proc1(struct ucred *cred)
626{
627
628	cred->cr_audit.ai_auid = AU_DEFAUDITID;
629	cred->cr_audit.ai_termid.at_type = AU_IPv4;
630}
631
632void
633audit_thread_alloc(struct thread *td)
634{
635
636	td->td_ar = NULL;
637}
638
639void
640audit_thread_free(struct thread *td)
641{
642
643	KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL"));
644	KASSERT((td->td_pflags & TDP_AUDITREC) == 0,
645	    ("audit_thread_free: TDP_AUDITREC set"));
646}
647
648void
649audit_proc_coredump(struct thread *td, char *path, int errcode)
650{
651	struct kaudit_record *ar;
652	struct au_mask *aumask;
653	struct ucred *cred;
654	au_class_t class;
655	int ret, sorf;
656	char **pathp;
657	au_id_t auid;
658
659	ret = 0;
660
661	/*
662	 * Make sure we are using the correct preselection mask.
663	 */
664	cred = td->td_ucred;
665	auid = cred->cr_audit.ai_auid;
666	if (auid == AU_DEFAUDITID)
667		aumask = &audit_nae_mask;
668	else
669		aumask = &cred->cr_audit.ai_mask;
670	/*
671	 * It's possible for coredump(9) generation to fail.  Make sure that
672	 * we handle this case correctly for preselection.
673	 */
674	if (errcode != 0)
675		sorf = AU_PRS_FAILURE;
676	else
677		sorf = AU_PRS_SUCCESS;
678	class = au_event_class(AUE_CORE);
679	if (au_preselect(AUE_CORE, class, aumask, sorf) == 0 &&
680	    audit_pipe_preselect(auid, AUE_CORE, class, sorf, 0) == 0)
681		return;
682
683	/*
684	 * If we are interested in seeing this audit record, allocate it.
685	 * Where possible coredump records should contain a pathname and arg32
686	 * (signal) tokens.
687	 */
688	ar = audit_new(AUE_CORE, td);
689	if (path != NULL) {
690		pathp = &ar->k_ar.ar_arg_upath1;
691		*pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK);
692		audit_canon_path(td, path, *pathp);
693		ARG_SET_VALID(ar, ARG_UPATH1);
694	}
695	ar->k_ar.ar_arg_signum = td->td_proc->p_sig;
696	ARG_SET_VALID(ar, ARG_SIGNUM);
697	if (errcode != 0)
698		ret = 1;
699	audit_commit(ar, errcode, ret);
700}
701