kern_clock.c revision 165260
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_clock.c 165260 2006-12-15 21:44:49Z n_hibma $");
39
40#include "opt_device_polling.h"
41#include "opt_hwpmc_hooks.h"
42#include "opt_ntp.h"
43#include "opt_watchdog.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/callout.h>
48#include <sys/kdb.h>
49#include <sys/kernel.h>
50#include <sys/lock.h>
51#include <sys/ktr.h>
52#include <sys/mutex.h>
53#include <sys/proc.h>
54#include <sys/resource.h>
55#include <sys/resourcevar.h>
56#include <sys/sched.h>
57#include <sys/signalvar.h>
58#include <sys/smp.h>
59#include <vm/vm.h>
60#include <vm/pmap.h>
61#include <vm/vm_map.h>
62#include <sys/sysctl.h>
63#include <sys/bus.h>
64#include <sys/interrupt.h>
65#include <sys/limits.h>
66#include <sys/timetc.h>
67
68#ifdef GPROF
69#include <sys/gmon.h>
70#endif
71
72#ifdef HWPMC_HOOKS
73#include <sys/pmckern.h>
74#endif
75
76#ifdef DEVICE_POLLING
77extern void hardclock_device_poll(void);
78#endif /* DEVICE_POLLING */
79
80static void initclocks(void *dummy);
81SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
82
83/* Some of these don't belong here, but it's easiest to concentrate them. */
84long cp_time[CPUSTATES];
85
86static int
87sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
88{
89	int error;
90#ifdef SCTL_MASK32
91	int i;
92	unsigned int cp_time32[CPUSTATES];
93
94	if (req->flags & SCTL_MASK32) {
95		if (!req->oldptr)
96			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
97		for (i = 0; i < CPUSTATES; i++)
98			cp_time32[i] = (unsigned int)cp_time[i];
99		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
100	} else
101#endif
102	{
103		if (!req->oldptr)
104			return SYSCTL_OUT(req, 0, sizeof(cp_time));
105		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
106	}
107	return error;
108}
109
110SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD,
111    0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
112
113#ifdef SW_WATCHDOG
114#include <sys/watchdog.h>
115
116static int watchdog_ticks;
117static int watchdog_enabled;
118static void watchdog_fire(void);
119static void watchdog_config(void *, u_int, int *);
120#endif /* SW_WATCHDOG */
121
122/*
123 * Clock handling routines.
124 *
125 * This code is written to operate with two timers that run independently of
126 * each other.
127 *
128 * The main timer, running hz times per second, is used to trigger interval
129 * timers, timeouts and rescheduling as needed.
130 *
131 * The second timer handles kernel and user profiling,
132 * and does resource use estimation.  If the second timer is programmable,
133 * it is randomized to avoid aliasing between the two clocks.  For example,
134 * the randomization prevents an adversary from always giving up the cpu
135 * just before its quantum expires.  Otherwise, it would never accumulate
136 * cpu ticks.  The mean frequency of the second timer is stathz.
137 *
138 * If no second timer exists, stathz will be zero; in this case we drive
139 * profiling and statistics off the main clock.  This WILL NOT be accurate;
140 * do not do it unless absolutely necessary.
141 *
142 * The statistics clock may (or may not) be run at a higher rate while
143 * profiling.  This profile clock runs at profhz.  We require that profhz
144 * be an integral multiple of stathz.
145 *
146 * If the statistics clock is running fast, it must be divided by the ratio
147 * profhz/stathz for statistics.  (For profiling, every tick counts.)
148 *
149 * Time-of-day is maintained using a "timecounter", which may or may
150 * not be related to the hardware generating the above mentioned
151 * interrupts.
152 */
153
154int	stathz;
155int	profhz;
156int	profprocs;
157int	ticks;
158int	psratio;
159
160/*
161 * Initialize clock frequencies and start both clocks running.
162 */
163/* ARGSUSED*/
164static void
165initclocks(dummy)
166	void *dummy;
167{
168	register int i;
169
170	/*
171	 * Set divisors to 1 (normal case) and let the machine-specific
172	 * code do its bit.
173	 */
174	cpu_initclocks();
175
176	/*
177	 * Compute profhz/stathz, and fix profhz if needed.
178	 */
179	i = stathz ? stathz : hz;
180	if (profhz == 0)
181		profhz = i;
182	psratio = profhz / i;
183#ifdef SW_WATCHDOG
184	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
185#endif
186}
187
188/*
189 * Each time the real-time timer fires, this function is called on all CPUs.
190 * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
191 * the other CPUs in the system need to call this function.
192 */
193void
194hardclock_cpu(int usermode)
195{
196	struct pstats *pstats;
197	struct thread *td = curthread;
198	struct proc *p = td->td_proc;
199
200	/*
201	 * Run current process's virtual and profile time, as needed.
202	 */
203	mtx_lock_spin_flags(&sched_lock, MTX_QUIET);
204	sched_tick();
205#ifdef KSE
206#if 0  /* for now do nothing */
207	if (p->p_flag & P_SA) {
208		/* XXXKSE What to do? Should do more. */
209	}
210#endif
211#endif
212	pstats = p->p_stats;
213	if (usermode &&
214	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
215	    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
216		p->p_sflag |= PS_ALRMPEND;
217		td->td_flags |= TDF_ASTPENDING;
218	}
219	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
220	    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
221		p->p_sflag |= PS_PROFPEND;
222		td->td_flags |= TDF_ASTPENDING;
223	}
224	mtx_unlock_spin_flags(&sched_lock, MTX_QUIET);
225
226#ifdef	HWPMC_HOOKS
227	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
228		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
229#endif
230}
231
232/*
233 * The real-time timer, interrupting hz times per second.
234 */
235void
236hardclock(int usermode, uintfptr_t pc)
237{
238	int need_softclock = 0;
239
240	hardclock_cpu(usermode);
241
242	tc_ticktock();
243	/*
244	 * If no separate statistics clock is available, run it from here.
245	 *
246	 * XXX: this only works for UP
247	 */
248	if (stathz == 0) {
249		profclock(usermode, pc);
250		statclock(usermode);
251	}
252
253#ifdef DEVICE_POLLING
254	hardclock_device_poll();	/* this is very short and quick */
255#endif /* DEVICE_POLLING */
256
257	/*
258	 * Process callouts at a very low cpu priority, so we don't keep the
259	 * relatively high clock interrupt priority any longer than necessary.
260	 */
261	mtx_lock_spin_flags(&callout_lock, MTX_QUIET);
262	ticks++;
263	if (!TAILQ_EMPTY(&callwheel[ticks & callwheelmask])) {
264		need_softclock = 1;
265	} else if (softticks + 1 == ticks)
266		++softticks;
267	mtx_unlock_spin_flags(&callout_lock, MTX_QUIET);
268
269	/*
270	 * swi_sched acquires sched_lock, so we don't want to call it with
271	 * callout_lock held; incorrect locking order.
272	 */
273	if (need_softclock)
274		swi_sched(softclock_ih, 0);
275
276#ifdef SW_WATCHDOG
277	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
278		watchdog_fire();
279#endif /* SW_WATCHDOG */
280}
281
282/*
283 * Compute number of ticks in the specified amount of time.
284 */
285int
286tvtohz(tv)
287	struct timeval *tv;
288{
289	register unsigned long ticks;
290	register long sec, usec;
291
292	/*
293	 * If the number of usecs in the whole seconds part of the time
294	 * difference fits in a long, then the total number of usecs will
295	 * fit in an unsigned long.  Compute the total and convert it to
296	 * ticks, rounding up and adding 1 to allow for the current tick
297	 * to expire.  Rounding also depends on unsigned long arithmetic
298	 * to avoid overflow.
299	 *
300	 * Otherwise, if the number of ticks in the whole seconds part of
301	 * the time difference fits in a long, then convert the parts to
302	 * ticks separately and add, using similar rounding methods and
303	 * overflow avoidance.  This method would work in the previous
304	 * case but it is slightly slower and assumes that hz is integral.
305	 *
306	 * Otherwise, round the time difference down to the maximum
307	 * representable value.
308	 *
309	 * If ints have 32 bits, then the maximum value for any timeout in
310	 * 10ms ticks is 248 days.
311	 */
312	sec = tv->tv_sec;
313	usec = tv->tv_usec;
314	if (usec < 0) {
315		sec--;
316		usec += 1000000;
317	}
318	if (sec < 0) {
319#ifdef DIAGNOSTIC
320		if (usec > 0) {
321			sec++;
322			usec -= 1000000;
323		}
324		printf("tvotohz: negative time difference %ld sec %ld usec\n",
325		       sec, usec);
326#endif
327		ticks = 1;
328	} else if (sec <= LONG_MAX / 1000000)
329		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
330			/ tick + 1;
331	else if (sec <= LONG_MAX / hz)
332		ticks = sec * hz
333			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
334	else
335		ticks = LONG_MAX;
336	if (ticks > INT_MAX)
337		ticks = INT_MAX;
338	return ((int)ticks);
339}
340
341/*
342 * Start profiling on a process.
343 *
344 * Kernel profiling passes proc0 which never exits and hence
345 * keeps the profile clock running constantly.
346 */
347void
348startprofclock(p)
349	register struct proc *p;
350{
351
352	/*
353	 * XXX; Right now sched_lock protects statclock(), but perhaps
354	 * it should be protected later on by a time_lock, which would
355	 * cover psdiv, etc. as well.
356	 */
357	PROC_LOCK_ASSERT(p, MA_OWNED);
358	if (p->p_flag & P_STOPPROF)
359		return;
360	if ((p->p_flag & P_PROFIL) == 0) {
361		mtx_lock_spin(&sched_lock);
362		p->p_flag |= P_PROFIL;
363		if (++profprocs == 1)
364			cpu_startprofclock();
365		mtx_unlock_spin(&sched_lock);
366	}
367}
368
369/*
370 * Stop profiling on a process.
371 */
372void
373stopprofclock(p)
374	register struct proc *p;
375{
376
377	PROC_LOCK_ASSERT(p, MA_OWNED);
378	if (p->p_flag & P_PROFIL) {
379		if (p->p_profthreads != 0) {
380			p->p_flag |= P_STOPPROF;
381			while (p->p_profthreads != 0)
382				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
383				    "stopprof", 0);
384			p->p_flag &= ~P_STOPPROF;
385		}
386		if ((p->p_flag & P_PROFIL) == 0)
387			return;
388		mtx_lock_spin(&sched_lock);
389		p->p_flag &= ~P_PROFIL;
390		if (--profprocs == 0)
391			cpu_stopprofclock();
392		mtx_unlock_spin(&sched_lock);
393	}
394}
395
396/*
397 * Statistics clock.  Grab profile sample, and if divider reaches 0,
398 * do process and kernel statistics.  Most of the statistics are only
399 * used by user-level statistics programs.  The main exceptions are
400 * ke->ke_uticks, p->p_rux.rux_sticks, p->p_rux.rux_iticks, and p->p_estcpu.
401 * This should be called by all active processors.
402 */
403void
404statclock(int usermode)
405{
406	struct rusage *ru;
407	struct vmspace *vm;
408	struct thread *td;
409	struct proc *p;
410	long rss;
411
412	td = curthread;
413	p = td->td_proc;
414
415	mtx_lock_spin_flags(&sched_lock, MTX_QUIET);
416	if (usermode) {
417		/*
418		 * Charge the time as appropriate.
419		 */
420#ifdef KSE
421		if (p->p_flag & P_SA)
422			thread_statclock(1);
423#endif
424		td->td_uticks++;
425		if (p->p_nice > NZERO)
426			cp_time[CP_NICE]++;
427		else
428			cp_time[CP_USER]++;
429	} else {
430		/*
431		 * Came from kernel mode, so we were:
432		 * - handling an interrupt,
433		 * - doing syscall or trap work on behalf of the current
434		 *   user process, or
435		 * - spinning in the idle loop.
436		 * Whichever it is, charge the time as appropriate.
437		 * Note that we charge interrupts to the current process,
438		 * regardless of whether they are ``for'' that process,
439		 * so that we know how much of its real time was spent
440		 * in ``non-process'' (i.e., interrupt) work.
441		 */
442		if ((td->td_pflags & TDP_ITHREAD) ||
443		    td->td_intr_nesting_level >= 2) {
444			td->td_iticks++;
445			cp_time[CP_INTR]++;
446		} else {
447#ifdef KSE
448			if (p->p_flag & P_SA)
449				thread_statclock(0);
450#endif
451			td->td_pticks++;
452			td->td_sticks++;
453			if (td != PCPU_GET(idlethread))
454				cp_time[CP_SYS]++;
455			else
456				cp_time[CP_IDLE]++;
457		}
458	}
459	CTR4(KTR_SCHED, "statclock: %p(%s) prio %d stathz %d",
460	    td, td->td_proc->p_comm, td->td_priority, (stathz)?stathz:hz);
461
462	sched_clock(td);
463
464	/* Update resource usage integrals and maximums. */
465	MPASS(p->p_stats != NULL);
466	MPASS(p->p_vmspace != NULL);
467	vm = p->p_vmspace;
468	ru = &p->p_stats->p_ru;
469	ru->ru_ixrss += pgtok(vm->vm_tsize);
470	ru->ru_idrss += pgtok(vm->vm_dsize);
471	ru->ru_isrss += pgtok(vm->vm_ssize);
472	rss = pgtok(vmspace_resident_count(vm));
473	if (ru->ru_maxrss < rss)
474		ru->ru_maxrss = rss;
475	mtx_unlock_spin_flags(&sched_lock, MTX_QUIET);
476}
477
478void
479profclock(int usermode, uintfptr_t pc)
480{
481	struct thread *td;
482#ifdef GPROF
483	struct gmonparam *g;
484	uintfptr_t i;
485#endif
486
487	td = curthread;
488	if (usermode) {
489		/*
490		 * Came from user mode; CPU was in user state.
491		 * If this process is being profiled, record the tick.
492		 * if there is no related user location yet, don't
493		 * bother trying to count it.
494		 */
495		if (td->td_proc->p_flag & P_PROFIL)
496			addupc_intr(td, pc, 1);
497	}
498#ifdef GPROF
499	else {
500		/*
501		 * Kernel statistics are just like addupc_intr, only easier.
502		 */
503		g = &_gmonparam;
504		if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
505			i = PC_TO_I(g, pc);
506			if (i < g->textsize) {
507				KCOUNT(g, i)++;
508			}
509		}
510	}
511#endif
512}
513
514/*
515 * Return information about system clocks.
516 */
517static int
518sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
519{
520	struct clockinfo clkinfo;
521	/*
522	 * Construct clockinfo structure.
523	 */
524	bzero(&clkinfo, sizeof(clkinfo));
525	clkinfo.hz = hz;
526	clkinfo.tick = tick;
527	clkinfo.profhz = profhz;
528	clkinfo.stathz = stathz ? stathz : hz;
529	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
530}
531
532SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
533	0, 0, sysctl_kern_clockrate, "S,clockinfo",
534	"Rate and period of various kernel clocks");
535
536#ifdef SW_WATCHDOG
537
538static void
539watchdog_config(void *unused __unused, u_int cmd, int *error)
540{
541	u_int u;
542
543	u = cmd & WD_INTERVAL;
544	if (u >= WD_TO_1SEC) {
545		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
546		watchdog_enabled = 1;
547		*error = 0;
548	} else {
549		watchdog_enabled = 0;
550	}
551}
552
553/*
554 * Handle a watchdog timeout by dumping interrupt information and
555 * then either dropping to DDB or panicing.
556 */
557static void
558watchdog_fire(void)
559{
560	int nintr;
561	u_int64_t inttotal;
562	u_long *curintr;
563	char *curname;
564
565	curintr = intrcnt;
566	curname = intrnames;
567	inttotal = 0;
568	nintr = eintrcnt - intrcnt;
569
570	printf("interrupt                   total\n");
571	while (--nintr >= 0) {
572		if (*curintr)
573			printf("%-12s %20lu\n", curname, *curintr);
574		curname += strlen(curname) + 1;
575		inttotal += *curintr++;
576	}
577	printf("Total        %20ju\n", (uintmax_t)inttotal);
578
579#ifdef KDB
580	kdb_backtrace();
581	kdb_enter("watchdog timeout");
582#else
583	panic("watchdog timeout");
584#endif /* KDB */
585}
586
587#endif /* SW_WATCHDOG */
588