kern_clock.c revision 163709
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_clock.c 163709 2006-10-26 21:42:22Z jb $");
39
40#include "opt_device_polling.h"
41#include "opt_hwpmc_hooks.h"
42#include "opt_ntp.h"
43#include "opt_watchdog.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/callout.h>
48#include <sys/kdb.h>
49#include <sys/kernel.h>
50#include <sys/lock.h>
51#include <sys/ktr.h>
52#include <sys/mutex.h>
53#include <sys/proc.h>
54#include <sys/resource.h>
55#include <sys/resourcevar.h>
56#include <sys/sched.h>
57#include <sys/signalvar.h>
58#include <sys/smp.h>
59#include <vm/vm.h>
60#include <vm/pmap.h>
61#include <vm/vm_map.h>
62#include <sys/sysctl.h>
63#include <sys/bus.h>
64#include <sys/interrupt.h>
65#include <sys/limits.h>
66#include <sys/timetc.h>
67
68#ifdef GPROF
69#include <sys/gmon.h>
70#endif
71
72#ifdef HWPMC_HOOKS
73#include <sys/pmckern.h>
74#endif
75
76#ifdef DEVICE_POLLING
77extern void hardclock_device_poll(void);
78#endif /* DEVICE_POLLING */
79
80static void initclocks(void *dummy);
81SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
82
83/* Some of these don't belong here, but it's easiest to concentrate them. */
84long cp_time[CPUSTATES];
85
86static int
87sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
88{
89	int error;
90#ifdef SCTL_MASK32
91	int i;
92	unsigned int cp_time32[CPUSTATES];
93
94	if (req->flags & SCTL_MASK32) {
95		if (!req->oldptr)
96			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
97		for (i = 0; i < CPUSTATES; i++)
98			cp_time32[i] = (unsigned int)cp_time[i];
99		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
100	} else
101#endif
102	{
103		if (!req->oldptr)
104			return SYSCTL_OUT(req, 0, sizeof(cp_time));
105		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
106	}
107	return error;
108}
109
110SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD,
111    0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
112
113#ifdef SW_WATCHDOG
114#include <sys/watchdog.h>
115
116static int watchdog_ticks;
117static int watchdog_enabled;
118static void watchdog_fire(void);
119static void watchdog_config(void *, u_int, int *);
120#endif /* SW_WATCHDOG */
121
122/*
123 * Clock handling routines.
124 *
125 * This code is written to operate with two timers that run independently of
126 * each other.
127 *
128 * The main timer, running hz times per second, is used to trigger interval
129 * timers, timeouts and rescheduling as needed.
130 *
131 * The second timer handles kernel and user profiling,
132 * and does resource use estimation.  If the second timer is programmable,
133 * it is randomized to avoid aliasing between the two clocks.  For example,
134 * the randomization prevents an adversary from always giving up the cpu
135 * just before its quantum expires.  Otherwise, it would never accumulate
136 * cpu ticks.  The mean frequency of the second timer is stathz.
137 *
138 * If no second timer exists, stathz will be zero; in this case we drive
139 * profiling and statistics off the main clock.  This WILL NOT be accurate;
140 * do not do it unless absolutely necessary.
141 *
142 * The statistics clock may (or may not) be run at a higher rate while
143 * profiling.  This profile clock runs at profhz.  We require that profhz
144 * be an integral multiple of stathz.
145 *
146 * If the statistics clock is running fast, it must be divided by the ratio
147 * profhz/stathz for statistics.  (For profiling, every tick counts.)
148 *
149 * Time-of-day is maintained using a "timecounter", which may or may
150 * not be related to the hardware generating the above mentioned
151 * interrupts.
152 */
153
154int	stathz;
155int	profhz;
156int	profprocs;
157int	ticks;
158int	psratio;
159
160/*
161 * Initialize clock frequencies and start both clocks running.
162 */
163/* ARGSUSED*/
164static void
165initclocks(dummy)
166	void *dummy;
167{
168	register int i;
169
170	/*
171	 * Set divisors to 1 (normal case) and let the machine-specific
172	 * code do its bit.
173	 */
174	cpu_initclocks();
175
176	/*
177	 * Compute profhz/stathz, and fix profhz if needed.
178	 */
179	i = stathz ? stathz : hz;
180	if (profhz == 0)
181		profhz = i;
182	psratio = profhz / i;
183#ifdef SW_WATCHDOG
184	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
185#endif
186}
187
188/*
189 * Each time the real-time timer fires, this function is called on all CPUs.
190 * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
191 * the other CPUs in the system need to call this function.
192 */
193void
194hardclock_cpu(int usermode)
195{
196	struct pstats *pstats;
197	struct thread *td = curthread;
198	struct proc *p = td->td_proc;
199
200	/*
201	 * Run current process's virtual and profile time, as needed.
202	 */
203	mtx_lock_spin_flags(&sched_lock, MTX_QUIET);
204	sched_tick();
205#ifdef KSE
206	if (p->p_flag & P_SA) {
207		/* XXXKSE What to do? */
208	} else {
209		pstats = p->p_stats;
210		if (usermode &&
211		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
212		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
213			p->p_sflag |= PS_ALRMPEND;
214			td->td_flags |= TDF_ASTPENDING;
215		}
216		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
217		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
218			p->p_sflag |= PS_PROFPEND;
219			td->td_flags |= TDF_ASTPENDING;
220		}
221	}
222#else
223	pstats = p->p_stats;
224	if (usermode &&
225	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
226	    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
227		p->p_sflag |= PS_ALRMPEND;
228		td->td_flags |= TDF_ASTPENDING;
229	}
230	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
231	    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
232		p->p_sflag |= PS_PROFPEND;
233		td->td_flags |= TDF_ASTPENDING;
234	}
235#endif
236	mtx_unlock_spin_flags(&sched_lock, MTX_QUIET);
237
238#ifdef	HWPMC_HOOKS
239	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
240		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
241#endif
242}
243
244/*
245 * The real-time timer, interrupting hz times per second.
246 */
247void
248hardclock(int usermode, uintfptr_t pc)
249{
250	int need_softclock = 0;
251
252	hardclock_cpu(usermode);
253
254	tc_ticktock();
255	/*
256	 * If no separate statistics clock is available, run it from here.
257	 *
258	 * XXX: this only works for UP
259	 */
260	if (stathz == 0) {
261		profclock(usermode, pc);
262		statclock(usermode);
263	}
264
265#ifdef DEVICE_POLLING
266	hardclock_device_poll();	/* this is very short and quick */
267#endif /* DEVICE_POLLING */
268
269	/*
270	 * Process callouts at a very low cpu priority, so we don't keep the
271	 * relatively high clock interrupt priority any longer than necessary.
272	 */
273	mtx_lock_spin_flags(&callout_lock, MTX_QUIET);
274	ticks++;
275	if (!TAILQ_EMPTY(&callwheel[ticks & callwheelmask])) {
276		need_softclock = 1;
277	} else if (softticks + 1 == ticks)
278		++softticks;
279	mtx_unlock_spin_flags(&callout_lock, MTX_QUIET);
280
281	/*
282	 * swi_sched acquires sched_lock, so we don't want to call it with
283	 * callout_lock held; incorrect locking order.
284	 */
285	if (need_softclock)
286		swi_sched(softclock_ih, 0);
287
288#ifdef SW_WATCHDOG
289	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
290		watchdog_fire();
291#endif /* SW_WATCHDOG */
292}
293
294/*
295 * Compute number of ticks in the specified amount of time.
296 */
297int
298tvtohz(tv)
299	struct timeval *tv;
300{
301	register unsigned long ticks;
302	register long sec, usec;
303
304	/*
305	 * If the number of usecs in the whole seconds part of the time
306	 * difference fits in a long, then the total number of usecs will
307	 * fit in an unsigned long.  Compute the total and convert it to
308	 * ticks, rounding up and adding 1 to allow for the current tick
309	 * to expire.  Rounding also depends on unsigned long arithmetic
310	 * to avoid overflow.
311	 *
312	 * Otherwise, if the number of ticks in the whole seconds part of
313	 * the time difference fits in a long, then convert the parts to
314	 * ticks separately and add, using similar rounding methods and
315	 * overflow avoidance.  This method would work in the previous
316	 * case but it is slightly slower and assumes that hz is integral.
317	 *
318	 * Otherwise, round the time difference down to the maximum
319	 * representable value.
320	 *
321	 * If ints have 32 bits, then the maximum value for any timeout in
322	 * 10ms ticks is 248 days.
323	 */
324	sec = tv->tv_sec;
325	usec = tv->tv_usec;
326	if (usec < 0) {
327		sec--;
328		usec += 1000000;
329	}
330	if (sec < 0) {
331#ifdef DIAGNOSTIC
332		if (usec > 0) {
333			sec++;
334			usec -= 1000000;
335		}
336		printf("tvotohz: negative time difference %ld sec %ld usec\n",
337		       sec, usec);
338#endif
339		ticks = 1;
340	} else if (sec <= LONG_MAX / 1000000)
341		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
342			/ tick + 1;
343	else if (sec <= LONG_MAX / hz)
344		ticks = sec * hz
345			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
346	else
347		ticks = LONG_MAX;
348	if (ticks > INT_MAX)
349		ticks = INT_MAX;
350	return ((int)ticks);
351}
352
353/*
354 * Start profiling on a process.
355 *
356 * Kernel profiling passes proc0 which never exits and hence
357 * keeps the profile clock running constantly.
358 */
359void
360startprofclock(p)
361	register struct proc *p;
362{
363
364	/*
365	 * XXX; Right now sched_lock protects statclock(), but perhaps
366	 * it should be protected later on by a time_lock, which would
367	 * cover psdiv, etc. as well.
368	 */
369	PROC_LOCK_ASSERT(p, MA_OWNED);
370	if (p->p_flag & P_STOPPROF)
371		return;
372	if ((p->p_flag & P_PROFIL) == 0) {
373		mtx_lock_spin(&sched_lock);
374		p->p_flag |= P_PROFIL;
375		if (++profprocs == 1)
376			cpu_startprofclock();
377		mtx_unlock_spin(&sched_lock);
378	}
379}
380
381/*
382 * Stop profiling on a process.
383 */
384void
385stopprofclock(p)
386	register struct proc *p;
387{
388
389	PROC_LOCK_ASSERT(p, MA_OWNED);
390	if (p->p_flag & P_PROFIL) {
391		if (p->p_profthreads != 0) {
392			p->p_flag |= P_STOPPROF;
393			while (p->p_profthreads != 0)
394				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
395				    "stopprof", 0);
396			p->p_flag &= ~P_STOPPROF;
397		}
398		if ((p->p_flag & P_PROFIL) == 0)
399			return;
400		mtx_lock_spin(&sched_lock);
401		p->p_flag &= ~P_PROFIL;
402		if (--profprocs == 0)
403			cpu_stopprofclock();
404		mtx_unlock_spin(&sched_lock);
405	}
406}
407
408/*
409 * Statistics clock.  Grab profile sample, and if divider reaches 0,
410 * do process and kernel statistics.  Most of the statistics are only
411 * used by user-level statistics programs.  The main exceptions are
412 * ke->ke_uticks, p->p_rux.rux_sticks, p->p_rux.rux_iticks, and p->p_estcpu.
413 * This should be called by all active processors.
414 */
415void
416statclock(int usermode)
417{
418	struct rusage *ru;
419	struct vmspace *vm;
420	struct thread *td;
421	struct proc *p;
422	long rss;
423
424	td = curthread;
425	p = td->td_proc;
426
427	mtx_lock_spin_flags(&sched_lock, MTX_QUIET);
428	if (usermode) {
429		/*
430		 * Charge the time as appropriate.
431		 */
432#ifdef KSE
433		if (p->p_flag & P_SA)
434			thread_statclock(1);
435#endif
436		td->td_uticks++;
437		if (p->p_nice > NZERO)
438			cp_time[CP_NICE]++;
439		else
440			cp_time[CP_USER]++;
441	} else {
442		/*
443		 * Came from kernel mode, so we were:
444		 * - handling an interrupt,
445		 * - doing syscall or trap work on behalf of the current
446		 *   user process, or
447		 * - spinning in the idle loop.
448		 * Whichever it is, charge the time as appropriate.
449		 * Note that we charge interrupts to the current process,
450		 * regardless of whether they are ``for'' that process,
451		 * so that we know how much of its real time was spent
452		 * in ``non-process'' (i.e., interrupt) work.
453		 */
454		if ((td->td_pflags & TDP_ITHREAD) ||
455		    td->td_intr_nesting_level >= 2) {
456			td->td_iticks++;
457			cp_time[CP_INTR]++;
458		} else {
459#ifdef KSE
460			if (p->p_flag & P_SA)
461				thread_statclock(0);
462#endif
463			td->td_pticks++;
464			td->td_sticks++;
465			if (td != PCPU_GET(idlethread))
466				cp_time[CP_SYS]++;
467			else
468				cp_time[CP_IDLE]++;
469		}
470	}
471	CTR4(KTR_SCHED, "statclock: %p(%s) prio %d stathz %d",
472	    td, td->td_proc->p_comm, td->td_priority, (stathz)?stathz:hz);
473
474	sched_clock(td);
475
476	/* Update resource usage integrals and maximums. */
477	MPASS(p->p_stats != NULL);
478	MPASS(p->p_vmspace != NULL);
479	vm = p->p_vmspace;
480	ru = &p->p_stats->p_ru;
481	ru->ru_ixrss += pgtok(vm->vm_tsize);
482	ru->ru_idrss += pgtok(vm->vm_dsize);
483	ru->ru_isrss += pgtok(vm->vm_ssize);
484	rss = pgtok(vmspace_resident_count(vm));
485	if (ru->ru_maxrss < rss)
486		ru->ru_maxrss = rss;
487	mtx_unlock_spin_flags(&sched_lock, MTX_QUIET);
488}
489
490void
491profclock(int usermode, uintfptr_t pc)
492{
493	struct thread *td;
494#ifdef GPROF
495	struct gmonparam *g;
496	uintfptr_t i;
497#endif
498
499	td = curthread;
500	if (usermode) {
501		/*
502		 * Came from user mode; CPU was in user state.
503		 * If this process is being profiled, record the tick.
504		 * if there is no related user location yet, don't
505		 * bother trying to count it.
506		 */
507		if (td->td_proc->p_flag & P_PROFIL)
508			addupc_intr(td, pc, 1);
509	}
510#ifdef GPROF
511	else {
512		/*
513		 * Kernel statistics are just like addupc_intr, only easier.
514		 */
515		g = &_gmonparam;
516		if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
517			i = PC_TO_I(g, pc);
518			if (i < g->textsize) {
519				KCOUNT(g, i)++;
520			}
521		}
522	}
523#endif
524}
525
526/*
527 * Return information about system clocks.
528 */
529static int
530sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
531{
532	struct clockinfo clkinfo;
533	/*
534	 * Construct clockinfo structure.
535	 */
536	bzero(&clkinfo, sizeof(clkinfo));
537	clkinfo.hz = hz;
538	clkinfo.tick = tick;
539	clkinfo.profhz = profhz;
540	clkinfo.stathz = stathz ? stathz : hz;
541	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
542}
543
544SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
545	0, 0, sysctl_kern_clockrate, "S,clockinfo",
546	"Rate and period of various kernel clocks");
547
548#ifdef SW_WATCHDOG
549
550static void
551watchdog_config(void *unused __unused, u_int cmd, int *err)
552{
553	u_int u;
554
555	u = cmd & WD_INTERVAL;
556	if ((cmd & WD_ACTIVE) && u >= WD_TO_1SEC) {
557		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
558		watchdog_enabled = 1;
559		*err = 0;
560	} else {
561		watchdog_enabled = 0;
562	}
563}
564
565/*
566 * Handle a watchdog timeout by dumping interrupt information and
567 * then either dropping to DDB or panicing.
568 */
569static void
570watchdog_fire(void)
571{
572	int nintr;
573	u_int64_t inttotal;
574	u_long *curintr;
575	char *curname;
576
577	curintr = intrcnt;
578	curname = intrnames;
579	inttotal = 0;
580	nintr = eintrcnt - intrcnt;
581
582	printf("interrupt                   total\n");
583	while (--nintr >= 0) {
584		if (*curintr)
585			printf("%-12s %20lu\n", curname, *curintr);
586		curname += strlen(curname) + 1;
587		inttotal += *curintr++;
588	}
589	printf("Total        %20ju\n", (uintmax_t)inttotal);
590
591#ifdef KDB
592	kdb_backtrace();
593	kdb_enter("watchdog timeout");
594#else
595	panic("watchdog timeout");
596#endif /* KDB */
597}
598
599#endif /* SW_WATCHDOG */
600