kern_clock.c revision 170468
150476Speter/*-
232236Shelbig * Copyright (c) 1982, 1986, 1991, 1993
332236Shelbig *	The Regents of the University of California.  All rights reserved.
432236Shelbig * (c) UNIX System Laboratories, Inc.
532236Shelbig * All or some portions of this file are derived from material licensed
632236Shelbig * to the University of California by American Telephone and Telegraph
732236Shelbig * Co. or Unix System Laboratories, Inc. and are reproduced herein with
832236Shelbig * the permission of UNIX System Laboratories, Inc.
932236Shelbig *
1032236Shelbig * Redistribution and use in source and binary forms, with or without
1132236Shelbig * modification, are permitted provided that the following conditions
1232236Shelbig * are met:
1332236Shelbig * 1. Redistributions of source code must retain the above copyright
1432236Shelbig *    notice, this list of conditions and the following disclaimer.
1532236Shelbig * 2. Redistributions in binary form must reproduce the above copyright
1632236Shelbig *    notice, this list of conditions and the following disclaimer in the
1732236Shelbig *    documentation and/or other materials provided with the distribution.
1832236Shelbig * 4. Neither the name of the University nor the names of its contributors
1932236Shelbig *    may be used to endorse or promote products derived from this software
2032236Shelbig *    without specific prior written permission.
2132236Shelbig *
2232236Shelbig * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
2332236Shelbig * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2432236Shelbig * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2532236Shelbig * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
2632236Shelbig * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2732236Shelbig * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2832236Shelbig * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2932236Shelbig * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3032236Shelbig * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3132236Shelbig * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3232236Shelbig * SUCH DAMAGE.
3332236Shelbig *
3432236Shelbig *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
3532236Shelbig */
3632236Shelbig
3732236Shelbig#include <sys/cdefs.h>
3832236Shelbig__FBSDID("$FreeBSD: head/sys/kern/kern_clock.c 170468 2007-06-09 19:41:14Z attilio $");
3932236Shelbig
4032236Shelbig#include "opt_kdb.h"
4132236Shelbig#include "opt_device_polling.h"
4232236Shelbig#include "opt_hwpmc_hooks.h"
4332236Shelbig#include "opt_ntp.h"
4432236Shelbig#include "opt_watchdog.h"
4532236Shelbig
4632236Shelbig#include <sys/param.h>
4732236Shelbig#include <sys/systm.h>
4832236Shelbig#include <sys/callout.h>
4932236Shelbig#include <sys/kdb.h>
5032236Shelbig#include <sys/kernel.h>
5132236Shelbig#include <sys/lock.h>
5232236Shelbig#include <sys/ktr.h>
5332236Shelbig#include <sys/mutex.h>
5432236Shelbig#include <sys/proc.h>
5532236Shelbig#include <sys/resource.h>
5632236Shelbig#include <sys/resourcevar.h>
5732236Shelbig#include <sys/sched.h>
5832236Shelbig#include <sys/signalvar.h>
5932236Shelbig#include <sys/smp.h>
6032236Shelbig#include <vm/vm.h>
6132236Shelbig#include <vm/pmap.h>
6232236Shelbig#include <vm/vm_map.h>
6332236Shelbig#include <sys/sysctl.h>
6432236Shelbig#include <sys/bus.h>
6532236Shelbig#include <sys/interrupt.h>
6653943Sache#include <sys/limits.h>
6732236Shelbig#include <sys/timetc.h>
6832236Shelbig
6932236Shelbig#ifdef GPROF
7032236Shelbig#include <sys/gmon.h>
7132236Shelbig#endif
7232236Shelbig
7332236Shelbig#ifdef HWPMC_HOOKS
7432236Shelbig#include <sys/pmckern.h>
7532236Shelbig#endif
7632236Shelbig
7732236Shelbig#ifdef DEVICE_POLLING
7853943Sacheextern void hardclock_device_poll(void);
7953943Sache#endif /* DEVICE_POLLING */
8053943Sache
8153943Sachestatic void initclocks(void *dummy);
8253943SacheSYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
8353943Sache
8453943Sache/* Some of these don't belong here, but it's easiest to concentrate them. */
8553943Sachelong cp_time[CPUSTATES];
8653943Sache
8753943Sache/* Spin-lock protecting profiling statistics. */
8853943Sachestatic struct mtx time_lock;
8953943Sache
9053943Sachestatic int
9153943Sachesysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
9253943Sache{
9353943Sache	int error;
9453943Sache#ifdef SCTL_MASK32
9553943Sache	int i;
9653943Sache	unsigned int cp_time32[CPUSTATES];
9753943Sache
98	if (req->flags & SCTL_MASK32) {
99		if (!req->oldptr)
100			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
101		for (i = 0; i < CPUSTATES; i++)
102			cp_time32[i] = (unsigned int)cp_time[i];
103		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
104	} else
105#endif
106	{
107		if (!req->oldptr)
108			return SYSCTL_OUT(req, 0, sizeof(cp_time));
109		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
110	}
111	return error;
112}
113
114SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD,
115    0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
116
117#ifdef SW_WATCHDOG
118#include <sys/watchdog.h>
119
120static int watchdog_ticks;
121static int watchdog_enabled;
122static void watchdog_fire(void);
123static void watchdog_config(void *, u_int, int *);
124#endif /* SW_WATCHDOG */
125
126/*
127 * Clock handling routines.
128 *
129 * This code is written to operate with two timers that run independently of
130 * each other.
131 *
132 * The main timer, running hz times per second, is used to trigger interval
133 * timers, timeouts and rescheduling as needed.
134 *
135 * The second timer handles kernel and user profiling,
136 * and does resource use estimation.  If the second timer is programmable,
137 * it is randomized to avoid aliasing between the two clocks.  For example,
138 * the randomization prevents an adversary from always giving up the cpu
139 * just before its quantum expires.  Otherwise, it would never accumulate
140 * cpu ticks.  The mean frequency of the second timer is stathz.
141 *
142 * If no second timer exists, stathz will be zero; in this case we drive
143 * profiling and statistics off the main clock.  This WILL NOT be accurate;
144 * do not do it unless absolutely necessary.
145 *
146 * The statistics clock may (or may not) be run at a higher rate while
147 * profiling.  This profile clock runs at profhz.  We require that profhz
148 * be an integral multiple of stathz.
149 *
150 * If the statistics clock is running fast, it must be divided by the ratio
151 * profhz/stathz for statistics.  (For profiling, every tick counts.)
152 *
153 * Time-of-day is maintained using a "timecounter", which may or may
154 * not be related to the hardware generating the above mentioned
155 * interrupts.
156 */
157
158int	stathz;
159int	profhz;
160int	profprocs;
161int	ticks;
162int	psratio;
163
164/*
165 * Initialize clock frequencies and start both clocks running.
166 */
167/* ARGSUSED*/
168static void
169initclocks(dummy)
170	void *dummy;
171{
172	register int i;
173
174	/*
175	 * Set divisors to 1 (normal case) and let the machine-specific
176	 * code do its bit.
177	 */
178	mtx_init(&time_lock, "time lock", NULL, MTX_SPIN);
179	cpu_initclocks();
180
181	/*
182	 * Compute profhz/stathz, and fix profhz if needed.
183	 */
184	i = stathz ? stathz : hz;
185	if (profhz == 0)
186		profhz = i;
187	psratio = profhz / i;
188#ifdef SW_WATCHDOG
189	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
190#endif
191}
192
193/*
194 * Each time the real-time timer fires, this function is called on all CPUs.
195 * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
196 * the other CPUs in the system need to call this function.
197 */
198void
199hardclock_cpu(int usermode)
200{
201	struct pstats *pstats;
202	struct thread *td = curthread;
203	struct proc *p = td->td_proc;
204	int ast;
205
206	/*
207	 * Run current process's virtual and profile time, as needed.
208	 */
209	pstats = p->p_stats;
210	ast = 0;
211	if (usermode &&
212	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
213		PROC_SLOCK(p);
214		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
215			p->p_sflag |= PS_ALRMPEND;
216			ast = 1;
217		}
218		PROC_SUNLOCK(p);
219	}
220	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
221		PROC_SLOCK(p);
222		if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
223			p->p_sflag |= PS_PROFPEND;
224			ast = 1;
225		}
226		PROC_SUNLOCK(p);
227	}
228	thread_lock(td);
229	sched_tick();
230	if (ast)
231		td->td_flags |= TDF_ASTPENDING;
232	thread_unlock(td);
233
234#ifdef	HWPMC_HOOKS
235	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
236		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
237#endif
238}
239
240/*
241 * The real-time timer, interrupting hz times per second.
242 */
243void
244hardclock(int usermode, uintfptr_t pc)
245{
246	int need_softclock = 0;
247
248	hardclock_cpu(usermode);
249
250	tc_ticktock();
251	/*
252	 * If no separate statistics clock is available, run it from here.
253	 *
254	 * XXX: this only works for UP
255	 */
256	if (stathz == 0) {
257		profclock(usermode, pc);
258		statclock(usermode);
259	}
260
261#ifdef DEVICE_POLLING
262	hardclock_device_poll();	/* this is very short and quick */
263#endif /* DEVICE_POLLING */
264
265	/*
266	 * Process callouts at a very low cpu priority, so we don't keep the
267	 * relatively high clock interrupt priority any longer than necessary.
268	 */
269	mtx_lock_spin_flags(&callout_lock, MTX_QUIET);
270	ticks++;
271	if (!TAILQ_EMPTY(&callwheel[ticks & callwheelmask])) {
272		need_softclock = 1;
273	} else if (softticks + 1 == ticks)
274		++softticks;
275	mtx_unlock_spin_flags(&callout_lock, MTX_QUIET);
276
277	/*
278	 * swi_sched acquires the thread lock, so we don't want to call it
279	 * with callout_lock held; incorrect locking order.
280	 */
281	if (need_softclock)
282		swi_sched(softclock_ih, 0);
283
284#ifdef SW_WATCHDOG
285	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
286		watchdog_fire();
287#endif /* SW_WATCHDOG */
288}
289
290/*
291 * Compute number of ticks in the specified amount of time.
292 */
293int
294tvtohz(tv)
295	struct timeval *tv;
296{
297	register unsigned long ticks;
298	register long sec, usec;
299
300	/*
301	 * If the number of usecs in the whole seconds part of the time
302	 * difference fits in a long, then the total number of usecs will
303	 * fit in an unsigned long.  Compute the total and convert it to
304	 * ticks, rounding up and adding 1 to allow for the current tick
305	 * to expire.  Rounding also depends on unsigned long arithmetic
306	 * to avoid overflow.
307	 *
308	 * Otherwise, if the number of ticks in the whole seconds part of
309	 * the time difference fits in a long, then convert the parts to
310	 * ticks separately and add, using similar rounding methods and
311	 * overflow avoidance.  This method would work in the previous
312	 * case but it is slightly slower and assumes that hz is integral.
313	 *
314	 * Otherwise, round the time difference down to the maximum
315	 * representable value.
316	 *
317	 * If ints have 32 bits, then the maximum value for any timeout in
318	 * 10ms ticks is 248 days.
319	 */
320	sec = tv->tv_sec;
321	usec = tv->tv_usec;
322	if (usec < 0) {
323		sec--;
324		usec += 1000000;
325	}
326	if (sec < 0) {
327#ifdef DIAGNOSTIC
328		if (usec > 0) {
329			sec++;
330			usec -= 1000000;
331		}
332		printf("tvotohz: negative time difference %ld sec %ld usec\n",
333		       sec, usec);
334#endif
335		ticks = 1;
336	} else if (sec <= LONG_MAX / 1000000)
337		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
338			/ tick + 1;
339	else if (sec <= LONG_MAX / hz)
340		ticks = sec * hz
341			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
342	else
343		ticks = LONG_MAX;
344	if (ticks > INT_MAX)
345		ticks = INT_MAX;
346	return ((int)ticks);
347}
348
349/*
350 * Start profiling on a process.
351 *
352 * Kernel profiling passes proc0 which never exits and hence
353 * keeps the profile clock running constantly.
354 */
355void
356startprofclock(p)
357	register struct proc *p;
358{
359
360	PROC_LOCK_ASSERT(p, MA_OWNED);
361	if (p->p_flag & P_STOPPROF)
362		return;
363	if ((p->p_flag & P_PROFIL) == 0) {
364		p->p_flag |= P_PROFIL;
365		mtx_lock_spin(&time_lock);
366		if (++profprocs == 1)
367			cpu_startprofclock();
368		mtx_unlock_spin(&time_lock);
369	}
370}
371
372/*
373 * Stop profiling on a process.
374 */
375void
376stopprofclock(p)
377	register struct proc *p;
378{
379
380	PROC_LOCK_ASSERT(p, MA_OWNED);
381	if (p->p_flag & P_PROFIL) {
382		if (p->p_profthreads != 0) {
383			p->p_flag |= P_STOPPROF;
384			while (p->p_profthreads != 0)
385				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
386				    "stopprof", 0);
387			p->p_flag &= ~P_STOPPROF;
388		}
389		if ((p->p_flag & P_PROFIL) == 0)
390			return;
391		p->p_flag &= ~P_PROFIL;
392		mtx_lock_spin(&time_lock);
393		if (--profprocs == 0)
394			cpu_stopprofclock();
395		mtx_unlock_spin(&time_lock);
396	}
397}
398
399/*
400 * Statistics clock.  Updates rusage information and calls the scheduler
401 * to adjust priorities of the active thread.
402 *
403 * This should be called by all active processors.
404 */
405void
406statclock(int usermode)
407{
408	struct rusage *ru;
409	struct vmspace *vm;
410	struct thread *td;
411	struct proc *p;
412	long rss;
413
414	td = curthread;
415	p = td->td_proc;
416
417	thread_lock_flags(td, MTX_QUIET);
418	if (usermode) {
419		/*
420		 * Charge the time as appropriate.
421		 */
422#ifdef KSE
423		if (p->p_flag & P_SA)
424			thread_statclock(1);
425#endif
426		td->td_uticks++;
427		if (p->p_nice > NZERO)
428			atomic_add_long(&cp_time[CP_NICE], 1);
429		else
430			atomic_add_long(&cp_time[CP_USER], 1);
431	} else {
432		/*
433		 * Came from kernel mode, so we were:
434		 * - handling an interrupt,
435		 * - doing syscall or trap work on behalf of the current
436		 *   user process, or
437		 * - spinning in the idle loop.
438		 * Whichever it is, charge the time as appropriate.
439		 * Note that we charge interrupts to the current process,
440		 * regardless of whether they are ``for'' that process,
441		 * so that we know how much of its real time was spent
442		 * in ``non-process'' (i.e., interrupt) work.
443		 */
444		if ((td->td_pflags & TDP_ITHREAD) ||
445		    td->td_intr_nesting_level >= 2) {
446			td->td_iticks++;
447			atomic_add_long(&cp_time[CP_INTR], 1);
448		} else {
449#ifdef KSE
450			if (p->p_flag & P_SA)
451				thread_statclock(0);
452#endif
453			td->td_pticks++;
454			td->td_sticks++;
455			if (!TD_IS_IDLETHREAD(td))
456				atomic_add_long(&cp_time[CP_SYS], 1);
457			else
458				atomic_add_long(&cp_time[CP_IDLE], 1);
459		}
460	}
461
462	/* Update resource usage integrals and maximums. */
463	MPASS(p->p_vmspace != NULL);
464	vm = p->p_vmspace;
465	ru = &td->td_ru;
466	ru->ru_ixrss += pgtok(vm->vm_tsize);
467	ru->ru_idrss += pgtok(vm->vm_dsize);
468	ru->ru_isrss += pgtok(vm->vm_ssize);
469	rss = pgtok(vmspace_resident_count(vm));
470	if (ru->ru_maxrss < rss)
471		ru->ru_maxrss = rss;
472	CTR4(KTR_SCHED, "statclock: %p(%s) prio %d stathz %d",
473	    td, td->td_proc->p_comm, td->td_priority, (stathz)?stathz:hz);
474	sched_clock(td);
475	thread_unlock(td);
476}
477
478void
479profclock(int usermode, uintfptr_t pc)
480{
481	struct thread *td;
482#ifdef GPROF
483	struct gmonparam *g;
484	uintfptr_t i;
485#endif
486
487	td = curthread;
488	if (usermode) {
489		/*
490		 * Came from user mode; CPU was in user state.
491		 * If this process is being profiled, record the tick.
492		 * if there is no related user location yet, don't
493		 * bother trying to count it.
494		 */
495		if (td->td_proc->p_flag & P_PROFIL)
496			addupc_intr(td, pc, 1);
497	}
498#ifdef GPROF
499	else {
500		/*
501		 * Kernel statistics are just like addupc_intr, only easier.
502		 */
503		g = &_gmonparam;
504		if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
505			i = PC_TO_I(g, pc);
506			if (i < g->textsize) {
507				KCOUNT(g, i)++;
508			}
509		}
510	}
511#endif
512}
513
514/*
515 * Return information about system clocks.
516 */
517static int
518sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
519{
520	struct clockinfo clkinfo;
521	/*
522	 * Construct clockinfo structure.
523	 */
524	bzero(&clkinfo, sizeof(clkinfo));
525	clkinfo.hz = hz;
526	clkinfo.tick = tick;
527	clkinfo.profhz = profhz;
528	clkinfo.stathz = stathz ? stathz : hz;
529	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
530}
531
532SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
533	0, 0, sysctl_kern_clockrate, "S,clockinfo",
534	"Rate and period of various kernel clocks");
535
536#ifdef SW_WATCHDOG
537
538static void
539watchdog_config(void *unused __unused, u_int cmd, int *error)
540{
541	u_int u;
542
543	u = cmd & WD_INTERVAL;
544	if (u >= WD_TO_1SEC) {
545		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
546		watchdog_enabled = 1;
547		*error = 0;
548	} else {
549		watchdog_enabled = 0;
550	}
551}
552
553/*
554 * Handle a watchdog timeout by dumping interrupt information and
555 * then either dropping to DDB or panicking.
556 */
557static void
558watchdog_fire(void)
559{
560	int nintr;
561	u_int64_t inttotal;
562	u_long *curintr;
563	char *curname;
564
565	curintr = intrcnt;
566	curname = intrnames;
567	inttotal = 0;
568	nintr = eintrcnt - intrcnt;
569
570	printf("interrupt                   total\n");
571	while (--nintr >= 0) {
572		if (*curintr)
573			printf("%-12s %20lu\n", curname, *curintr);
574		curname += strlen(curname) + 1;
575		inttotal += *curintr++;
576	}
577	printf("Total        %20ju\n", (uintmax_t)inttotal);
578
579#if defined(KDB) && !defined(KDB_UNATTENDED)
580	kdb_backtrace();
581	kdb_enter("watchdog timeout");
582#else
583	panic("watchdog timeout");
584#endif
585}
586
587#endif /* SW_WATCHDOG */
588