audit.c revision 184856
1/*-
2 * Copyright (c) 1999-2005 Apple Inc.
3 * Copyright (c) 2006-2007 Robert N. M. Watson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1.  Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 * 2.  Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
15 *     its contributors may be used to endorse or promote products derived
16 *     from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/security/audit/audit.c 184856 2008-11-11 21:57:03Z csjp $");
33
34#include <sys/param.h>
35#include <sys/condvar.h>
36#include <sys/conf.h>
37#include <sys/file.h>
38#include <sys/filedesc.h>
39#include <sys/fcntl.h>
40#include <sys/ipc.h>
41#include <sys/kernel.h>
42#include <sys/kthread.h>
43#include <sys/malloc.h>
44#include <sys/mount.h>
45#include <sys/namei.h>
46#include <sys/priv.h>
47#include <sys/proc.h>
48#include <sys/queue.h>
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51#include <sys/protosw.h>
52#include <sys/domain.h>
53#include <sys/sysctl.h>
54#include <sys/sysproto.h>
55#include <sys/sysent.h>
56#include <sys/systm.h>
57#include <sys/ucred.h>
58#include <sys/uio.h>
59#include <sys/un.h>
60#include <sys/unistd.h>
61#include <sys/vnode.h>
62
63#include <bsm/audit.h>
64#include <bsm/audit_internal.h>
65#include <bsm/audit_kevents.h>
66
67#include <netinet/in.h>
68#include <netinet/in_pcb.h>
69
70#include <security/audit/audit.h>
71#include <security/audit/audit_private.h>
72
73#include <vm/uma.h>
74
75static uma_zone_t	audit_record_zone;
76static MALLOC_DEFINE(M_AUDITCRED, "audit_cred", "Audit cred storage");
77MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage");
78MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage");
79MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage");
80
81SYSCTL_NODE(_security, OID_AUTO, audit, CTLFLAG_RW, 0,
82    "TrustedBSD audit controls");
83
84/*
85 * Audit control settings that are set/read by system calls and are hence
86 * non-static.
87 *
88 * Define the audit control flags.
89 */
90int			audit_enabled;
91int			audit_suspended;
92
93/*
94 * Flags controlling behavior in low storage situations.  Should we panic if
95 * a write fails?  Should we fail stop if we're out of disk space?
96 */
97int			audit_panic_on_write_fail;
98int			audit_fail_stop;
99int			audit_argv;
100int			audit_arge;
101
102/*
103 * Are we currently "failing stop" due to out of disk space?
104 */
105int			audit_in_failure;
106
107/*
108 * Global audit statistics.
109 */
110struct audit_fstat	audit_fstat;
111
112/*
113 * Preselection mask for non-attributable events.
114 */
115struct au_mask		audit_nae_mask;
116
117/*
118 * Mutex to protect global variables shared between various threads and
119 * processes.
120 */
121struct mtx		audit_mtx;
122
123/*
124 * Queue of audit records ready for delivery to disk.  We insert new records
125 * at the tail, and remove records from the head.  Also, a count of the
126 * number of records used for checking queue depth.  In addition, a counter
127 * of records that we have allocated but are not yet in the queue, which is
128 * needed to estimate the total size of the combined set of records
129 * outstanding in the system.
130 */
131struct kaudit_queue	audit_q;
132int			audit_q_len;
133int			audit_pre_q_len;
134
135/*
136 * Audit queue control settings (minimum free, low/high water marks, etc.)
137 */
138struct au_qctrl		audit_qctrl;
139
140/*
141 * Condition variable to signal to the worker that it has work to do: either
142 * new records are in the queue, or a log replacement is taking place.
143 */
144struct cv		audit_worker_cv;
145
146/*
147 * Condition variable to flag when crossing the low watermark, meaning that
148 * threads blocked due to hitting the high watermark can wake up and continue
149 * to commit records.
150 */
151struct cv		audit_watermark_cv;
152
153/*
154 * Condition variable for  auditing threads wait on when in fail-stop mode.
155 * Threads wait on this CV forever (and ever), never seeing the light of day
156 * again.
157 */
158static struct cv	audit_fail_cv;
159
160/*
161 * Kernel audit information.  This will store the current audit address
162 * or host information that the kernel will use when it's generating
163 * audit records.  This data is modified by the A_GET{SET}KAUDIT auditon(2)
164 * command.
165 */
166static struct auditinfo_addr	audit_kinfo;
167static struct rwlock		audit_kinfo_lock;
168
169#define	KINFO_LOCK_INIT()	rw_init(&audit_kinfo_lock, "kernel audit info lock")
170#define	KINFO_RLOCK()		rw_rlock(&audit_kinfo_lock)
171#define	KINFO_WLOCK()		rw_wlock(&audit_kinfo_lock)
172#define	KINFO_RUNLOCK()		rw_runlock(&audit_kinfo_lock)
173#define	KINFO_WUNLOCK()		rw_wunlock(&audit_kinfo_lock)
174
175void
176audit_set_kinfo(struct auditinfo_addr *ak)
177{
178
179	KASSERT(ak->ai_termid.at_type == AU_IPv4 ||
180	    ak->ai_termid.at_type == AU_IPv6,
181	    ("audit_set_kinfo: invalid address type"));
182	KINFO_WLOCK();
183	audit_kinfo = *ak;
184	KINFO_WUNLOCK();
185}
186
187void
188audit_get_kinfo(struct auditinfo_addr *ak)
189{
190
191	KASSERT(audit_kinfo.ai_termid.at_type == AU_IPv4 ||
192	    audit_kinfo.ai_termid.at_type == AU_IPv6,
193	    ("audit_set_kinfo: invalid address type"));
194	KINFO_RLOCK();
195	*ak = audit_kinfo;
196	KINFO_RUNLOCK();
197}
198
199/*
200 * Construct an audit record for the passed thread.
201 */
202static int
203audit_record_ctor(void *mem, int size, void *arg, int flags)
204{
205	struct kaudit_record *ar;
206	struct thread *td;
207
208	KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size"));
209
210	td = arg;
211	ar = mem;
212	bzero(ar, sizeof(*ar));
213	ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC;
214	nanotime(&ar->k_ar.ar_starttime);
215
216	/*
217	 * Export the subject credential.
218	 */
219	cru2x(td->td_ucred, &ar->k_ar.ar_subj_cred);
220	ar->k_ar.ar_subj_ruid = td->td_ucred->cr_ruid;
221	ar->k_ar.ar_subj_rgid = td->td_ucred->cr_rgid;
222	ar->k_ar.ar_subj_egid = td->td_ucred->cr_groups[0];
223	ar->k_ar.ar_subj_auid = td->td_ucred->cr_audit.ai_auid;
224	ar->k_ar.ar_subj_asid = td->td_ucred->cr_audit.ai_asid;
225	ar->k_ar.ar_subj_pid = td->td_proc->p_pid;
226	ar->k_ar.ar_subj_amask = td->td_ucred->cr_audit.ai_mask;
227	ar->k_ar.ar_subj_term_addr = td->td_ucred->cr_audit.ai_termid;
228	return (0);
229}
230
231static void
232audit_record_dtor(void *mem, int size, void *arg)
233{
234	struct kaudit_record *ar;
235
236	KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size"));
237
238	ar = mem;
239	if (ar->k_ar.ar_arg_upath1 != NULL)
240		free(ar->k_ar.ar_arg_upath1, M_AUDITPATH);
241	if (ar->k_ar.ar_arg_upath2 != NULL)
242		free(ar->k_ar.ar_arg_upath2, M_AUDITPATH);
243	if (ar->k_ar.ar_arg_text != NULL)
244		free(ar->k_ar.ar_arg_text, M_AUDITTEXT);
245	if (ar->k_udata != NULL)
246		free(ar->k_udata, M_AUDITDATA);
247	if (ar->k_ar.ar_arg_argv != NULL)
248		free(ar->k_ar.ar_arg_argv, M_AUDITTEXT);
249	if (ar->k_ar.ar_arg_envv != NULL)
250		free(ar->k_ar.ar_arg_envv, M_AUDITTEXT);
251}
252
253/*
254 * Initialize the Audit subsystem: configuration state, work queue,
255 * synchronization primitives, worker thread, and trigger device node.  Also
256 * call into the BSM assembly code to initialize it.
257 */
258static void
259audit_init(void)
260{
261
262	audit_enabled = 0;
263	audit_suspended = 0;
264	audit_panic_on_write_fail = 0;
265	audit_fail_stop = 0;
266	audit_in_failure = 0;
267	audit_argv = 0;
268	audit_arge = 0;
269
270	audit_fstat.af_filesz = 0;	/* '0' means unset, unbounded. */
271	audit_fstat.af_currsz = 0;
272	audit_nae_mask.am_success = 0;
273	audit_nae_mask.am_failure = 0;
274
275	TAILQ_INIT(&audit_q);
276	audit_q_len = 0;
277	audit_pre_q_len = 0;
278	audit_qctrl.aq_hiwater = AQ_HIWATER;
279	audit_qctrl.aq_lowater = AQ_LOWATER;
280	audit_qctrl.aq_bufsz = AQ_BUFSZ;
281	audit_qctrl.aq_minfree = AU_FS_MINFREE;
282
283	audit_kinfo.ai_termid.at_type = AU_IPv4;
284	audit_kinfo.ai_termid.at_addr[0] = INADDR_ANY;
285
286	mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF);
287	KINFO_LOCK_INIT();
288	cv_init(&audit_worker_cv, "audit_worker_cv");
289	cv_init(&audit_watermark_cv, "audit_watermark_cv");
290	cv_init(&audit_fail_cv, "audit_fail_cv");
291
292	audit_record_zone = uma_zcreate("audit_record",
293	    sizeof(struct kaudit_record), audit_record_ctor,
294	    audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
295
296	/* Initialize the BSM audit subsystem. */
297	kau_init();
298
299	audit_trigger_init();
300
301	/* Register shutdown handler. */
302	EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL,
303	    SHUTDOWN_PRI_FIRST);
304
305	/* Start audit worker thread. */
306	audit_worker_init();
307}
308
309SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL);
310
311/*
312 * Drain the audit queue and close the log at shutdown.  Note that this can
313 * be called both from the system shutdown path and also from audit
314 * configuration syscalls, so 'arg' and 'howto' are ignored.
315 *
316 * XXXRW: In FreeBSD 7.x and 8.x, this fails to wait for the record queue to
317 * drain before returning, which could lead to lost records on shutdown.
318 */
319void
320audit_shutdown(void *arg, int howto)
321{
322
323	audit_rotate_vnode(NULL, NULL);
324}
325
326/*
327 * Return the current thread's audit record, if any.
328 */
329struct kaudit_record *
330currecord(void)
331{
332
333	return (curthread->td_ar);
334}
335
336/*
337 * XXXAUDIT: There are a number of races present in the code below due to
338 * release and re-grab of the mutex.  The code should be revised to become
339 * slightly less racy.
340 *
341 * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available
342 * pre_q space, suspending the system call until there is room?
343 */
344struct kaudit_record *
345audit_new(int event, struct thread *td)
346{
347	struct kaudit_record *ar;
348	int no_record;
349
350	mtx_lock(&audit_mtx);
351	no_record = (audit_suspended || !audit_enabled);
352	mtx_unlock(&audit_mtx);
353	if (no_record)
354		return (NULL);
355
356	/*
357	 * Note: the number of outstanding uncommitted audit records is
358	 * limited to the number of concurrent threads servicing system calls
359	 * in the kernel.
360	 */
361	ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK);
362	ar->k_ar.ar_event = event;
363
364	mtx_lock(&audit_mtx);
365	audit_pre_q_len++;
366	mtx_unlock(&audit_mtx);
367
368	return (ar);
369}
370
371void
372audit_free(struct kaudit_record *ar)
373{
374
375	uma_zfree(audit_record_zone, ar);
376}
377
378void
379audit_commit(struct kaudit_record *ar, int error, int retval)
380{
381	au_event_t event;
382	au_class_t class;
383	au_id_t auid;
384	int sorf;
385	struct au_mask *aumask;
386
387	if (ar == NULL)
388		return;
389
390	/*
391	 * Decide whether to commit the audit record by checking the error
392	 * value from the system call and using the appropriate audit mask.
393	 */
394	if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID)
395		aumask = &audit_nae_mask;
396	else
397		aumask = &ar->k_ar.ar_subj_amask;
398
399	if (error)
400		sorf = AU_PRS_FAILURE;
401	else
402		sorf = AU_PRS_SUCCESS;
403
404	switch(ar->k_ar.ar_event) {
405	case AUE_OPEN_RWTC:
406		/*
407		 * The open syscall always writes a AUE_OPEN_RWTC event;
408		 * change it to the proper type of event based on the flags
409		 * and the error value.
410		 */
411		ar->k_ar.ar_event = audit_flags_and_error_to_openevent(
412		    ar->k_ar.ar_arg_fflags, error);
413		break;
414
415	case AUE_SYSCTL:
416		ar->k_ar.ar_event = audit_ctlname_to_sysctlevent(
417		    ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg);
418		break;
419
420	case AUE_AUDITON:
421		/* Convert the auditon() command to an event. */
422		ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd);
423		break;
424	}
425
426	auid = ar->k_ar.ar_subj_auid;
427	event = ar->k_ar.ar_event;
428	class = au_event_class(event);
429
430	ar->k_ar_commit |= AR_COMMIT_KERNEL;
431	if (au_preselect(event, class, aumask, sorf) != 0)
432		ar->k_ar_commit |= AR_PRESELECT_TRAIL;
433	if (audit_pipe_preselect(auid, event, class, sorf,
434	    ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0)
435		ar->k_ar_commit |= AR_PRESELECT_PIPE;
436	if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE |
437	    AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE)) == 0) {
438		mtx_lock(&audit_mtx);
439		audit_pre_q_len--;
440		mtx_unlock(&audit_mtx);
441		audit_free(ar);
442		return;
443	}
444
445	ar->k_ar.ar_errno = error;
446	ar->k_ar.ar_retval = retval;
447	nanotime(&ar->k_ar.ar_endtime);
448
449	/*
450	 * Note: it could be that some records initiated while audit was
451	 * enabled should still be committed?
452	 */
453	mtx_lock(&audit_mtx);
454	if (audit_suspended || !audit_enabled) {
455		audit_pre_q_len--;
456		mtx_unlock(&audit_mtx);
457		audit_free(ar);
458		return;
459	}
460
461	/*
462	 * Constrain the number of committed audit records based on the
463	 * configurable parameter.
464	 */
465	while (audit_q_len >= audit_qctrl.aq_hiwater)
466		cv_wait(&audit_watermark_cv, &audit_mtx);
467
468	TAILQ_INSERT_TAIL(&audit_q, ar, k_q);
469	audit_q_len++;
470	audit_pre_q_len--;
471	cv_signal(&audit_worker_cv);
472	mtx_unlock(&audit_mtx);
473}
474
475/*
476 * audit_syscall_enter() is called on entry to each system call.  It is
477 * responsible for deciding whether or not to audit the call (preselection),
478 * and if so, allocating a per-thread audit record.  audit_new() will fill in
479 * basic thread/credential properties.
480 */
481void
482audit_syscall_enter(unsigned short code, struct thread *td)
483{
484	struct au_mask *aumask;
485	au_class_t class;
486	au_event_t event;
487	au_id_t auid;
488
489	KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL"));
490
491	/*
492	 * In FreeBSD, each ABI has its own system call table, and hence
493	 * mapping of system call codes to audit events.  Convert the code to
494	 * an audit event identifier using the process system call table
495	 * reference.  In Darwin, there's only one, so we use the global
496	 * symbol for the system call table.  No audit record is generated
497	 * for bad system calls, as no operation has been performed.
498	 */
499	if (code >= td->td_proc->p_sysent->sv_size)
500		return;
501
502	event = td->td_proc->p_sysent->sv_table[code].sy_auevent;
503	if (event == AUE_NULL)
504		return;
505
506	/*
507	 * Check which audit mask to use; either the kernel non-attributable
508	 * event mask or the process audit mask.
509	 */
510	auid = td->td_ucred->cr_audit.ai_auid;
511	if (auid == AU_DEFAUDITID)
512		aumask = &audit_nae_mask;
513	else
514		aumask = &td->td_ucred->cr_audit.ai_mask;
515
516	/*
517	 * Allocate an audit record, if preselection allows it, and store in
518	 * the thread for later use.
519	 */
520	class = au_event_class(event);
521	if (au_preselect(event, class, aumask, AU_PRS_BOTH)) {
522		/*
523		 * If we're out of space and need to suspend unprivileged
524		 * processes, do that here rather than trying to allocate
525		 * another audit record.
526		 *
527		 * Note: we might wish to be able to continue here in the
528		 * future, if the system recovers.  That should be possible
529		 * by means of checking the condition in a loop around
530		 * cv_wait().  It might be desirable to reevaluate whether an
531		 * audit record is still required for this event by
532		 * re-calling au_preselect().
533		 */
534		if (audit_in_failure &&
535		    priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) {
536			cv_wait(&audit_fail_cv, &audit_mtx);
537			panic("audit_failing_stop: thread continued");
538		}
539		td->td_ar = audit_new(event, td);
540	} else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0))
541		td->td_ar = audit_new(event, td);
542	else
543		td->td_ar = NULL;
544}
545
546/*
547 * audit_syscall_exit() is called from the return of every system call, or in
548 * the event of exit1(), during the execution of exit1().  It is responsible
549 * for committing the audit record, if any, along with return condition.
550 */
551void
552audit_syscall_exit(int error, struct thread *td)
553{
554	int retval;
555
556	/*
557	 * Commit the audit record as desired; once we pass the record into
558	 * audit_commit(), the memory is owned by the audit subsystem.  The
559	 * return value from the system call is stored on the user thread.
560	 * If there was an error, the return value is set to -1, imitating
561	 * the behavior of the cerror routine.
562	 */
563	if (error)
564		retval = -1;
565	else
566		retval = td->td_retval[0];
567
568	audit_commit(td->td_ar, error, retval);
569	td->td_ar = NULL;
570}
571
572void
573audit_cred_copy(struct ucred *src, struct ucred *dest)
574{
575
576	bcopy(&src->cr_audit, &dest->cr_audit, sizeof(dest->cr_audit));
577}
578
579void
580audit_cred_destroy(struct ucred *cred)
581{
582
583}
584
585void
586audit_cred_init(struct ucred *cred)
587{
588
589	bzero(&cred->cr_audit, sizeof(cred->cr_audit));
590}
591
592/*
593 * Initialize audit information for the first kernel process (proc 0) and for
594 * the first user process (init).
595 */
596void
597audit_cred_kproc0(struct ucred *cred)
598{
599
600	cred->cr_audit.ai_auid = AU_DEFAUDITID;
601	cred->cr_audit.ai_termid.at_type = AU_IPv4;
602}
603
604void
605audit_cred_proc1(struct ucred *cred)
606{
607
608	cred->cr_audit.ai_auid = AU_DEFAUDITID;
609	cred->cr_audit.ai_termid.at_type = AU_IPv4;
610}
611
612void
613audit_thread_alloc(struct thread *td)
614{
615
616	td->td_ar = NULL;
617}
618
619void
620audit_thread_free(struct thread *td)
621{
622
623	KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL"));
624}
625
626void
627audit_proc_coredump(struct thread *td, char *path, int errcode)
628{
629	struct kaudit_record *ar;
630	struct au_mask *aumask;
631	au_class_t class;
632	int ret, sorf;
633	char **pathp;
634	au_id_t auid;
635
636	ret = 0;
637
638	/*
639	 * Make sure we are using the correct preselection mask.
640	 */
641	auid = td->td_ucred->cr_audit.ai_auid;
642	if (auid == AU_DEFAUDITID)
643		aumask = &audit_nae_mask;
644	else
645		aumask = &td->td_ucred->cr_audit.ai_mask;
646	/*
647	 * It's possible for coredump(9) generation to fail.  Make sure that
648	 * we handle this case correctly for preselection.
649	 */
650	if (errcode != 0)
651		sorf = AU_PRS_FAILURE;
652	else
653		sorf = AU_PRS_SUCCESS;
654	class = au_event_class(AUE_CORE);
655	if (au_preselect(AUE_CORE, class, aumask, sorf) == 0 &&
656	    audit_pipe_preselect(auid, AUE_CORE, class, sorf, 0) == 0)
657		return;
658	/*
659	 * If we are interested in seeing this audit record, allocate it.
660	 * Where possible coredump records should contain a pathname and arg32
661	 * (signal) tokens.
662	 */
663	ar = audit_new(AUE_CORE, td);
664	if (path != NULL) {
665		pathp = &ar->k_ar.ar_arg_upath1;
666		*pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK);
667		audit_canon_path(td, path, *pathp);
668		ARG_SET_VALID(ar, ARG_UPATH1);
669	}
670	ar->k_ar.ar_arg_signum = td->td_proc->p_sig;
671	ARG_SET_VALID(ar, ARG_SIGNUM);
672	if (errcode != 0)
673		ret = 1;
674	audit_commit(ar, errcode, ret);
675}
676