kern_clock.c revision 33134
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
39 * $Id: kern_clock.c,v 1.54 1998/02/04 22:32:30 eivind Exp $
40 */
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/dkstat.h>
45#include <sys/callout.h>
46#include <sys/kernel.h>
47#include <sys/proc.h>
48#include <sys/resourcevar.h>
49#include <sys/signalvar.h>
50#include <sys/timex.h>
51#include <vm/vm.h>
52#include <sys/lock.h>
53#include <vm/pmap.h>
54#include <vm/vm_map.h>
55#include <sys/sysctl.h>
56
57#include <machine/cpu.h>
58#define CLOCK_HAIR		/* XXX */
59#include <machine/clock.h>
60#include <machine/limits.h>
61
62#ifdef GPROF
63#include <sys/gmon.h>
64#endif
65
66#if defined(SMP) && defined(BETTER_CLOCK)
67#include <machine/smp.h>
68#endif
69
70static void initclocks __P((void *dummy));
71SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
72
73/* Some of these don't belong here, but it's easiest to concentrate them. */
74#if defined(SMP) && defined(BETTER_CLOCK)
75long cp_time[CPUSTATES];
76#else
77static long cp_time[CPUSTATES];
78#endif
79long dk_seek[DK_NDRIVE];
80static long dk_time[DK_NDRIVE];	/* time busy (in statclock ticks) */
81long dk_wds[DK_NDRIVE];
82long dk_wpms[DK_NDRIVE];
83long dk_xfer[DK_NDRIVE];
84
85int dk_busy;
86int dk_ndrive = 0;
87char dk_names[DK_NDRIVE][DK_NAMELEN];
88
89long tk_cancc;
90long tk_nin;
91long tk_nout;
92long tk_rawcc;
93
94/*
95 * Clock handling routines.
96 *
97 * This code is written to operate with two timers that run independently of
98 * each other.  The main clock, running hz times per second, is used to keep
99 * track of real time.  The second timer handles kernel and user profiling,
100 * and does resource use estimation.  If the second timer is programmable,
101 * it is randomized to avoid aliasing between the two clocks.  For example,
102 * the randomization prevents an adversary from always giving up the cpu
103 * just before its quantum expires.  Otherwise, it would never accumulate
104 * cpu ticks.  The mean frequency of the second timer is stathz.
105 *
106 * If no second timer exists, stathz will be zero; in this case we drive
107 * profiling and statistics off the main clock.  This WILL NOT be accurate;
108 * do not do it unless absolutely necessary.
109 *
110 * The statistics clock may (or may not) be run at a higher rate while
111 * profiling.  This profile clock runs at profhz.  We require that profhz
112 * be an integral multiple of stathz.
113 *
114 * If the statistics clock is running fast, it must be divided by the ratio
115 * profhz/stathz for statistics.  (For profiling, every tick counts.)
116 */
117
118/*
119 * TODO:
120 *	allocate more timeout table slots when table overflows.
121 */
122
123/*
124 * Bump a timeval by a small number of usec's.
125 */
126#define BUMPTIME(t, usec) { \
127	register volatile struct timeval *tp = (t); \
128	register long us; \
129 \
130	tp->tv_usec = us = tp->tv_usec + (usec); \
131	if (us >= 1000000) { \
132		tp->tv_usec = us - 1000000; \
133		tp->tv_sec++; \
134	} \
135}
136
137int	stathz;
138int	profhz;
139static int profprocs;
140int	ticks;
141static int psdiv, pscnt;		/* prof => stat divider */
142int psratio;				/* ratio: prof / stat */
143
144volatile struct	timeval time;
145volatile struct	timeval mono_time;
146
147/*
148 * Initialize clock frequencies and start both clocks running.
149 */
150/* ARGSUSED*/
151static void
152initclocks(dummy)
153	void *dummy;
154{
155	register int i;
156
157	/*
158	 * Set divisors to 1 (normal case) and let the machine-specific
159	 * code do its bit.
160	 */
161	psdiv = pscnt = 1;
162	cpu_initclocks();
163
164	/*
165	 * Compute profhz/stathz, and fix profhz if needed.
166	 */
167	i = stathz ? stathz : hz;
168	if (profhz == 0)
169		profhz = i;
170	psratio = profhz / i;
171}
172
173/*
174 * The real-time timer, interrupting hz times per second.
175 */
176void
177hardclock(frame)
178	register struct clockframe *frame;
179{
180	register struct proc *p;
181	int time_update;
182	struct timeval newtime = time;
183	long ltemp;
184
185	p = curproc;
186	if (p) {
187		register struct pstats *pstats;
188
189		/*
190		 * Run current process's virtual and profile time, as needed.
191		 */
192		pstats = p->p_stats;
193		if (CLKF_USERMODE(frame) &&
194		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
195		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
196			psignal(p, SIGVTALRM);
197		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
198		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
199			psignal(p, SIGPROF);
200	}
201
202#if defined(SMP) && defined(BETTER_CLOCK)
203	forward_hardclock(pscnt);
204#endif
205	/*
206	 * If no separate statistics clock is available, run it from here.
207	 */
208	if (stathz == 0)
209		statclock(frame);
210
211	/*
212	 * Increment the time-of-day.
213	 */
214	ticks++;
215
216	if (timedelta == 0) {
217		time_update = CPU_THISTICKLEN(tick);
218	} else {
219		time_update = CPU_THISTICKLEN(tick) + tickdelta;
220		timedelta -= tickdelta;
221	}
222	BUMPTIME(&mono_time, time_update);
223
224	/*
225	 * Compute the phase adjustment. If the low-order bits
226	 * (time_phase) of the update overflow, bump the high-order bits
227	 * (time_update).
228	 */
229	time_phase += time_adj;
230	if (time_phase <= -FINEUSEC) {
231		ltemp = -time_phase >> SHIFT_SCALE;
232		time_phase += ltemp << SHIFT_SCALE;
233		time_update -= ltemp;
234	}
235	else if (time_phase >= FINEUSEC) {
236		ltemp = time_phase >> SHIFT_SCALE;
237		time_phase -= ltemp << SHIFT_SCALE;
238		time_update += ltemp;
239	}
240
241	newtime.tv_usec += time_update;
242	/*
243	 * On rollover of the second the phase adjustment to be used for
244	 * the next second is calculated. Also, the maximum error is
245	 * increased by the tolerance. If the PPS frequency discipline
246	 * code is present, the phase is increased to compensate for the
247	 * CPU clock oscillator frequency error.
248	 *
249	 * On a 32-bit machine and given parameters in the timex.h
250	 * header file, the maximum phase adjustment is +-512 ms and
251	 * maximum frequency offset is a tad less than) +-512 ppm. On a
252	 * 64-bit machine, you shouldn't need to ask.
253	 */
254	if (newtime.tv_usec >= 1000000) {
255		newtime.tv_usec -= 1000000;
256		newtime.tv_sec++;
257		ntp_update_second(&newtime.tv_sec);
258	}
259	CPU_CLOCKUPDATE(&time, &newtime);
260
261	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL)
262		setsoftclock();
263}
264
265void
266gettime(struct timeval *tvp)
267{
268	int s;
269
270	s = splclock();
271	/* XXX should use microtime() iff tv_usec is used. */
272	*tvp = time;
273	splx(s);
274}
275
276/*
277 * Compute number of hz until specified time.  Used to
278 * compute third argument to timeout() from an absolute time.
279 */
280int
281hzto(tv)
282	struct timeval *tv;
283{
284	register unsigned long ticks;
285	register long sec, usec;
286	int s;
287
288	/*
289	 * If the number of usecs in the whole seconds part of the time
290	 * difference fits in a long, then the total number of usecs will
291	 * fit in an unsigned long.  Compute the total and convert it to
292	 * ticks, rounding up and adding 1 to allow for the current tick
293	 * to expire.  Rounding also depends on unsigned long arithmetic
294	 * to avoid overflow.
295	 *
296	 * Otherwise, if the number of ticks in the whole seconds part of
297	 * the time difference fits in a long, then convert the parts to
298	 * ticks separately and add, using similar rounding methods and
299	 * overflow avoidance.  This method would work in the previous
300	 * case but it is slightly slower and assumes that hz is integral.
301	 *
302	 * Otherwise, round the time difference down to the maximum
303	 * representable value.
304	 *
305	 * If ints have 32 bits, then the maximum value for any timeout in
306	 * 10ms ticks is 248 days.
307	 */
308	s = splclock();
309	sec = tv->tv_sec - time.tv_sec;
310	usec = tv->tv_usec - time.tv_usec;
311	splx(s);
312	if (usec < 0) {
313		sec--;
314		usec += 1000000;
315	}
316	if (sec < 0) {
317#ifdef DIAGNOSTIC
318		printf("hzto: negative time difference %ld sec %ld usec\n",
319		       sec, usec);
320#endif
321		ticks = 1;
322	} else if (sec <= LONG_MAX / 1000000)
323		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
324			/ tick + 1;
325	else if (sec <= LONG_MAX / hz)
326		ticks = sec * hz
327			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
328	else
329		ticks = LONG_MAX;
330	if (ticks > INT_MAX)
331		ticks = INT_MAX;
332	return (ticks);
333}
334
335/*
336 * Start profiling on a process.
337 *
338 * Kernel profiling passes proc0 which never exits and hence
339 * keeps the profile clock running constantly.
340 */
341void
342startprofclock(p)
343	register struct proc *p;
344{
345	int s;
346
347	if ((p->p_flag & P_PROFIL) == 0) {
348		p->p_flag |= P_PROFIL;
349		if (++profprocs == 1 && stathz != 0) {
350			s = splstatclock();
351			psdiv = pscnt = psratio;
352			setstatclockrate(profhz);
353			splx(s);
354		}
355	}
356}
357
358/*
359 * Stop profiling on a process.
360 */
361void
362stopprofclock(p)
363	register struct proc *p;
364{
365	int s;
366
367	if (p->p_flag & P_PROFIL) {
368		p->p_flag &= ~P_PROFIL;
369		if (--profprocs == 0 && stathz != 0) {
370			s = splstatclock();
371			psdiv = pscnt = 1;
372			setstatclockrate(stathz);
373			splx(s);
374		}
375	}
376}
377
378/*
379 * Statistics clock.  Grab profile sample, and if divider reaches 0,
380 * do process and kernel statistics.
381 */
382void
383statclock(frame)
384	register struct clockframe *frame;
385{
386#ifdef GPROF
387	register struct gmonparam *g;
388#endif
389	register struct proc *p;
390	register int i;
391	struct pstats *pstats;
392	long rss;
393	struct rusage *ru;
394	struct vmspace *vm;
395
396	if (CLKF_USERMODE(frame)) {
397		p = curproc;
398		if (p->p_flag & P_PROFIL)
399			addupc_intr(p, CLKF_PC(frame), 1);
400#if defined(SMP) && defined(BETTER_CLOCK)
401		if (stathz != 0)
402			forward_statclock(pscnt);
403#endif
404		if (--pscnt > 0)
405			return;
406		/*
407		 * Came from user mode; CPU was in user state.
408		 * If this process is being profiled record the tick.
409		 */
410		p->p_uticks++;
411		if (p->p_nice > NZERO)
412			cp_time[CP_NICE]++;
413		else
414			cp_time[CP_USER]++;
415	} else {
416#ifdef GPROF
417		/*
418		 * Kernel statistics are just like addupc_intr, only easier.
419		 */
420		g = &_gmonparam;
421		if (g->state == GMON_PROF_ON) {
422			i = CLKF_PC(frame) - g->lowpc;
423			if (i < g->textsize) {
424				i /= HISTFRACTION * sizeof(*g->kcount);
425				g->kcount[i]++;
426			}
427		}
428#endif
429#if defined(SMP) && defined(BETTER_CLOCK)
430		if (stathz != 0)
431			forward_statclock(pscnt);
432#endif
433		if (--pscnt > 0)
434			return;
435		/*
436		 * Came from kernel mode, so we were:
437		 * - handling an interrupt,
438		 * - doing syscall or trap work on behalf of the current
439		 *   user process, or
440		 * - spinning in the idle loop.
441		 * Whichever it is, charge the time as appropriate.
442		 * Note that we charge interrupts to the current process,
443		 * regardless of whether they are ``for'' that process,
444		 * so that we know how much of its real time was spent
445		 * in ``non-process'' (i.e., interrupt) work.
446		 */
447		p = curproc;
448		if (CLKF_INTR(frame)) {
449			if (p != NULL)
450				p->p_iticks++;
451			cp_time[CP_INTR]++;
452		} else if (p != NULL) {
453			p->p_sticks++;
454			cp_time[CP_SYS]++;
455		} else
456			cp_time[CP_IDLE]++;
457	}
458	pscnt = psdiv;
459
460	/*
461	 * We maintain statistics shown by user-level statistics
462	 * programs:  the amount of time in each cpu state, and
463	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
464	 *
465	 * XXX	should either run linked list of drives, or (better)
466	 *	grab timestamps in the start & done code.
467	 */
468	for (i = 0; i < DK_NDRIVE; i++)
469		if (dk_busy & (1 << i))
470			dk_time[i]++;
471
472	/*
473	 * We adjust the priority of the current process.  The priority of
474	 * a process gets worse as it accumulates CPU time.  The cpu usage
475	 * estimator (p_estcpu) is increased here.  The formula for computing
476	 * priorities (in kern_synch.c) will compute a different value each
477	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
478	 * quite quickly when the process is running (linearly), and decays
479	 * away exponentially, at a rate which is proportionally slower when
480	 * the system is busy.  The basic principal is that the system will
481	 * 90% forget that the process used a lot of CPU time in 5 * loadav
482	 * seconds.  This causes the system to favor processes which haven't
483	 * run much recently, and to round-robin among other processes.
484	 */
485	if (p != NULL) {
486		p->p_cpticks++;
487		if (++p->p_estcpu == 0)
488			p->p_estcpu--;
489		if ((p->p_estcpu & 3) == 0) {
490			resetpriority(p);
491			if (p->p_priority >= PUSER)
492				p->p_priority = p->p_usrpri;
493		}
494
495		/* Update resource usage integrals and maximums. */
496		if ((pstats = p->p_stats) != NULL &&
497		    (ru = &pstats->p_ru) != NULL &&
498		    (vm = p->p_vmspace) != NULL) {
499			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
500			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
501			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
502			rss = vm->vm_pmap.pm_stats.resident_count *
503			      PAGE_SIZE / 1024;
504			if (ru->ru_maxrss < rss)
505				ru->ru_maxrss = rss;
506        	}
507	}
508}
509
510/*
511 * Return information about system clocks.
512 */
513static int
514sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
515{
516	struct clockinfo clkinfo;
517	/*
518	 * Construct clockinfo structure.
519	 */
520	clkinfo.hz = hz;
521	clkinfo.tick = tick;
522	clkinfo.tickadj = tickadj;
523	clkinfo.profhz = profhz;
524	clkinfo.stathz = stathz ? stathz : hz;
525	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
526}
527
528SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
529	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
530
531