1176491Smarcel/*	$NetBSD: fpu_sqrt.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
2176491Smarcel
3176491Smarcel/*
4176491Smarcel * Copyright (c) 1992, 1993
5176491Smarcel *	The Regents of the University of California.  All rights reserved.
6176491Smarcel *
7176491Smarcel * This software was developed by the Computer Systems Engineering group
8176491Smarcel * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9176491Smarcel * contributed to Berkeley.
10176491Smarcel *
11176491Smarcel * All advertising materials mentioning features or use of this software
12176491Smarcel * must display the following acknowledgement:
13176491Smarcel *	This product includes software developed by the University of
14176491Smarcel *	California, Lawrence Berkeley Laboratory.
15176491Smarcel *
16176491Smarcel * Redistribution and use in source and binary forms, with or without
17176491Smarcel * modification, are permitted provided that the following conditions
18176491Smarcel * are met:
19176491Smarcel * 1. Redistributions of source code must retain the above copyright
20176491Smarcel *    notice, this list of conditions and the following disclaimer.
21176491Smarcel * 2. Redistributions in binary form must reproduce the above copyright
22176491Smarcel *    notice, this list of conditions and the following disclaimer in the
23176491Smarcel *    documentation and/or other materials provided with the distribution.
24176491Smarcel * 3. Neither the name of the University nor the names of its contributors
25176491Smarcel *    may be used to endorse or promote products derived from this software
26176491Smarcel *    without specific prior written permission.
27176491Smarcel *
28176491Smarcel * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29176491Smarcel * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30176491Smarcel * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31176491Smarcel * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32176491Smarcel * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33176491Smarcel * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34176491Smarcel * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35176491Smarcel * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36176491Smarcel * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37176491Smarcel * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38176491Smarcel * SUCH DAMAGE.
39176491Smarcel *
40176491Smarcel *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
41176491Smarcel */
42176491Smarcel
43176491Smarcel/*
44176491Smarcel * Perform an FPU square root (return sqrt(x)).
45176491Smarcel */
46176491Smarcel
47176491Smarcel#include <sys/cdefs.h>
48176491Smarcel__FBSDID("$FreeBSD$");
49176491Smarcel
50178030Sgrehan#include <sys/types.h>
51176491Smarcel#include <sys/systm.h>
52176491Smarcel
53176491Smarcel#include <machine/fpu.h>
54176491Smarcel#include <machine/reg.h>
55176491Smarcel
56176491Smarcel#include <powerpc/fpu/fpu_arith.h>
57176491Smarcel#include <powerpc/fpu/fpu_emu.h>
58176491Smarcel
59176491Smarcel/*
60176491Smarcel * Our task is to calculate the square root of a floating point number x0.
61176491Smarcel * This number x normally has the form:
62176491Smarcel *
63176491Smarcel *		    exp
64176491Smarcel *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
65176491Smarcel *
66176491Smarcel * This can be left as it stands, or the mantissa can be doubled and the
67176491Smarcel * exponent decremented:
68176491Smarcel *
69176491Smarcel *			  exp-1
70176491Smarcel *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
71176491Smarcel *
72176491Smarcel * If the exponent `exp' is even, the square root of the number is best
73176491Smarcel * handled using the first form, and is by definition equal to:
74176491Smarcel *
75176491Smarcel *				exp/2
76176491Smarcel *	sqrt(x) = sqrt(mant) * 2
77176491Smarcel *
78176491Smarcel * If exp is odd, on the other hand, it is convenient to use the second
79176491Smarcel * form, giving:
80176491Smarcel *
81176491Smarcel *				    (exp-1)/2
82176491Smarcel *	sqrt(x) = sqrt(2 * mant) * 2
83176491Smarcel *
84176491Smarcel * In the first case, we have
85176491Smarcel *
86176491Smarcel *	1 <= mant < 2
87176491Smarcel *
88176491Smarcel * and therefore
89176491Smarcel *
90176491Smarcel *	sqrt(1) <= sqrt(mant) < sqrt(2)
91176491Smarcel *
92176491Smarcel * while in the second case we have
93176491Smarcel *
94176491Smarcel *	2 <= 2*mant < 4
95176491Smarcel *
96176491Smarcel * and therefore
97176491Smarcel *
98176491Smarcel *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
99176491Smarcel *
100176491Smarcel * so that in any case, we are sure that
101176491Smarcel *
102176491Smarcel *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
103176491Smarcel *
104176491Smarcel * or
105176491Smarcel *
106176491Smarcel *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
107176491Smarcel *
108176491Smarcel * This root is therefore a properly formed mantissa for a floating
109176491Smarcel * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
110176491Smarcel * as above.  This leaves us with the problem of finding the square root
111176491Smarcel * of a fixed-point number in the range [1..4).
112176491Smarcel *
113176491Smarcel * Though it may not be instantly obvious, the following square root
114176491Smarcel * algorithm works for any integer x of an even number of bits, provided
115176491Smarcel * that no overflows occur:
116176491Smarcel *
117176491Smarcel *	let q = 0
118176491Smarcel *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
119176491Smarcel *		x *= 2			-- multiply by radix, for next digit
120176491Smarcel *		if x >= 2q + 2^k then	-- if adding 2^k does not
121176491Smarcel *			x -= 2q + 2^k	-- exceed the correct root,
122176491Smarcel *			q += 2^k	-- add 2^k and adjust x
123176491Smarcel *		fi
124176491Smarcel *	done
125176491Smarcel *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
126176491Smarcel *
127176491Smarcel * If NBITS is odd (so that k is initially even), we can just add another
128176491Smarcel * zero bit at the top of x.  Doing so means that q is not going to acquire
129176491Smarcel * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
130176491Smarcel * final value in x is not needed, or can be off by a factor of 2, this is
131176491Smarcel * equivalant to moving the `x *= 2' step to the bottom of the loop:
132176491Smarcel *
133176491Smarcel *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
134176491Smarcel *
135176491Smarcel * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
136176491Smarcel * (Since the algorithm is destructive on x, we will call x's initial
137176491Smarcel * value, for which q is some power of two times its square root, x0.)
138176491Smarcel *
139176491Smarcel * If we insert a loop invariant y = 2q, we can then rewrite this using
140176491Smarcel * C notation as:
141176491Smarcel *
142176491Smarcel *	q = y = 0; x = x0;
143176491Smarcel *	for (k = NBITS; --k >= 0;) {
144176491Smarcel * #if (NBITS is even)
145176491Smarcel *		x *= 2;
146176491Smarcel * #endif
147176491Smarcel *		t = y + (1 << k);
148176491Smarcel *		if (x >= t) {
149176491Smarcel *			x -= t;
150176491Smarcel *			q += 1 << k;
151176491Smarcel *			y += 1 << (k + 1);
152176491Smarcel *		}
153176491Smarcel * #if (NBITS is odd)
154176491Smarcel *		x *= 2;
155176491Smarcel * #endif
156176491Smarcel *	}
157176491Smarcel *
158176491Smarcel * If x0 is fixed point, rather than an integer, we can simply alter the
159176491Smarcel * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
160176491Smarcel * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
161176491Smarcel *
162176491Smarcel * In our case, however, x0 (and therefore x, y, q, and t) are multiword
163176491Smarcel * integers, which adds some complication.  But note that q is built one
164176491Smarcel * bit at a time, from the top down, and is not used itself in the loop
165176491Smarcel * (we use 2q as held in y instead).  This means we can build our answer
166176491Smarcel * in an integer, one word at a time, which saves a bit of work.  Also,
167176491Smarcel * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
168176491Smarcel * `new' bits in y and we can set them with an `or' operation rather than
169176491Smarcel * a full-blown multiword add.
170176491Smarcel *
171176491Smarcel * We are almost done, except for one snag.  We must prove that none of our
172176491Smarcel * intermediate calculations can overflow.  We know that x0 is in [1..4)
173176491Smarcel * and therefore the square root in q will be in [1..2), but what about x,
174176491Smarcel * y, and t?
175176491Smarcel *
176176491Smarcel * We know that y = 2q at the beginning of each loop.  (The relation only
177176491Smarcel * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
178176491Smarcel * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
179176491Smarcel * Furthermore, we can prove with a bit of work that x never exceeds y by
180176491Smarcel * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
181176491Smarcel * an exercise to the reader, mostly because I have become tired of working
182176491Smarcel * on this comment.)
183176491Smarcel *
184176491Smarcel * If our floating point mantissas (which are of the form 1.frac) occupy
185176491Smarcel * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
186176491Smarcel * In fact, we want even one more bit (for a carry, to avoid compares), or
187176491Smarcel * three extra.  There is a comment in fpu_emu.h reminding maintainers of
188176491Smarcel * this, so we have some justification in assuming it.
189176491Smarcel */
190176491Smarcelstruct fpn *
191176491Smarcelfpu_sqrt(struct fpemu *fe)
192176491Smarcel{
193176491Smarcel	struct fpn *x = &fe->fe_f1;
194176491Smarcel	u_int bit, q, tt;
195176491Smarcel	u_int x0, x1, x2, x3;
196176491Smarcel	u_int y0, y1, y2, y3;
197176491Smarcel	u_int d0, d1, d2, d3;
198176491Smarcel	int e;
199176491Smarcel	FPU_DECL_CARRY;
200176491Smarcel
201176491Smarcel	/*
202176491Smarcel	 * Take care of special cases first.  In order:
203176491Smarcel	 *
204176491Smarcel	 *	sqrt(NaN) = NaN
205176491Smarcel	 *	sqrt(+0) = +0
206176491Smarcel	 *	sqrt(-0) = -0
207176491Smarcel	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
208176491Smarcel	 *	sqrt(+Inf) = +Inf
209176491Smarcel	 *
210176491Smarcel	 * Then all that remains are numbers with mantissas in [1..2).
211176491Smarcel	 */
212176491Smarcel	DPRINTF(FPE_REG, ("fpu_sqer:\n"));
213176491Smarcel	DUMPFPN(FPE_REG, x);
214176491Smarcel	DPRINTF(FPE_REG, ("=>\n"));
215176491Smarcel	if (ISNAN(x)) {
216176491Smarcel		fe->fe_cx |= FPSCR_VXSNAN;
217176491Smarcel		DUMPFPN(FPE_REG, x);
218176491Smarcel		return (x);
219176491Smarcel	}
220176491Smarcel	if (ISZERO(x)) {
221176491Smarcel		fe->fe_cx |= FPSCR_ZX;
222176491Smarcel		x->fp_class = FPC_INF;
223176491Smarcel		DUMPFPN(FPE_REG, x);
224176491Smarcel		return (x);
225176491Smarcel	}
226176491Smarcel	if (x->fp_sign) {
227176491Smarcel		return (fpu_newnan(fe));
228176491Smarcel	}
229176491Smarcel	if (ISINF(x)) {
230176491Smarcel		fe->fe_cx |= FPSCR_VXSQRT;
231176491Smarcel		DUMPFPN(FPE_REG, 0);
232176491Smarcel		return (0);
233176491Smarcel	}
234176491Smarcel
235176491Smarcel	/*
236176491Smarcel	 * Calculate result exponent.  As noted above, this may involve
237176491Smarcel	 * doubling the mantissa.  We will also need to double x each
238176491Smarcel	 * time around the loop, so we define a macro for this here, and
239176491Smarcel	 * we break out the multiword mantissa.
240176491Smarcel	 */
241176491Smarcel#ifdef FPU_SHL1_BY_ADD
242176491Smarcel#define	DOUBLE_X { \
243176491Smarcel	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
244176491Smarcel	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
245176491Smarcel}
246176491Smarcel#else
247176491Smarcel#define	DOUBLE_X { \
248176491Smarcel	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
249176491Smarcel	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
250176491Smarcel}
251176491Smarcel#endif
252176491Smarcel#if (FP_NMANT & 1) != 0
253176491Smarcel# define ODD_DOUBLE	DOUBLE_X
254176491Smarcel# define EVEN_DOUBLE	/* nothing */
255176491Smarcel#else
256176491Smarcel# define ODD_DOUBLE	/* nothing */
257176491Smarcel# define EVEN_DOUBLE	DOUBLE_X
258176491Smarcel#endif
259176491Smarcel	x0 = x->fp_mant[0];
260176491Smarcel	x1 = x->fp_mant[1];
261176491Smarcel	x2 = x->fp_mant[2];
262176491Smarcel	x3 = x->fp_mant[3];
263176491Smarcel	e = x->fp_exp;
264176491Smarcel	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
265176491Smarcel		DOUBLE_X;
266176491Smarcel	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
267176491Smarcel	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
268176491Smarcel
269176491Smarcel	/*
270176491Smarcel	 * Now calculate the mantissa root.  Since x is now in [1..4),
271176491Smarcel	 * we know that the first trip around the loop will definitely
272176491Smarcel	 * set the top bit in q, so we can do that manually and start
273176491Smarcel	 * the loop at the next bit down instead.  We must be sure to
274176491Smarcel	 * double x correctly while doing the `known q=1.0'.
275176491Smarcel	 *
276176491Smarcel	 * We do this one mantissa-word at a time, as noted above, to
277261455Seadler	 * save work.  To avoid `(1U << 31) << 1', we also do the top bit
278176491Smarcel	 * outside of each per-word loop.
279176491Smarcel	 *
280176491Smarcel	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
281176491Smarcel	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
282176491Smarcel	 * is always a `new' one, this means that three of the `t?'s are
283176491Smarcel	 * just the corresponding `y?'; we use `#define's here for this.
284176491Smarcel	 * The variable `tt' holds the actual `t?' variable.
285176491Smarcel	 */
286176491Smarcel
287176491Smarcel	/* calculate q0 */
288176491Smarcel#define	t0 tt
289176491Smarcel	bit = FP_1;
290176491Smarcel	EVEN_DOUBLE;
291176491Smarcel	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
292176491Smarcel		q = bit;
293176491Smarcel		x0 -= bit;
294176491Smarcel		y0 = bit << 1;
295176491Smarcel	/* } */
296176491Smarcel	ODD_DOUBLE;
297176491Smarcel	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
298176491Smarcel		EVEN_DOUBLE;
299176491Smarcel		t0 = y0 | bit;		/* t = y + bit */
300176491Smarcel		if (x0 >= t0) {		/* if x >= t then */
301176491Smarcel			x0 -= t0;	/*	x -= t */
302176491Smarcel			q |= bit;	/*	q += bit */
303176491Smarcel			y0 |= bit << 1;	/*	y += bit << 1 */
304176491Smarcel		}
305176491Smarcel		ODD_DOUBLE;
306176491Smarcel	}
307176491Smarcel	x->fp_mant[0] = q;
308176491Smarcel#undef t0
309176491Smarcel
310176491Smarcel	/* calculate q1.  note (y0&1)==0. */
311176491Smarcel#define t0 y0
312176491Smarcel#define t1 tt
313176491Smarcel	q = 0;
314176491Smarcel	y1 = 0;
315176491Smarcel	bit = 1 << 31;
316176491Smarcel	EVEN_DOUBLE;
317176491Smarcel	t1 = bit;
318176491Smarcel	FPU_SUBS(d1, x1, t1);
319176491Smarcel	FPU_SUBC(d0, x0, t0);		/* d = x - t */
320176491Smarcel	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
321176491Smarcel		x0 = d0, x1 = d1;	/*	x -= t */
322176491Smarcel		q = bit;		/*	q += bit */
323176491Smarcel		y0 |= 1;		/*	y += bit << 1 */
324176491Smarcel	}
325176491Smarcel	ODD_DOUBLE;
326176491Smarcel	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
327176491Smarcel		EVEN_DOUBLE;		/* as before */
328176491Smarcel		t1 = y1 | bit;
329176491Smarcel		FPU_SUBS(d1, x1, t1);
330176491Smarcel		FPU_SUBC(d0, x0, t0);
331176491Smarcel		if ((int)d0 >= 0) {
332176491Smarcel			x0 = d0, x1 = d1;
333176491Smarcel			q |= bit;
334176491Smarcel			y1 |= bit << 1;
335176491Smarcel		}
336176491Smarcel		ODD_DOUBLE;
337176491Smarcel	}
338176491Smarcel	x->fp_mant[1] = q;
339176491Smarcel#undef t1
340176491Smarcel
341176491Smarcel	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
342176491Smarcel#define t1 y1
343176491Smarcel#define t2 tt
344176491Smarcel	q = 0;
345176491Smarcel	y2 = 0;
346176491Smarcel	bit = 1 << 31;
347176491Smarcel	EVEN_DOUBLE;
348176491Smarcel	t2 = bit;
349176491Smarcel	FPU_SUBS(d2, x2, t2);
350176491Smarcel	FPU_SUBCS(d1, x1, t1);
351176491Smarcel	FPU_SUBC(d0, x0, t0);
352176491Smarcel	if ((int)d0 >= 0) {
353176491Smarcel		x0 = d0, x1 = d1, x2 = d2;
354176491Smarcel		q |= bit;
355176491Smarcel		y1 |= 1;		/* now t1, y1 are set in concrete */
356176491Smarcel	}
357176491Smarcel	ODD_DOUBLE;
358176491Smarcel	while ((bit >>= 1) != 0) {
359176491Smarcel		EVEN_DOUBLE;
360176491Smarcel		t2 = y2 | bit;
361176491Smarcel		FPU_SUBS(d2, x2, t2);
362176491Smarcel		FPU_SUBCS(d1, x1, t1);
363176491Smarcel		FPU_SUBC(d0, x0, t0);
364176491Smarcel		if ((int)d0 >= 0) {
365176491Smarcel			x0 = d0, x1 = d1, x2 = d2;
366176491Smarcel			q |= bit;
367176491Smarcel			y2 |= bit << 1;
368176491Smarcel		}
369176491Smarcel		ODD_DOUBLE;
370176491Smarcel	}
371176491Smarcel	x->fp_mant[2] = q;
372176491Smarcel#undef t2
373176491Smarcel
374176491Smarcel	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
375176491Smarcel#define t2 y2
376176491Smarcel#define t3 tt
377176491Smarcel	q = 0;
378176491Smarcel	y3 = 0;
379176491Smarcel	bit = 1 << 31;
380176491Smarcel	EVEN_DOUBLE;
381176491Smarcel	t3 = bit;
382176491Smarcel	FPU_SUBS(d3, x3, t3);
383176491Smarcel	FPU_SUBCS(d2, x2, t2);
384176491Smarcel	FPU_SUBCS(d1, x1, t1);
385176491Smarcel	FPU_SUBC(d0, x0, t0);
386176491Smarcel	ODD_DOUBLE;
387176491Smarcel	if ((int)d0 >= 0) {
388176491Smarcel		x0 = d0, x1 = d1, x2 = d2;
389176491Smarcel		q |= bit;
390176491Smarcel		y2 |= 1;
391176491Smarcel	}
392176491Smarcel	while ((bit >>= 1) != 0) {
393176491Smarcel		EVEN_DOUBLE;
394176491Smarcel		t3 = y3 | bit;
395176491Smarcel		FPU_SUBS(d3, x3, t3);
396176491Smarcel		FPU_SUBCS(d2, x2, t2);
397176491Smarcel		FPU_SUBCS(d1, x1, t1);
398176491Smarcel		FPU_SUBC(d0, x0, t0);
399176491Smarcel		if ((int)d0 >= 0) {
400176491Smarcel			x0 = d0, x1 = d1, x2 = d2;
401176491Smarcel			q |= bit;
402176491Smarcel			y3 |= bit << 1;
403176491Smarcel		}
404176491Smarcel		ODD_DOUBLE;
405176491Smarcel	}
406176491Smarcel	x->fp_mant[3] = q;
407176491Smarcel
408176491Smarcel	/*
409176491Smarcel	 * The result, which includes guard and round bits, is exact iff
410176491Smarcel	 * x is now zero; any nonzero bits in x represent sticky bits.
411176491Smarcel	 */
412176491Smarcel	x->fp_sticky = x0 | x1 | x2 | x3;
413176491Smarcel	DUMPFPN(FPE_REG, x);
414176491Smarcel	return (x);
415176491Smarcel}
416