kern_clock.c revision 48887
1/*-
2 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
3 * Copyright (c) 1982, 1986, 1991, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 * (c) UNIX System Laboratories, Inc.
6 * All or some portions of this file are derived from material licensed
7 * to the University of California by American Telephone and Telegraph
8 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
9 * the permission of UNIX System Laboratories, Inc.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
40 * $Id: kern_clock.c,v 1.95 1999/07/18 01:35:26 jdp Exp $
41 */
42
43#include "opt_ntp.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/dkstat.h>
48#include <sys/callout.h>
49#include <sys/kernel.h>
50#include <sys/proc.h>
51#include <sys/malloc.h>
52#include <sys/resourcevar.h>
53#include <sys/signalvar.h>
54#include <sys/timex.h>
55#include <sys/timepps.h>
56#include <vm/vm.h>
57#include <sys/lock.h>
58#include <vm/pmap.h>
59#include <vm/vm_map.h>
60#include <sys/sysctl.h>
61
62#include <machine/cpu.h>
63#include <machine/limits.h>
64
65#ifdef GPROF
66#include <sys/gmon.h>
67#endif
68
69#if defined(SMP) && defined(BETTER_CLOCK)
70#include <machine/smp.h>
71#endif
72
73/*
74 * Number of timecounters used to implement stable storage
75 */
76#ifndef NTIMECOUNTER
77#define NTIMECOUNTER	5
78#endif
79
80static MALLOC_DEFINE(M_TIMECOUNTER, "timecounter",
81	"Timecounter stable storage");
82
83static void initclocks __P((void *dummy));
84SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
85
86static void tco_forward __P((int force));
87static void tco_setscales __P((struct timecounter *tc));
88static __inline unsigned tco_delta __P((struct timecounter *tc));
89
90/* Some of these don't belong here, but it's easiest to concentrate them. */
91#if defined(SMP) && defined(BETTER_CLOCK)
92long cp_time[CPUSTATES];
93#else
94static long cp_time[CPUSTATES];
95#endif
96
97long tk_cancc;
98long tk_nin;
99long tk_nout;
100long tk_rawcc;
101
102time_t time_second;
103
104/*
105 * Which update policy to use.
106 *   0 - every tick, bad hardware may fail with "calcru negative..."
107 *   1 - more resistent to the above hardware, but less efficient.
108 */
109static int tco_method;
110
111/*
112 * Implement a dummy timecounter which we can use until we get a real one
113 * in the air.  This allows the console and other early stuff to use
114 * timeservices.
115 */
116
117static unsigned
118dummy_get_timecount(struct timecounter *tc)
119{
120	static unsigned now;
121	return (++now);
122}
123
124static struct timecounter dummy_timecounter = {
125	dummy_get_timecount,
126	0,
127	~0u,
128	1000000,
129	"dummy"
130};
131
132struct timecounter *timecounter = &dummy_timecounter;
133
134/*
135 * Clock handling routines.
136 *
137 * This code is written to operate with two timers that run independently of
138 * each other.
139 *
140 * The main timer, running hz times per second, is used to trigger interval
141 * timers, timeouts and rescheduling as needed.
142 *
143 * The second timer handles kernel and user profiling,
144 * and does resource use estimation.  If the second timer is programmable,
145 * it is randomized to avoid aliasing between the two clocks.  For example,
146 * the randomization prevents an adversary from always giving up the cpu
147 * just before its quantum expires.  Otherwise, it would never accumulate
148 * cpu ticks.  The mean frequency of the second timer is stathz.
149 *
150 * If no second timer exists, stathz will be zero; in this case we drive
151 * profiling and statistics off the main clock.  This WILL NOT be accurate;
152 * do not do it unless absolutely necessary.
153 *
154 * The statistics clock may (or may not) be run at a higher rate while
155 * profiling.  This profile clock runs at profhz.  We require that profhz
156 * be an integral multiple of stathz.
157 *
158 * If the statistics clock is running fast, it must be divided by the ratio
159 * profhz/stathz for statistics.  (For profiling, every tick counts.)
160 *
161 * Time-of-day is maintained using a "timecounter", which may or may
162 * not be related to the hardware generating the above mentioned
163 * interrupts.
164 */
165
166int	stathz;
167int	profhz;
168static int profprocs;
169int	ticks;
170static int psdiv, pscnt;		/* prof => stat divider */
171int	psratio;			/* ratio: prof / stat */
172
173/*
174 * Initialize clock frequencies and start both clocks running.
175 */
176/* ARGSUSED*/
177static void
178initclocks(dummy)
179	void *dummy;
180{
181	register int i;
182
183	/*
184	 * Set divisors to 1 (normal case) and let the machine-specific
185	 * code do its bit.
186	 */
187	psdiv = pscnt = 1;
188	cpu_initclocks();
189
190	/*
191	 * Compute profhz/stathz, and fix profhz if needed.
192	 */
193	i = stathz ? stathz : hz;
194	if (profhz == 0)
195		profhz = i;
196	psratio = profhz / i;
197}
198
199/*
200 * The real-time timer, interrupting hz times per second.
201 */
202void
203hardclock(frame)
204	register struct clockframe *frame;
205{
206	register struct proc *p;
207
208	p = curproc;
209	if (p) {
210		register struct pstats *pstats;
211
212		/*
213		 * Run current process's virtual and profile time, as needed.
214		 */
215		pstats = p->p_stats;
216		if (CLKF_USERMODE(frame) &&
217		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
218		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
219			psignal(p, SIGVTALRM);
220		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
221		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
222			psignal(p, SIGPROF);
223	}
224
225#if defined(SMP) && defined(BETTER_CLOCK)
226	forward_hardclock(pscnt);
227#endif
228
229	/*
230	 * If no separate statistics clock is available, run it from here.
231	 */
232	if (stathz == 0)
233		statclock(frame);
234
235	tco_forward(0);
236	ticks++;
237
238	/*
239	 * Process callouts at a very low cpu priority, so we don't keep the
240	 * relatively high clock interrupt priority any longer than necessary.
241	 */
242	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
243		if (CLKF_BASEPRI(frame)) {
244			/*
245			 * Save the overhead of a software interrupt;
246			 * it will happen as soon as we return, so do it now.
247			 */
248			(void)splsoftclock();
249			softclock();
250		} else
251			setsoftclock();
252	} else if (softticks + 1 == ticks)
253		++softticks;
254}
255
256/*
257 * Compute number of ticks in the specified amount of time.
258 */
259int
260tvtohz(tv)
261	struct timeval *tv;
262{
263	register unsigned long ticks;
264	register long sec, usec;
265
266	/*
267	 * If the number of usecs in the whole seconds part of the time
268	 * difference fits in a long, then the total number of usecs will
269	 * fit in an unsigned long.  Compute the total and convert it to
270	 * ticks, rounding up and adding 1 to allow for the current tick
271	 * to expire.  Rounding also depends on unsigned long arithmetic
272	 * to avoid overflow.
273	 *
274	 * Otherwise, if the number of ticks in the whole seconds part of
275	 * the time difference fits in a long, then convert the parts to
276	 * ticks separately and add, using similar rounding methods and
277	 * overflow avoidance.  This method would work in the previous
278	 * case but it is slightly slower and assumes that hz is integral.
279	 *
280	 * Otherwise, round the time difference down to the maximum
281	 * representable value.
282	 *
283	 * If ints have 32 bits, then the maximum value for any timeout in
284	 * 10ms ticks is 248 days.
285	 */
286	sec = tv->tv_sec;
287	usec = tv->tv_usec;
288	if (usec < 0) {
289		sec--;
290		usec += 1000000;
291	}
292	if (sec < 0) {
293#ifdef DIAGNOSTIC
294		if (usec > 0) {
295			sec++;
296			usec -= 1000000;
297		}
298		printf("tvotohz: negative time difference %ld sec %ld usec\n",
299		       sec, usec);
300#endif
301		ticks = 1;
302	} else if (sec <= LONG_MAX / 1000000)
303		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
304			/ tick + 1;
305	else if (sec <= LONG_MAX / hz)
306		ticks = sec * hz
307			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
308	else
309		ticks = LONG_MAX;
310	if (ticks > INT_MAX)
311		ticks = INT_MAX;
312	return ((int)ticks);
313}
314
315/*
316 * Start profiling on a process.
317 *
318 * Kernel profiling passes proc0 which never exits and hence
319 * keeps the profile clock running constantly.
320 */
321void
322startprofclock(p)
323	register struct proc *p;
324{
325	int s;
326
327	if ((p->p_flag & P_PROFIL) == 0) {
328		p->p_flag |= P_PROFIL;
329		if (++profprocs == 1 && stathz != 0) {
330			s = splstatclock();
331			psdiv = pscnt = psratio;
332			setstatclockrate(profhz);
333			splx(s);
334		}
335	}
336}
337
338/*
339 * Stop profiling on a process.
340 */
341void
342stopprofclock(p)
343	register struct proc *p;
344{
345	int s;
346
347	if (p->p_flag & P_PROFIL) {
348		p->p_flag &= ~P_PROFIL;
349		if (--profprocs == 0 && stathz != 0) {
350			s = splstatclock();
351			psdiv = pscnt = 1;
352			setstatclockrate(stathz);
353			splx(s);
354		}
355	}
356}
357
358/*
359 * Statistics clock.  Grab profile sample, and if divider reaches 0,
360 * do process and kernel statistics.
361 */
362void
363statclock(frame)
364	register struct clockframe *frame;
365{
366#ifdef GPROF
367	register struct gmonparam *g;
368	int i;
369#endif
370	register struct proc *p;
371	struct pstats *pstats;
372	long rss;
373	struct rusage *ru;
374	struct vmspace *vm;
375
376	if (curproc != NULL && CLKF_USERMODE(frame)) {
377		p = curproc;
378		if (p->p_flag & P_PROFIL)
379			addupc_intr(p, CLKF_PC(frame), 1);
380#if defined(SMP) && defined(BETTER_CLOCK)
381		if (stathz != 0)
382			forward_statclock(pscnt);
383#endif
384		if (--pscnt > 0)
385			return;
386		/*
387		 * Came from user mode; CPU was in user state.
388		 * If this process is being profiled record the tick.
389		 */
390		p->p_uticks++;
391		if (p->p_nice > NZERO)
392			cp_time[CP_NICE]++;
393		else
394			cp_time[CP_USER]++;
395	} else {
396#ifdef GPROF
397		/*
398		 * Kernel statistics are just like addupc_intr, only easier.
399		 */
400		g = &_gmonparam;
401		if (g->state == GMON_PROF_ON) {
402			i = CLKF_PC(frame) - g->lowpc;
403			if (i < g->textsize) {
404				i /= HISTFRACTION * sizeof(*g->kcount);
405				g->kcount[i]++;
406			}
407		}
408#endif
409#if defined(SMP) && defined(BETTER_CLOCK)
410		if (stathz != 0)
411			forward_statclock(pscnt);
412#endif
413		if (--pscnt > 0)
414			return;
415		/*
416		 * Came from kernel mode, so we were:
417		 * - handling an interrupt,
418		 * - doing syscall or trap work on behalf of the current
419		 *   user process, or
420		 * - spinning in the idle loop.
421		 * Whichever it is, charge the time as appropriate.
422		 * Note that we charge interrupts to the current process,
423		 * regardless of whether they are ``for'' that process,
424		 * so that we know how much of its real time was spent
425		 * in ``non-process'' (i.e., interrupt) work.
426		 */
427		p = curproc;
428		if (CLKF_INTR(frame)) {
429			if (p != NULL)
430				p->p_iticks++;
431			cp_time[CP_INTR]++;
432		} else if (p != NULL) {
433			p->p_sticks++;
434			cp_time[CP_SYS]++;
435		} else
436			cp_time[CP_IDLE]++;
437	}
438	pscnt = psdiv;
439
440	/*
441	 * We maintain statistics shown by user-level statistics
442	 * programs:  the amount of time in each cpu state.
443	 */
444
445	/*
446	 * We adjust the priority of the current process.  The priority of
447	 * a process gets worse as it accumulates CPU time.  The cpu usage
448	 * estimator (p_estcpu) is increased here.  The formula for computing
449	 * priorities (in kern_synch.c) will compute a different value each
450	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
451	 * quite quickly when the process is running (linearly), and decays
452	 * away exponentially, at a rate which is proportionally slower when
453	 * the system is busy.  The basic principal is that the system will
454	 * 90% forget that the process used a lot of CPU time in 5 * loadav
455	 * seconds.  This causes the system to favor processes which haven't
456	 * run much recently, and to round-robin among other processes.
457	 */
458	if (p != NULL) {
459		p->p_cpticks++;
460		if (++p->p_estcpu == 0)
461			p->p_estcpu--;
462		if ((p->p_estcpu & 3) == 0) {
463			resetpriority(p);
464			if (p->p_priority >= PUSER)
465				p->p_priority = p->p_usrpri;
466		}
467
468		/* Update resource usage integrals and maximums. */
469		if ((pstats = p->p_stats) != NULL &&
470		    (ru = &pstats->p_ru) != NULL &&
471		    (vm = p->p_vmspace) != NULL) {
472			ru->ru_ixrss += pgtok(vm->vm_tsize);
473			ru->ru_idrss += pgtok(vm->vm_dsize);
474			ru->ru_isrss += pgtok(vm->vm_ssize);
475			rss = pgtok(vmspace_resident_count(vm));
476			if (ru->ru_maxrss < rss)
477				ru->ru_maxrss = rss;
478        	}
479	}
480}
481
482/*
483 * Return information about system clocks.
484 */
485static int
486sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
487{
488	struct clockinfo clkinfo;
489	/*
490	 * Construct clockinfo structure.
491	 */
492	clkinfo.hz = hz;
493	clkinfo.tick = tick;
494	clkinfo.tickadj = tickadj;
495	clkinfo.profhz = profhz;
496	clkinfo.stathz = stathz ? stathz : hz;
497	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
498}
499
500SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
501	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
502
503static __inline unsigned
504tco_delta(struct timecounter *tc)
505{
506
507	return ((tc->tc_get_timecount(tc) - tc->tc_offset_count) &
508	    tc->tc_counter_mask);
509}
510
511/*
512 * We have eight functions for looking at the clock, four for
513 * microseconds and four for nanoseconds.  For each there is fast
514 * but less precise version "get{nano|micro}[up]time" which will
515 * return a time which is up to 1/HZ previous to the call, whereas
516 * the raw version "{nano|micro}[up]time" will return a timestamp
517 * which is as precise as possible.  The "up" variants return the
518 * time relative to system boot, these are well suited for time
519 * interval measurements.
520 */
521
522void
523getmicrotime(struct timeval *tvp)
524{
525	struct timecounter *tc;
526
527	if (!tco_method) {
528		tc = timecounter;
529		*tvp = tc->tc_microtime;
530	} else {
531		microtime(tvp);
532	}
533}
534
535void
536getnanotime(struct timespec *tsp)
537{
538	struct timecounter *tc;
539
540	if (!tco_method) {
541		tc = timecounter;
542		*tsp = tc->tc_nanotime;
543	} else {
544		nanotime(tsp);
545	}
546}
547
548void
549microtime(struct timeval *tv)
550{
551	struct timecounter *tc;
552
553	tc = timecounter;
554	tv->tv_sec = tc->tc_offset_sec;
555	tv->tv_usec = tc->tc_offset_micro;
556	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
557	tv->tv_usec += boottime.tv_usec;
558	tv->tv_sec += boottime.tv_sec;
559	while (tv->tv_usec >= 1000000) {
560		tv->tv_usec -= 1000000;
561		tv->tv_sec++;
562	}
563}
564
565void
566nanotime(struct timespec *ts)
567{
568	unsigned count;
569	u_int64_t delta;
570	struct timecounter *tc;
571
572	tc = timecounter;
573	ts->tv_sec = tc->tc_offset_sec;
574	count = tco_delta(tc);
575	delta = tc->tc_offset_nano;
576	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
577	delta >>= 32;
578	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
579	delta += boottime.tv_usec * 1000;
580	ts->tv_sec += boottime.tv_sec;
581	while (delta >= 1000000000) {
582		delta -= 1000000000;
583		ts->tv_sec++;
584	}
585	ts->tv_nsec = delta;
586}
587
588void
589getmicrouptime(struct timeval *tvp)
590{
591	struct timecounter *tc;
592
593	if (!tco_method) {
594		tc = timecounter;
595		tvp->tv_sec = tc->tc_offset_sec;
596		tvp->tv_usec = tc->tc_offset_micro;
597	} else {
598		microuptime(tvp);
599	}
600}
601
602void
603getnanouptime(struct timespec *tsp)
604{
605	struct timecounter *tc;
606
607	if (!tco_method) {
608		tc = timecounter;
609		tsp->tv_sec = tc->tc_offset_sec;
610		tsp->tv_nsec = tc->tc_offset_nano >> 32;
611	} else {
612		nanouptime(tsp);
613	}
614}
615
616void
617microuptime(struct timeval *tv)
618{
619	struct timecounter *tc;
620
621	tc = timecounter;
622	tv->tv_sec = tc->tc_offset_sec;
623	tv->tv_usec = tc->tc_offset_micro;
624	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
625	if (tv->tv_usec >= 1000000) {
626		tv->tv_usec -= 1000000;
627		tv->tv_sec++;
628	}
629}
630
631void
632nanouptime(struct timespec *ts)
633{
634	unsigned count;
635	u_int64_t delta;
636	struct timecounter *tc;
637
638	tc = timecounter;
639	ts->tv_sec = tc->tc_offset_sec;
640	count = tco_delta(tc);
641	delta = tc->tc_offset_nano;
642	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
643	delta >>= 32;
644	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
645	if (delta >= 1000000000) {
646		delta -= 1000000000;
647		ts->tv_sec++;
648	}
649	ts->tv_nsec = delta;
650}
651
652static void
653tco_setscales(struct timecounter *tc)
654{
655	u_int64_t scale;
656
657	scale = 1000000000LL << 32;
658	scale += tc->tc_adjustment;
659	scale /= tc->tc_tweak->tc_frequency;
660	tc->tc_scale_micro = scale / 1000;
661	tc->tc_scale_nano_f = scale & 0xffffffff;
662	tc->tc_scale_nano_i = scale >> 32;
663}
664
665void
666update_timecounter(struct timecounter *tc)
667{
668	tco_setscales(tc);
669}
670
671void
672init_timecounter(struct timecounter *tc)
673{
674	struct timespec ts1;
675	struct timecounter *t1, *t2, *t3;
676	int i;
677
678	tc->tc_adjustment = 0;
679	tc->tc_tweak = tc;
680	tco_setscales(tc);
681	tc->tc_offset_count = tc->tc_get_timecount(tc);
682	if (timecounter == &dummy_timecounter)
683		tc->tc_avail = tc;
684	else {
685		tc->tc_avail = timecounter->tc_tweak->tc_avail;
686		timecounter->tc_tweak->tc_avail = tc;
687	}
688	MALLOC(t1, struct timecounter *, sizeof *t1, M_TIMECOUNTER, M_WAITOK);
689	tc->tc_other = t1;
690	*t1 = *tc;
691	t2 = t1;
692	for (i = 1; i < NTIMECOUNTER; i++) {
693		MALLOC(t3, struct timecounter *, sizeof *t3,
694		    M_TIMECOUNTER, M_WAITOK);
695		*t3 = *tc;
696		t3->tc_other = t2;
697		t2 = t3;
698	}
699	t1->tc_other = t3;
700	tc = t1;
701
702	printf("Timecounter \"%s\"  frequency %lu Hz\n",
703	    tc->tc_name, (u_long)tc->tc_frequency);
704
705	/* XXX: For now always start using the counter. */
706	tc->tc_offset_count = tc->tc_get_timecount(tc);
707	nanouptime(&ts1);
708	tc->tc_offset_nano = (u_int64_t)ts1.tv_nsec << 32;
709	tc->tc_offset_micro = ts1.tv_nsec / 1000;
710	tc->tc_offset_sec = ts1.tv_sec;
711	timecounter = tc;
712}
713
714void
715set_timecounter(struct timespec *ts)
716{
717	struct timespec ts2;
718
719	nanouptime(&ts2);
720	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
721	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
722	if (boottime.tv_usec < 0) {
723		boottime.tv_usec += 1000000;
724		boottime.tv_sec--;
725	}
726	/* fiddle all the little crinkly bits around the fiords... */
727	tco_forward(1);
728}
729
730static void
731switch_timecounter(struct timecounter *newtc)
732{
733	int s;
734	struct timecounter *tc;
735	struct timespec ts;
736
737	s = splclock();
738	tc = timecounter;
739	if (newtc->tc_tweak == tc->tc_tweak) {
740		splx(s);
741		return;
742	}
743	newtc = newtc->tc_tweak->tc_other;
744	nanouptime(&ts);
745	newtc->tc_offset_sec = ts.tv_sec;
746	newtc->tc_offset_nano = (u_int64_t)ts.tv_nsec << 32;
747	newtc->tc_offset_micro = ts.tv_nsec / 1000;
748	newtc->tc_offset_count = newtc->tc_get_timecount(newtc);
749	tco_setscales(newtc);
750	timecounter = newtc;
751	splx(s);
752}
753
754static struct timecounter *
755sync_other_counter(void)
756{
757	struct timecounter *tc, *tcn, *tco;
758	unsigned delta;
759
760	tco = timecounter;
761	tc = tco->tc_other;
762	tcn = tc->tc_other;
763	*tc = *tco;
764	tc->tc_other = tcn;
765	delta = tco_delta(tc);
766	tc->tc_offset_count += delta;
767	tc->tc_offset_count &= tc->tc_counter_mask;
768	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_f;
769	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_i << 32;
770	return (tc);
771}
772
773static void
774tco_forward(int force)
775{
776	struct timecounter *tc, *tco;
777
778	tco = timecounter;
779	tc = sync_other_counter();
780	/*
781	 * We may be inducing a tiny error here, the tc_poll_pps() may
782	 * process a latched count which happens after the tco_delta()
783	 * in sync_other_counter(), which would extend the previous
784	 * counters parameters into the domain of this new one.
785	 * Since the timewindow is very small for this, the error is
786	 * going to be only a few weenieseconds (as Dave Mills would
787	 * say), so lets just not talk more about it, OK ?
788	 */
789	if (tco->tc_poll_pps)
790		tco->tc_poll_pps(tco);
791	if (timedelta != 0) {
792		tc->tc_offset_nano += (u_int64_t)(tickdelta * 1000) << 32;
793		timedelta -= tickdelta;
794		force++;
795	}
796
797	while (tc->tc_offset_nano >= 1000000000ULL << 32) {
798		tc->tc_offset_nano -= 1000000000ULL << 32;
799		tc->tc_offset_sec++;
800		ntp_update_second(tc);	/* XXX only needed if xntpd runs */
801		tco_setscales(tc);
802		force++;
803	}
804
805	if (tco_method && !force)
806		return;
807
808	tc->tc_offset_micro = (tc->tc_offset_nano / 1000) >> 32;
809
810	/* Figure out the wall-clock time */
811	tc->tc_nanotime.tv_sec = tc->tc_offset_sec + boottime.tv_sec;
812	tc->tc_nanotime.tv_nsec =
813	    (tc->tc_offset_nano >> 32) + boottime.tv_usec * 1000;
814	tc->tc_microtime.tv_usec = tc->tc_offset_micro + boottime.tv_usec;
815	if (tc->tc_nanotime.tv_nsec >= 1000000000) {
816		tc->tc_nanotime.tv_nsec -= 1000000000;
817		tc->tc_microtime.tv_usec -= 1000000;
818		tc->tc_nanotime.tv_sec++;
819	}
820	time_second = tc->tc_microtime.tv_sec = tc->tc_nanotime.tv_sec;
821
822	timecounter = tc;
823}
824
825SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
826
827SYSCTL_INT(_kern_timecounter, OID_AUTO, method, CTLFLAG_RW, &tco_method, 0,
828    "This variable determines the method used for updating timecounters. "
829    "If the default algorithm (0) fails with \"calcru negative...\" messages "
830    "try the alternate algorithm (1) which handles bad hardware better."
831
832);
833
834static int
835sysctl_kern_timecounter_hardware SYSCTL_HANDLER_ARGS
836{
837	char newname[32];
838	struct timecounter *newtc, *tc;
839	int error;
840
841	tc = timecounter->tc_tweak;
842	strncpy(newname, tc->tc_name, sizeof(newname));
843	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
844	if (error == 0 && req->newptr != NULL &&
845	    strcmp(newname, tc->tc_name) != 0) {
846		for (newtc = tc->tc_avail; newtc != tc; newtc = tc->tc_avail) {
847			if (strcmp(newname, newtc->tc_name) == 0) {
848				/* Warm up new timecounter. */
849				(void)newtc->tc_get_timecount(newtc);
850
851				switch_timecounter(newtc);
852				return (0);
853			}
854		}
855		return (EINVAL);
856	}
857	return (error);
858}
859
860SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
861    0, 0, sysctl_kern_timecounter_hardware, "A", "");
862
863
864int
865pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
866{
867        pps_params_t *app;
868        pps_info_t *api;
869
870        switch (cmd) {
871        case PPS_IOC_CREATE:
872                return (0);
873        case PPS_IOC_DESTROY:
874                return (0);
875        case PPS_IOC_SETPARAMS:
876                app = (pps_params_t *)data;
877                if (app->mode & ~pps->ppscap)
878                        return (EINVAL);
879                pps->ppsparam = *app;
880                return (0);
881        case PPS_IOC_GETPARAMS:
882                app = (pps_params_t *)data;
883                *app = pps->ppsparam;
884                return (0);
885        case PPS_IOC_GETCAP:
886                *(int*)data = pps->ppscap;
887                return (0);
888        case PPS_IOC_FETCH:
889                api = (pps_info_t *)data;
890                pps->ppsinfo.current_mode = pps->ppsparam.mode;
891                *api = pps->ppsinfo;
892                return (0);
893        case PPS_IOC_WAIT:
894                return (EOPNOTSUPP);
895        default:
896                return (ENOTTY);
897        }
898}
899
900void
901pps_init(struct pps_state *pps)
902{
903	pps->ppscap |= PPS_TSFMT_TSPEC;
904	if (pps->ppscap & PPS_CAPTUREASSERT)
905		pps->ppscap |= PPS_OFFSETASSERT;
906	if (pps->ppscap & PPS_CAPTURECLEAR)
907		pps->ppscap |= PPS_OFFSETCLEAR;
908#ifdef PPS_SYNC
909	if (pps->ppscap & PPS_CAPTUREASSERT)
910		pps->ppscap |= PPS_HARDPPSONASSERT;
911	if (pps->ppscap & PPS_CAPTURECLEAR)
912		pps->ppscap |= PPS_HARDPPSONCLEAR;
913#endif
914}
915
916void
917pps_event(struct pps_state *pps, struct timecounter *tc, unsigned count, int event)
918{
919	struct timespec ts, *tsp, *osp;
920	u_int64_t delta;
921	unsigned tcount, *pcount;
922	int foff, fhard;
923	pps_seq_t	*pseq;
924
925	/* Things would be easier with arrays... */
926	if (event == PPS_CAPTUREASSERT) {
927		tsp = &pps->ppsinfo.assert_timestamp;
928		osp = &pps->ppsparam.assert_offset;
929		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
930		fhard = pps->ppsparam.mode & PPS_HARDPPSONASSERT;
931		pcount = &pps->ppscount[0];
932		pseq = &pps->ppsinfo.assert_sequence;
933	} else {
934		tsp = &pps->ppsinfo.clear_timestamp;
935		osp = &pps->ppsparam.clear_offset;
936		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
937		fhard = pps->ppsparam.mode & PPS_HARDPPSONCLEAR;
938		pcount = &pps->ppscount[1];
939		pseq = &pps->ppsinfo.clear_sequence;
940	}
941
942	/* The timecounter changed: bail */
943	if (!pps->ppstc ||
944	    pps->ppstc->tc_name != tc->tc_name ||
945	    tc->tc_name != timecounter->tc_name) {
946		pps->ppstc = tc;
947		*pcount = count;
948		return;
949	}
950
951	/* Nothing really happened */
952	if (*pcount == count)
953		return;
954
955	*pcount = count;
956
957	/* Convert the count to timespec */
958	ts.tv_sec = tc->tc_offset_sec;
959	tcount = count - tc->tc_offset_count;
960	tcount &= tc->tc_counter_mask;
961	delta = tc->tc_offset_nano;
962	delta += ((u_int64_t)tcount * tc->tc_scale_nano_f);
963	delta >>= 32;
964	delta += ((u_int64_t)tcount * tc->tc_scale_nano_i);
965	delta += boottime.tv_usec * 1000;
966	ts.tv_sec += boottime.tv_sec;
967	while (delta >= 1000000000) {
968		delta -= 1000000000;
969		ts.tv_sec++;
970	}
971	ts.tv_nsec = delta;
972
973	(*pseq)++;
974	*tsp = ts;
975
976	if (foff) {
977		timespecadd(tsp, osp);
978		if (tsp->tv_nsec < 0) {
979			tsp->tv_nsec += 1000000000;
980			tsp->tv_sec -= 1;
981		}
982	}
983#ifdef PPS_SYNC
984	if (fhard) {
985		/* magic, at its best... */
986		tcount = count - pps->ppscount[2];
987		pps->ppscount[2] = count;
988		tcount &= tc->tc_counter_mask;
989		delta = ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_f);
990		delta >>= 32;
991		delta += ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_i);
992		hardpps(tsp, delta);
993	}
994#endif
995}
996
997