kern_clock.c revision 227309
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_clock.c 227309 2011-11-07 15:43:11Z ed $");
39
40#include "opt_kdb.h"
41#include "opt_device_polling.h"
42#include "opt_hwpmc_hooks.h"
43#include "opt_ntp.h"
44#include "opt_watchdog.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/callout.h>
49#include <sys/kdb.h>
50#include <sys/kernel.h>
51#include <sys/kthread.h>
52#include <sys/ktr.h>
53#include <sys/lock.h>
54#include <sys/mutex.h>
55#include <sys/proc.h>
56#include <sys/resource.h>
57#include <sys/resourcevar.h>
58#include <sys/sched.h>
59#include <sys/signalvar.h>
60#include <sys/sleepqueue.h>
61#include <sys/smp.h>
62#include <vm/vm.h>
63#include <vm/pmap.h>
64#include <vm/vm_map.h>
65#include <sys/sysctl.h>
66#include <sys/bus.h>
67#include <sys/interrupt.h>
68#include <sys/limits.h>
69#include <sys/timetc.h>
70
71#ifdef GPROF
72#include <sys/gmon.h>
73#endif
74
75#ifdef HWPMC_HOOKS
76#include <sys/pmckern.h>
77#endif
78
79#ifdef DEVICE_POLLING
80extern void hardclock_device_poll(void);
81#endif /* DEVICE_POLLING */
82
83static void initclocks(void *dummy);
84SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
85
86/* Spin-lock protecting profiling statistics. */
87static struct mtx time_lock;
88
89static int
90sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
91{
92	int error;
93	long cp_time[CPUSTATES];
94#ifdef SCTL_MASK32
95	int i;
96	unsigned int cp_time32[CPUSTATES];
97#endif
98
99	read_cpu_time(cp_time);
100#ifdef SCTL_MASK32
101	if (req->flags & SCTL_MASK32) {
102		if (!req->oldptr)
103			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
104		for (i = 0; i < CPUSTATES; i++)
105			cp_time32[i] = (unsigned int)cp_time[i];
106		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
107	} else
108#endif
109	{
110		if (!req->oldptr)
111			return SYSCTL_OUT(req, 0, sizeof(cp_time));
112		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
113	}
114	return error;
115}
116
117SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
118    0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
119
120static long empty[CPUSTATES];
121
122static int
123sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
124{
125	struct pcpu *pcpu;
126	int error;
127	int c;
128	long *cp_time;
129#ifdef SCTL_MASK32
130	unsigned int cp_time32[CPUSTATES];
131	int i;
132#endif
133
134	if (!req->oldptr) {
135#ifdef SCTL_MASK32
136		if (req->flags & SCTL_MASK32)
137			return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
138		else
139#endif
140			return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
141	}
142	for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
143		if (!CPU_ABSENT(c)) {
144			pcpu = pcpu_find(c);
145			cp_time = pcpu->pc_cp_time;
146		} else {
147			cp_time = empty;
148		}
149#ifdef SCTL_MASK32
150		if (req->flags & SCTL_MASK32) {
151			for (i = 0; i < CPUSTATES; i++)
152				cp_time32[i] = (unsigned int)cp_time[i];
153			error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
154		} else
155#endif
156			error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
157	}
158	return error;
159}
160
161SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
162    0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
163
164#ifdef DEADLKRES
165static const char *blessed[] = {
166	"getblk",
167	"so_snd_sx",
168	"so_rcv_sx",
169	NULL
170};
171static int slptime_threshold = 1800;
172static int blktime_threshold = 900;
173static int sleepfreq = 3;
174
175static void
176deadlkres(void)
177{
178	struct proc *p;
179	struct thread *td;
180	void *wchan;
181	int blkticks, i, slpticks, slptype, tryl, tticks;
182
183	tryl = 0;
184	for (;;) {
185		blkticks = blktime_threshold * hz;
186		slpticks = slptime_threshold * hz;
187
188		/*
189		 * Avoid to sleep on the sx_lock in order to avoid a possible
190		 * priority inversion problem leading to starvation.
191		 * If the lock can't be held after 100 tries, panic.
192		 */
193		if (!sx_try_slock(&allproc_lock)) {
194			if (tryl > 100)
195		panic("%s: possible deadlock detected on allproc_lock\n",
196				    __func__);
197			tryl++;
198			pause("allproc", sleepfreq * hz);
199			continue;
200		}
201		tryl = 0;
202		FOREACH_PROC_IN_SYSTEM(p) {
203			PROC_LOCK(p);
204			if (p->p_state == PRS_NEW) {
205				PROC_UNLOCK(p);
206				continue;
207			}
208			FOREACH_THREAD_IN_PROC(p, td) {
209
210				/*
211				 * Once a thread is found in "interesting"
212				 * state a possible ticks wrap-up needs to be
213				 * checked.
214				 */
215				thread_lock(td);
216				if (TD_ON_LOCK(td) && ticks < td->td_blktick) {
217
218					/*
219					 * The thread should be blocked on a
220					 * turnstile, simply check if the
221					 * turnstile channel is in good state.
222					 */
223					MPASS(td->td_blocked != NULL);
224
225					tticks = ticks - td->td_blktick;
226					thread_unlock(td);
227					if (tticks > blkticks) {
228
229						/*
230						 * Accordingly with provided
231						 * thresholds, this thread is
232						 * stuck for too long on a
233						 * turnstile.
234						 */
235						PROC_UNLOCK(p);
236						sx_sunlock(&allproc_lock);
237	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
238						    __func__, td, tticks);
239					}
240				} else if (TD_IS_SLEEPING(td) &&
241				    TD_ON_SLEEPQ(td) &&
242				    ticks < td->td_blktick) {
243
244					/*
245					 * Check if the thread is sleeping on a
246					 * lock, otherwise skip the check.
247					 * Drop the thread lock in order to
248					 * avoid a LOR with the sleepqueue
249					 * spinlock.
250					 */
251					wchan = td->td_wchan;
252					tticks = ticks - td->td_slptick;
253					thread_unlock(td);
254					slptype = sleepq_type(wchan);
255					if ((slptype == SLEEPQ_SX ||
256					    slptype == SLEEPQ_LK) &&
257					    tticks > slpticks) {
258
259						/*
260						 * Accordingly with provided
261						 * thresholds, this thread is
262						 * stuck for too long on a
263						 * sleepqueue.
264						 * However, being on a
265						 * sleepqueue, we might still
266						 * check for the blessed
267						 * list.
268						 */
269						tryl = 0;
270						for (i = 0; blessed[i] != NULL;
271						    i++) {
272							if (!strcmp(blessed[i],
273							    td->td_wmesg)) {
274								tryl = 1;
275								break;
276							}
277						}
278						if (tryl != 0) {
279							tryl = 0;
280							continue;
281						}
282						PROC_UNLOCK(p);
283						sx_sunlock(&allproc_lock);
284	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
285						    __func__, td, tticks);
286					}
287				} else
288					thread_unlock(td);
289			}
290			PROC_UNLOCK(p);
291		}
292		sx_sunlock(&allproc_lock);
293
294		/* Sleep for sleepfreq seconds. */
295		pause("-", sleepfreq * hz);
296	}
297}
298
299static struct kthread_desc deadlkres_kd = {
300	"deadlkres",
301	deadlkres,
302	(struct thread **)NULL
303};
304
305SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
306
307static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0,
308    "Deadlock resolver");
309SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
310    &slptime_threshold, 0,
311    "Number of seconds within is valid to sleep on a sleepqueue");
312SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
313    &blktime_threshold, 0,
314    "Number of seconds within is valid to block on a turnstile");
315SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
316    "Number of seconds between any deadlock resolver thread run");
317#endif	/* DEADLKRES */
318
319void
320read_cpu_time(long *cp_time)
321{
322	struct pcpu *pc;
323	int i, j;
324
325	/* Sum up global cp_time[]. */
326	bzero(cp_time, sizeof(long) * CPUSTATES);
327	CPU_FOREACH(i) {
328		pc = pcpu_find(i);
329		for (j = 0; j < CPUSTATES; j++)
330			cp_time[j] += pc->pc_cp_time[j];
331	}
332}
333
334#ifdef SW_WATCHDOG
335#include <sys/watchdog.h>
336
337static int watchdog_ticks;
338static int watchdog_enabled;
339static void watchdog_fire(void);
340static void watchdog_config(void *, u_int, int *);
341#endif /* SW_WATCHDOG */
342
343/*
344 * Clock handling routines.
345 *
346 * This code is written to operate with two timers that run independently of
347 * each other.
348 *
349 * The main timer, running hz times per second, is used to trigger interval
350 * timers, timeouts and rescheduling as needed.
351 *
352 * The second timer handles kernel and user profiling,
353 * and does resource use estimation.  If the second timer is programmable,
354 * it is randomized to avoid aliasing between the two clocks.  For example,
355 * the randomization prevents an adversary from always giving up the cpu
356 * just before its quantum expires.  Otherwise, it would never accumulate
357 * cpu ticks.  The mean frequency of the second timer is stathz.
358 *
359 * If no second timer exists, stathz will be zero; in this case we drive
360 * profiling and statistics off the main clock.  This WILL NOT be accurate;
361 * do not do it unless absolutely necessary.
362 *
363 * The statistics clock may (or may not) be run at a higher rate while
364 * profiling.  This profile clock runs at profhz.  We require that profhz
365 * be an integral multiple of stathz.
366 *
367 * If the statistics clock is running fast, it must be divided by the ratio
368 * profhz/stathz for statistics.  (For profiling, every tick counts.)
369 *
370 * Time-of-day is maintained using a "timecounter", which may or may
371 * not be related to the hardware generating the above mentioned
372 * interrupts.
373 */
374
375int	stathz;
376int	profhz;
377int	profprocs;
378int	ticks;
379int	psratio;
380
381static DPCPU_DEFINE(int, pcputicks);	/* Per-CPU version of ticks. */
382static int global_hardclock_run = 0;
383
384/*
385 * Initialize clock frequencies and start both clocks running.
386 */
387/* ARGSUSED*/
388static void
389initclocks(dummy)
390	void *dummy;
391{
392	register int i;
393
394	/*
395	 * Set divisors to 1 (normal case) and let the machine-specific
396	 * code do its bit.
397	 */
398	mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
399	cpu_initclocks();
400
401	/*
402	 * Compute profhz/stathz, and fix profhz if needed.
403	 */
404	i = stathz ? stathz : hz;
405	if (profhz == 0)
406		profhz = i;
407	psratio = profhz / i;
408#ifdef SW_WATCHDOG
409	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
410#endif
411}
412
413/*
414 * Each time the real-time timer fires, this function is called on all CPUs.
415 * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
416 * the other CPUs in the system need to call this function.
417 */
418void
419hardclock_cpu(int usermode)
420{
421	struct pstats *pstats;
422	struct thread *td = curthread;
423	struct proc *p = td->td_proc;
424	int flags;
425
426	/*
427	 * Run current process's virtual and profile time, as needed.
428	 */
429	pstats = p->p_stats;
430	flags = 0;
431	if (usermode &&
432	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
433		PROC_SLOCK(p);
434		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
435			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
436		PROC_SUNLOCK(p);
437	}
438	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
439		PROC_SLOCK(p);
440		if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
441			flags |= TDF_PROFPEND | TDF_ASTPENDING;
442		PROC_SUNLOCK(p);
443	}
444	thread_lock(td);
445	sched_tick(1);
446	td->td_flags |= flags;
447	thread_unlock(td);
448
449#ifdef	HWPMC_HOOKS
450	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
451		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
452#endif
453	callout_tick();
454}
455
456/*
457 * The real-time timer, interrupting hz times per second.
458 */
459void
460hardclock(int usermode, uintfptr_t pc)
461{
462
463	atomic_add_int((volatile int *)&ticks, 1);
464	hardclock_cpu(usermode);
465	tc_ticktock(1);
466	cpu_tick_calibration();
467	/*
468	 * If no separate statistics clock is available, run it from here.
469	 *
470	 * XXX: this only works for UP
471	 */
472	if (stathz == 0) {
473		profclock(usermode, pc);
474		statclock(usermode);
475	}
476#ifdef DEVICE_POLLING
477	hardclock_device_poll();	/* this is very short and quick */
478#endif /* DEVICE_POLLING */
479#ifdef SW_WATCHDOG
480	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
481		watchdog_fire();
482#endif /* SW_WATCHDOG */
483}
484
485void
486hardclock_anycpu(int cnt, int usermode)
487{
488	struct pstats *pstats;
489	struct thread *td = curthread;
490	struct proc *p = td->td_proc;
491	int *t = DPCPU_PTR(pcputicks);
492	int flags, global, newticks;
493#ifdef SW_WATCHDOG
494	int i;
495#endif /* SW_WATCHDOG */
496
497	/*
498	 * Update per-CPU and possibly global ticks values.
499	 */
500	*t += cnt;
501	do {
502		global = ticks;
503		newticks = *t - global;
504		if (newticks <= 0) {
505			if (newticks < -1)
506				*t = global - 1;
507			newticks = 0;
508			break;
509		}
510	} while (!atomic_cmpset_int(&ticks, global, *t));
511
512	/*
513	 * Run current process's virtual and profile time, as needed.
514	 */
515	pstats = p->p_stats;
516	flags = 0;
517	if (usermode &&
518	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
519		PROC_SLOCK(p);
520		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
521		    tick * cnt) == 0)
522			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
523		PROC_SUNLOCK(p);
524	}
525	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
526		PROC_SLOCK(p);
527		if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
528		    tick * cnt) == 0)
529			flags |= TDF_PROFPEND | TDF_ASTPENDING;
530		PROC_SUNLOCK(p);
531	}
532	thread_lock(td);
533	sched_tick(cnt);
534	td->td_flags |= flags;
535	thread_unlock(td);
536
537#ifdef	HWPMC_HOOKS
538	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
539		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
540#endif
541	callout_tick();
542	/* We are in charge to handle this tick duty. */
543	if (newticks > 0) {
544		/* Dangerous and no need to call these things concurrently. */
545		if (atomic_cmpset_acq_int(&global_hardclock_run, 0, 1)) {
546			tc_ticktock(newticks);
547#ifdef DEVICE_POLLING
548			/* This is very short and quick. */
549			hardclock_device_poll();
550#endif /* DEVICE_POLLING */
551			atomic_store_rel_int(&global_hardclock_run, 0);
552		}
553#ifdef SW_WATCHDOG
554		if (watchdog_enabled > 0) {
555			i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
556			if (i > 0 && i <= newticks)
557				watchdog_fire();
558		}
559#endif /* SW_WATCHDOG */
560	}
561	if (curcpu == CPU_FIRST())
562		cpu_tick_calibration();
563}
564
565void
566hardclock_sync(int cpu)
567{
568	int	*t = DPCPU_ID_PTR(cpu, pcputicks);
569
570	*t = ticks;
571}
572
573/*
574 * Compute number of ticks in the specified amount of time.
575 */
576int
577tvtohz(tv)
578	struct timeval *tv;
579{
580	register unsigned long ticks;
581	register long sec, usec;
582
583	/*
584	 * If the number of usecs in the whole seconds part of the time
585	 * difference fits in a long, then the total number of usecs will
586	 * fit in an unsigned long.  Compute the total and convert it to
587	 * ticks, rounding up and adding 1 to allow for the current tick
588	 * to expire.  Rounding also depends on unsigned long arithmetic
589	 * to avoid overflow.
590	 *
591	 * Otherwise, if the number of ticks in the whole seconds part of
592	 * the time difference fits in a long, then convert the parts to
593	 * ticks separately and add, using similar rounding methods and
594	 * overflow avoidance.  This method would work in the previous
595	 * case but it is slightly slower and assumes that hz is integral.
596	 *
597	 * Otherwise, round the time difference down to the maximum
598	 * representable value.
599	 *
600	 * If ints have 32 bits, then the maximum value for any timeout in
601	 * 10ms ticks is 248 days.
602	 */
603	sec = tv->tv_sec;
604	usec = tv->tv_usec;
605	if (usec < 0) {
606		sec--;
607		usec += 1000000;
608	}
609	if (sec < 0) {
610#ifdef DIAGNOSTIC
611		if (usec > 0) {
612			sec++;
613			usec -= 1000000;
614		}
615		printf("tvotohz: negative time difference %ld sec %ld usec\n",
616		       sec, usec);
617#endif
618		ticks = 1;
619	} else if (sec <= LONG_MAX / 1000000)
620		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
621			/ tick + 1;
622	else if (sec <= LONG_MAX / hz)
623		ticks = sec * hz
624			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
625	else
626		ticks = LONG_MAX;
627	if (ticks > INT_MAX)
628		ticks = INT_MAX;
629	return ((int)ticks);
630}
631
632/*
633 * Start profiling on a process.
634 *
635 * Kernel profiling passes proc0 which never exits and hence
636 * keeps the profile clock running constantly.
637 */
638void
639startprofclock(p)
640	register struct proc *p;
641{
642
643	PROC_LOCK_ASSERT(p, MA_OWNED);
644	if (p->p_flag & P_STOPPROF)
645		return;
646	if ((p->p_flag & P_PROFIL) == 0) {
647		p->p_flag |= P_PROFIL;
648		mtx_lock(&time_lock);
649		if (++profprocs == 1)
650			cpu_startprofclock();
651		mtx_unlock(&time_lock);
652	}
653}
654
655/*
656 * Stop profiling on a process.
657 */
658void
659stopprofclock(p)
660	register struct proc *p;
661{
662
663	PROC_LOCK_ASSERT(p, MA_OWNED);
664	if (p->p_flag & P_PROFIL) {
665		if (p->p_profthreads != 0) {
666			p->p_flag |= P_STOPPROF;
667			while (p->p_profthreads != 0)
668				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
669				    "stopprof", 0);
670			p->p_flag &= ~P_STOPPROF;
671		}
672		if ((p->p_flag & P_PROFIL) == 0)
673			return;
674		p->p_flag &= ~P_PROFIL;
675		mtx_lock(&time_lock);
676		if (--profprocs == 0)
677			cpu_stopprofclock();
678		mtx_unlock(&time_lock);
679	}
680}
681
682/*
683 * Statistics clock.  Updates rusage information and calls the scheduler
684 * to adjust priorities of the active thread.
685 *
686 * This should be called by all active processors.
687 */
688void
689statclock(int usermode)
690{
691	struct rusage *ru;
692	struct vmspace *vm;
693	struct thread *td;
694	struct proc *p;
695	long rss;
696	long *cp_time;
697
698	td = curthread;
699	p = td->td_proc;
700
701	cp_time = (long *)PCPU_PTR(cp_time);
702	if (usermode) {
703		/*
704		 * Charge the time as appropriate.
705		 */
706		td->td_uticks++;
707		if (p->p_nice > NZERO)
708			cp_time[CP_NICE]++;
709		else
710			cp_time[CP_USER]++;
711	} else {
712		/*
713		 * Came from kernel mode, so we were:
714		 * - handling an interrupt,
715		 * - doing syscall or trap work on behalf of the current
716		 *   user process, or
717		 * - spinning in the idle loop.
718		 * Whichever it is, charge the time as appropriate.
719		 * Note that we charge interrupts to the current process,
720		 * regardless of whether they are ``for'' that process,
721		 * so that we know how much of its real time was spent
722		 * in ``non-process'' (i.e., interrupt) work.
723		 */
724		if ((td->td_pflags & TDP_ITHREAD) ||
725		    td->td_intr_nesting_level >= 2) {
726			td->td_iticks++;
727			cp_time[CP_INTR]++;
728		} else {
729			td->td_pticks++;
730			td->td_sticks++;
731			if (!TD_IS_IDLETHREAD(td))
732				cp_time[CP_SYS]++;
733			else
734				cp_time[CP_IDLE]++;
735		}
736	}
737
738	/* Update resource usage integrals and maximums. */
739	MPASS(p->p_vmspace != NULL);
740	vm = p->p_vmspace;
741	ru = &td->td_ru;
742	ru->ru_ixrss += pgtok(vm->vm_tsize);
743	ru->ru_idrss += pgtok(vm->vm_dsize);
744	ru->ru_isrss += pgtok(vm->vm_ssize);
745	rss = pgtok(vmspace_resident_count(vm));
746	if (ru->ru_maxrss < rss)
747		ru->ru_maxrss = rss;
748	KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
749	    "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
750	thread_lock_flags(td, MTX_QUIET);
751	sched_clock(td);
752	thread_unlock(td);
753}
754
755void
756profclock(int usermode, uintfptr_t pc)
757{
758	struct thread *td;
759#ifdef GPROF
760	struct gmonparam *g;
761	uintfptr_t i;
762#endif
763
764	td = curthread;
765	if (usermode) {
766		/*
767		 * Came from user mode; CPU was in user state.
768		 * If this process is being profiled, record the tick.
769		 * if there is no related user location yet, don't
770		 * bother trying to count it.
771		 */
772		if (td->td_proc->p_flag & P_PROFIL)
773			addupc_intr(td, pc, 1);
774	}
775#ifdef GPROF
776	else {
777		/*
778		 * Kernel statistics are just like addupc_intr, only easier.
779		 */
780		g = &_gmonparam;
781		if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
782			i = PC_TO_I(g, pc);
783			if (i < g->textsize) {
784				KCOUNT(g, i)++;
785			}
786		}
787	}
788#endif
789}
790
791/*
792 * Return information about system clocks.
793 */
794static int
795sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
796{
797	struct clockinfo clkinfo;
798	/*
799	 * Construct clockinfo structure.
800	 */
801	bzero(&clkinfo, sizeof(clkinfo));
802	clkinfo.hz = hz;
803	clkinfo.tick = tick;
804	clkinfo.profhz = profhz;
805	clkinfo.stathz = stathz ? stathz : hz;
806	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
807}
808
809SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
810	CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
811	0, 0, sysctl_kern_clockrate, "S,clockinfo",
812	"Rate and period of various kernel clocks");
813
814#ifdef SW_WATCHDOG
815
816static void
817watchdog_config(void *unused __unused, u_int cmd, int *error)
818{
819	u_int u;
820
821	u = cmd & WD_INTERVAL;
822	if (u >= WD_TO_1SEC) {
823		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
824		watchdog_enabled = 1;
825		*error = 0;
826	} else {
827		watchdog_enabled = 0;
828	}
829}
830
831/*
832 * Handle a watchdog timeout by dumping interrupt information and
833 * then either dropping to DDB or panicking.
834 */
835static void
836watchdog_fire(void)
837{
838	int nintr;
839	uint64_t inttotal;
840	u_long *curintr;
841	char *curname;
842
843	curintr = intrcnt;
844	curname = intrnames;
845	inttotal = 0;
846	nintr = sintrcnt / sizeof(u_long);
847
848	printf("interrupt                   total\n");
849	while (--nintr >= 0) {
850		if (*curintr)
851			printf("%-12s %20lu\n", curname, *curintr);
852		curname += strlen(curname) + 1;
853		inttotal += *curintr++;
854	}
855	printf("Total        %20ju\n", (uintmax_t)inttotal);
856
857#if defined(KDB) && !defined(KDB_UNATTENDED)
858	kdb_backtrace();
859	kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
860#else
861	panic("watchdog timeout");
862#endif
863}
864
865#endif /* SW_WATCHDOG */
866