kern_clock.c revision 44146
1/*-
2 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
3 * Copyright (c) 1982, 1986, 1991, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 * (c) UNIX System Laboratories, Inc.
6 * All or some portions of this file are derived from material licensed
7 * to the University of California by American Telephone and Telegraph
8 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
9 * the permission of UNIX System Laboratories, Inc.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
40 * $Id: kern_clock.c,v 1.86 1998/11/29 20:31:02 phk Exp $
41 */
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/dkstat.h>
46#include <sys/callout.h>
47#include <sys/kernel.h>
48#include <sys/proc.h>
49#include <sys/malloc.h>
50#include <sys/resourcevar.h>
51#include <sys/signalvar.h>
52#include <sys/timex.h>
53#include <vm/vm.h>
54#include <sys/lock.h>
55#include <vm/pmap.h>
56#include <vm/vm_map.h>
57#include <sys/sysctl.h>
58
59#include <machine/cpu.h>
60#include <machine/limits.h>
61
62#ifdef GPROF
63#include <sys/gmon.h>
64#endif
65
66#if defined(SMP) && defined(BETTER_CLOCK)
67#include <machine/smp.h>
68#endif
69
70/* This is where the NTIMECOUNTER option hangs out */
71#include "opt_ntp.h"
72
73/*
74 * Number of timecounters used to implement stable storage
75 */
76#ifndef NTIMECOUNTER
77#define NTIMECOUNTER	5
78#endif
79
80static MALLOC_DEFINE(M_TIMECOUNTER, "timecounter",
81	"Timecounter stable storage");
82
83static void initclocks __P((void *dummy));
84SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
85
86static void tco_forward __P((int force));
87static void tco_setscales __P((struct timecounter *tc));
88static __inline unsigned tco_delta __P((struct timecounter *tc));
89
90/* Some of these don't belong here, but it's easiest to concentrate them. */
91#if defined(SMP) && defined(BETTER_CLOCK)
92long cp_time[CPUSTATES];
93#else
94static long cp_time[CPUSTATES];
95#endif
96
97long tk_cancc;
98long tk_nin;
99long tk_nout;
100long tk_rawcc;
101
102time_t time_second;
103
104/*
105 * Which update policy to use.
106 *   0 - every tick, bad hardware may fail with "calcru negative..."
107 *   1 - more resistent to the above hardware, but less efficient.
108 */
109static int tco_method;
110
111/*
112 * Implement a dummy timecounter which we can use until we get a real one
113 * in the air.  This allows the console and other early stuff to use
114 * timeservices.
115 */
116
117static unsigned
118dummy_get_timecount(struct timecounter *tc)
119{
120	static unsigned now;
121	return (++now);
122}
123
124static struct timecounter dummy_timecounter = {
125	dummy_get_timecount,
126	0,
127	~0u,
128	1000000,
129	"dummy"
130};
131
132struct timecounter *timecounter = &dummy_timecounter;
133
134/*
135 * Clock handling routines.
136 *
137 * This code is written to operate with two timers that run independently of
138 * each other.
139 *
140 * The main timer, running hz times per second, is used to trigger interval
141 * timers, timeouts and rescheduling as needed.
142 *
143 * The second timer handles kernel and user profiling,
144 * and does resource use estimation.  If the second timer is programmable,
145 * it is randomized to avoid aliasing between the two clocks.  For example,
146 * the randomization prevents an adversary from always giving up the cpu
147 * just before its quantum expires.  Otherwise, it would never accumulate
148 * cpu ticks.  The mean frequency of the second timer is stathz.
149 *
150 * If no second timer exists, stathz will be zero; in this case we drive
151 * profiling and statistics off the main clock.  This WILL NOT be accurate;
152 * do not do it unless absolutely necessary.
153 *
154 * The statistics clock may (or may not) be run at a higher rate while
155 * profiling.  This profile clock runs at profhz.  We require that profhz
156 * be an integral multiple of stathz.
157 *
158 * If the statistics clock is running fast, it must be divided by the ratio
159 * profhz/stathz for statistics.  (For profiling, every tick counts.)
160 *
161 * Time-of-day is maintained using a "timecounter", which may or may
162 * not be related to the hardware generating the above mentioned
163 * interrupts.
164 */
165
166int	stathz;
167int	profhz;
168static int profprocs;
169int	ticks;
170static int psdiv, pscnt;		/* prof => stat divider */
171int	psratio;			/* ratio: prof / stat */
172
173/*
174 * Initialize clock frequencies and start both clocks running.
175 */
176/* ARGSUSED*/
177static void
178initclocks(dummy)
179	void *dummy;
180{
181	register int i;
182
183	/*
184	 * Set divisors to 1 (normal case) and let the machine-specific
185	 * code do its bit.
186	 */
187	psdiv = pscnt = 1;
188	cpu_initclocks();
189
190	/*
191	 * Compute profhz/stathz, and fix profhz if needed.
192	 */
193	i = stathz ? stathz : hz;
194	if (profhz == 0)
195		profhz = i;
196	psratio = profhz / i;
197}
198
199/*
200 * The real-time timer, interrupting hz times per second.
201 */
202void
203hardclock(frame)
204	register struct clockframe *frame;
205{
206	register struct proc *p;
207
208	p = curproc;
209	if (p) {
210		register struct pstats *pstats;
211
212		/*
213		 * Run current process's virtual and profile time, as needed.
214		 */
215		pstats = p->p_stats;
216		if (CLKF_USERMODE(frame) &&
217		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
218		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
219			psignal(p, SIGVTALRM);
220		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
221		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
222			psignal(p, SIGPROF);
223	}
224
225#if defined(SMP) && defined(BETTER_CLOCK)
226	forward_hardclock(pscnt);
227#endif
228
229	/*
230	 * If no separate statistics clock is available, run it from here.
231	 */
232	if (stathz == 0)
233		statclock(frame);
234
235	tco_forward(0);
236	ticks++;
237
238	/*
239	 * Process callouts at a very low cpu priority, so we don't keep the
240	 * relatively high clock interrupt priority any longer than necessary.
241	 */
242	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
243		if (CLKF_BASEPRI(frame)) {
244			/*
245			 * Save the overhead of a software interrupt;
246			 * it will happen as soon as we return, so do it now.
247			 */
248			(void)splsoftclock();
249			softclock();
250		} else
251			setsoftclock();
252	} else if (softticks + 1 == ticks)
253		++softticks;
254}
255
256/*
257 * Compute number of ticks in the specified amount of time.
258 */
259int
260tvtohz(tv)
261	struct timeval *tv;
262{
263	register unsigned long ticks;
264	register long sec, usec;
265
266	/*
267	 * If the number of usecs in the whole seconds part of the time
268	 * difference fits in a long, then the total number of usecs will
269	 * fit in an unsigned long.  Compute the total and convert it to
270	 * ticks, rounding up and adding 1 to allow for the current tick
271	 * to expire.  Rounding also depends on unsigned long arithmetic
272	 * to avoid overflow.
273	 *
274	 * Otherwise, if the number of ticks in the whole seconds part of
275	 * the time difference fits in a long, then convert the parts to
276	 * ticks separately and add, using similar rounding methods and
277	 * overflow avoidance.  This method would work in the previous
278	 * case but it is slightly slower and assumes that hz is integral.
279	 *
280	 * Otherwise, round the time difference down to the maximum
281	 * representable value.
282	 *
283	 * If ints have 32 bits, then the maximum value for any timeout in
284	 * 10ms ticks is 248 days.
285	 */
286	sec = tv->tv_sec;
287	usec = tv->tv_usec;
288	if (usec < 0) {
289		sec--;
290		usec += 1000000;
291	}
292	if (sec < 0) {
293#ifdef DIAGNOSTIC
294		if (usec > 0) {
295			sec++;
296			usec -= 1000000;
297		}
298		printf("tvotohz: negative time difference %ld sec %ld usec\n",
299		       sec, usec);
300#endif
301		ticks = 1;
302	} else if (sec <= LONG_MAX / 1000000)
303		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
304			/ tick + 1;
305	else if (sec <= LONG_MAX / hz)
306		ticks = sec * hz
307			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
308	else
309		ticks = LONG_MAX;
310	if (ticks > INT_MAX)
311		ticks = INT_MAX;
312	return ((int)ticks);
313}
314
315/*
316 * Start profiling on a process.
317 *
318 * Kernel profiling passes proc0 which never exits and hence
319 * keeps the profile clock running constantly.
320 */
321void
322startprofclock(p)
323	register struct proc *p;
324{
325	int s;
326
327	if ((p->p_flag & P_PROFIL) == 0) {
328		p->p_flag |= P_PROFIL;
329		if (++profprocs == 1 && stathz != 0) {
330			s = splstatclock();
331			psdiv = pscnt = psratio;
332			setstatclockrate(profhz);
333			splx(s);
334		}
335	}
336}
337
338/*
339 * Stop profiling on a process.
340 */
341void
342stopprofclock(p)
343	register struct proc *p;
344{
345	int s;
346
347	if (p->p_flag & P_PROFIL) {
348		p->p_flag &= ~P_PROFIL;
349		if (--profprocs == 0 && stathz != 0) {
350			s = splstatclock();
351			psdiv = pscnt = 1;
352			setstatclockrate(stathz);
353			splx(s);
354		}
355	}
356}
357
358/*
359 * Statistics clock.  Grab profile sample, and if divider reaches 0,
360 * do process and kernel statistics.
361 */
362void
363statclock(frame)
364	register struct clockframe *frame;
365{
366#ifdef GPROF
367	register struct gmonparam *g;
368	int i;
369#endif
370	register struct proc *p;
371	struct pstats *pstats;
372	long rss;
373	struct rusage *ru;
374	struct vmspace *vm;
375
376	if (curproc != NULL && CLKF_USERMODE(frame)) {
377		p = curproc;
378		if (p->p_flag & P_PROFIL)
379			addupc_intr(p, CLKF_PC(frame), 1);
380#if defined(SMP) && defined(BETTER_CLOCK)
381		if (stathz != 0)
382			forward_statclock(pscnt);
383#endif
384		if (--pscnt > 0)
385			return;
386		/*
387		 * Came from user mode; CPU was in user state.
388		 * If this process is being profiled record the tick.
389		 */
390		p->p_uticks++;
391		if (p->p_nice > NZERO)
392			cp_time[CP_NICE]++;
393		else
394			cp_time[CP_USER]++;
395	} else {
396#ifdef GPROF
397		/*
398		 * Kernel statistics are just like addupc_intr, only easier.
399		 */
400		g = &_gmonparam;
401		if (g->state == GMON_PROF_ON) {
402			i = CLKF_PC(frame) - g->lowpc;
403			if (i < g->textsize) {
404				i /= HISTFRACTION * sizeof(*g->kcount);
405				g->kcount[i]++;
406			}
407		}
408#endif
409#if defined(SMP) && defined(BETTER_CLOCK)
410		if (stathz != 0)
411			forward_statclock(pscnt);
412#endif
413		if (--pscnt > 0)
414			return;
415		/*
416		 * Came from kernel mode, so we were:
417		 * - handling an interrupt,
418		 * - doing syscall or trap work on behalf of the current
419		 *   user process, or
420		 * - spinning in the idle loop.
421		 * Whichever it is, charge the time as appropriate.
422		 * Note that we charge interrupts to the current process,
423		 * regardless of whether they are ``for'' that process,
424		 * so that we know how much of its real time was spent
425		 * in ``non-process'' (i.e., interrupt) work.
426		 */
427		p = curproc;
428		if (CLKF_INTR(frame)) {
429			if (p != NULL)
430				p->p_iticks++;
431			cp_time[CP_INTR]++;
432		} else if (p != NULL) {
433			p->p_sticks++;
434			cp_time[CP_SYS]++;
435		} else
436			cp_time[CP_IDLE]++;
437	}
438	pscnt = psdiv;
439
440	/*
441	 * We maintain statistics shown by user-level statistics
442	 * programs:  the amount of time in each cpu state.
443	 */
444
445	/*
446	 * We adjust the priority of the current process.  The priority of
447	 * a process gets worse as it accumulates CPU time.  The cpu usage
448	 * estimator (p_estcpu) is increased here.  The formula for computing
449	 * priorities (in kern_synch.c) will compute a different value each
450	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
451	 * quite quickly when the process is running (linearly), and decays
452	 * away exponentially, at a rate which is proportionally slower when
453	 * the system is busy.  The basic principal is that the system will
454	 * 90% forget that the process used a lot of CPU time in 5 * loadav
455	 * seconds.  This causes the system to favor processes which haven't
456	 * run much recently, and to round-robin among other processes.
457	 */
458	if (p != NULL) {
459		p->p_cpticks++;
460		if (++p->p_estcpu == 0)
461			p->p_estcpu--;
462		if ((p->p_estcpu & 3) == 0) {
463			resetpriority(p);
464			if (p->p_priority >= PUSER)
465				p->p_priority = p->p_usrpri;
466		}
467
468		/* Update resource usage integrals and maximums. */
469		if ((pstats = p->p_stats) != NULL &&
470		    (ru = &pstats->p_ru) != NULL &&
471		    (vm = p->p_vmspace) != NULL) {
472			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
473			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
474			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
475			rss = vmspace_resident_count(vm) * PAGE_SIZE / 1024;
476			if (ru->ru_maxrss < rss)
477				ru->ru_maxrss = rss;
478        	}
479	}
480}
481
482/*
483 * Return information about system clocks.
484 */
485static int
486sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
487{
488	struct clockinfo clkinfo;
489	/*
490	 * Construct clockinfo structure.
491	 */
492	clkinfo.hz = hz;
493	clkinfo.tick = tick;
494	clkinfo.tickadj = tickadj;
495	clkinfo.profhz = profhz;
496	clkinfo.stathz = stathz ? stathz : hz;
497	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
498}
499
500SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
501	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
502
503static __inline unsigned
504tco_delta(struct timecounter *tc)
505{
506
507	return ((tc->tc_get_timecount(tc) - tc->tc_offset_count) &
508	    tc->tc_counter_mask);
509}
510
511/*
512 * We have four functions for looking at the clock, two for microseconds
513 * and two for nanoseconds.  For each there is fast but less precise
514 * version "get{nano|micro}time" which will return a time which is up
515 * to 1/HZ previous to the call, whereas the raw version "{nano|micro}time"
516 * will return a timestamp which is as precise as possible.
517 */
518
519void
520getmicrotime(struct timeval *tvp)
521{
522	struct timecounter *tc;
523
524	if (!tco_method) {
525		tc = timecounter;
526		*tvp = tc->tc_microtime;
527	} else {
528		microtime(tvp);
529	}
530}
531
532void
533getnanotime(struct timespec *tsp)
534{
535	struct timecounter *tc;
536
537	if (!tco_method) {
538		tc = timecounter;
539		*tsp = tc->tc_nanotime;
540	} else {
541		nanotime(tsp);
542	}
543}
544
545void
546microtime(struct timeval *tv)
547{
548	struct timecounter *tc;
549
550	tc = (struct timecounter *)timecounter;
551	tv->tv_sec = tc->tc_offset_sec;
552	tv->tv_usec = tc->tc_offset_micro;
553	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
554	tv->tv_usec += boottime.tv_usec;
555	tv->tv_sec += boottime.tv_sec;
556	while (tv->tv_usec >= 1000000) {
557		tv->tv_usec -= 1000000;
558		tv->tv_sec++;
559	}
560}
561
562void
563nanotime(struct timespec *ts)
564{
565	unsigned count;
566	u_int64_t delta;
567	struct timecounter *tc;
568
569	tc = (struct timecounter *)timecounter;
570	ts->tv_sec = tc->tc_offset_sec;
571	count = tco_delta(tc);
572	delta = tc->tc_offset_nano;
573	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
574	delta >>= 32;
575	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
576	delta += boottime.tv_usec * 1000;
577	ts->tv_sec += boottime.tv_sec;
578	while (delta >= 1000000000) {
579		delta -= 1000000000;
580		ts->tv_sec++;
581	}
582	ts->tv_nsec = delta;
583}
584
585void
586timecounter_timespec(unsigned count, struct timespec *ts)
587{
588	u_int64_t delta;
589	struct timecounter *tc;
590
591	tc = (struct timecounter *)timecounter;
592	ts->tv_sec = tc->tc_offset_sec;
593	count -= tc->tc_offset_count;
594	count &= tc->tc_counter_mask;
595	delta = tc->tc_offset_nano;
596	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
597	delta >>= 32;
598	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
599	delta += boottime.tv_usec * 1000;
600	ts->tv_sec += boottime.tv_sec;
601	while (delta >= 1000000000) {
602		delta -= 1000000000;
603		ts->tv_sec++;
604	}
605	ts->tv_nsec = delta;
606}
607
608void
609getmicrouptime(struct timeval *tvp)
610{
611	struct timecounter *tc;
612
613	if (!tco_method) {
614		tc = timecounter;
615		tvp->tv_sec = tc->tc_offset_sec;
616		tvp->tv_usec = tc->tc_offset_micro;
617	} else {
618		microuptime(tvp);
619	}
620}
621
622void
623getnanouptime(struct timespec *tsp)
624{
625	struct timecounter *tc;
626
627	if (!tco_method) {
628		tc = timecounter;
629		tsp->tv_sec = tc->tc_offset_sec;
630		tsp->tv_nsec = tc->tc_offset_nano >> 32;
631	} else {
632		nanouptime(tsp);
633	}
634}
635
636void
637microuptime(struct timeval *tv)
638{
639	struct timecounter *tc;
640
641	tc = (struct timecounter *)timecounter;
642	tv->tv_sec = tc->tc_offset_sec;
643	tv->tv_usec = tc->tc_offset_micro;
644	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
645	if (tv->tv_usec >= 1000000) {
646		tv->tv_usec -= 1000000;
647		tv->tv_sec++;
648	}
649}
650
651void
652nanouptime(struct timespec *ts)
653{
654	unsigned count;
655	u_int64_t delta;
656	struct timecounter *tc;
657
658	tc = (struct timecounter *)timecounter;
659	ts->tv_sec = tc->tc_offset_sec;
660	count = tco_delta(tc);
661	delta = tc->tc_offset_nano;
662	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
663	delta >>= 32;
664	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
665	if (delta >= 1000000000) {
666		delta -= 1000000000;
667		ts->tv_sec++;
668	}
669	ts->tv_nsec = delta;
670}
671
672static void
673tco_setscales(struct timecounter *tc)
674{
675	u_int64_t scale;
676
677	scale = 1000000000LL << 32;
678	if (tc->tc_adjustment > 0)
679		scale += (tc->tc_adjustment * 1000LL) << 10;
680	else
681		scale -= (-tc->tc_adjustment * 1000LL) << 10;
682	scale /= tc->tc_frequency;
683	tc->tc_scale_micro = scale / 1000;
684	tc->tc_scale_nano_f = scale & 0xffffffff;
685	tc->tc_scale_nano_i = scale >> 32;
686}
687
688void
689init_timecounter(struct timecounter *tc)
690{
691	struct timespec ts1;
692	struct timecounter *t1, *t2, *t3;
693	int i;
694
695	tc->tc_adjustment = 0;
696	tco_setscales(tc);
697	tc->tc_offset_count = tc->tc_get_timecount(tc);
698	tc->tc_tweak = tc;
699	MALLOC(t1, struct timecounter *, sizeof *t1, M_TIMECOUNTER, M_WAITOK);
700	*t1 = *tc;
701	t2 = t1;
702	for (i = 1; i < NTIMECOUNTER; i++) {
703		MALLOC(t3, struct timecounter *, sizeof *t3,
704		    M_TIMECOUNTER, M_WAITOK);
705		*t3 = *tc;
706		t3->tc_other = t2;
707		t2 = t3;
708	}
709	t1->tc_other = t3;
710	tc = t1;
711
712	printf("Timecounter \"%s\"  frequency %lu Hz\n",
713	    tc->tc_name, (u_long)tc->tc_frequency);
714
715	/* XXX: For now always start using the counter. */
716	tc->tc_offset_count = tc->tc_get_timecount(tc);
717	nanouptime(&ts1);
718	tc->tc_offset_nano = (u_int64_t)ts1.tv_nsec << 32;
719	tc->tc_offset_micro = ts1.tv_nsec / 1000;
720	tc->tc_offset_sec = ts1.tv_sec;
721	timecounter = tc;
722}
723
724void
725set_timecounter(struct timespec *ts)
726{
727	struct timespec ts2;
728
729	nanouptime(&ts2);
730	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
731	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
732	if (boottime.tv_usec < 0) {
733		boottime.tv_usec += 1000000;
734		boottime.tv_sec--;
735	}
736	/* fiddle all the little crinkly bits around the fiords... */
737	tco_forward(1);
738}
739
740
741#if 0 /* Currently unused */
742void
743switch_timecounter(struct timecounter *newtc)
744{
745	int s;
746	struct timecounter *tc;
747	struct timespec ts;
748
749	s = splclock();
750	tc = timecounter;
751	if (newtc == tc || newtc == tc->tc_other) {
752		splx(s);
753		return;
754	}
755	nanouptime(&ts);
756	newtc->tc_offset_sec = ts.tv_sec;
757	newtc->tc_offset_nano = (u_int64_t)ts.tv_nsec << 32;
758	newtc->tc_offset_micro = ts.tv_nsec / 1000;
759	newtc->tc_offset_count = newtc->tc_get_timecount(newtc);
760	timecounter = newtc;
761	splx(s);
762}
763#endif
764
765static struct timecounter *
766sync_other_counter(void)
767{
768	struct timecounter *tc, *tcn, *tco;
769	unsigned delta;
770
771	tco = timecounter;
772	tc = tco->tc_other;
773	tcn = tc->tc_other;
774	*tc = *tco;
775	tc->tc_other = tcn;
776	delta = tco_delta(tc);
777	tc->tc_offset_count += delta;
778	tc->tc_offset_count &= tc->tc_counter_mask;
779	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_f;
780	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_i << 32;
781	return (tc);
782}
783
784static void
785tco_forward(int force)
786{
787	struct timecounter *tc, *tco;
788
789	tco = timecounter;
790	tc = sync_other_counter();
791	/*
792	 * We may be inducing a tiny error here, the tc_poll_pps() may
793	 * process a latched count which happens after the tco_delta()
794	 * in sync_other_counter(), which would extend the previous
795	 * counters parameters into the domain of this new one.
796	 * Since the timewindow is very small for this, the error is
797	 * going to be only a few weenieseconds (as Dave Mills would
798	 * say), so lets just not talk more about it, OK ?
799	 */
800	if (tco->tc_poll_pps)
801		tco->tc_poll_pps(tco);
802	if (timedelta != 0) {
803		tc->tc_offset_nano += (u_int64_t)(tickdelta * 1000) << 32;
804		timedelta -= tickdelta;
805		force++;
806	}
807
808	while (tc->tc_offset_nano >= 1000000000ULL << 32) {
809		tc->tc_offset_nano -= 1000000000ULL << 32;
810		tc->tc_offset_sec++;
811		tc->tc_frequency = tc->tc_tweak->tc_frequency;
812		tc->tc_adjustment = tc->tc_tweak->tc_adjustment;
813		ntp_update_second(tc);	/* XXX only needed if xntpd runs */
814		tco_setscales(tc);
815		force++;
816	}
817
818	if (tco_method && !force)
819		return;
820
821	tc->tc_offset_micro = (tc->tc_offset_nano / 1000) >> 32;
822
823	/* Figure out the wall-clock time */
824	tc->tc_nanotime.tv_sec = tc->tc_offset_sec + boottime.tv_sec;
825	tc->tc_nanotime.tv_nsec =
826	    (tc->tc_offset_nano >> 32) + boottime.tv_usec * 1000;
827	tc->tc_microtime.tv_usec = tc->tc_offset_micro + boottime.tv_usec;
828	if (tc->tc_nanotime.tv_nsec >= 1000000000) {
829		tc->tc_nanotime.tv_nsec -= 1000000000;
830		tc->tc_microtime.tv_usec -= 1000000;
831		tc->tc_nanotime.tv_sec++;
832	}
833	time_second = tc->tc_microtime.tv_sec = tc->tc_nanotime.tv_sec;
834
835	timecounter = tc;
836}
837
838static int
839sysctl_kern_timecounter_frequency SYSCTL_HANDLER_ARGS
840{
841
842	return (sysctl_handle_opaque(oidp,
843	    &timecounter->tc_tweak->tc_frequency,
844	    sizeof(timecounter->tc_tweak->tc_frequency), req));
845}
846
847static int
848sysctl_kern_timecounter_adjustment SYSCTL_HANDLER_ARGS
849{
850
851	return (sysctl_handle_opaque(oidp,
852	    &timecounter->tc_tweak->tc_adjustment,
853	    sizeof(timecounter->tc_tweak->tc_adjustment), req));
854}
855
856SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
857
858SYSCTL_INT(_kern_timecounter, KERN_ARGMAX, method, CTLFLAG_RW, &tco_method, 0,
859    "This variable determines the method used for updating timecounters. "
860    "If the default algorithm (0) fails with \"calcru negative...\" messages "
861    "try the alternate algorithm (1) which handles bad hardware better."
862
863);
864
865SYSCTL_PROC(_kern_timecounter, OID_AUTO, frequency, CTLTYPE_INT | CTLFLAG_RW,
866    0, sizeof(u_int), sysctl_kern_timecounter_frequency, "I", "");
867
868SYSCTL_PROC(_kern_timecounter, OID_AUTO, adjustment, CTLTYPE_INT | CTLFLAG_RW,
869    0, sizeof(int), sysctl_kern_timecounter_adjustment, "I", "");
870