kern_clock.c revision 220390
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_clock.c 220390 2011-04-06 17:47:22Z jhb $");
39
40#include "opt_kdb.h"
41#include "opt_device_polling.h"
42#include "opt_hwpmc_hooks.h"
43#include "opt_ntp.h"
44#include "opt_watchdog.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/callout.h>
49#include <sys/kdb.h>
50#include <sys/kernel.h>
51#include <sys/kthread.h>
52#include <sys/ktr.h>
53#include <sys/lock.h>
54#include <sys/mutex.h>
55#include <sys/proc.h>
56#include <sys/resource.h>
57#include <sys/resourcevar.h>
58#include <sys/sched.h>
59#include <sys/signalvar.h>
60#include <sys/sleepqueue.h>
61#include <sys/smp.h>
62#include <vm/vm.h>
63#include <vm/pmap.h>
64#include <vm/vm_map.h>
65#include <sys/sysctl.h>
66#include <sys/bus.h>
67#include <sys/interrupt.h>
68#include <sys/limits.h>
69#include <sys/timetc.h>
70
71#ifdef GPROF
72#include <sys/gmon.h>
73#endif
74
75#ifdef HWPMC_HOOKS
76#include <sys/pmckern.h>
77#endif
78
79#ifdef DEVICE_POLLING
80extern void hardclock_device_poll(void);
81#endif /* DEVICE_POLLING */
82
83static void initclocks(void *dummy);
84SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
85
86/* Spin-lock protecting profiling statistics. */
87static struct mtx time_lock;
88
89static int
90sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
91{
92	int error;
93	long cp_time[CPUSTATES];
94#ifdef SCTL_MASK32
95	int i;
96	unsigned int cp_time32[CPUSTATES];
97#endif
98
99	read_cpu_time(cp_time);
100#ifdef SCTL_MASK32
101	if (req->flags & SCTL_MASK32) {
102		if (!req->oldptr)
103			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
104		for (i = 0; i < CPUSTATES; i++)
105			cp_time32[i] = (unsigned int)cp_time[i];
106		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
107	} else
108#endif
109	{
110		if (!req->oldptr)
111			return SYSCTL_OUT(req, 0, sizeof(cp_time));
112		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
113	}
114	return error;
115}
116
117SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
118    0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
119
120static long empty[CPUSTATES];
121
122static int
123sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
124{
125	struct pcpu *pcpu;
126	int error;
127	int c;
128	long *cp_time;
129#ifdef SCTL_MASK32
130	unsigned int cp_time32[CPUSTATES];
131	int i;
132#endif
133
134	if (!req->oldptr) {
135#ifdef SCTL_MASK32
136		if (req->flags & SCTL_MASK32)
137			return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
138		else
139#endif
140			return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
141	}
142	for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
143		if (!CPU_ABSENT(c)) {
144			pcpu = pcpu_find(c);
145			cp_time = pcpu->pc_cp_time;
146		} else {
147			cp_time = empty;
148		}
149#ifdef SCTL_MASK32
150		if (req->flags & SCTL_MASK32) {
151			for (i = 0; i < CPUSTATES; i++)
152				cp_time32[i] = (unsigned int)cp_time[i];
153			error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
154		} else
155#endif
156			error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
157	}
158	return error;
159}
160
161SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
162    0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
163
164#ifdef DEADLKRES
165static const char *blessed[] = {
166	"getblk",
167	"so_snd_sx",
168	"so_rcv_sx",
169	NULL
170};
171static int slptime_threshold = 1800;
172static int blktime_threshold = 900;
173static int sleepfreq = 3;
174
175static void
176deadlkres(void)
177{
178	struct proc *p;
179	struct thread *td;
180	void *wchan;
181	int blkticks, i, slpticks, slptype, tryl, tticks;
182
183	tryl = 0;
184	for (;;) {
185		blkticks = blktime_threshold * hz;
186		slpticks = slptime_threshold * hz;
187
188		/*
189		 * Avoid to sleep on the sx_lock in order to avoid a possible
190		 * priority inversion problem leading to starvation.
191		 * If the lock can't be held after 100 tries, panic.
192		 */
193		if (!sx_try_slock(&allproc_lock)) {
194			if (tryl > 100)
195		panic("%s: possible deadlock detected on allproc_lock\n",
196				    __func__);
197			tryl++;
198			pause("allproc", sleepfreq * hz);
199			continue;
200		}
201		tryl = 0;
202		FOREACH_PROC_IN_SYSTEM(p) {
203			PROC_LOCK(p);
204			if (p->p_state == PRS_NEW) {
205				PROC_UNLOCK(p);
206				continue;
207			}
208			FOREACH_THREAD_IN_PROC(p, td) {
209
210				/*
211				 * Once a thread is found in "interesting"
212				 * state a possible ticks wrap-up needs to be
213				 * checked.
214				 */
215				thread_lock(td);
216				if (TD_ON_LOCK(td) && ticks < td->td_blktick) {
217
218					/*
219					 * The thread should be blocked on a
220					 * turnstile, simply check if the
221					 * turnstile channel is in good state.
222					 */
223					MPASS(td->td_blocked != NULL);
224
225					tticks = ticks - td->td_blktick;
226					thread_unlock(td);
227					if (tticks > blkticks) {
228
229						/*
230						 * Accordingly with provided
231						 * thresholds, this thread is
232						 * stuck for too long on a
233						 * turnstile.
234						 */
235						PROC_UNLOCK(p);
236						sx_sunlock(&allproc_lock);
237	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
238						    __func__, td, tticks);
239					}
240				} else if (TD_IS_SLEEPING(td) &&
241				    TD_ON_SLEEPQ(td) &&
242				    ticks < td->td_blktick) {
243
244					/*
245					 * Check if the thread is sleeping on a
246					 * lock, otherwise skip the check.
247					 * Drop the thread lock in order to
248					 * avoid a LOR with the sleepqueue
249					 * spinlock.
250					 */
251					wchan = td->td_wchan;
252					tticks = ticks - td->td_slptick;
253					thread_unlock(td);
254					slptype = sleepq_type(wchan);
255					if ((slptype == SLEEPQ_SX ||
256					    slptype == SLEEPQ_LK) &&
257					    tticks > slpticks) {
258
259						/*
260						 * Accordingly with provided
261						 * thresholds, this thread is
262						 * stuck for too long on a
263						 * sleepqueue.
264						 * However, being on a
265						 * sleepqueue, we might still
266						 * check for the blessed
267						 * list.
268						 */
269						tryl = 0;
270						for (i = 0; blessed[i] != NULL;
271						    i++) {
272							if (!strcmp(blessed[i],
273							    td->td_wmesg)) {
274								tryl = 1;
275								break;
276							}
277						}
278						if (tryl != 0) {
279							tryl = 0;
280							continue;
281						}
282						PROC_UNLOCK(p);
283						sx_sunlock(&allproc_lock);
284	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
285						    __func__, td, tticks);
286					}
287				} else
288					thread_unlock(td);
289			}
290			PROC_UNLOCK(p);
291		}
292		sx_sunlock(&allproc_lock);
293
294		/* Sleep for sleepfreq seconds. */
295		pause("-", sleepfreq * hz);
296	}
297}
298
299static struct kthread_desc deadlkres_kd = {
300	"deadlkres",
301	deadlkres,
302	(struct thread **)NULL
303};
304
305SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
306
307SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0, "Deadlock resolver");
308SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
309    &slptime_threshold, 0,
310    "Number of seconds within is valid to sleep on a sleepqueue");
311SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
312    &blktime_threshold, 0,
313    "Number of seconds within is valid to block on a turnstile");
314SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
315    "Number of seconds between any deadlock resolver thread run");
316#endif	/* DEADLKRES */
317
318void
319read_cpu_time(long *cp_time)
320{
321	struct pcpu *pc;
322	int i, j;
323
324	/* Sum up global cp_time[]. */
325	bzero(cp_time, sizeof(long) * CPUSTATES);
326	CPU_FOREACH(i) {
327		pc = pcpu_find(i);
328		for (j = 0; j < CPUSTATES; j++)
329			cp_time[j] += pc->pc_cp_time[j];
330	}
331}
332
333#ifdef SW_WATCHDOG
334#include <sys/watchdog.h>
335
336static int watchdog_ticks;
337static int watchdog_enabled;
338static void watchdog_fire(void);
339static void watchdog_config(void *, u_int, int *);
340#endif /* SW_WATCHDOG */
341
342/*
343 * Clock handling routines.
344 *
345 * This code is written to operate with two timers that run independently of
346 * each other.
347 *
348 * The main timer, running hz times per second, is used to trigger interval
349 * timers, timeouts and rescheduling as needed.
350 *
351 * The second timer handles kernel and user profiling,
352 * and does resource use estimation.  If the second timer is programmable,
353 * it is randomized to avoid aliasing between the two clocks.  For example,
354 * the randomization prevents an adversary from always giving up the cpu
355 * just before its quantum expires.  Otherwise, it would never accumulate
356 * cpu ticks.  The mean frequency of the second timer is stathz.
357 *
358 * If no second timer exists, stathz will be zero; in this case we drive
359 * profiling and statistics off the main clock.  This WILL NOT be accurate;
360 * do not do it unless absolutely necessary.
361 *
362 * The statistics clock may (or may not) be run at a higher rate while
363 * profiling.  This profile clock runs at profhz.  We require that profhz
364 * be an integral multiple of stathz.
365 *
366 * If the statistics clock is running fast, it must be divided by the ratio
367 * profhz/stathz for statistics.  (For profiling, every tick counts.)
368 *
369 * Time-of-day is maintained using a "timecounter", which may or may
370 * not be related to the hardware generating the above mentioned
371 * interrupts.
372 */
373
374int	stathz;
375int	profhz;
376int	profprocs;
377int	ticks;
378int	psratio;
379
380static DPCPU_DEFINE(int, pcputicks);	/* Per-CPU version of ticks. */
381static int global_hardclock_run = 0;
382
383/*
384 * Initialize clock frequencies and start both clocks running.
385 */
386/* ARGSUSED*/
387static void
388initclocks(dummy)
389	void *dummy;
390{
391	register int i;
392
393	/*
394	 * Set divisors to 1 (normal case) and let the machine-specific
395	 * code do its bit.
396	 */
397	mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
398	cpu_initclocks();
399
400	/*
401	 * Compute profhz/stathz, and fix profhz if needed.
402	 */
403	i = stathz ? stathz : hz;
404	if (profhz == 0)
405		profhz = i;
406	psratio = profhz / i;
407#ifdef SW_WATCHDOG
408	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
409#endif
410}
411
412/*
413 * Each time the real-time timer fires, this function is called on all CPUs.
414 * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
415 * the other CPUs in the system need to call this function.
416 */
417void
418hardclock_cpu(int usermode)
419{
420	struct pstats *pstats;
421	struct thread *td = curthread;
422	struct proc *p = td->td_proc;
423	int flags;
424
425	/*
426	 * Run current process's virtual and profile time, as needed.
427	 */
428	pstats = p->p_stats;
429	flags = 0;
430	if (usermode &&
431	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
432		PROC_SLOCK(p);
433		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
434			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
435		PROC_SUNLOCK(p);
436	}
437	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
438		PROC_SLOCK(p);
439		if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
440			flags |= TDF_PROFPEND | TDF_ASTPENDING;
441		PROC_SUNLOCK(p);
442	}
443	thread_lock(td);
444	sched_tick(1);
445	td->td_flags |= flags;
446	thread_unlock(td);
447
448#ifdef	HWPMC_HOOKS
449	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
450		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
451#endif
452	callout_tick();
453}
454
455/*
456 * The real-time timer, interrupting hz times per second.
457 */
458void
459hardclock(int usermode, uintfptr_t pc)
460{
461
462	atomic_add_int((volatile int *)&ticks, 1);
463	hardclock_cpu(usermode);
464	tc_ticktock(1);
465	cpu_tick_calibration();
466	/*
467	 * If no separate statistics clock is available, run it from here.
468	 *
469	 * XXX: this only works for UP
470	 */
471	if (stathz == 0) {
472		profclock(usermode, pc);
473		statclock(usermode);
474	}
475#ifdef DEVICE_POLLING
476	hardclock_device_poll();	/* this is very short and quick */
477#endif /* DEVICE_POLLING */
478#ifdef SW_WATCHDOG
479	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
480		watchdog_fire();
481#endif /* SW_WATCHDOG */
482}
483
484void
485hardclock_anycpu(int cnt, int usermode)
486{
487	struct pstats *pstats;
488	struct thread *td = curthread;
489	struct proc *p = td->td_proc;
490	int *t = DPCPU_PTR(pcputicks);
491	int flags, global, newticks;
492#ifdef SW_WATCHDOG
493	int i;
494#endif /* SW_WATCHDOG */
495
496	/*
497	 * Update per-CPU and possibly global ticks values.
498	 */
499	*t += cnt;
500	do {
501		global = ticks;
502		newticks = *t - global;
503		if (newticks <= 0) {
504			if (newticks < -1)
505				*t = global - 1;
506			newticks = 0;
507			break;
508		}
509	} while (!atomic_cmpset_int(&ticks, global, *t));
510
511	/*
512	 * Run current process's virtual and profile time, as needed.
513	 */
514	pstats = p->p_stats;
515	flags = 0;
516	if (usermode &&
517	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
518		PROC_SLOCK(p);
519		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
520		    tick * cnt) == 0)
521			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
522		PROC_SUNLOCK(p);
523	}
524	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
525		PROC_SLOCK(p);
526		if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
527		    tick * cnt) == 0)
528			flags |= TDF_PROFPEND | TDF_ASTPENDING;
529		PROC_SUNLOCK(p);
530	}
531	thread_lock(td);
532	sched_tick(cnt);
533	td->td_flags |= flags;
534	thread_unlock(td);
535
536#ifdef	HWPMC_HOOKS
537	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
538		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
539#endif
540	callout_tick();
541	/* We are in charge to handle this tick duty. */
542	if (newticks > 0) {
543		/* Dangerous and no need to call these things concurrently. */
544		if (atomic_cmpset_acq_int(&global_hardclock_run, 0, 1)) {
545			tc_ticktock(newticks);
546#ifdef DEVICE_POLLING
547			/* This is very short and quick. */
548			hardclock_device_poll();
549#endif /* DEVICE_POLLING */
550			atomic_store_rel_int(&global_hardclock_run, 0);
551		}
552#ifdef SW_WATCHDOG
553		if (watchdog_enabled > 0) {
554			i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
555			if (i > 0 && i <= newticks)
556				watchdog_fire();
557		}
558#endif /* SW_WATCHDOG */
559	}
560	if (curcpu == CPU_FIRST())
561		cpu_tick_calibration();
562}
563
564void
565hardclock_sync(int cpu)
566{
567	int	*t = DPCPU_ID_PTR(cpu, pcputicks);
568
569	*t = ticks;
570}
571
572/*
573 * Compute number of ticks in the specified amount of time.
574 */
575int
576tvtohz(tv)
577	struct timeval *tv;
578{
579	register unsigned long ticks;
580	register long sec, usec;
581
582	/*
583	 * If the number of usecs in the whole seconds part of the time
584	 * difference fits in a long, then the total number of usecs will
585	 * fit in an unsigned long.  Compute the total and convert it to
586	 * ticks, rounding up and adding 1 to allow for the current tick
587	 * to expire.  Rounding also depends on unsigned long arithmetic
588	 * to avoid overflow.
589	 *
590	 * Otherwise, if the number of ticks in the whole seconds part of
591	 * the time difference fits in a long, then convert the parts to
592	 * ticks separately and add, using similar rounding methods and
593	 * overflow avoidance.  This method would work in the previous
594	 * case but it is slightly slower and assumes that hz is integral.
595	 *
596	 * Otherwise, round the time difference down to the maximum
597	 * representable value.
598	 *
599	 * If ints have 32 bits, then the maximum value for any timeout in
600	 * 10ms ticks is 248 days.
601	 */
602	sec = tv->tv_sec;
603	usec = tv->tv_usec;
604	if (usec < 0) {
605		sec--;
606		usec += 1000000;
607	}
608	if (sec < 0) {
609#ifdef DIAGNOSTIC
610		if (usec > 0) {
611			sec++;
612			usec -= 1000000;
613		}
614		printf("tvotohz: negative time difference %ld sec %ld usec\n",
615		       sec, usec);
616#endif
617		ticks = 1;
618	} else if (sec <= LONG_MAX / 1000000)
619		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
620			/ tick + 1;
621	else if (sec <= LONG_MAX / hz)
622		ticks = sec * hz
623			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
624	else
625		ticks = LONG_MAX;
626	if (ticks > INT_MAX)
627		ticks = INT_MAX;
628	return ((int)ticks);
629}
630
631/*
632 * Start profiling on a process.
633 *
634 * Kernel profiling passes proc0 which never exits and hence
635 * keeps the profile clock running constantly.
636 */
637void
638startprofclock(p)
639	register struct proc *p;
640{
641
642	PROC_LOCK_ASSERT(p, MA_OWNED);
643	if (p->p_flag & P_STOPPROF)
644		return;
645	if ((p->p_flag & P_PROFIL) == 0) {
646		p->p_flag |= P_PROFIL;
647		mtx_lock(&time_lock);
648		if (++profprocs == 1)
649			cpu_startprofclock();
650		mtx_unlock(&time_lock);
651	}
652}
653
654/*
655 * Stop profiling on a process.
656 */
657void
658stopprofclock(p)
659	register struct proc *p;
660{
661
662	PROC_LOCK_ASSERT(p, MA_OWNED);
663	if (p->p_flag & P_PROFIL) {
664		if (p->p_profthreads != 0) {
665			p->p_flag |= P_STOPPROF;
666			while (p->p_profthreads != 0)
667				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
668				    "stopprof", 0);
669			p->p_flag &= ~P_STOPPROF;
670		}
671		if ((p->p_flag & P_PROFIL) == 0)
672			return;
673		p->p_flag &= ~P_PROFIL;
674		mtx_lock(&time_lock);
675		if (--profprocs == 0)
676			cpu_stopprofclock();
677		mtx_unlock(&time_lock);
678	}
679}
680
681/*
682 * Statistics clock.  Updates rusage information and calls the scheduler
683 * to adjust priorities of the active thread.
684 *
685 * This should be called by all active processors.
686 */
687void
688statclock(int usermode)
689{
690	struct rusage *ru;
691	struct vmspace *vm;
692	struct thread *td;
693	struct proc *p;
694	long rss;
695	long *cp_time;
696
697	td = curthread;
698	p = td->td_proc;
699
700	cp_time = (long *)PCPU_PTR(cp_time);
701	if (usermode) {
702		/*
703		 * Charge the time as appropriate.
704		 */
705		td->td_uticks++;
706		if (p->p_nice > NZERO)
707			cp_time[CP_NICE]++;
708		else
709			cp_time[CP_USER]++;
710	} else {
711		/*
712		 * Came from kernel mode, so we were:
713		 * - handling an interrupt,
714		 * - doing syscall or trap work on behalf of the current
715		 *   user process, or
716		 * - spinning in the idle loop.
717		 * Whichever it is, charge the time as appropriate.
718		 * Note that we charge interrupts to the current process,
719		 * regardless of whether they are ``for'' that process,
720		 * so that we know how much of its real time was spent
721		 * in ``non-process'' (i.e., interrupt) work.
722		 */
723		if ((td->td_pflags & TDP_ITHREAD) ||
724		    td->td_intr_nesting_level >= 2) {
725			td->td_iticks++;
726			cp_time[CP_INTR]++;
727		} else {
728			td->td_pticks++;
729			td->td_sticks++;
730			if (!TD_IS_IDLETHREAD(td))
731				cp_time[CP_SYS]++;
732			else
733				cp_time[CP_IDLE]++;
734		}
735	}
736
737	/* Update resource usage integrals and maximums. */
738	MPASS(p->p_vmspace != NULL);
739	vm = p->p_vmspace;
740	ru = &td->td_ru;
741	ru->ru_ixrss += pgtok(vm->vm_tsize);
742	ru->ru_idrss += pgtok(vm->vm_dsize);
743	ru->ru_isrss += pgtok(vm->vm_ssize);
744	rss = pgtok(vmspace_resident_count(vm));
745	if (ru->ru_maxrss < rss)
746		ru->ru_maxrss = rss;
747	KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
748	    "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
749	thread_lock_flags(td, MTX_QUIET);
750	sched_clock(td);
751	thread_unlock(td);
752}
753
754void
755profclock(int usermode, uintfptr_t pc)
756{
757	struct thread *td;
758#ifdef GPROF
759	struct gmonparam *g;
760	uintfptr_t i;
761#endif
762
763	td = curthread;
764	if (usermode) {
765		/*
766		 * Came from user mode; CPU was in user state.
767		 * If this process is being profiled, record the tick.
768		 * if there is no related user location yet, don't
769		 * bother trying to count it.
770		 */
771		if (td->td_proc->p_flag & P_PROFIL)
772			addupc_intr(td, pc, 1);
773	}
774#ifdef GPROF
775	else {
776		/*
777		 * Kernel statistics are just like addupc_intr, only easier.
778		 */
779		g = &_gmonparam;
780		if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
781			i = PC_TO_I(g, pc);
782			if (i < g->textsize) {
783				KCOUNT(g, i)++;
784			}
785		}
786	}
787#endif
788}
789
790/*
791 * Return information about system clocks.
792 */
793static int
794sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
795{
796	struct clockinfo clkinfo;
797	/*
798	 * Construct clockinfo structure.
799	 */
800	bzero(&clkinfo, sizeof(clkinfo));
801	clkinfo.hz = hz;
802	clkinfo.tick = tick;
803	clkinfo.profhz = profhz;
804	clkinfo.stathz = stathz ? stathz : hz;
805	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
806}
807
808SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
809	CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
810	0, 0, sysctl_kern_clockrate, "S,clockinfo",
811	"Rate and period of various kernel clocks");
812
813#ifdef SW_WATCHDOG
814
815static void
816watchdog_config(void *unused __unused, u_int cmd, int *error)
817{
818	u_int u;
819
820	u = cmd & WD_INTERVAL;
821	if (u >= WD_TO_1SEC) {
822		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
823		watchdog_enabled = 1;
824		*error = 0;
825	} else {
826		watchdog_enabled = 0;
827	}
828}
829
830/*
831 * Handle a watchdog timeout by dumping interrupt information and
832 * then either dropping to DDB or panicking.
833 */
834static void
835watchdog_fire(void)
836{
837	int nintr;
838	uint64_t inttotal;
839	u_long *curintr;
840	char *curname;
841
842	curintr = intrcnt;
843	curname = intrnames;
844	inttotal = 0;
845	nintr = eintrcnt - intrcnt;
846
847	printf("interrupt                   total\n");
848	while (--nintr >= 0) {
849		if (*curintr)
850			printf("%-12s %20lu\n", curname, *curintr);
851		curname += strlen(curname) + 1;
852		inttotal += *curintr++;
853	}
854	printf("Total        %20ju\n", (uintmax_t)inttotal);
855
856#if defined(KDB) && !defined(KDB_UNATTENDED)
857	kdb_backtrace();
858	kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
859#else
860	panic("watchdog timeout");
861#endif
862}
863
864#endif /* SW_WATCHDOG */
865